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ABSTRACT

The object of this work was to obtain some insight into the most
efficient and sensitive procedure for data reduction and mathematical
modeling of experimental process dynamic data. The physical system
chosen for analysis was the dissipation of a tracer injection in a fluid
flowing through a tube. The partial differential equation representing
this system is the well known one-dimensional axial dispersion equation
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The solutions of this equation in the time domain, the frequency domain
and the Laplace domain are given in the body of the text. Thirty-three
sets of experimental data with dynamic material balances varying from
less than 1% to greater than 40% were analyzed. These data were cor-
related to the mathematical model in the three aforementioned domains.
The Peclet number and the effective residence time were obtained by
minimizing a residual surface using modified and steepest descent
techniques. Normalized input, normalized output, and the raw data of
all runs were processed in the time domain. Thirteen selected runs
were processed in the frequency domain and only one run was processed
in the Laplace domain. A consistent least squares argument between
the time and frequency domain was developed and utilized. However,
the transformation of this argument could not be made into the Laplace
domain where real values for the Laplace variable are used.

In general it was found that no significant discrepancies existed
between the parameters determined in the three domains. However,
due to the behavior of the numerical Laplace transform around zero and
the author's inability to transform a consistent least squares argument
into this domain, it was decided to eliminate this method of data reduc-
tion from further consideration.

The Peclet number varied significantly between the normalized
and unnormalized data when the material balance deviation was greater
than approximately 15 percent. Normalization had little effect on the
effective residence time.

Residual surfaces were found to be quite steep for variations in
the effective residence time, whereas they were shallow and elongated
for variations in the Peclet number.
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The computation time was essentially the same for numerical
convolution and numerical Fourier transform calculations. These pro-
grams were not optimized; however, the same logic form was utilized
for both calculations when seeking parameters.
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INTRODUCTION
A. Pulse Testing:

One of the most useful techniques for obtaining experimental
dynamics of linear systems is the pulse test. The pulse test is per-
formed by forcing the system input with a pulse of finite duration and
recording both the system input and its response.

x (t) y (t)
~—>» SYSTEM >

0 t—=T, 0 t —T,
Figure 1. The Pulse Test

The resulting data can be modeled to a theoretical equation in either the
time domain, the frequency domain, or the Laplace domain. The trans-
fer function of the system is defined as

Ty -
yis) -[o yite Tar
) —

T x(s) - Tx
j x(t) e—Stdt

0

G(s (1)

Several authors”? have used real values of s and numerical re-
ductions of the experimental data according to Ejuation 1 to obtain the
transfer function form. The experimental dynamics is then represented
by a plot of G(s) versus s.

The Fourier transform can be applied to Equation 1 by substi-
tuting jw for s, where j is thenN -1. The resulting transform yields

v _ o
Gljw) = " ) (2)



-jwt
Using the identity e ¥ 2 coswt - j sin wt, Equation 2 becomes
Ty Ty
y(t)coswt dt-j ] y(t)sinwt dt
Gjw) = =° : (3)

Tx Tx
j x(t)coswt dt-jj x(t)sinwt dt
0 0

This is the system frequency response and it can be separated
into its real and imaginary parts as

AC + BD
Re(w) = 1 D2 (4)
AD - BC
Im(w) G2 1 D2 (5)
where
Ty
A =j y(t) coswt dt (6)
(4]
Ty
B =j y(t) sinot dt (7)
0
Tx
c =j x(t) coswt dt (8)
0
Tx
D =-/ x(t) sinwt dt (9)
0

Numerical solutions of the above integrals yield the experi-
mental dynamics in frequency response form. It can be represented by
a Nyquist plot of Re(w) versus Im(w).

B. The Mathematical Model:

If the law of mass conservation is applied to a differential ele-
ment of material flowing in a tube of length L at constant velocity, T,
the one dimensional axial dispersion equation is obtained as

aC 92c _ oC
oC _ °L &
ox

ot = DL ax® (10)




where

C = concentration - mass/(length)’
t = time
x = length
U = stream velocity, length/time
Dj, = longitudinal dispersion coefficient, (length)z/time.

Where the term D], 8°C/8x” represents axial dispersion due to a
concentration gradient and u 8C/8x represents the transportation of ma-
terial due to bulk flow.

