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was NAS1-4270. The technical monitor for NASA was W. B. Olstad of the Gas
Physics Section, Aerophysics Division. The work documented herein was
performed by A. M. Smith of the Research Triangle Institute with Dr. H. A.
Hassan of North Carolina State University at Raleigh serving as a consultant.
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NONGREY RADIATION EFFECTS ON THE BOUNDARY LAYER

OF AN ABSORBING GAS OVER A FLAT PLATE

%
By A. M. Smith and H. A. Hassan
Research Triangle Institute

SUMMARY

A study of the nongrey radiatiom effects on the laminar boundary
layer of an absorbing gas over a flat plate is presented. The nongrey
model employed assumes an absorption coefficient with a stepwise
frequency dependence. Such a model gives a reasonable fit to the
published data on monochromatic absorption coefficient for air.

Examination of the optical thicknesses corresponding to the various
step functions shows that the maximum optical thickness based on
boundary layer thickness and maximum absorption coefficient, from the
data of Sewell, is less than unity in the boundary layer over a flat
plate. This conclusion is based on a consideration of missions such

as a reentry of a space probe from Mars,

For typical temperatures and Eckert numbers at the edge of the
boundary layer, it is shown that, for high external flow emissivities
the nongrey radiative flux to the wall is greater than the grey while
the grey convective flux is greater than the nongrey. The total heat
transfer, based on the nongrey model, is found to be greater than that
based on the grey model, for a combination of high wall and high external
flow emissivities or, low wall and low external flow emissivities.
Also, for high external flow emissivities, the ratio of the radiative
to the convective flux is always greater than unity; while for low
external flow emissivities, the ratio is greater or less than unity
depending on the wall emissivity and external flow Eckert number.
These conclusions are based on numerical calculations for a tempera-
ture of 10 000° K and higher at the edge of the boundary layer.

INTRODUCTION

The advent of space flight at velocities greater than the escape
velocities focused increased attention on the problem of radiative
heating. TFor such velocities, the transfer of energy by radiatiom is

* - !
Professor of Mechanical Engineering, N. C. State University, Raleigh,
North Carolina.




comparable to that by convection and therefore, the coupling between
the radiative transfer and other energy transport processes may have
a large influence on the flow field around the reentry vehicle.

The object of this work is to consider the influence of the
nongrey radiation effects on the heat transfer in the boundary layer
of an absorbing gas over a flat plate. The wall and the external flow
are not considered to be perfect absorbers and the influence of their
optical properties on heat transfer is investigated. This study is
motivated by the fact that results based on the grey approximation
may, under certain conditions, be of little practical use as a result
of the large variation of the absorption coefficient with frequency,
especially at the higher temperatures of interest here.

An attempt at considering the effects of a nongrey model on the
heat transfer of a boundary layer of an absorbing gas over a flat
plate has been made by Cess (ref. 1). He ignored the viscous dissipation
term in the energy equation and assumed, in addition to a Prandtl
number of unity and the usual linear viscosity law, that the monochro-
matic absorption coefficient is independent of temperature and the
Planck mean is a reciprocal function of temperature. His results for the
nongrey model differed substantially from those for the grey model.
Although the assumptions introduced by Cess regarding the temperature
dependence of the monochromatic and total absorption coefficients are
unrealistic for most gases, especially for air, his model, nevertheless,
serves to illustrate the importance of nongrey effects.

A much improved nongrey model has been introduced by Olstad (ref. 2)
in his analysis of the inviscid stagnation shock layer. He assumed
an absorption coefficient with a stepwise dependence on the wavelength.
To illustrate the importance of the nongrey effects, he assumed, for
the sake of simplicity, that the pressure and temperature dependence in
each wavelength interval is given by that of the Planck mean. His
results also demonstrate the significance of the nongrey effects.

Examination of the data on monochromatic absorption coefficients

given by Sewell (ref. 3) shows that it can be closely approximated by

a stepwise frequency dependence. The pressure and temperature depen-
dence in each frequency interval do not correspond, however, to that
"of the Planck mean or Rosseland mean. Using such a representation the
divergence of the monochromatic radiative flux vector can be integrated
in closed form to yield the divergence of the radiative flux vector.

As a result of this, it is shown, in general, that the divergence of
the radiative flux vector can be represented as a linear combination

of terms corresponding to the usual thin, self-absorbing, and thick
approximations. Using a reentry of a space probe from Mars and from
the far solar system (ref. 4) as typical missions, it is shown that, under
the most pessimistic estimates, the maximum optical thickness based on
a characteristic length equal to the maximum boundary layer thickness
on a ten meter plate is less than unity. It is concluded, therefore,
that the boundary layer on a flat plate for such missions, is optically
thin.



The thin approximation coupled with a two-step monochromatic
absorption coefficient is employed in analyzing the boundary layer
of an absorbing gas on a flat plate. The wall is assumed to be
opaque, diffuse reflecting, and emitting; and the external flow is
assumed to be emitting and nonreflecting. The wall is assumed to be
grey and the emissivity of the éxternal flow is assumed to be frequency
dependent with the dependence being, for the sake of convenience,
identical to that of the absorption coefficient.

