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ABSTRACT ()) lﬂo{\%

In this paper we study iterative processes of the form
Yipp = Yy ~ BkFyk for approximating solutions of a system
of nonlinear equations Fy = 0. We obtain monotonic behavior
of the iterates Yk' in the sense of the natural partial
ordering in real n-dimensional Euclidean space, if F satisfies
a generalized convexity condition and the Bk are subinverses
of F'(yk), i.e. BkF'(Yk)élr F'(yk)Bkél. Our results contain
recent similar ones of Greenspan and Parter as well as a
classical one of Kantorovich. We also study two-sided iterations
as well as iterations defined by implicit processes such as the
honlinear Gauss-Seidel method. 1In addition, a class of iter-
ative processes combining Newton's method with the Gauss-Seidel

iteration is considered and an application is made to mildly

nonlinear boundary-value problems.
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Monotone Iterations for Nonlinear Eguations With

Application to Gauss-Seidel Methods

James M. Ortega and Werner C. Rheinboldtl)

1. Introduction

Recently Greenspan and Parter [ 7] have studied monotone
iterative processes for solving discrete analogues of mildly
nonlinear elliptic boundary value problems. 1In this paper
we extend these results and incorporate them into a general
theory for a broad class of monotone iterations. This class
of iterations includes Newton's method as well as a family of
methods, which we call Newton-Gauss-Seidel processes, that
are obtained by using the Gauss-Seidel iteration on the linear
éystems of Newton's method. Our results also include the
monotone iterations of Kantorovich [8] for obtaining fixed-
points of isotone operators.

The theory is based upon generalized convexity conditions
as well as the notion of a subinverse of a linear operator.
The approach is related to the basic work of Baluev [2], [3]

in which the Chaplygin method for differential equations

l)This work was supported in part under NASA grant NsG-398

and NSF grant PIVRO6 to the University of Maryland.



(see e.g., [4]) is considered in abstract spaces. More re-
cently, Slugin (see e.g., [14] - [17]) has extended Baluev's
results in directions somewhat different from ours. Monotone
sequences which provide upper and lower bounds for solutions
of operator equations have also been considered by Albrecht,

-

Collatz, Schmidt, and Schrdder {see e.g., [ 1], (6], t1i1], [133).

1

But their work uses a basically different approach and does
not appear to have a direct connection to the results dis-
cussed here.

For simplicity we have restricted our presentation to
finite dimensional spaces. However, most of the discussion

extends immediately to more general partially ordered linear

‘topological spaces, provided suitable restrictions are placed

on the connection between the topology and the partial ordering

in order to assure convergence. For a discussion of these

topological considerations in connection with Newton's method,

see Vandergraft [18].

In Section 2 we define subinverses of linear operators
and show the relation to the regular splittings of Varga [19].
Section 3 contains a discussion of various convexity properties
of nonlinear operators; theé material in this section was
developed in connection with J. Vandergraft (see [18] for an

extension of some of these results to more general spaces).




In Section 4 we present our main results and apply them to

the special cases of convex as well as isotone operators.

Then in Section 5 we consider the Newton-Gauss-Seidel processes
and in Section 6 we apply our results to mildly nonlinear
boundary value problems and show the relation to the results

of [7]. Finally, in Section 7 we give a theorem for implicitly
defined iterates and show its application to the non-linear

Gauss-Seidel method studied by Bers [5] and Schechter [10].

2. Subinverses and Reqular Splittings

Let R” be the n-dimensional real coordinate space and JN("
the space of all real n x n matrices. For vectors X,y € Rn
‘and matrices A,B € m" we denote by x = y and A = B the usual

componentwise partial orderings.

Definition 2.1: Let A € JIC'; then any B € Mm" such that

(2.1) AB=I, BA =TI,

where I is the identity, is called a subinverse of A.

We note some obvious properties of subinverses: The null-
matrix is a subinverse of any matrix. If A is a subinverse
of B then B is a subinverse of A. If B and C are-subinverses

l. If A_l exists then

1A

of A then so is AB + (1-A)C for 0 = A

it is a subinverse of A.




varga [19) defines a decomposition A = B - C to be a

reqular splitting of A if B is non-singular, B_l z 0, and C = 0.

There is a close connection between regular splittings and

subinverses.

Definition 2.2: Let A e)ﬂfﬂ then A = B - C is a weak reqular

T

splitting of A if B is non-singular, B 0, B C=z 0, and

st = o.

v

Clearly any regular splitting is also a weak regular split-
ting. The connection to subinverses is given by the following

lemma:

Lemma 2.1l: If A = B - C is a weak regular splitting of A,

-1 . . . .
then B is a subinverse of A. Conversely, if B =z 0 is a non-

. . -1 -1 .
singular subinverse of A, then A = B - (B -A) is a weak

|

regular splitting.

Proof: Let A = B - C be a weak regular splitting; then

s lc = B_l(B-A) =1 - B"lA,

o
1A

and hence B_lA = I. Similarly, AB-l = I follows from CB—l z 0.

Conversely, if B 2 0 is a non-singular subinverse of A, then

I -BA = B(B-l - A); similarly (B_l - A)B z 0, and hence

B--l - (B-l-A) is a weak regular splitting.

0

HA

A
Weak regular splittings can be used to generate subinverses

which appear in a natural way in the study of Gauss-Seidel type




iterative processes (see Section 5).
Lemma 2.2: Let A = B - C be a weak regular splitting and set

H = B-lc. Then for any m = 1,

(2.2) K = (I +H+ ...+ Hm—l) g™t
is a subinverse of A.
Proof: Using the identity

(I + ... + 8 L) (1-1) = (T-B) (T+...+8% ) = 1 - &°

and H 2 0 we obtain

(2.3) KA = (I+...+Hm-l)B-l(B—C) =1 -8"=1.
y ) -1
Similarly, since CB = 0,
AK_ = (B-C)(T+...+4H" )B" =B (1-#™B N = 1 - (@™ = 1.