The initial and boundary conditions chosen for this study were

C(0, t) = Cin(t)

C(L, t) = Cout (t)
C(x,0)=0 (11)
lim Ci(x,t) =0

X -» O

The infinite tube boundary condition was chosen rather than the bound-
ary conditions given by Danckwerts®. This was done because the infi-
nite tube boundary condition yields a closed form solution for the
impulse response whereas the boundary conditions by Danckwerts
yields an infinite series in exponentials. There is also very little dif-
ference in the frequency response when using this boundary condition.

The transfer function for Equation 10 can be obtained by Laplace
transformation as

Cout (5) NPe 40s
Gle) = Z (5 ~ 9P\ 2 [1' 1+NPe] (12)

where

® = L/U = Residence time

aL
Npe = 1—15' = Peclet Number
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For fixed values of the residence time and the Peclet number,
the theoretical Laplace response, G(s), can be calculated from Equa-
tion 12 for real values of s, the Laplace variable. The experimental
Laplace response can be correlated to the theoretical response by vary-
ing the residence time and the Peclet number.

The model frequency response is obtained from Equation 12 by
substitution of jw for s.

[Np, [ aw
Gljw) = exp 1NTD [1 1+ Jgi“j} (13)

The real and imaginary portions of Equation 13 are

Np 4 1 - 4
Re(w) = exp _ZE [1— (1+ 4(;9 ) cos (—tan 1 2w0 ]

NPe
1
Npe 400 \* 1 400
- 1+ -t 14
X COSs 2 ( Npo cos > an” NPe (14)
1
Npe [ ( 400 )‘* 1 400
1 = — |1- {1+ = tan™!
m(w) = exp > Npe cos {5 tan Npe )]
N 1
400 \* 1 -1 406
x sin - —Pe (1_*_____9_) cos (—tan 1= ) (15)
2 Npe 2 Npe

The experimental frequency response can be correlated to the
theoretical response by varying the residence time and the Peclet
number.

The impulse response, the inverse Laplace transform of G(s) in
Equation 12 is

Npeb -Npe
4T t3 exp

G(t) = (t-0)° (16)

The time response of the system can be calculated using the
convolution integral as

t
Cout (t) = j Cin (T)G(t -7) dr (17)
0

where 7 is a dummy variable.




The experimental time response can also be correlated to the
theoretical response by varying the residence time and Peclet number.

C. Least Squares Argument:
The least squares argument proposed for this work is given by
RESIDUAL = = [Cout (t) - Cout (t)]°
(TIME MODEL EXPERIMENT (18)

DOM AIN)

This argument can be transformed into the frequency domain
by use of Parseval's theorem® as

RESIDUAL = = (sgx(w))® {[Relw) - Re(w)]?
(FREQUENCY MODEL EXPERIMENT
DOMAIN)
+ [Im(w) - Im(w)]z} (19)

MODEL EXPERIMENT
where (sgx) is the frequency content of the input pulse and is given by
sgx(w) = C® + D? (20)
where C and D are defined in Equations 8 and 9.

The author was unable to transform the least squares argument
into the Laplace domain. There is also some doubt that this transfor-
mation actually exists since it is a nonlinear transformation. For this
reason and because of the behavior of the numerical Laplace transform
around zero this method was eliminated from further consideration.

D. Experimental Data and Normalization:

Thirty-three sets of axial dispersion data were utilized in this
study. These data were from a Thesis by the author® and the procedure
for their collection is described therein.

For the experimental system, mass must be conserved. Some
of these data, however, did not agree with the dynamic material bal-
ance. That is, the area under the input pulse was not the same as the
area under the response curve. Normalization factors were applied to




both the input and output pulses in order to make the data obey the law
of mass conservation. The normalization factor for the input data is

given by
Ty
. Cout (t) dt

N = T (21)
f Cin(t) dt
0

The normalization factor for the output data is the reciprocal of
Equation 21.

E. Modified and Steepest Descent Correlation Techniques:

Modified and steepest descent correlation techniques as de-
scribed by Ma,rquardt7 were utilized in this work. These techniques
were developed for nonlinear correlations and are trial and error itera-
tion procedures used to find the minimum of a residual surface.

