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ABSTRACT 

The object of this work w a s  to obtain some insight into the most 
efficient and sensitive procedure for data reduction and mathematical 
modeling of experimental process dynamic data. 
chosen for analysis was the dissipation of a t r ace r  injection in a fluid 

The physical system 

flowing through a tube. 
this system is the well 

The partial differential equation representing 
known one-dimensional axial dispersion equation 

ar. a2c - ac 
ax a t  - u -  - = DL g 

The solutions of this equation in the t ime domain, the frequency domain 
and the Laplace domain a r e  given in the body of the text. Thirty-three 
sets  of experimental data with dynamic material  balances varying from 
less  than 1% to greater than 4070 were analyzed. These data were cor- 
related to the mathematical model in the three aforementioned domains. 
The Peclet number and the effective residence t ime were obtained by 
minimizing a residual surface using modified and steepest descent 
techniques. Normalized input, normalized output, and the raw data of 
all runs were processed in the t ime domain. 
were processed in the frequency domain and only one run was processed 
in  the Laplace domain. 
the t ime and frequency domain was developed and utilized. 
the transformation of this argument could not be made into the Laplace 
domain where real  values for the Laplace variable a r e  used. 

Thirteen selected runs 

A consistent least  squares argument between 
However, 

In general it w a s  found that no significant discrepancies existed 
between the parameters  determined in the three domains. 
due to the behavior of the numerical Laplace transform around zero and 
the author's inability to transform a consistent least  squares argument 
into this domain, it w a s  decided to eliminate this method of data reduc- 
tion f rom further consideration. 

However, 

The Peclet  number varied significantly between the normalized 
and unnormalized data when the material  balance deviation w a s  greater  
than approximately 15 percent. 
effective residence time. 

Normalization had little effect on the 

Residual surfaces were found to be quite steep for variations in 
the effective residence time, whereas they were shallow and elongated 
for  variations in the Peclet  number. 

\ 
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The computation t ime was essentially the same for numerical 
convolution and numerical Fourier transform calculations. 
grams were not optimized; however, the same logic form was utilized 
for both calculations when seeking parameters .  

These pro- 
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. 
INTRODUCTION 

A. Puls e T es ting : 

One of the most useful techniques for  obtaining experimental 
The pulse test  is per-  dynamics of linear systems is the pulse test. 

formed by forcing the system input with a pulse of finite duration and 
recording both the system input and its response. 

I -  

1 

0 t-T, 

Figure 1. The Pulse Test 

0 
Y t -T 

The resulting data can be modeled to a theoretical equation in either the 
t ime domain, the frequency domain, o r  the Laplace domain. The t rans-  
f e r  function of the system is defined as 

dt 
. .  

x(s)  /,'".(t) e -st dt 

Several  author^"^ have used real  values of s and numerical re -  
ductions of the experimental data according to Equation 1 to obtain the 
t ransfer  function form. 
by a plot of G ( s )  versus s. 

The experimental dynamics is then represented 

The Fourier  transform can be applied to Equation 1 by substi- 
tuting ja for s, where j is the The resulting transform yields 

1 Ty y(t)  e-jwtdt 

1 Tx x(t) e-jwtdt 

G(&) = 



I 
I *  

2 

t 

-jut 
Using the identity e = coswt - j sin ut, Equation 2 becomes 

y(t)coswt dt-j I y y ( t ) s i m t  dt 

Jo x(t)coswt d t - j j  x ( t ) s imt  dt 
Tx 

G j w )  = JOTY 
TX 

0 

( 3 )  

This is the system frequency response and it can be separated 
i i i t~  its real and imaginary parts as 

where 

AC t BD 
C2 t DZ 

Re(o) = 

AD - BC 
Cz t DZ 

Im(w) = 

A =JoTYy(t) cosot  dt 

B =JoTyy(t) s inot  dt 

TX 
C = x(t) cosot  dt 

' 0  

D = j T x x ( t )  s inot  dt 
0 

(5 )  

(7) 

( 9 )  

Numerical solutions of the above integrals yield the experi- 
mental dynamics in frequency response form. 
a Nyquist plot of Re(w) versus Im(o). 