Since the radiative flux is negligible for low external flow
temperatures (ref. 5) the calculations were carried out for a
Te = 10,000°K.. The results show that, for high external flow emissiv-
ities, the ratio of the radiative flux to the convective flux is
always greater than unity. However, for low external flow emissivities,
this ratio is influenced by the wall emissivity, being smaller than
one for low wall emissivities and high Eckert numbers and about one
or greater for high wall emissivities and low Eckert numbers.

For the higher Eckert numbers, the nongrey radiative flux is greater
than the grey and the grey convective flux is greater than the nongrey
if the external flow emissivity is large. When the external flow emissivity
is low, the reverse is true. The total nongrey heat transfer is found to
be greater than the grey for a combination of high wall and high external
flow emissivities or, a combination of low wall and low external flow
emissivities.

SYMBOLS
BA Planck's distribution function (eq. (All))
Bv Planck's distribution function (eq. (9))
Bo Boltzmann number
é speed of light
E specific internal energy
Fi radiation energy flux vector
Fvi,i divergence of the monochromatic radiative flux vector
gm(v) function defined in eq.l(ll)
H°° freestream total enthalpy
h specific enthalpy, Planck's constant or altitude
h, referenée enthalpy in eq. (73)
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Re

solution of eq. (70) in the absence of radiation

specific intensity of radiation

spectral radiance in egs. (C8) and (C9)

total radiance in eqs. (C3), (C4), (C10), (Cll), and (C12)
spectral emission coefficient

mean linear absorption coefficient in eqs. (C7), (Cl0), and
(c11)

linear spectral absorption coefficients

Planck mean linear absorption coefficient

Rosseland mean linear absorption coefficient

height of the mth step function in eq. (11) (see fig. 2)
coefficient of conductivity or Boltzmann's constant
characteristic length

freestream Mach number

pressure tensor

pressure

Prandtl number

heat flux (other than radiative) vector
characteristic value of radiation energy flux vector
spectral radiative flux

global radiative flux

convective wall heat flux for a radiating gas
convective wall heat flux for a nonradiating gas
total wall heat flux

freestream Reynolds number

refiectivity

temperature
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T !/
JO

stagnation temperature
velocity vector

Eckert number

compressibility factor
fuﬁction in'eq. (13) and (A9)
function in eq. (Al3)
radiation-convection parameter

frequency interval or intervals associated with Km(xi)
(see fig. 2)

boundary layer thickness

emissivity

emissivity per cm

spectral gas emissivity in eqs. (C2) and (C8)
Planck mean mass absorption coefficient

mass absorption coefficients in eqs. (D10) and (D11)
wavelength

coefficient of viscosity

frequency

density

Stefan-Boltzmann constant

characteristic optical thickness or Bouguer number for a
grey gas

Bouguer number for a nongrey gas
effective Bouguer number for optically thin nongrey gas
effective Bouguer number for optically thick nongrey gas

wavenumber or solid angle



Subscripts

e external flow conditions

g grey gas

o . reference state

s.1l. sea level conditions

W wall conditions

v frequency dependent quantity

Superscripts

- dimensionless or normalized quantity

ANALYSIS

The conservation equations for the laminar boundary layer of a
radiating gas may be obtained from the general equations of radiation
gas dynamics derived by Goulard (ref. 6), which can be expressed as

Dp -
DE T PYy 4 0 (1)
Dui
i - 2
P D + Pij,j 0 (2)
E+qi +F . + P =0 (3)
>

P Dt i i,i ij %1,i

where p, E, uj, Qgji» F?, P;. denote, respectively, the density,

specific internal energy, velocily, heat flux (other than radiative)
vector, radiation energy flux vector and pressure tensor. In writing
eqs. (2) and (3) the radiation pressure tensor and the radiation energy
density were ignored compared to the (molecular) pressure tensor and
specific internal energy. As has been indicated by Goulard (ref. 7)
this is justified except for temperatures greater than 107°K or particle
densities approaching zero particles/cm3.

Except for the term F? { appearing in eq. (3), the conservation
equations are identical with those of classical gas dynamics. As a
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result of this, the boundary layer equations of a radiating gas are
identical with the usual boundary layer equations except that an

additional term F? i appears in the energy equation. Thus, the boundary
. .

layer equations for a steady flow of a radiating gas over a flat plate
can be written as

) 9
AR Pw + ay(-pv) =0 4
du du _ 3 . 9u .
pu = + pv 3y = ay(“ By) (5)
sh sh _ 39 , 9T du,2 R
pu o=+ pv By :ay(k By) +. “(ay) Fi’i {6

where u and v are the velocity components in the x and vy
directions, h is the specific enthalpy, T is the temperature, and

p and k are the coefficients of viscosity and conductivity. It
should be pointed out that eqs. (4) through (6) assume a flow in
chemical equilibrium and, in the case where Lewis number is different
from unity, k is to be interpreted as the total heat conduction
coefficient which includes the effects of both conduction and diffusion.