It is of interest to know when K;l exists and when
A =K - (K;l - A) is a weak regular splitting. For this we
need an extension of a result of Varga [19] who showed that if
A =B - C is a regular splitting and A_l z 0, then B-lC is
convergent, i.e., B-lc has spectral radius p(B_lC) less than

one.

Lemma 2.3: Let A = B - C be a weak regular splitting. Then
- -1
p (B lC) < 1 if and only if A is non-singular and A Z O.

- ) -1
Proof: Again set H =B lC; then using (2.3) we see that A =




m-1, - -1 -
(1+...+H )B 1 = A for all m. Since B 1 =z 0

1A

implies O

contains a non-zero element in each row and column it follows
(2 0) ;

that I+...+ ( 2 0) is bounded above for all m; hence

. Im -
lim B = 0, and p(H) < 1. Conversely, if p(H) < 1, then (I-H) L

m-o
. -1 - . - -1 -
- exists and (I-H) z 0. Thus A 1 exists and A 1 = (I-H) 1B 1 =z 0.
By means of Lemma 2.3 we now have
Lemma 2.4: Let A = B - C be a weak regular splitting, set
-1
H=B C and,for any m = 1,define Kh by (2.2). Suppose A is
. -1 -1 . -1 -1
non-singular and A z 0. Then K.m exists and A = Kﬁ - (K.m - A)

is a weak regqular splitting.

Proof: From Lemma 2.3 it follows that H is convergent. Hence
(I-Hm)—l and, by (2.3), K;l exist. By Lemma 2.2, Kﬁ is a
subinverse of A and, since K.m z 0, the result is a direct con-
sequence of ILemma 2.1.

It is easy to give examples of weak regular splittings
that are not regular splittings. Moreover, even if A =B - C
is a regular splitting, the weak regular splittings of Lemma
2.4 are not necessarily also regular splittings as the following

2)

example shows °:

2)W'e are indebted to R. Elkin for this example.




Let
2 -1 0 2 0 0
A = o 1 -1 B = o 1 0) .
-1 [0] 1 -1 0 1
Then
-1 2 =2 2
K2 = 0 2 =2
-1 0 1
and clearly K, - A is not nonnegative. Note that here we

have used the usual Gauss-Seidel splitting and A is an M-matrix,
1

1A

i.e., a.. 0 for i # j and A 0.

1]

In the following sections, we shall frequently assume

v

that a given matrix has a nonsingular, nonnegative subinverse.
In most cases, it will be evident that such a subinverse can
be found, but the general question of the existence of such
subinverses is unresolved. A typical negative result is the
following:

Suppose the kth row of A = (aij) is nonnegative and has
at least two non-zero elements akp and akm' The pth and mth
rows of any nonnegative subinverse of A are zero. In particular,
if A has any strictly positive row, then the only nonnegative

subinverse of A is the null-matrix. A corresponding result

holds for columns.

3. Convexity and Order-Convexity

Definition 3.1: Let F: DC R"® - R™ denote an operator defined




. . n .
on some domain D in R . Then F is called order-convex on a

convex subset D0 c D if
(3.1) F(hx + (1-A)y) = \Fx + (1 - \) Fy

whenever x,y € D0 are comparable (i.e., x = y or y = x) and
0=x=1. If (3.1) holds for all x,y € D and 0 = A = 1, then
F is said to be convex.

If we denote the components of Fx by fi(x), i=l,...,m,
then F is convex or order-convex if and only if each
fi: D C Rp - Rl has the same property.

As for real valued functions,it is possible to characterize
convexity properties of F in terms of properties of the deriva-
tives. We say that F is differentiable on Do c D if the Gateaux

derivative F'(x) exists for all x € Do' i.e., if

o . . .n
TP{x+th) - Px] = F'{x)h , X €D, h€ER,

where F'(x) is the m x n Jacobian matrix
ofs

(3.2) F'(x) = ( —= (x) )
BXj

F is continuously differentiable on DO if all elements of
. . 1
F'{(x) are continuous on D0 and we write in that case F € C (Do).

For F € Cl(DO) we have the mean value theorem

£ (y) - £ (x) = z j S Gerelyx)) (y;7x;)at,

i=1l ©




or

1
(3.3) Fy - Fx = J F'(x+t(y-x))(y=x)at.
o

The following lemma provides a characterization of con-
vexity and order-convexity in terms of the first derivative:

n m . . :
Lemma 3.1: Suppose that F: D c R - R is differentiable on

a convex set Do < D. Then F is order-convex on Do if and

only if
(3.4) F'(x) (y-x) = Fy - Fx

for all comparable x,y € Do' F is convex on Do if and only if
(3.4) holds for all x,y € DO.

If F € Cl(Do), then F is order convex if and only if
(3.5) F' (x) (y-x) = F' (y) (y-x)

for all comparable x,y € Do' F is convex on DO if and only if

(3.5) holds for all x,y € Do.

Proof: Suppose (3.4) holds for all comparable X,y € Do. For
given comparable x and y and 0 = A\ = 1 set z = Ax + (1-\)y.
Then z € Do is comparable with x and y so that Fy - Fz = F'(z) (y-z)

and Fx - Fz 2 F'(z) (x-z). Thus
AFx + (L-\)Fy - Fz z F'(z)[xx + (L-\)y - z] = 0 ,

Conversely, if F is order convex on Do' then for any 0 < t =1




- 10 -

‘ and any comparable X,y € Do )

.11; [F(x+t(y-x)) - Fx] = Fy - Fx,

and (3.4) follows as t - 0.