It can be represented by 

B. The Mathematical Model: 

If the law of mass conservation is applied to a differential ele- - 
ment of material  flowing in a tube of length L at constant velocity, u, 
the one dimensional axial dispersion equation is obtained a s  

a z c  - ac a c  
a t  ax ax = D L  7 - u -  - 
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where 

C = concentration - r n a s ~ / ( l e n g t h ) ~  

t = time 

x = length 

u = s t ream velocity, length/time 
- 

DL = longitudinal dispersion coefficient, (length)2/time. 

Where the t e r m  DL a2C/ax2 represents axial dispersion due to a 
concentration gradient and u %/ax represents the transportation of ma- 
ter ia l  due to bulk flow. 

The initial and boundary conditions chosen for this study were 

The infinite tube boundary condition was chosen rather than the bound- 
a r y  conditions given by Danckwerts . This was done because the infi- 
nite tube boundary condition yields a closed form solution for the 
impulse response whereas the boundary conditions by Danckwerts 
yields an infinite se r ies  in exponentials. 
ference in the frequency response when using this boundary condition. 

4 

There is also very little dif- 

The t ransfer  function for Equation 10 can be obtained by Laplace 
transformation a s  

where 

8 = L/ii = Residence time 

EL 
D 

Npe = -  = Peclet Number 
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For  fixed values of the residence time and the Peclet number, 
the theoretical Laplace response, G(s), can be calculated from Equa- 
tion 12 for rea l  values of s, the Laplace variable. The experimental 
Laplace response can be correlated to the theoretical response by vary- 
ing the residence time and the Peclet number. 

The model frequency response is obtained from Equation 12 by 
substitution of j w  for s. 

The rea l  and imaginary portions of Equation 13 a r e  
r 

The experimental frequency response can be correlated to the 
theoretical response by varying the residence t ime and the Peclet  
number. 

The impulse response, the inverse Laplace transform of G(s) in 
Equation 12 is 

G(t) = ds exp {z ( t - O ) j  (16) 

The time response of the system can be calculated using the 
convolution integral as 

where T is a dummy variable. 
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The experimental time response can also be correlated to the 
theoretical response by varying the residence time and Peclet number. 

C. Least Squares Argument: 

The least squares argument proposed for this work is given by 

RESIDUAL = Z [Gout ( t )  - Gout ( t ) I2  
(TIME MODEL EXPERIMENT 
DOiVIKiu') 

This argument can be transformed into the frequency domain 
by use of Parseval ' s  theorem6 as 

R E SID U AL = C ( s + x ( w ) ) ~  {[Re(w) - Re(w) l 2  
(FREQUENCY MODEL EXPERIMENT 
DOMAIN) 

+ [Im(w) - Im(w)12) (19) 
MODEL EXPERIMENT 

where ( S ~ X )  is the frequency content of the input pulse and is given by 

where C and D a r e  defined in Equations 8 and 9. 

The author was unable to transform the least  squares argument 
into the Laplace domain. There is also some doubt that this transfor- 
mation actually exists since it is a nonlinear transformation. Fo r  this 
reason and because of the behavior of the numerical Laplace transform 
around zero this method w a s  eliminated from further consideration. 

D. Experimental Data and Normalization: 

Thirty-three sets  of axial dispersion data were utilized in this 
These data were from a Thesis by the author5 and the procedure study. 

for their collection is described therein. 

For the experimental system, mass must be conserved. Some 

That is, the a rea  under the input pulse w a s  not the same as the 
of these data, however, did not agree with the dynamic material  bal- 
ance. 
a r ea  under the response curve. Normalization factors were applied to 
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both the input and output pulses in order  to make the data obey the law 
of mass  conservation. The normalization factor for  the input data is 

The normalization factor f o r  the output data is the reciprocal of 
Equation 2 1. 

E. Modified and Steepest Descent Correlation Techniques: 

Modified and steepest descent correlation techniques a s  de- 
scribed by Marquardt' were utilized in this work. 
were developed for nonlinear correlations and a r e  t r ia l  and e r r o r  i tera-  
tion procedures used to find the minimum of a residual surface. 

These techniques 

The modified technique makes use of the rates of change of the 
residual with respect to the Peclet number and the residence t ime eval- 
uated a t  a starting point for the trial and e r r o r  search. A step propor- 
tional to the magnitude of the gradient and normal to the gradient was 
taken to a new point in t e rms  of the parameters  where the procedure 
was repeated. 
f rom previous knowledge of the shape of the residual surface. 

After several  iterations a step s ize  could be generated 

The steepest descent technique minimizes the rates of change of 
the residual with respect to the step size. 
and step size. 