The modified technique makes use of the rates of change of the
residual with respect to the Peclet number and the residence time eval-
uated at a starting point for the trial and error search. A step propor-
tional to the magnitude of the gradient and normal to the gradient was
taken to a new point in terms of the parameters where the procedure
was repeated. After several iterations a step size could be generated
from previous knowledge of the shape of the residual surface.

The steepest descent technique minimizes the rates of change of
the residual with respect to the step size. It generates both direction
and step size.

The steepest descent technique generates large step sizes when
the gradient is large. This causes the search to oscillate around the
minimum or to step far to one side. Correction of the step size cannot
be accomplished when using this procedure. Therefore all searches in
this work were begun with the modified technique and switched to the
steepest descent technique after the surface became less steep.

F. Objective and Procedure
The objective of this work was to gain some insight into the

most efficient and sensitive procedure for reduction and mathematical
modeling of process dynamic data.




This was accomplished by analyzing thirty-three sets of experi-
mental data with dynamic material balances varying from less than 1%
to greater than 40%. These data were reduced in the frequency domain
using the numerical Fourier transform. The Laplace domain reduction
was accomplished using the numerical Laplace transform with real and
positive values of s, the Laplace variable. The time domain data and
the reduced data were correlated to the mathematical model in the time
domain, the frequency domain and the Liaplace domain. These corre-
lations were accomplished using modified and steepest descent tech-
niques to minimize the residual in Equaticns 18 and 19.

A comparison between the parameters obtained in the above
procedures was made in order to determine any discrepancies. A com-
parison was also made between the computation time required for the
data reduction in the three domains to determine efficiencies.

These data were processed in the raw form and in the normal-
ized form in all three domains. This gave a measure to the effect of
data normalization.




COMPUTER PROGRAMS

Five computer programs were written for this study. These
were:

1. Reduction of pulse test data to frequency response using the
numerical Fourier transform. This was accomplished by mod-
ifying a program by Clements® which uses the guadrature formula
of Filon. This formula is the most accurate available for the
numerical evaluation of integrals of the type in Equations 6

through 9.

2. Reduction of pulse test data to Laplace response using the numer-
ical Laplace transform. This was accomplished by modifying
a program by Clements. * This procedure used a quadratic
approximation of the experimental data and analytical integration
over finite timedivisions. Real values of s having the same
values as the frequencies used in obtaining the numerical Fourier
transform were utilized.

3. Modified and steepest descent program for correlation of
frequency response data. This program utilized techniques
described in section E of the introduction of this report. In-
cluded in this program were procedures to calculate the rates
of change of the residual with respect to the two parameters.

This required the calculation of the rates of change of the real

and imaginary portions of the frequency response of the model
with respect to the two parameters. Included also in this program
was a procedure for plotting the Nyquist diagram of the correlation
on the line printer. This allowed rapid visual interpretation of

the degree of correlation.

4. Modified and steepest descent program for correlation of Laplace
response data. The logic in the correlation program for the
numerical Laplace transform data was the same as that used in
the frequency response correlation. This correlation required
the rates of change of the Laplace response of the model with
respect to the two parameters.

5. A combination program for the calculation of the convolution
integral and modified and steepest descent techniques for cor-
relation of the time domain response. A flow diagram of this
program is shown in Figure 2. The four main parts of this
program are:




READ INPUT

DATA
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Figure 2.
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THE PROGRAM
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' /\ o

IF
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WRITE OUT
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CALC. COMPLETED
RITES OUT a END

tOUND TO ZERO i

SETS RESIDUAL
A\BLE TO ZERO
D a= 100

ATH = PL+1;

nain Correlation Program




The calculation of the convolution integral using the input
forcing data, the impulse response and Simpson's one-third
quadrature formula. The program will process pulse data
that has been subdivided using two separate panel widths.

The calculation of the rates of change of the residual with
respect to the two parameters. This also requires the use
of the convolution integral and Simpson's one-third rule.

Generation of the directions for changes of the parameters
in the modified mode. This portion of the program utilizes
a step size which is refined as knowledge about the residual
surface is gained. The modified mode is used in the first
two optimum seeking steps and also at the bottom of the
residual surface where steepest descent techniques tend to
oscillate. This part of the program used the information
calculated in step (b) above.

Generation of both step and direction for the parameters in
the steepest descent mode. This portion of the program
utilizes the rates of change of the residual with respect

to the two parameters as calculated in step (b) above.