If F is order convex, then (3.4) gives
F'(x) (y-x) = Fy - Fx = F' (y) (y-x)

for all comparable x,y € Do. Conversely, if F € Cl(Do) and
(3.5) holds for all comparable x,y € Do' then it follows from

(3.3) that

1 1l
Fy - Fx = I F' (xtt(y-x)) (y-x)dt = I F'(x) (y-x)dt = F' (x) (y-x).
o o

‘ The proofs for the convex case proceed analogously.

Clearly, (3.5) is satisfied if F' is an isotone function
of x, i.e., if x =y implies that F'(x) = F'(y). Thus if F'
is continuous and isotone on Do, then F is order convex. It
also may be shown that an operator F ¢ Cl(Do) is order-convex
on the convex set Do c D if (3.4) only holds for all x,y € Do
such that x = y (or alternatively, such that y = x).

We proceed now to a characterization of convexity in terms
of the second derivative. An operator F: D c Rn - Rm is called
twice differentiable on Do © D if its second Gateaux derivative

F" (x) exists for all x € Do' In that case, all second partial

derivatives of the components fi exist on Do. For each x € Do'




Proof: For order convex F and any x € Do' h

- 11 -

F" (x) is a bilinear operator from R® x R" into Rm, and for
u,v.€ Rn, the kth component of F" (x)uv is given by quﬂ(x)v

where fﬂ(x) is the n x n Hessian matrix

2~
(3.6) £ (x) = (.ii:ﬂs_ (x)) .
axiaxj

. . . . . 2 .
F is twice continuously differentiable on Do' F ecC (Do)' if
each fi(x) is continuous in x on Do' In this case, each of

the matrices fﬂ(x) is symmetric; moreover, we have the mean

value theorem

L |
(3.7) Fy - Fx - F' (x) (y-x) = LF" (x+t (y-x)) (y-x) (y-x)dt .

n
Lemma 3.2: Let F: DC R - R° be twice continuously differen-

tiable in an open convex set Do c D. Then F is order convex

in Do if and only if
(3.8} F*(x) hh =z 0

for all x ¢ Do and all h =z 0 in Rn. F is convex in Do if and

only if (3.8) holds for all x € D_ and all h € rR".

0, and suf-

w

v

ficiently small t = 0, we have by Lemma 3.1 that

F' (x+th)h =z F'(x)h. Hence,

F"(x)hh = 1im L [F' (x+th)h - F'(x)h] = 0.
t-o t

Conversely, suppose that (3.8) holds for all x € Do and h =z 0.
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‘ Let x,y ¢ Do be such that x = y and set h = y-x. Then (3.7)
implies that Fy - FXx - F'(x)(y-x) =2 0. Ify =x, thenh =0

but the right hand side of (3.7) remains non-negative. Hence

F is order convex.
The proof for the convex case proceeds analogously.
Under the conditions of Lemma 3.2, F is convex in Do if
and only if for each x ¢ Do the matrices fi(x) of (3.6) are

all positive semidefinite, i.e., if
T [1]
(3.9) h” ££(x) hz0, k=1,...,m

for all h ¢ R” and x € Do. On the other hand, F is order convex
if and only if (3.9) holds for all x € Do and h 2z 0. Thus a
sufficient, but not necessary, condition that F be order convex
is that £(x) 2 0 for all x € D_ and k=1,...,m. In this case

we write F"(x) =z 0, x € Dn. Note that for F € CZ(DO) the con-

dition F"(x) =z 0 for x ¢ Do implies that

F'(y) - F'(x) = Il F" (x+t(y~-x)) (y-x)dt =z 0
o

whenever x,y € Do' x £y, i.e., that F' is isotone on Do'
These results also provide a simple example of an order

convex but not convex operator F. In fact, the quadratic form

F: R - Rl, Fx = xTAx, where A =2 0 but A is not poéitive semi-

definite, has this property.

We end this section with a result of a different kind:




- 13 -

n m p n
Lemma 3.3: Suppose F:DcC R + R is convex on D and A: R° - R
is a linear operator. Then the composite function Gx = FAx

is convex on D = {x € Rp | Ax € D}. If F is order convex and

"~

A =z 0 then G is order convex on D.
" Proof: Let F be convex and X,y € D. Then for 0 = A =1

(3.10) G(ax+(1-7\)y) = F(OaAx + (1-2\)ay)

= AFAx + (1-)\)FAy = AGx + (1-))Gy .

If x and y are comparable and A =z 0 then Ax and Ay are also

comparable. Hence (3.10) still holds if F is order convex.

4. Convergence Theorems

We consider now the construction of sequences which con-

verge monotonically to a solution of Fx = 0. For any points

. - — b

X, T Y. [xo,yo} denotes the interval {x € R | X, =x=yl,
d * shall mean that z z ... = z z y*
an Ykl' Y Yo = 1) Y = Y41 = Y

and lim Yy = y*. The main result is given by the following.
—.&

n . .
Theorem 4.1: Let F: DC R = R" and suppose there exist points

xo,yo € D such that

0

1A

(4.1) X, S Yo [xo,yo] c D, Fxo

A

Fy,-

. : n
Assume there is a mapping A: [xo,yo]—)fﬂi such that

(4.2) Fy - Fx = A(y) (y-x) , X = x Yy o

WA

1A
o
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Then the sequence

(4.3) - B k=0,1,... ,

Yee1 = Y T B Fyp o

where Bk is any non-negative subinverse of A(yk), is well-

defined and there exists a y* € [xo,ys], such that

(4.4) Yy J y*¥ for k » =

Moreover, any solution of Fx = 0 in [xo,yoj is contained in

[xo,y*], and if F is continuous at y* and there exists a non-

i

singular matrix B 0 such that

(4.5) lim inf B, Z B,
Xk » » k

then Fy* = O.