It generates both direction 

The steepest descent technique generates large step s izes  when 

Correction of the step s ize  cannot 
Therefore all searches in 

the gradient is large. 
minimum or to step far to one side. 
be accomplished when using this procedure. 
this work were begun with the modified technique and switched to the 
steepest  descent technique after the surface became less  steep. 

This causes the search to oscillate around the 

F. Objective and Procedure 

The objective of this work was to gain some insight into the 
most efficient and sensitive procedure for reduction and mathematical 
modeling of process dynamic data. 
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A comparison between the parameters  obtained in the above 
procedures was made in order to determine any discrepancies. 
parison was also made between the computation t ime required for  the 
data reduction in the three domains to determine efficiencies. 

A com- 

These data were processed in the raw form and in the normal- 
ized form in all three domains. 
data normalization. 

This gave a measure to the effect of 

This was accomplished by analyzing thirty-three sets  of experi- 
mental data with dynamic material balances varying from less  than 170 
to greater than 4070. These data were reduced in the frequency domain 
using the numerical Fourier transform. The Laplace domain reduction 
was accomplished using the numerical Laplace transform with rea l  and 
positive values of s, the Laplace variable. The t ime domain data and 
the reduced data were correlated to the mathematical model in  the time 
domain, the frequency domain and the Laplace domain. These cor re-  
lations were accomplished using modified and steepest descent tech- 
niques to minimize the residual iii Zqiatizzs 18 and 19. 
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COMPUTER PROGRAMS 

Five computer programs were written for this study. These 
were: 

1. Reduction of pulse tes t  data to frequency response using the 
numerical Fourier transform. 
ifying a program by Clements3 which uses the quadrature formula 
of Filon. This formula is  the most accurate available for the 
numericai evaiuaiicjii of iz tzgrals  of the type in Equations 6 
through 9. 

This was accomplished by mod- 

2 .  Reduction of pulse test  data to Laplace response using the numer- 
ical Laplace transform. 
a program by Clements. 
approximation of the experimental data and analytical integration 
over finite time divisions. 
values as the frequencies used in  obtaining the numerical Fourier  
transform were utilized. 

This was accomplished by modifying 
This procedure used a quadratic 

Real values of s having the same 

3 .  Modified and steepest descent program for correlation of 
frequency response data. 
described in  section E of the introduction of this report. 
cluded in this program were procedures to calculate the rates  
of change of the residual with respect to the two parameters .  
This required the calculation of the rates of change of the rea l  
and imaginary portions of the frequency response of the model 
with respect to the two parameters.  Included also in this program 
was a procedure for plotting the Nyquist diagram of the correlation 
on the line printer. 
the degree of correlation. 

This program utilized techniques 
In- 

This allowed rapid visual interpretation of 

4. Modified and steepest descent program for correlation of Laplace 
response data. 
numerical Laplace transform data was the same as that used in 
the frequency response correlation. This correlation required 
the rates  of change of the Laplace response of the model with 
respect to the two parameters.  

The logic in  the correlation program for the 

5. A combination program for the calculation of the convolution 
integral and modified and steepest descent techniques for cor - 
relation of the time domain response. 
program is shown in Figure 2.  
program are: 

A flow diagram of this 
The four main parts of this 



READ INPUT INITIALIZE CALCULATE CALCULATE TERMS M 
RESIDUALS CONVOLUTION INTEGRAL 

DATA AND COUNTERS C,,(r)g 11-7) 

F I  PATH = 2 OR 3 

USE SlMPSON'S RULE / cinlrlg 11-7) dr 

T O  CALCULATE toat (tl 

RMSE 
NPE. e 

WRITEL: 

wy RES RES [ I ]  121 = = RES RES [ Z ]  131 

RES [3] = RES [ I ]  

PATH = I 

PATH = I 

IPATH = 3 

TEST: Q 
PATH = 3 9 

WRITEM: 0- 

PATH = 3 A 

- 
CALC. RMSE 

~ 

PATH = 

I'"" , YES 

I F  NO MORE DATA 
T O  BE PROCESSED LIST DATA IN 

LABEL SENDS THE 
PROGRAM TO FINAL 

AND PLOTS GRAPH 

Figure 2. Flow Diagram of Time DOT 
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W TO START 
IF NO MORE DATA 

