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SUMMARY Neb-3 5780

The determination of boundaries of cloudiness, as described
here, is based upon considering an adiabatic flow, in which are dissemi-
nated separate regions with pseudoadiabatic processes, whose boundaries
are not known in advance and must be determined alongside with the solu-
tion of the problem of motion itself. On that basis, conditions are derived
outside and inside the cloud, and a particular example is considered.
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In the hyrdodynamic theory of cloudiness occurring from the leeward
side of an obstacle, the cloud boundary is usually determined after the
adiabatic motion near the obstacle is found as the geometric spot of points,
at which the moisture, transferred by the adiabatic flow, begins to saturate
the space [1]. lMeanwhile, and providel no precipitations are falling, the

motion inside the cloud must be viewed as pseudoadiabatic ¢ instead of preser-

vation of potential temperature we must assume that of pseudopotential.
The system of hydrodynamics equations will then be modified in its form
and all the structure of the solution may be disrupted. A correct statement
of the problem would then be the consideration of an adiabatic flow, in

which separate regions with a pseudoadiabatic process are dissemniated; the
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boundaries of these regions are not known in advance and must be determined
alongsice with the solution of the very problem of motion.

= The condition for saturation can be taken as the boundary condition
at the edge of these region. Introducing into the consideration the speci-
fic moisture g, we shall write at boundary gq = Apax (Ty P), Where qu..

is determined by the well known Magnus formula and is dependent on both,
the temperature T and pressure p [2]:

P

= Oyzs'io_STCmax(T); Cmnx(T):G,i -1073p exp i 7,13 m+—== _273 (1)
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We shall consider for the sake of simplicity the case of stationary
flow past the crest. The motion takes place in the plane (x,2z) ( x being

the horigzontal and 2 the vertical coordinate ). From the correlations
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we may introduce the curreat function V.

We disregard the effact of air compressibility and we limit the
motion by the streamlined contour from below, and by the horizontal wall
g = H from above. Let then he given for that value u,, of the horigzontal
velceity u at =x = —— oo and the value T of the temperature T: u, = U(e2),
Teo =Ty = Yz (y, T, are constants). The equations of motion, after exclu-

aing vpressure from them, will rive the correlation [3]

0y o 01}79_{3 g or’ (3)
Bz 9r  0r 9z T 0z °
where Q= "1/0z—0w/dzx= Ay, I"is the deflection of temperature from T,
g is the rruvitotion acceleration; T, is the average temperature of the
air (Tm 50 ) The equation of heat inflow will be written in the form:
Jool’ U‘Z’OTI__ eV @ =0 (4)
Tos ~ mear e Mg =0
va= [(x—1)/%]¢/R (R 1is a gas constant, A is the heat capacity
ratio); the =cae tine, we have outside the cloud € =1 (see [2]) and
r, . 0,623 % nasx (T)-”‘ N 9_'22_‘_35_(?‘_“3 - {
‘3=l_1—'— cp Lx-—-i I35 _J\l ' ep P dT) $5)

inside the cloud (L beinpg the latent condensation heat and ¢, = the heat

capacity of the air at constant prescure).
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For the determination of moisture ¢, we shall take the transfer
equation
P dg oo J .
P2 in =0 (6)
which is integrable and gives gq = Q (y), where Q is an arbitrary function
of ¥, of which the form is found from the condition q = q ¢ (2) at infi-

nity ahead of the obstacle.
Introducing Q (¥) into the left-hand part of (1), we shall obtain

at cloud boundary an interconnection between ¥ , p and T. Then we may
substitute with a great degree of precision p in (1) by its value

[}

g dz

Peo=pocxp (- g =1

z

where p, is the pressure 2t sea level , and write instead of (1) :

IRp

Q(¢)=3:8'10-3'1%‘0X1’(5 dz
0

T —27134-T.7
2171352 “p)

o o0 —38-+-Txp’

N
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(Gup, =up, T COTTespondingly to W, z, T' at cloud boundary). The equation

(7) interconnects 7'ip, Zip. Yy, However, the temperature T' may be excluded
with the help of (4). s is well known, for the region outside the cloud

(4) admits the integral
U= —{ya—vy)[z—f:(¢;], (8)

where f; is an arbitrary function of ¥,
the form of which shall be found from the
condition at infinity. On the other hand,
we may substitute, with the same degree

of precision with which (5) was written,

s 0
Fipe 1

in & the function p and T by their

values P oo and T o *

* Practically, substituting Poo by the aprroximate formula P- = Poe€xp (_7?%‘7;

we may obtain for & the aprroximate expression

A 8w = {140,133 ex 140,851 exp ¢) 1,
where e E {140,133 exp %) (1 -+ 0,851 exp x)
20,2
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We may then write for the cloud

.