Proof: From Bo Z 0 and Fyo z 0 it follows that Yy = Y-

Using (4.1) - (4.3), together with the fact that Bo Z 0 is a

subinverse of A(yo), we find that for any x € [xo,yo]

-

(4.6) x-B_Fx = yl—(yo—X) + Bo(Fyo—FX) = yl-[I—BoA (yo)](yo—X) = ¥q-

Hence, in particular, x = x_ - B _Fx
o o o "o

1A

¥q- Similarly, we

obtain

Fy, 2Fy  + A(yo) (yl-yo) [r - A(yo)Bo] Fy =z 0.

Proceeding in the same manner we see by induction that

(4.7) 2y zx , Fy 20, k1,2,... .

Y1 = Y o

Hence, as a monotone decreasing sequence that is bounded below,
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. * >
{yk} has a limit y* = X -

If z is any solution of Fx = 0 in [xo,yo], then (4.6)

implies that z = z - Bon = Y, and by induction that z =

Y%

for all k. Hence z = y*. Finally, if F is continuous at y*,

. it follows from (4.7) that Fy* = 0.

If, in addition, (4.5)

holds, then

0 =

lim inf (Yk+1- Yy t BkFYk) = (lim inf Bk) Fy* = B Fy* =z 0

and BFy* = 0. Therefore, since B is nonsingular, Fy* = 0.

This completes the proof.
We note that the existence condition (4.5) can be replaced

by other conditions which guarantee that the B, are bounded

k

away from singularity; for example

lim inf IBxll 2o x|l ., o>0, xer".

Also, there are other versions of Theorem 4.1 corresponding to
different sign configurations. We indicate these for reference

in Table 1 where the first column represents the theorem as

stated.

v

»
1A
.
b
1

W

o] o] yO X YO X0 yO

= = Fx 0 Fy Fx 0 Fy - Px 0 =
o o o o o o (¢]

v O

v

IV

v
1A

Fy

o]

Yie1 = Y

Fy-FxzA(y) ly-x)

s
Bk =0

Vel T Y

Fy-Fx=A(y) (y-x)

=
Bk =0

Yee1 = Yy

Fy-FxzA (y) (y~x)

By

iv

0

yk+l = yk

Table 1




- 16 -

As a first corollary, we consider the construction of an

additional monotonically increasing sequence starting from x .
: o}

Corollary 4.1: Assume that - except for (4.5) - the conditions

of Theorem 4.1 are satisfied and, in particular, that the se-
 quence {yk} is defined by (4.3). Suppose, in addition, that

A is isotone, 1i.e.,

(4.8) A(x) = Aly) whenever X =Ex =y = Y,

Then the sequence

(4.9) X1 =% T Ck ka; , k=0,1,.. ,

where Ck is any non-negative subinverse of A(yk), is well-

defined and there exists an x* € [xo,y*] such that
(4.10) X T ox¥* for k - =,

Moreover, the interval [x*, v*] contains all sclutions of
Fx = 0 in [xo,yo], and if F is continuous at x* and there exists

a non-singular C Z 0 such that

(4.11) lim inf ck zC
k

then Fx* = 0.

Proof: Clearly Fxo £ 0 and Co Z 0 imply that Xy %.xo, and, in
a manner similar to the proof of (4.6), we see that

= - = - + -
yo y° CoFyo xl + (yo xo) CO(FXO Fyo)

v
I

X, + [z - coA(yo)](yo—xo) 1
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Now using (4.2) and the isotonicity of A it follows that

1A

Fx. = Fxo + A(xl)(xl—xo)

1 [I—A(yO)CO] Fxo =90

d I3 4.6 ri —3 - = - i i
and hence, from ( ) xl s X BOFxl =21 By induction,

we then see that

xk-léxk§yk . ka§0,k=l,2,... '
and all conclusions of the corollary follow in a manner analogous
to Theorem 4.1.

The solutions x* and y* are called the minimal and maximal
solutions of Fx = 0 in [xo,yo]. The case of most interest is
when x* = y*, because then the sequences {Yk} and {xk} consti-
tute upper and lower bounds for the unique solution y* of
Fx = 0 in [xo,yo]. In this connection, the following unigqueness

result is of interest:

Lemma 4.1: Let F: D c Rn - R" ana suppose the points xo,yo €D
satisfy (4.1). In addition, assume that there is a mapping

n
C: [xo.yb] - L such that

fIA
A

(4.12) Fy - Fx =z C(x) (y-x) ., X = x Y Y,

where for all x € [xb,yo], C(x) is non-singular and [C(x)]—1 =z 0.
If Fx = 0 has either a minimal or maximal solution in [xo.yo],

then there are no other solutions in that interval.

Proof: Suppose x* € [xo.yo] is a minimal solution and z* ¢ [x*,yO]
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is any other solution of Fx = 0. Then

O=F z*¥ - F x* =z C(x*)(z* - x*) and, because [C(x*)]'—l

v
o

z* — x* = 0. Hence z* = x*, The proof is similar if a
maximal solution exists.

Theorem 4.1 and Corollary 4.1 are related to results of
Baluev [2], [3] who essentially used, instead of (4.2), a

two~-sided estimate of the form

(4.14) Fy+Al(x,y)(z—y) =Fz = Fx+A2(x,y)(z—x) . X = x

IA
N

IA
=

1A

and considered the iterations (4.3) and (4.9) with
B = (8 Gy 17 % = [Az(xk'yk)]_l .