The general expression for F? 4 can be obtained from the divergence
3

of the monochromatic radiative flux vector as

F..=JF . dv (7)
1

A general expression for F\)1 has been given by Goulard (ref. 6). For
nonscattering gases in local’ thermodynamlc equilibrium and perfectly
absorbing surfaces, this relation can be expressed as (see Appendix A and
fig. 1)

1 (i ' dw
- B (&, - Kd%ds——
Fvl,i(xi) = 4m Kv(xi)Bv(xi) Kv(xi)JAaniKv(gl) v(gl)exp< Jg v b

.

X

i
d
Bv(ni)exp<- Jn K\,d5> T::' (8)

- K (x.)J
v t LI'TT i

where K, is the spectral linear absorptlon coefficient and B, 1is
Planck's distribution function



~ 2hy3 L 1 -
v é2 exp(hv/kT) - 1 (9

B

It is to be noted that the integral

Jdes (10)

which is usually referred to as the optical thickness (for frequency v)
is evaluated along a line S(ﬁi) with direction cosines £4. It is
evident from eq. (8) that, before one can carry out the integratiom in
eq. (7) the frequency dependence of K, should be specified. The simplest
case, where K is independent of frequency, leads to the well-known
grey case. In general, arbitrary dependence of K on frequency leads
to a rather complicated integration which would have to be carried out
numerically. The desirability of choosing a K_ which would represent

a fair approximation to physical reality and which would make it possible
to carry out the intégration in closed form is evident. Omne way in which
this can be achieved is to approximate K, by a number of step functionms

(see fig. 2), i.e.,

n
K, (x;,v) = mzl K, (x;)8, (V)

where
1 if v e A
m

gy(V) = (11)
0 otherwise

with Ay the frequency interval or intervals in which K 1is Km(xi).
Substitution of eq. (11) into eq. (8), (see Appendix A), yields

R rz‘ 4 "1 4 1 dus
= do ) K0T - Kf j K. (£.)a, (£,)T <a.>e:<p(—f K.ds>ds—
i,1 je1f 47 g ng iy i £, hj b
X,
J 4 Jl dw 12
-K, ()T (n. - K.ds) =2
] 4naJ(n1) (nl)exP<: n. J 5) 4n 12)
1
where



' IA.B dv
-

Q
1l
I~
Q
|
i

3 0T4/n j=1

As a result of using the approximation indicated in eq. (11), it is seen
from eq. (12) that the contributions of the various frequency intervals to
the divergence of the radiative flux vector add up linearly. The implication
of this interesting property will be discussed below.

The grey gas approximation follows from eq. (11) by choosing n=1,
g1 =1 and Ay the frequency interval (o,»). This rule is to be followed
in reducing the nongrey expressions derived here to the corresponding grey
expressions. In thils connection, it is seen from eq. (12) that there is no
grey equivalent to a nongrey model; this may be compared with eq. (4.23) of
ref. 6 where such an equivalence is implied.

SIMILARITY PARAMETERS

Since eq. (6) is frequency independent, the similarity parameters which
characterize radiation transfer in relation to other modes of energy transfer
are identical with those derived by Goulard (ref. 7) for a grey gas. The
dimensionless quantities appropriate for boundary layer analysis are

- x = - u - v L = _h
x=7T,5= %', u = ;; s v = ;:'g s h=1—
R
F
= T - - k- <R _ i
T=?,p=%-,k=-];—,u=ﬁ—,Fi=—R (14)
) o o o q,

where the subscript 'o' designates some reference state, § 1is the boundary

layer thickness and. L 1is a characteristic length which may be chosen as

the length of the plate. Introducing eq. (l4) into eq. (6) one finds that

the ratio of energy transfer by radiation to that by convection is characterized
by the dimensionless number

(15)

first introduced by Uns8ld (ref. 8). If the characteristic value of the
radiation energy flux vector can be chosen as

9




qR cT4 (16)

I' reduces to the inverse of the Boltzmann number Bo
T = -——————'%'= Bo (17)

In addition to the above "extrinsic'" dimensionless parameters, there
exists "intrinsic" dimensionless parameters which govern the structure of
the radiation field. These can be deduced from examination of the various

forms of F? i It may be recalled that, for a grey gas, the appropriate
3

intrinsic parameter is the optical thickness or Bouguer number, TE’ defined
as the product of a characteristic absorption coefficient and a characteris-~
tic length. 1In the presence of nongrey radiation, it is very difficult to
define a characteristic absorption coefficient. In this connection, it may
be mentioned that Olstad (ref. 2) employed a nongrey absorption coefficient

given by
K =v.,K 3 v, <v f_vj+1 3 i=1, . .. ,m (18)
where the constants vy satisfy the relation
m
'Zlyjbj =1

with

b, =—l—— T =T (19)

and defined an optical} thickness based on Kp where Kp is the Planck mean.