€oola ™

T .
T da— I ()], (9)

T =—(1,~ ){
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where Fj (¥) is still another arbitrary function of V.
Introducing T' from (8) into (3), we shall obtain outside of the
cloud a single equation for V, admitting an integral of the form

8= [0+ 2] A =, (10)

where f, (V) is a new arbitrary function of V.
Inside the cloud

b =F(4) + 2 7 (1,— ), (11)

where F2 (¥) is an arbitrary function of V.

In the following we shall utilize the condition (7) in the approxi-

mate form *

. n-g £ . o X
Q (Prp) = 3.8.407° s exp (bey + bT::p'_ UZyp), (12)
where
g .o 2b2 - -
a=by— i, =377, fy=Tg—2T3.
it . m

If we represent Qg in the form q o = q, exp(— [2), where q,
and [ are constants, we may write, according to (8), gw = goexp(—Tfi(¥)).
since T' becomes zero far off the obstacle and we have [f;(})]xs—w = z.Then,
Q(¥) = qoexp(—Tfi(})). Substituting this @ into (12), and T! according to (8),

we shall have the final concition , linking 5w and Yw in the form

Zxp == mfy (”“ﬁ:p) + S, ’ (13)
where
) = [ -= (v 3 0] (b — JL.)" Cem (Blg A4 0'38‘3) g\ 14
f2”b) - [‘ B \‘d 2.1[/1 \/’aa lfI‘m [} § == \0"0 1 h] qola (b’l’a qum} - ( )

Subsecuently, directing x to =0, we shall have, according to (10)

Ty (U

- dis dU -
/2(‘9)—_/;@4-5—(:{?:_—7—)\(;3 (19)

)z=f,‘(¢)'
We shall require at cloud boundary the continuity of functions!

transfer, and the same goes for the velocity and the vortex S$&. These

binding conditions will give us, first of all, the possibility of linking

* We approximately substitute the integration and we reject T' in the
denominator of the right-hand part of (7).
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F, and F, with f,. equating T' by (8) and (9) at (13), we shall obtain:

m/,kg'a)+c

Fi(p) = \)

¢

From the equality of the vortices (10) and (11), we shall have at
binding

"

“de;+(1—711)f1(\p)—s. (16)

e
‘a

. 0 Ay dj A ~
Fy(y) = lmfs () + 51 (5 — Tg) + 72 (0). (17)

Therefore, F,, F, and f, are expressed through f1. As to the deter-~
mination of the latter, and according to (2), the equation

1) :
Y= \ U (z)daz. (18)
serves its purpose. ’

Introducing at the same time dimensionless quantities, we shall
finally have outside the cloud

&Y, Y s —U
e e P Z— )+ 7) (19)

and inside the cloud

e N3 A . —F
ox: g = Dl —mn) Z - Smn—(1 — m®n) f] + (%)h, » (20)

where

el

n= T — z [i — &0 (Z)z=miw)+5)

. Ya— VI . .
D =gp—"p, HZ=3: HX=z, HS=s, Hf=f ()

(V being the characteristic velocity).

As an example, we shall consider the case of a very slanting ob-
stacle, when the longwave method can be applied, and in the equations (1)
the second derivatives by X can be dropped., Let us assume also that
U(z) = const =V, Then £ (¥ = V. We shall take for n a constant mean
value, In the absence of cloudiness we shall simply obtain
Y == Z — Zyese D(1 — Zy) sinD (1—2) (22)
(2 =% (X) being the equation of the streamlined contour).



But, if a cloud should appear above the obstacle, we would have
to estimate : under the cloud

¥ =200 D(Z— Z) | Zosin D (2, — 2) + (252 2, — Dsin D (2, — o} (23)
i n the cloud
({ = m*n)¥ = mnS ++ (1 — mn)Z 4
+ esc D'(Zz—Zl)[(i—mzl—-—‘”f—) sin D(Z, — 2) +

m

1— ~
..L( mzz—%)sinD(Z——-Zl)];

m

(24)

above the cloud

‘\r=z_;_(‘;’”zz—s)csc0(:- 2)sin D (1 — Z). {25)
Here Z] and Z, are rocspectively tie lower and upper limits of the cloud

o] =V1 — m°nD. The guantities 79 and Z, are determined from a system

of two transcendential equations (we shall omit them), which is obtained
provided : a) we equate JY'/4Z from (23) and V¥ /6Z from (24) at 2 =7,
and b) we equate 9V /9Z from (24) and (25) at 2 =125,

The solution will have a sharply different character depending upon
whether or not we shall have n>'{ (cya<<y) and 2 <<1 (eya >7y). In Fig.1l we
gave an example of cloudiness contour at flow past the obstacle Z, = 0,42 e'x;
it was assumed that D=3, m= 0,6, S = 432, The cloudiness contour for an
all adiabatic flow is given by dashed curvej all the other lines represent

the cloudiness at n=0,9 and n=1,5, respectively.

ssxe THE END sessx
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