10
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RESULTS AND CONCLUSIONS

Figures 3 and 4 show a typical correlation of an experimental
run. Figure 3 shows the time domain correlations for both normalized
and unnormalized data. The material balance deviation for Run D-39
was 18%. The normalized correlation is almost perfect whereas the
unnormalized correlation must adjust for the material balance deviation.
The residence time is essentially the same for both the normalized and
unnormalized data. There is, however, a 75% deviation between the
Peclet numbers in the two cases, 208.7 compared to 139.5. There is a
two-fold standard deviation difference between the correlations, 1.73
x 1073 compared to 3.95 X 1073, An attempt to compare these two
values using an F ratio test? was made. It was found that there was a
definite statistical difference between these two sets of data even at
99. 5% confidence limits.

It was hoped that in the beginning of these studies that statistics
could be used to make a decision on which data to discard because of
material balance deviation. Using F ratio tests, it was found that all
data having a material balance deviation greater than 5% would have to
be discarded to maintain 95% confidence limits. This would have meant
that all but six of the 33 runs would have to be discarded. Data of this
type is extremely difficult to obtain, especially when some pulses remain
in the packed tube for more than five minutes. The material balance
error seemed to be random. In some cases more material was detected
in the outlet than in the inlet and in some cases the opposite was found.
Due to the random nature of the material balance error, no runs were
discarded.

Figure 4 shows the same correlation in the frequency domain.
Again an almost perfect fit was obtained in the normalized correlation.

Figure 5 shows the residual surface for the time domain cor-
relation of D-37. Five search steps were needed to locate the optimum
of the surface. The first two steps were made in the modified mode.
These steps were taken normal to the gradient of the surface. The last
three steps were made in the steepest descent mode.

The residual surface is very steep for changes in the residence
time whereas it is shallow for changes in the Peclet number. The
residence time centers the pulse on the time axis and the Peclet number
determines the height of the pulse. These surfaces tend to point out
the need for very accurate determinations of the residence time in the
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tube. It can be seen in Table 1 that the residence time for the normal-
ized and unnormalized data is essentially the same no matter which
domain is chosen for data reduction.

Figure 6 shows the residual surface determined in the frequency
domain correlation. Four search steps were required to obtain the
optimum. The first two were by the modified mode whereas the last
two were in the steepest mode. In general four or five steps from an
initial guess were required to reach the optimum in all runs.

Table 1 is a listing of the parameters obtained in selected runs.
There is very little difference in residence times obtained from nor-
malized or unnormalized data or from processing the data in the time
or the frequency domain. There is very little difference between the
parameters obtained in time domain modeling and those obtained in
frequency domain modeling. There is a difference between the Peclet
numbers determined from the normalized and those determined from
the unnormalized data. The difference, however, becomes prominent
only when the material balance deviation is greater than 15%. Even at
that point there is very little difference in the time domain responses
as the residual surface is not very sensitive to changes in the Peclet
number.

Figure 7 is a plot of the Peclet numbers as a function of a
characteristic Reynolds number. The Peclet number seems to be
constant with increasing Reynolds number at a value of approximately
0.6. This is in agreement with Strange and Geankoplis® who obtained
essentially the same result using sinusoidal testing techniques.

One correlation was processed using the numerical Laplace
transform. This correlation was on the unnormalized data of D-31.
The same numerical values used for frequency in the data reduction
to frequency response were used for the Laplace variable. The Peclet
number obtained was 33.6 compared to 48. 4 for the time domain model-
ing and 59. 3 for the frequency domain modeling. The residence time
obtained was 982 compared to 702 for the time domain modeling and
673 for the frequency domain modeling. An investigation was conducted
into the behavior of the numerical Laplace transform to try and determine
the reason for this discrepancy. It was discovered that the numerical
Laplace transform gave the area under the pulse at s equal to zero and
for small values of s it dropped off quite rapidly to a very small number.
The ratio of two such small numbers to give G(s) causes significant
error. As s increases the numbers become progressively larger and