Using the same idea, one can define

10



with Kp being the Rosseland mean, and employ an optical thickness based on
Kr. In this case, the 6 's satisfy the relation

m a,

z U R |

i2q O,

i=1 j
with

Vi+l dB_ = dB_
= —> d — dv T=T
3y _Iv ar o fo ar ¥ > 0 (21)

As has been recognized in ref. 2, definitions like eqs. (18) and (20), have
one drawback in common, namely the K dependence on pressure and temperature
is the same as that of the respectivevmean which, in a true nongrey represen-
tation, is not the case. Because of such difficulties, the concept of a
representative or an effective optical thickness for nongrey representations,
other than the ones mentioned above, is not feasible.

Writing eq. (12) in dimensionless form shows that one can define a
characteristic optical thickness for each frequency interval Aj. Thus,
letting

- % - _s - e g L
%74 %5534 °°% % 4q T
o
R
e L U N S I
Fi = Z Kj =X s aj =3 (22)
40T jo jo
o -
and substituting into eq. (12), one finds
n 4 1M _ N\ __
T . K.a.T expl- 1, |- K.ds]dsdw
Z 10%50%3 0| % TJOJOJH 3% P jng ]
=1 i i
1., * 0\ _
- T exp|l- T K,.ds Jdw 23
Joaj P joJﬁ 5 ! (23)

11



where

1. =K. d (24)

is the Bouguer number for the interval A. and d 1is a characteristic
geometric length of the radiating gas. Since Tjo may have different values

for different A:, it is possible that in some A, . <1, while in

jo
another A., Tjo may be of order unity and flnaliy, in st111 another Bys
it is possible that :g > L. The fact that rt;, can have arbitrary values

shows the difficulty o% defining an effective optical thickness.

The role played by 1t;, in determining the asymptotic form of the
jth bracket of eq. (23) is identical to the role played by the optical thickness
in the case of grey radiation (ref. 7). Thus, for the thin case, where

Tjo < 1, the jth bracket reduces to

1
A S A
aJ.OTJ.O[aJ.KJ.T - %, Joaj(ni)T (ni)duﬂ (25)

It is seen from eq. (25) that an effective Bouguer number can be defined,
for the thin case, by the relation

/=
Tjo ajoTjo (26)

Since o0 < a: jo < 1, this means that the gas may be optically thinner in
this Aj h an ctually indicated by Tjor
In the case where is of order unity, all the terms of the jth

o .
bracket should be retalne& For the thick case, where Tijo > 1, it is
shown in Appendix B that the jth bracket reduces to

o 3
e fa L Ry a
TJo i=1 0k, (K, ox,
i Vi i
Similar to eq. (26), an effective Bouguer number Tgé can be defined by the

relation

12



T,
s _ _jo
Tjo ajo Z-Tjo (28)

Thus the gas is optically thicker than indicated by Tjo.
The above discussion shows that, in general, eq. (23) can be written

as
P 1 q
R - Za.oT.o[E.I_(.T4-I—(J&.T4dB] N 1
s j=1 Jo Jof 13 3lg3 leOJOj
1"1___4 i N (o, i
-1, J J K.a.T exp{- T. J Kds |dsdw - J o:T exp|~ T, J K.ds |dw
Jojylg 373 joJg o 3 jojz 1
i i i
Ll 3
1 i 3 (1 - =
-3 y J° ) - (a ) (29)
j=1 JO i=1 Bx i
where
p+tq+r=n (30)

Equation (29) shows a basic difference between grey and nongrey radiation.
Since there is one characteristic optical thickness for a grey gas, it is
possible to characterize the whole flow field as thin, self-absorbing or

thick depending on whether = Z 1. On the other hand, in the nongrey case,

2 >
such characterization is, in general, not possible unless Tjo <1,
7. =1 or 1, > 1 for all j.
Jo jo

ESTIMATE OF Ti0 FOR RADIATING AIR
IN THE" BOUNDARY LAYER

To determine p, gq, and r in eq. (29), it is necessary to estimate
the order of magnitude of the various Bouguer numbers for the radiating
boundary layer on a flat plate. The characteristic geometric length of the
radiating gas may be taken as the boundary layer thickness & and, therefore,
Tjo can be expressed as

Il
[=2)

T, K.
jo Jjo
13



Since it is expected that most of the t:,'s will be much less than unity
for the radiating air boundary layer, the maximum value of Tio Will be
estimated for a set of representative flight conditions encouiitered upon
reentry into the earth's atmosphere. The reentry flight paths chosen are
those given by Howe and Viegas (ref. 4) for reentry from a Mars mission and
reentry from a far solar system mission (see fig. 3).