Here Bk and Ck are again assumed to be non-negative. Note that
in Theorem 4.1 only the one-sided estimate (4.2) is required
in order to obtain the monotonicity of the sequence {yk}. Note
also that in Baluev's setting we have to assume that [A(yk)]—l =z 0
while our use of subinverses of A(yk) is considerably more
general. A related subinverse condition has also been used
previously by Slugin [16].

There is also a close connection to a basic result of

Kantorovich [8]; we give this result as a corollary:

Corollary 4.2: Let G: D C Rn - Rn, set FXx = x - Gx and suppose

there exist points xo,yO € D which satisfy (4.1). If G is

continuous and isotone on [xo,yo], then the sequences
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Xeql - CFg 0 Yyqy T O¥y o k=01,

satisfy Xy t x*, and Yy } y* for kX - », where x* = y* are the

minimal and maximal fixed points of G in [xo,yoj.

Proof: Since G is isotone it follows that

HA

Fy -~ Fx =y - x-(Gy - Gx) =y - X, X =Ex sy = Y, -

Hence all conditions of Theorem 4.1 and Corollary 4.1 are
satisfied if we take Bk = Ck =B =C=1I°%A(x).

Corollary 4.2 provides one way of obtaining the mapping
A needed in (4.2). A more interesting possibility arises when

F is order convex.

Corollary 4.3: For F: D C R™ - rR" let XY, € D satisfy (4.1)
and suppose that F is differentiable and order convex on the
interval [xo,yoj. If the matrices Bk in (4.3) are non-negative
subinverses of F'(yk), then (4.4) holds. Moreover, if F' is
isotone on [xo,yo] and the matrices Cy in (4.9) are non-negative
subinverses of F'(yk), then (4.10) holds.

The result follows immediately from Theorem 4.1 and Corol-
lary 4.1 because Lemma 3.1 implies that (4.2) is satisfied
with A(x) = F'(x). Additional assumptions such as (4.5) are
again needed to insure that the limit elements are solutions
of Fx = 0.

As a special case of Corollary 4.3 we obtain a generally
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known result for Newton's method which dates back at least to

Baluev [2].

Corollary 4.4: Let F: DC rR" - Rn and suppose that X /Y, €D

- . 1 . .
satisfy (4.1). Assume that F € C ([xb,yo]),F' is isotone on
' [xo,yo], and for all x € [xo,yo], F'(x) is nonsingular and

[F'(x)]—l z 0. Then the sequences

(4.15) v, =¥ - (F'(yk))'1 FY, + X1 = xk—[}?'(yk)]'1 FX,

k=0,1,...
satisfy X, t y*, Yy b yv* for k » », where y* is the unique
solution of Fx = 0 in [xo,yo].
The proof follows immediately from Corollary 4.3 and

Lemma 4.1 by making the following identifications:

C

it

B, =C = (F'ly )", B (F' iy, DL clx) = B

We note that in the construction of the subsidiary sequence
_{xk}, the choice of the particular subinverses [F'(yk)]nl is
beneficial for two reasons. First of all, if Gaussian elimina-
tion is used to solve the linear systems implied by (4.15),
it requires very little additional work to obtain both X 41
and Y+l at the same time. Secondly, it is easy to show that
if F"(y*) exists then the convergence of the interval [xk,yk]
is quadratic, i.e., “xk+l - yk+l“ = clx - ykuz under any

norm on R". Finally we note that Vandergraft [18] has obtained
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a result similar to Corollary 4.4 even when F'(x) is not in-
vertible.
The following result is useful for the comparison of dif-

ferent iterative processes:

- Corollary 4.5: Assume that - except for (4.5) - the conditions
of Theorem 4.1 are satisfied. In addition to the sequence {yk}

defined by (4.3) consider another sequence

Yk - Bk F‘Yk r k=olll" ’ YO = Y ’

1
Yk+l o

where Bk

is any subinverse of A(yi) which satisfies Bk =
for all k. Then Yy = yi for k=1,2,..., .

The proof follows by induction from

Yol T Yial T Yx T Yo (B “B)Fyy - By (Fyy - Fyy)

W

[I - BpA(yp)] (vy - v, ) = 0.

We end this section with two simple lemmas concerning the
crucial condition (4.1). These results are not completely
satisfying, especially in connection with the methods discussed
in the next section:; in general, it is a non-trivial problem to
satisfy (4.1l) in a simple way. For other results of this type

see Section 6 and Schmidt [12].

Lemma 4.2: Let F: D c Rn - Rn be convex and differentiable on

-1 .
D. Assume that for some x € D, [F'(x)] exists and that
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Y, = x - (F‘(x))-lFx € D. Then Fy_ z 0.
The proof follows immediately from Fyo z Fx + F'(x)(yo-x) =0

which in turn is a consequence of Lemma 3.1l. Note that if

D = R® and [F‘(x)]—l z 0 for all x € Bn, Lemma 4.2 together

. with Corollary 4.4 gives a global convergence theorem for

Newton's method.