16

6°9¢ 86 Z2°81 17611 201 €61 1°¢ 16 6°LE 2% v6 1 4 %bsE 19-a
6°LZ vL L'1e 0°€0T 8L 6°92 g2 oL L'8¢ I°L2 YL 1'% %Le 66-a
0°Ll (434 6°19 €°'¥e 0S¥y 6°0L 8°91 1474 S 89 9 ¥ 1S% 699 %€ Z2s-d
6°01 al Ll ¥ 81 LSl LG8 0°21 SST 6°L9 yLe 841 €°9L %L 0s-d
1°¢ee (X474 I 4°] FRE%4 6cd 6°29 £°a ST 6°'18 6°'8 1234 9 %6 %12 6%-a
LI ST1 0°1¢l §°6¢ 911 S6¢l £°¢ P11 9181 €Ll STI L°80¢ %81 6¢-a
1°0% €62 6°€9 ¥'e9 90¢ L°62 L1 582 6°661 1'8 182 9°161 %9% 8e-a
S8 v61 €66 6°¥%1 G61 1°L01 28 ¥61 L'001 1'%1 S61 8°801 %1 Le-a
8'€l 16 6°26 8°'¥¥ Z6 1°06 S'¢ 68 6 9%1 €21 06 17151 %SG se-a
¥ 69 86¢2¢ 0°LL € '8¢ 60¢€7 £°L8 28 0eee ¥t £°§ €822 0'vel %e? ve-a
6'¥2 Ivel 096 091 L6ET SEll 8¢l Seel 9°¢ll 6°9 68¢1 6°GET %8 ce-a
2°EL 948 £°95 6°L9 9.8 0°2% L9 0e8 L'5¢t 6°9 124 8'evl %0v 2¢-d
S 6% €L9 £°69 6°'9% 0L ¥ 8y 019 ¥s9 9°2¢1 0°L 699 1°0%1 %8¢ 1¢-a
urewo(g Louanbaxg urewo( W], utrewo(q Aouanbaa g utewog swl], —
ele( PaZI[BUWLIOUUN) ejye( pPazljewIoN

sa1pnig Bulispoy Ul pauleiqO sIajawered jo uosiredwon | aiqel]




17

082

LE~d Jo @orjIng Tenpisay urewo( Adusnbaig ‘9 sandrg
8
092 ove 022 002 os! 09l
\ _ _ J T 06
(v)
-1 001
Gl
€0
o1l
€
oz (€)
- 02l
m ol

o€l




18

1oqun) 39109 §NsIoA 1dquinN splouday dWSIIdIDBILYD "L aan8t g

-]
A pL Yy
Vo v
0009 000l 006G 00! 0oL .
T 1 T T T T T T 1 T T 1771 ¢0
p— 0 —
()
e o o o - S0 dN
o o
L —o— a0 O _ m
- m OO 0 - .ﬂnvu.
- -
| O o o (o) ] -
- 401
' | I N \ \ 111 gz




the errors seem to disappear. As was stated previously, the author
was unable to transform a consistent least squares argument into the
Laplace domain. Due to this and to the behavior of the numerical
Laplace transform around zero this method of data reduction was
given no further consideration.

Time studies were made to determine computer processing
time for modeling in the frequency and time domains. Each iteration
in the frequency domain required approximately eight seconds and the

frequency response calculation required approximately three seconds.
Each iteration in the time domain required approximately ten seconds.

Extensive studies were not made; however, the runs that were timed
generally converged to the optimum in less than 40 seconds. No sig-
nificant difference in processing time between the two domains was
observed.
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el

x(t)

y(t)

TABLE OF NOMENCLATURE

Intermediate Variables Defined in Text.
Concentration, M/L 3.

Equivalent Tube Diameter, L.
Packing Particle Diameter, L.

Axial Dispersion Coefficient, L%/T.
System Transfer Function.

Impulse Response.

Imaginary Portion of Frequency Response.
N-T .

Column Length, L.

Normalization Factor.

Peclet Number.

Reynolds Number.

Flow Rate, L3/T.

Real Portion of Frequency Response.
Laplace Variable.

Input Pulse Frequency Content.
Time, T.

Input Pulse Width, T.

Output Pulse Width, T.

Stream Velocity, L/T.

Length Ordinate, L.

Input Pulse Abscissa.

Output Pulse Abscissa.
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Greek

Residence Time, T.
Frequency, 1/T.
Kinematic Viscosity, L%/T.

Dummy Variable
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