LIST DATA IN AVAILABLE THEN 

THE PRCGRAM 
TO FINAL 

WRITE OUT 
FACT THAT /7 YES 

NEG. RESID NPE. BARE < O  
RESET N ~ ~ .  e TO 
HALFUNCORRECTED 
VALUES 

ALPHZER: v FINAL Q 
tOUHD TO ZERO 
ESETS RESIDUAL 
LBLE TO ZERO 
ma= 100 
4TH = PI t 1; 

CALC. COMPLETED [ - . I  

nain Correlation Program 



a .  The calculation of the convolution integral using the input 
forcing data, the impulse response and Simpson's one-third 
quadrature formula. The program will  process pulse data 
that has been subdivided using two separate panel widths. 

b. The calculation of the rates  of change of the residual with 
respect to the two parameters.  
of the convolution integral and Simpson's one-third rule. 

This also requires the use 

c. Generation of the directions f o r  changes of the parameters 
in the modified mode. This portion of the program utiiizes 
a step size which is refined as knowledge about the residual 
surface is gained. 
two optimum seeking steps and also at the bottom of the 
residual surface where steepest descent techniques tend to 
oscillate. 
calculated in step (b) above. 

The modified mode is used in the f i r s t  

This part of the program used the information 

d. Generation of both step and direction for  the parameters in 
the steepest descent mode. 
utilizes the rates  of change of the residual with respect 
to the two parameters a s  calculated in s tep (b) above. 

This portion of the program 
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RESULTS AND CONCLUSIONS 

Figures 3 and 4 show a typical correlation of an experimental 
Figure 3 shows the time domain correlations for  both normalized 

The material  balance deviation for Run D-39 
run. 
and unnormalized data. 
was 18%. 
unnormalized correlation must adjust for the mater ia l  balance deviation. 
The residence time i s  essentially the same for both the normalized and 
unnormalized data. There is, however, a 75% deviation between the 
Peclet numbers in the two cases, 208 .7  compared to 139.5. There i s  a 
two-fold standard deviation difference between the correlations, 1.  73  
X l o q 3  compared to 3 .95 X An attempt to compare these two 
values using an F ratio test' was made. 
definite statistical difference between these two sets of data even a t  
99. 5% confidence l imits.  

The normalized correlation i s  almost perfect whereas the 

It was found that there was a 

It was hoped that in the beginning of these studies that statist ics 

Using F ratio tes ts ,  it was found that all  

This would have meant 

could be used to make a decision on which data to discard because of 
material  balance deviation. 
data having a mater ia l  balance deviation greater than 5% would have to 
be discarded to maintain 95% confidence l imits.  
that all but six of the 33 runs would have to be discarded. Data of this 
type i s  extremely difficult to obtain, especially when some pulses remain 
in the packed tube for more  than five minutes. 
e r r o r  seemed to be random. In some cases  more  material  was detected 
in the outlet than in the inlet and in some cases the opposite was found. 
Due to the random nature of the material  balance e r r o r ,  no runs were 
discarded. 

The mater ia l  balance 

Figure 4 shows the same correlation in the frequency domain. 
Again an almost perfect fit was obtained in the normalized correlation. 

Figure 5 shows the residual surface f o r  the time domain co r -  

The f i r s t  two steps were made in the modified mode. 
relation of D-37. 
of the surface. 
These steps were taken normal to the gradient of the surface. 
three steps were made in the steepest descent mode. 

Five search steps were needed to locate the optimum 

The las t  

The residual surface is very steep for changes in the residence 
t ime whereas i t  i s  shallow for changes in the Peclet number. 
residence time centers the pulse on the time axis and the Peclet number 
determines the height of the pulse. 
the need for  very accurate determinations of the residence time in the 

The 

These surfaces tend to point out 
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tube. It can be seen in Table 1 that the residence time for the normal- 
ized and unnormalized data is essentially the same no matter  which 
domain i s  chosen for data reduction. 

c 

Figure 6 shows the residual surface determined in the frequency 

The f i rs t  two were by the modified mode whereas the last  
domain correlation. 
optimum. 
two were in the steepest mode. 
initial guess were required to reach the optimum in al l  runs. 