To estimate (-r-o)max one needs to estimate the maximum K:, and 3§
for the flight conditions existing along these reentry trajectories. From
the calculations of Van Driest  (ref. 9) and for the range of Mach numbers
considered there, the correlation

%/ﬁew = 2.1 - 15) + 28 , M_> 15 (32)

may be used to calculate an upper limit for the boundary layer thickness

on a flat plate for M, > 15 and all calculated wall to free stream tempera-
ture ratios. Another method for estimating the boundary layer thickness

can be inferred from the usual order of magnitude analysis employed in
deriving the boundary layer equations. As a result of such analysis, one

finds

g'Vﬁe = 0(1)
X x
or

S = 00,70 u,%) (33)

where 1 and p are representative average values of the viscosity and
density in the boundary layer while u, is the velocity at the edge of
the boundary layer. Letting

b T
a__a - £
uw = Tco p= 7ZRT (34)

where P 1is the pressure, Z the compressibility factor and R is the
gas constant, and assuming weak interactions, i.e.,

1



one finds that eq. (33) reduces to
s _ —_a_ _a |
x - 0 (35)

Comparison of eqs. (32) and (35) shows that the two equations give similar
results. For a given freestream total enthalpy H_ ‘and pressure P, all
that is necessary to calculate the boundary layer thickness is a knowledge
of the plate length and flight conditions. These conditions were determined
from the altitude-velocity curves of fig. 3 in conjunction with the standard
atmospheric data presented by COESA (ref. 10).- The data of Neel and Lewis
(ref. 11) for high temperature air was used in calculating the various thermo-
dynamic properties for a given H_ and P_. As suggested by Dorrance (ref. 12)
and others, T, 1is usually taken as the stagnation temperature, Tg.

The maximum K;, occurring at flight conditions corresponding to the
trajectories of fig. 3 were calculated from the data of Sewell (ref. 3)

vrhd Al sttra +ha annnfrral Aamiaainn ranffirnrdiont Af adr yvvareciie wrara miimhor FAae
wnlci 54VE l_l.l.c bycl.l—l.cx.l. eimission Ccoerridienct Oi ai¥ vVersus wave numper 1or

a wide range of temperature and density. The maximum K.  were calculated
using the values of Tg and p, (see eq. (34)) corresponding to (H,,P.)
for equilibrium air. Now choosing T, = T; underestimates p, because,
for a boundary layer along a flat plate,

P = const or ZpT = const or pT = const (36)
Since K; .(p,T), the question arises whether such choice of temperature
would lead toJ (K )max This can be seen from the consideration that Kj
can be approx1mated as (ref. 13)
K., = c,paTB s C., o, B = consts , B > qa
J ] J
= ¢, (oD apho (37)

It is seen from eq. (36) that using T =T in eq. (37) results in the

s
highest wvalue of K4 for a flat plate.

Knowing 6 and (K; o)ma it is possible to estimate (r, o)m x which
occurs in the boundary layer ﬁurlng reentry into the earth's atmosphere
along the flight paths shown in fig. 3. The results for a plate three meters
long are shown in flg. . For a plate of length L meters, the ordinate should

be multiplied by V . It is seen that (}jo)max < 1. Therefore, p=n in

egs. (29) and (30) and the flat plate laminar boundary layer of radiating air is
optically thin.

15



SURFACE EFFECTS ON RADIATION

The expression for F? i given in eq. (8) assumes that the external
b

flow and the wall are perfect absorbers. A relaxation of this restriction
requires replacing the last integral of eq. (8) by

X,
* dw
Iv(ni)exp - J K\,ds I (38)
4w ni .

K“(xi)j

or, B, is replaced by I,,, where I, is the specific intensity of
radiation. A general expression for Y can be derived from the general
transfer equation. For a nonscattering medium in local thermodynamic
equilibrium, the transfer equation can be written as

X a =~ I, +3B, (39)

Integration of eq. (39) yields (ref. 6)

X X X,
i i i
Iv(xi’ni) = J Bv(gi)exp - f des Kv(gi)ds + Iv(ni)exP - jn K ds (40)
or
X, X, X,
i i / i
Iv(xi,gi) = JC Bv(gi)exp - JE des Kv(gi)ds + Iv(Ci)exp - J; des (41)
i i i

when ni refers to the wall surface and Ci to the edge of the boundary
layer.

A general treatment of eq. (38) is extremely difficult. However, since
it has been established that the air boundary layer on a flat plate is
optically thin, a treatment of eq. (38) is possible by utilizing the fact
that second order terms in optical thickness can be ignored. Thus, for an
optically thin gas, one may write

16



Xi X

. i
exp|(- J des =1 - J des (42)

Hence, keeping first order terms in the optical thickness, eq. (38) reduces
to :

dw
Kv(xi)J4 Iv(ni) - (43)
b3

A general expression for the radiation intensity at an interface has been
given by Goulard (eq. (4.16) of ref. 6). Assuming that the interface properties
are independent of direction and, diffuse reflection, one finds, at an interface

I =eB +1 [ 1/ 0807du’
\Y vV Vv vV \Y m

s 2m

(44)

where ¢, and r, are the emissivity and reflectivity. Thus, assuming an
emitting but nonreflecting external flow and a reflecting opaque wall, one
obtains

Iv,e - Iv(ci) = Ev,er(Te)
and
sy cosf’dw’
I\)’W =1 () = ev’va(TW) + (1 - EV,W)JZWIV(ni’gi) I — (45)

Keeping first order terms in the optical thickness, I (n:;,z:) 1is calculated
Vv 1 1
from eqs. (41) and (45) as

n,

1
Iv(ni,ci) = sv’er(Te) + J (Bv(Ei) - €,

5

eBv(Te))K\)(Ei)ds (46)