Lemma 4.3: Let F: DC R - R™ be order convex and differentiable
in D and suppose there exists a non-negative matrix C, such

that F'(x) ¢ =2 I for all x € D. If Fyo z 0 and X, T V¥, < CFyO € D,
then Fxo = 0. Conversely, if FxO = 0 and Y, = X, - CFxO € D,

then Fy0 z 0.

v

Proof: Assume Fyo 0 and X € D; then X, = Y, and by Lemma 3.1
' - = — 1
Fx S Fy +F (xo)(xo yo) [T -F (xo)c] Fy = 0.

i =< >
Conversely, if Fxo = 0 and Y, € D, then Yo = X, and

iv

Fy Fx_ + F'(xo)(yo-xo) =[1 - F'(xo)c] Fx_ = 0

(o]

5. Newton-Gauss-Seidel Methods

Assume that F: DC Rn - Rn is differentiable on D and

that for each x € D
(5.1) F'(x) = D(#) - L(x) - U(x)

is a decomposition of the Jacobian into block-diagonal, strictly
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lower - , and strictly upper - block triangular matrices.
We assume further that D(x) is non-singular and for real o

define
(5.2) H (x) = (D(x)-0L(x)) T ((1=0)D(x) + 0U(x)) , x € D.

For a given sequence of integers m, =z 1, k=0,1,..., define the

matrix functions
-1 -1
(5.3) B (x) = o(I+ ... +H (x) ) (D(x) - oL(x)) ~

Then we call the iteration

(5.4) Y41 = Yy~ Bplyy) Fyp ., k=0,1,... .,

a Newton-Gauss-Seidel process. Note that this is just the

formal representation of taking m, block Gauss-Seidel iterations

toward the solution of the linear system

Filyy) v = F'y) vy - Fy, -
The indices m _ may be given a priori or determined a posteriori
by a convergence criterion on the inner Gauss-Seidel iteration.
The special case m_ = 1, w = 1, has been considered
recently by Greenspan and Parter [7] in a particular context (see

Section 6), and the following result represents an extension

of their Theorem 4.3:

Theorem 5.1: Assume that F: D ¢ R" - R" is continuously dif-

ferentiable and order convex on [xo,yo] c D, where X and Yo
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satisfy (4.1). Suppose further that for each x ¢ [xo,yo],
F'(x) is an M-matrix. Then Fx = 0 has a unique solution y*
in [xo,yo] and the sequence {yk}, defined by (5.2) - (5.4) with

0 < w=1 and an arbitrary sequence of indices m, =z 1, satisfies
(5.5) Yy { Y* for k » =,

Proof: Since for any x € [xo,yo], F'(x) is an M-matrix, it

follows that D(x) is also an M-matrix; hence [D(x)]—l = 0 and
-1 ~1 -1
Hm(X) = [I- oD "(x)L(x)] [(1-w)I + oD “(x)U(x)] = O.
Therefore Bk(x) =z 0, and because
F'(x) = T [D(x) - oL(x)] = = [ (1-0)D(x) + oU(x)]

is a weak regular splitting of F'(x) we have by Lemma 2.2 that
Bk(x) is a non-negative subinverse of F'(x). Corollary 4.3
then assures that (5.5) holds. To conclude that Fy* = 0, we
note that the continuity of F'(x) implies that (F'(x))_l is
continuous; hence the matrix B in (4.5) can be taken equal to
[F'(y*)]-l. The uniqueness of y* follows from Lemma 4.1., with
c(x) = P'(x).

From Corollary 4.3 we also obtain a result for the sub-

sidiary sequence defined by

(5.6) X = X - Bk(yk)ka . k=0,1,... .

1
Corollary 5.1: Let F: DcC R"® - R™ ana suppose that F € C ([xo,yoj)
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where xo,yO satisfy (4.1). Assume further that F' is isotone
on [xo,yo] and that F'(x) is an M-matrix for all x €E[xo,y°].
Then Xy t y* for k = =,

Also of interest is a comparison result between different

~ processes of the form (5.4).

Corollary 5.2: Assume that the conditions of Corollary 5.1

hold. Let {yi} be another sequence defined by the process
(5.2) - (5.4) with 0 < w' = » = 1, mﬁ = m, . k=0,1,..., and

= = '
Yo = Y5 Then Y, =Yy for all k.

Proof: Let Bi(x) be the matrix defined by (5.3) with mi and
w' instead of m, and w. Then it is easily shown that
Bk(x) = Bk(x) for all x ¢ [xo,yo]. Moreover, since F' is

isotone, i.e.,

D(x) - Li{x) - U({x) = D{y) - L(y) - Uly)

A

whenever xo = x y = Y it follows that D-l(y)L(y) = D_l(x)L(x)

énd hence
- -1 -1 -1
11 - o0 rnyI Y s 01 - Tt
Therefore Hw(y) = Hw(x) and Bk(y) = Bk(x). Altogether then

Bk(y) s Bk(y) = Bk(x) | whenever X, =X =Sy =Y.

i

and the result follows from Corollary 4.5, with A(x) F'(x).

For the limiting case m = (k=0,1,..) we find that the
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Newton iterates can be no slower than any Newton-Gauss-Seidel

sequence:

Corollary 5.3: Under the conditions of Theorem 5.1 and the

additional assumption that F' is isotone on [xo,yo], the Newton

" iterates

~

- A -1 =~ _
yk+l - yk - (F (Yk) ) FYk ’ k"'oll: «ee
satisfy

Yk = yk ’ k=0'l'0-.

]
>

where {yk} is any sequence defined by (5.2) - (5.4) with Yo
and 0 < @ = 1.

The proof again follows from Corollary 4.5.

6. Application to Mildly Non-linear Equations

n
Let G: Dc R - Rn and consider the equation
(6.1) FX =ax +Gx =0

where, throughout this section, A is assumed to be an M-matrix.
Greenspan and Parter [ 7] have recently studied a special class
of equations of this kind arising as discrete analogues of

mildly nonlinear elliptic boundary value problems of the form
(6.2) m(s,t) = f(u(s,t)) , (s,t)€fl, u=¢ on 3L,

We show in this section how some of the results of [ 7]
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relate to the general theory of the previous sections, and also
give some extensions. The following lemmas, concerning the
existence of points X /Y, for which Fxo =0 = Fyo, are essen-

tially contained in [7].