Four search steps were required to obtain the 

In general four or  five steps from an 

Table 1 i s  a listing of the parameters obtained in selected runs. 
There i s  very little difference in residence times obtained from nor- 
malized o r  unnormalized data or from processing the data in the time 
o r  the frequency domain. There i s  very little difference between the 
parameters obtained in time domain modeling and those obtained in 
frequency domain modeling. There is a difference between the Peclet 
numbers determined from the normalized and those determined from 
the unnormalized data. The difference, however, becomes prominent 
only when the mater ia l  balance deviation is greater than 1570. Even at  
that point there i s  very little difference in the time domain responses 
a s  the residual surface is not very sensitive to changes in the Peclet 
number . 

Figure 7 is  a plot of the Peclet numbers as  a function of a 
characterist ic Reynolds number. 
constant with increasing Reynolds number at a value of approximately 
0 . 6 .  This i s  in agreement with Strange and Geankoplis' who obtained 
essentially the same result using sinusoidal testing techniques. 

The Peclet number seems to be 

One correlation was processed using the numerical Laplace 
t ransform.  This correlation was on the unnormalized data of D-3 1. 
The same numerical values used for frequency in the data reduction 
to frequency response were used for the Laplace variable. 
number obtained was 33.6 compared to 48.4 for the time domain model- 
ing and 59.3 for the frequency domain modeling. 
obtained was 982 compared to 702 for the time domain modeling and 
673 for the frequency domain modeling. 
into the behavior of the numerical Laplace transform to t ry  and determine 
the reason for this discrepancy. 
Laplace transform gave the area under the pulse at s equal to zero and 
for small  values of s it dropped off quite rapidly to a very small  number. 
The ratio of two such small  numbers to give G(s)  causes significant 
e r r o r .  

The Peclet 

The residence t ime 

An investigation was conducted 

It was discovered that the numerical 

As s increases the numbers become progressively larger  and 



16 

" 

m 
r- 
a 

0 
. - r - m ~ m ~ r - m m o m a -  
m a m m m m - ~ m ~ a ~ m  
. . . . . . . . . . . . .  

.- A -  



I .  17 

n I / o  

0 
(v 

0 - - 
w 
n 
2 

0 
0 - 

0 
(D 

0- 
0, 



I I I I I  I I I I 

0 

0 

ac 

O O  

0 

0 

0 

0 

0 
0 

I O  

3 

0 
L 

9 
(u 

u! 
0 

W a z 

k 
a, 
P 

1 
E 
z 
c, 
Q) 
4 
V 

a" 
m 
1 
m 
k 
Q) + 
k 
Q) 
P 
E 

a, 
2 
m 

ii Q) 

p: 
V 
.rl c, 
m 
.rl 
k 
Q) 

V 
d 
k 
d c u 

c, 

IC 

al 
k 

ZJ 
.rl crr 



19 I 

l e 

l 

the e r r o r s  seem to disappear. A s  was stated previously, the author 
was unable to transform a consistent least squares argument into the 
Laplace domain. Due to this and to the behavior of the numerical 
Laplace transform around zero this method of data reduction was 
given no further consideration. 

Time studies were made to determine computer processing 
time for modeling in the frequency and time domains. Each iteration 
in the frequency domain required approximately eight seconds and the 
frequency response ca?cu?atin~ reqi-ii red approximately three seconds. 
Each iteration in  the time domain required approximately ten seconds. 
Extensive studies were not made; however, the runs that were timed 
generally converged to the optimum in less  than 40  seconds. 
nificant difference in processing time between the two domains was 
observed. 

No sig- 

. 
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TABLE OF NOMENCLATURE 

i -  

L 

N - 

S - 

s dx - 
t - 

- 
U 

X - 

Intermediate Variables Defined in Text. 

Concentration, M/L 3 .  

Equivalent Tube Diameter, L .  

Packing Particle Diameter, L. 

Axial Dispersion Coefficient, L2/T. 

System Transfer Function. 

Impulse Response. 

Imaginary Portion of Frequency Response. 

4 - 7 .  

Column Length, L .  

Normalization Factor.  

Peclet Number. 

Reynolds Number. 

Flow Rate, L3/T. 

Real Portion of Frequency Response. 

Laplace Variable. 

Input Pulse Frequency Content. 

Time, T. 

Input Pulse Width, T. 

Output Pulse Width, T. 

Stream Velocity, L/T. 

Length Ordinate, L. 

Input Pulse Abs cis sa .  

Output Pulse Abscissa. 
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L 

Greek 

e 
0 

Y 
7 

- Residence Time, T. 

- Frequency, 1/T. 

- Kinematic Viscosity, L2/T. 

- Dummy Variable 
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