H

Substituting eqs. (45) and (46) into eq. (43) and retaining first order terms,
one finds, for a grey wall

2 - ¢
dw 1 Ew W
K\)(xi)J I\)(ni) b K\)(xi) [2 Bv(Tw) +< 2 >€v,er(Te) (47)

4
17



Thus, using eq. (8) and (47), F\)i i for an optically thin gas reduces to
b

£ 2 - ¢
= _ ¥ o —
Foii = 41TKV[B\)(xi)_ 7 B,(T) ( 5 >sv,er(Te):| (48)
Assuming that ¢ has the same frequency dependence as K, (xi,v) (eq. (11))

and integrating over the entire frequency spectrum, one obtains

n
R _ 4 Sw 4
Fi,1 = 4R &IT(xp) -5 T J.ZlKj () (T)
2 - eEN 4 n
- (;"ET__>Te jzlsjeaj(Te)Kj(xi) (49)
where
n
K = 'Z a, (x,)K,(x.)
P R
is the Planck's mean, and
(t) = | B (T)dv[(eTHm) , t =, e (50)
%58t AoVt t ’ >

J

If the contribution of the wall and external flow to the divergence of
the flux vector is ignored, then eq. (49) reduces to

F? ;= 4cKp(xi)T4(xi) (51)

’

Thus, grey heat transfer calculations for an optically thin gas with the
absorption coefficient equal to the Planck's mean are identical to the
nongrey calculations regardless of the frequency dependence of Kv(xi,v).

The grey equivalent of eq. (49) can be written as
4 ¢ [T \& 2 - ¢
R 41T wf_w W
i~ 4ok e (T) "2 (Te> - €e< 2 ) (52)
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THE RADIATIVE HEAT FLUX AT THE WALL

The radiative heat flux at the wall can be derived from the general
relations given by Goulard (ref. 6) for the radiation flux at an arbitrary
point in a radiating gas. These relations are the expression for the
spectral radiative flux crossing a surface of unit normal vector njy at
the point £y,

qv(gi’ni) = j4 Ivcosedm (53)
™

where 6 is the angle between nj and the ray cone specified by w (see
fig. 1), and the definition of global radiative flux

ag = Joquv (54)

The radiative flux at an arbitrary surface x; between n; and
z{ can be calculated from the radiation intensity directed upwards
Iv(xi’ni) and the radiation intensity directed downward Iv(xi’ci) as

27w/ 2 27 ¢

q, = J J I (x;,z;)cos0sin0dods + J J I (x;,n;)cosBsineded¢ (55)
o ‘o o ‘w/2

where, in writing eq. (55), dw was replaced by

dw = sined6d¢ (56)

In particular, eq. (55) shows that the radiative heat flux at the wall where

X; = ng is given by
2w em/2 2w
Uy = J J Iv(ni,ci)c03651n6d6d¢ + J J Iv(ni)cosesin6d6d¢ (57)
o’o0 o ’'7w/2

Now 1I,(ni) 1is independent of 6 and ¢ as a result of assuming diffuse
reflection. If it is assumed further that Iv(ni’ci) is independent of

¢, eq. (57) reduces to

n/2
a,, = 2ﬂjo Iv(ni,gi)cosas1n6d6 - va(ni) (58)
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,;i) is given by eq. (46). Substitution

For an optically .thin gas, I (n§8) s &7
yields, for a grey wall

of eq. (46) into eqs. (45) and (

Qow = 1T€w{ev,er(Te) - B,(TY

n/2, 1
+ 2[ j [(pv(ai) - €, eBV(Tej)Kv(Ei)dﬂ cosesinede} (59)
Z. »

o}

The spectral radiative flux at a given x on a flat plate can be
obtained from eq. (59) by letting

ds = - cosé6dy , t; = s , n; = 0 (60)

The resulting expression can be written as

Dow ~ 1rEw{ev,er(Te) - Bv(Tw)

w/2¢8
+ 2[ J [?v(e,y) - €, er(Tei]Kv(e,y)sinedyd%} (61)
o ‘o >

The global radiative flux to the surface is

ot
o

2 4 _4
o€ Z a,.(T e, T -.T
W j=1 jrelTje’e W

w/2 ¢S 4 n 4
+ 2[ [ K 7% - ) K.a.(T )e, T |sin6dyde (62)
o D jop 1377 Jee

where, again, the frequency dependence of €,,e Was assumed identical to
that of Kv'



TRANSFORMATION OF THE GOVERNING EQUATIONS

i
by eq. (49). The appropriate boundary conditions can be written as

The governing equations are equations (4) through (6) with 'FR i 8&iven
b

u=v=0, h-= hw aty=20

u->u h—-h a - 00
e’ e 85 Y

u=u_, h = he atx =0 (63)

where ug, he’ and hg, are assumed to be constants. The continuity
equation is satisfied identically if one introduces the stream function
p defined by

I 1 (64)

The momentum and energy equations will now be transformed from the x-y to an
s—n coordinate system. Letting

Pl (Y_ .
s = peueuex , N = fypdy » Y = VCs £f(s,n) (65)
Cs ‘o0
with
h =~£~ R E =2 , C = O - comst. (66)
e Pe HePe
eqs. (5) and (6) reduce to, respectively.
i+£a_‘°'f___s(£ﬁ_a_fﬁ> 7
2 2
8n3 2 - 9n 9nds s an

and

1 See Appendix F.
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- = u 2, = h X
1%, £a0 e_f.> -g[2L2h _2£3h}, XL R (68)
n

where X = x/L and it has been assumed that the Prandtl number Pr = const.
As is seen from eqs. (49) and (68), true similarity does not exist in the
boundary layer of an optically thin gas.