- Lemma 6.l: Suppose there exists an a = 0 such that -a =Gx = a
n o |
for x € R . Sety =A aand x_ =-y . Then Fx =0 = Fy .
o o o o o

Proof: FXx =AXx +Gx_ Z=-a+Gx_ =0=2a+ Gy =Fy_.

o o o o o) o
Lemma 6.2: Suppose G(0) = 0 and Gx = G(0) for x = 0. Set

-1 _

y, = -A "6(0). Then Fy = 0.

Proof: Fyo = Ayo + GyO = -G(0) + Gyo z 0.

Lemma 6.3: Suppose G(0) exists and set Y, = A—l\G(O)l ;X T Y-

Assume that G is defined and isotone on [xo,yo]. Then

1A

0 = Fy .

Fx
o o

1A

Proof: Fx_ = - |G(0)|+ Gx = -lG(0)|+G(0) = 0 = |G(0)|+G(0) =

1A

|e(0)|+ey_ = Fy_ .

The following theorem, together with the preceeding three

lemmas, contains Theorems 3.1, 3.2, and 3.3 of [7].

Theorem 6.1: Let F: D C R" - R™ be defined by (6.1) and suppose

there exist XY € D such that (4.1) holds. Assume further

that on [xo,yo], G is continuous and satisfies

1A
1A

(6.3) Gy - Gx = k(y=x) , x_ = x

o y

Yov
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with some scalar k z 0. Finally, let C be any nonnegative
nonsingular subinverse of A+kI. Then Fx = 0 has maximal and

minimal solutions y* z x* in [xo,yo] and the sequences

(6-4)% ) = %X ~ CFxp .+ ¥y =¥ - CRy , k=0,1,...

l satisfy Xy t x*, Yy 4 y* for k - =,

The proof follows immediately from Theorem 4.1 since

Fy - Fx = (A+kI)(y-x) , xo SEx sy = Y, -
The proof also follows directly from the Kantorovich-lemma
(Corollary 4.2) since the function x - CFx is isotone on [xo,yo].
Since A is an M-matrix, we note that A+kI also is an
M-matrix. Hence the inverse of any matrix obtained from A+kI
by setting off-diagonal elements to zero represents a permis-

sible C. The special choice C = (A+-kI)-'l was used in [7].

In the special case that (6.1l) is a discretization of the

(6.5) E: aijgj + hz[f(gi) + bi]=0, i=l,...,n , x=(§l,..,gn).

of the boundary value problem (6.2), it follows that

(6.6) gi(x) = gi(gi) . i=1l,...,n,

i.e., the ith component of G depends only on the ith variable.

Then the condition (6.3) will be satisfied if we assume that

(6.7) [£(u) - £(v)]| = k(c) |u - v|
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whenever |u-v| = c. This is the basic assumption of [7]. 1In

particular, (6.7) is satisfied whenever f is continuously

differentiable. Under the condition (6.7), Lemma 6.1 together

with Theorem 6.1 provides an existencg result for the system

(6.5) when £ is bounded. Lemmas 6.2 or 6.3, together with

the theorem, provide existence results when f(u) is monotone

for u z 0 (e.g., f(u) = qu) or monotone for all u, respectively.
Finally we note that extensions of Theorem 6.1 are pos-

sible. In particular, assume that instead of (6.3) the more

general estimate

Gy - Gx = B(y-x)

is satisfied. Then the theorem remains valid if we can find
a non-negative non-singular subinverse C of A+B. In this
case, A need not be an M-matrix. However, this leads to the
unresolved question of the existence of a nonsingular, non-
negative subinverse of a given matrix.

Next, we consider the application of the results of Section
5 to (6.1). We make the following assumptions:

(a) The basic interval [xo,yo] c D of (4.1) exists.

(b) G € Cl([xo,yo]) and G'(x) is a non-negative diagonal

matrix.

(c) G is order convex on [xo,yo].

These conditions, together with the fact that A is an
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M-matrix, imply that F'(x) is an M-matrix for each x € [xo,yo]
and. that F is order convex on [xo,yo]. Hence Theorem 5.1
applies. In the context of (6.2) and (6.5), assumptions (b)
and (c) are satisfied if f'(u) 2 0 and £"(u) Z 0. 1In this
. setting and for the special case w = 1 and mk = 1, our result
is then equivalent with Theorem 4.3 of [7].

It is possible to extend these results to boundary value

problems of the form
(6.7) pa = £lu,u_,u) , (s,t) €N, u=¢ onal-

Assume that £ = f(u,p,qg) is a convex differentiable function

defined on all of R3, and that

(6.8) £ zo0, |£ ]|, |£ ]| = m
. u P q

For simplicity, assume further that £2 =10,1] x [0,1)] and
that the left side of (6.7) is discretized by means of the

usual five-point formula while the right side is discretized by

u(s+h,t)-u(s-h,t) , u(s t+h) - u(s,t-h )
2h

f(u(s,t) ,

Then the ith component of the operator F of (6.1) has the general

form
& 2
= . 1
j=1 j

1 2
. .E., = .) + h'b,,
*13%5 & 55) i
1 J

Il D~

N~

1

+ . = B.. = . . 0.
where the aij and Bij are +1/2 and dij BlJ 0 unless alJ #
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Therefore, we have

3fj = a.,. +h°Ff

— 11 u

34

3f. . .
1 = a.. +h .. £ + hog.. £ . 1

o ij *ij “p hBiy fq # 3
3

" and from (6.8) it follows that for sufficiently small h, F'(x)

has non-positive off-diagonal elements and positive diagonal

elements. Moreover, because of cancellations in forming the

n
sum ) Ofi
J=1 3&5
property of being irreducibly diagonally dominant. Hence, for

. it is easily seen that F'(x) inherits from A the

each x € [xo,yo], F'(x) is an M-matrix. Finally, because of
the convexity of £, Lemma 3.3 implies that F is also convex.
Theorem 5.1 now applies as well as Corollary 5.1.