In order to simplify the numerical calculations, the assumption of
local similarity will be introduced. Thus, eqs. (67) and (68) reduce to,
respectively,

£/ + 5877 20 (69)
and
1.12 -
B/ wpr iR/ --pr-Bgr?y BrEL R (70)
2 - h - "i,i
e p uhop
e e e

where the prime denotes differentation with respect to n. Equation (69) is
the well-known Blasius equation. Therefore, the solution of the problem
reduces to the solution of eq. (70) with the boundary conditions

=hwatn=0andﬁ+1asn+°° (71)

=x|

The convective heat transfer at the wall U is given by

@ -k (91) _ h(ﬂz)
T - d
cw w\ Jy y=0 Pr\dy y=0
CPetele e (oF
-7 - Pr \on (72)
Lx n=0

where C 1is evaluated, as suggested by Eckert (ref. 14), at the reference
enthalpy hg which, for Pr = 0.70, can be written as

2
_ u

By = %(1 +0) +.092 72 (73)
e
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The radiative heat flux at a given station x 1s obtained from eq. (62) as

4) T 4
Apy = eone .__E_.:laj(T)ee_Tw
n _ —
§{K (T _,P ) K__ K,(P ,T ) K
+2_£I pe’e pgh_ y e e g (e, |dnp (74)
ue o pe - .=1 pe - J e je
p i P

where ng is the value of n at which £/(n) = 0.9999. The corresponding
grey expression can be expressed as

p

n -
K K
_ 4 =4 vCs 8 pe “p,=4
Iy, g = ewcTe{ee - T +2 —;; jo [ . > (T - ee) dn (75)

Method of Solution

The method of solution to be employed here is to transfer the differential
eq. (70) into an integral equation and to solve the resulting integral
equation by iteration. A formal integration of eq. (70) yields

2
u
— - e
h=h + Clgl(n) - Pr h_ gz(n) + xg3(n) (76)
where
n
1
g .(n) = nexp Sk fdn, |d
1 o 2 2/™M

n n n
e B Tea e 22 [ Fan,Jan, | b an.
Bz » B3 7 | TP\ 2 | M2 | XEER\2 ot M3/ Taf Ny b

x=f//2 w

R — -
Fi,l EEKTe’Pe) ER =4 o Kje Ei Cw =4
W= = . T - ) 5 T a,(T)
p E4cT Pe P j=1 Pe o 2 wiiw
e" e
(2-1¢)
+ 2 Ejeaj(Teﬂ



and

4PrgT2L§
e 77
ee
Cl is a "constant" determined from the condition that
h = 1 when n = ng (78)
The resulting expression for ¢y is
2
u

It is seen from eqs. (76) and (77) that, in order to calculate g, (n)
one needs to know the temperature.or enthalpy distribution in the bouhndary
layer at a given x. In the scheme employed here, the iteration has been
started by assuming that the enthalpy distribution needed to calculate W
and g3 1s given by the solution of eq. (70) for the case of no radiation.
This enables one to_calculate g3 .and an improved value of h. This
improved value of h is employed in calculating g3 and so on.

_ Designating the solution of eq. (70) in the absence of radiation by
ho’ one obtains

2
u

h =h + Cogl(”) - Pr E—'gz(”) (80)

where C, is determined from eqs. (78) and (80) as

2
u

T _€
C,=|1-h +FPr h_ g,(n5) gl(nG) (81)
Examination of eqs. (79) and (81) shows that

g.(n)
¢, = ¢ S R (82)
o gl(”e)
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and therefore,

g.(n) g, (n)
h = Eo + Ag4(n ) 3 L ] (83)

' |g5tng) ~ gy (0]

The calculations were carried out for values of x ranging from 0.1
to 1.0. The function for Eo was employed to start the iteration scheme
for the case where x = 0.1. For other values of x the calculated
value of h at the preceding x station was employed to start the
iteration. In the course of the calculations, it was noticed that conver-
gence is achieved rapidly if one chooses for the input of the nth iteration
the mean of the input and output of the previous iteration, i.e.,

(h, )

y = in'n-1 + (b ) 1

out” n~

(84)

The ratio of the convective heat flux with radiation qg, to that
without radiation 4., follows from eqs. (72), (76), (80), and (82) as

S R W ...__g?»i"ﬁ; (85)
cho Co C0 g1\1s

RESULTS AND DISCUSSION

The influence of the nongrey radiation effects on the air boundary
layer over a flat plate has been investigated. The monochromatic absorption
coefficient employed assumes a stepwise frequency dependence; as a result
of this assumption it is shown that the contributions of the various
frequency intervals to the divergence of the radiative flux vector add up
linearly. This marks a departure from the grey case in the sense that for
certain conditions the various contributions to the divergence of the
radiative flux vector may be a combination of the usual thin, self-absorbing
and thick contributions. Because of this it is not possible to define an
effective optical thickness for the whole flow field and hence there is no
grey equivalent to a nongrey flow model.