We note that from the computational viewpoint the condi-
tion 0 < w = 1 represents a severe restriction for the Newton-
Gauss-Seidel methods, especially when these methods are applied
to systems of the form (6.5) or (6.9). For similar methods,
it is shown in [9] that the optimum w for (6.5) is, roughly
speaking, about that of the corresponding linear problem.

Hence w > 1 will in general be necessary for faster convergence
and in this case the results of this section do not apply.
However, it still is possibie that monotone convergence may

be preserved in the initial stages of the iteration, but a
convergence theory will, of course, require a different ap-

proach than used here.
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7. An Implicit Theorem and the Nonlinear Gauss-Seidel Method

In conclusion we discuss a modification of Theorem 4.1

for implicit iterations of the form

(7.1) G(¥yyp:¥%) =0 . k=0,1,... .

Theorem 7.1l: Let G: D X D C R® x R® - R" and suppose that

=

Xyt ¥, € D are such that x = Yor [xo,yo] c D, and
= =

(7.2) G(xo,xo) =0 = G(yo,yo).

Assume there exist mappings A: D x D N (1 b and B: D - 7n§

for which

(7.3) [A(x,y)]_l z 0 , B(x) = 0 for all x,y € D,

)

(7.4) G(x,y) - G(z,y) A(z,y)(x~-2) for all x,y,z € D,

énd

<y

o o

iv
1A
»
A
1A

Bly) {x-y) for x

(7.5) G(x,x) - G(x,y)

Suppose finally that the sequence {yk} € D satisfies (7.1).
Then Y d y* € [xo.y0] , and if G is continuous at (y*,y*),

then G(y*,y*) = O.

Proof: By (7.2), (7.4) and (7.1) we have

(@)
v

= G(Yl:YO) - G(YO,YO) z A(YOIYO) (Yl-yo) .
and hence,by (7.4), Y,-Y, = 0. Similarly, using (7.2), (7.3),

and (7.5) and then (7.4),
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v

0= G(xo.xo) G(xo,yo) + B(yo)(xo—yo) z G(xo,yo)

v

G(yl.yo) + A(yl.yo)(xo-yl) = A(yl.yo)(xo-yl).

so that by (7.3), xo - ¥y £ 0. Finally, (7.1) and (7.3) imply
that

0.

v

G(y,.v,) = 6ly;.v ) + Bly ) (y,-v,)
The conclusions of the theorem now follow by induction.
Theorem 7.1 has immediate application to explicit itera-

n

tive processes of the form y = Hy. , where H: D C R" - R
k+1 Y

k
is some nonlinear operator. In this case we can take A = I.
It is more interesting, however, when G(x,y) is nonlinear in
x as well as y.
Assume that F: R" - R" has components fi which are defined

on the entire space Rp. We define the components 95 of G by

n
= -\ A _'=1 -
gi(X.y) = fi(qi(x,yll . i=1,...,n, %,y € R,

where the mappings q;: Rn x R® - R are given in terms of the

components gi of x and uh of y by

qi(x.y) = (El,..-.gi. ni+l.---.nn) , i=1,...,n.

Then (7.1) is the nonlinear Gauss-Seidel process studied by
Bers [5] and Schechter [10]. (See also [9].)

To apply Theorem 7.1, we make the following assumptions
about F:

. n
(a) F'(x) exists and is an M-matrix for each x € R .
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(b) F is continuous and convex on Rﬁ.

(c) F' is isotone on R'.

(a) For each y € Rp there exists an x € Rp such that
G(x,y) = 0

. For example, in the case of the system (6.5) belonging to the

boundary value problem (6.2) all these conditions are satisfied

if the matrix (aij) is an M-matrix and if £'(t) = O,

£'(t) 2 0 for - = < £t < + =, We also assume, as usual, that

(4.1) is satisifed, i.e., that there exist X 1Y, € rR" for

which X = Y, and Fxo =0s Fyo; this implies that (7.2) holds.

Next we introduce the n x n matrices

il

0gi
G, (x.y) (agj (x.y)) . 6 (xy) = anj (x,y))-

Then it is easy to verify that

393 TS \qi(X.y)) for 1=z 3,
—+ (x,y) = J
agj 0 for i< j ,
and
3 0 for iz 3 ,
,..‘i_i (x,y)= SE
an’ agl (q (x,y)) for i <j .

v

Hence it follows from (a) that [Gx(x,y)]--l 0 and Gy(x,y) =0
for all x,y € r". Moreover, using (b) and Lemma 3.1, an easy

computation shows that

G(x,y) - G(z,y) = G _(2,y) (x-z) for all x,y,z € rR®,
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and similarly, using (c), that
"G(x,x) - G(x,y) = Gy(y,y) (x-y) for X Ex=ysy_.

Thus conditions (7.3) ~ (7.5) are all satisfied with

A(x,y) = Gx(x,y) and B(x) = Gy(x,x). ‘The assumption (d)

" assures that the sequence {yk} of (7.1) exists; hence
Theorem 7.1 applies and we have Yk.‘ y* € [xo,yo]. The con-

tinuity of F implies that of G and therefore Fy* = G(y*,y¥*)
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