It is shown that for a typical reentry mission from Mars and other
similar missions, the air boundary layer over a flat plate is optically
thin. Therefore the results presented here are for anmn optically thin
boundary layer on a flat plate. The calculations were carried out for
Eckert numbers,'u%/he, of approximately 16, 10, 1 and 0.7; external flow
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temperatures of 2000°, 4000°, 10 000°, and 12 000° K; external flow ve-
locities of 32, 24.4 and 7.7 Km/sec; wall temperatures of 1000°, 2000° and
3000° K; pressures of 1.0 and 0.1 atmospheres; and plate lengths of 3 and
10 meters. The Prandtl number was chosen as 0.7. The monochromatic ab-
sorption coefficient model employed is shown in fig. 5 with K, and K
given, respectively, by eqs. (D2) and (D5). The Planck mean absorption
coefficient employed in the grey calculations is given by eq. (D4). The
calculations are aimed at providing an increased knowledge of the physical
effects of radiation (and the various parameters which characterize the
nature of that radiation) on the behavior of the boundary layer.

The calculated results presented are for the cases of high and low
Eckert number. The specific results given do not pertain to a particular
reentry vehicle or trajectory but serve only as examples. However, in
order to better illustrate the meaning of these results it is worthwhile
to make some connection between the Eckert number and a vehicle geometry
with specified freestream flight conditions. For example, the Eckert
number for a wedge with a semi-apex angle of 53° traveling at 45 000 ft/sec
at an altitude of 150 000 ft is about 0.7 while the Eckert number for a
wedge of 28° semi-apex angle moving at a velocity of 39 000 ft/sec at an
altitude of 150 000 £t is around 7.0 (ref. 28).

Figures 6(a) and 6(b) show ‘the effects of grey radiation on the
boundary layer enthalpy distribution for high and low Eckert numbers, re-
spectively. The h_ profile refers to the similar enthalpy distribution for

. o} . sy
a non-radiating gas; the other profiles are for a grey radiating gas at
X =1.0. From fig. 6(a) it is seen that for high Eckert number flows and
all values of wall and external flow emissivities the energy loss by emission
significantly reduces the boundary layer enthalpy below its value for a non-
radiating gas. 1In particular the peak enthalpy is reduced a considerable
amount. The results in fig. 6(a) also indicate that the enthalpy profile
for a high Eckert number flow is relatively insensitive to the magnitude of
the wall and external flow emissivities. This may be explained by the fact
that for the high Eckert number case the enthalpy in the boundary layer
exceeds that in any other region of the flow by a considerable amount and,
consequently, the gas in the boundary layer will emit energy at a much
greater rate than it will absorb. Thus, the amount of radiant energy
incident on the boundary layer, which depends on the magnitude of the
external flow and wall emissivities, is of secondary importance in de-
termining the boundary layer enthalpy profile.

From fig., 6(b) the results indicate that the enthalpy distribution for
low Eckert number flows is affected considerably different by radiation
than is the enthalpy distribution for high Eckert number flows. 1In par-
ticular, the magnitudes of the wall and external flow emissivities influence
the enthalpy distribution in such a manner that the boundary layer enthalpy
may be greater or less than its value for a nonradiating gas in some or all
parts of the boundary layer. For instance, the results given in fig. 6(b)
indicate that for a combination of high external flow and low wall emissivity
the enthalpy is somewhat greater than its value for a nonradiating gas in
that part of the boundary layer nearest the wall. This sensitivity of the
enthalpy profile to the external flow and wall emissivities is due to the
fact that for the low Eckert number case the enthalpy in the boundary layer
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is equal or less than that in any other portion of the flow and hence the

gas in the boundary layer absorbs energy at approximately the same rate as

it emits. Thus the amount of radiant energy incident on the boundary layer,
which is governed by the magnitude of the wall and external flow emissivities
strongly influences the enthalpy distribution in the boundary layer.

L]

From fig. 6(b) it is noted that there is no appreciable effect of the
magnitude of the wall emissivity on the boundary layer enthalpy distribution
for a low external flow emissivity but a quite significant effect for a high
external flow emissivity. These results point out the fact that the photons
emitted by the relatively cold wall have a negligible influence on the
boundary layer enthalpy profile and emphasize that the major effect of the
wall emissivity on the enthalpy profiles is due to reflection from the
surface of incident photons which originated in the radiating external flow.

Plots of h/h and h_/h_vs. 7 for high Eckert number flow are shown in
figs. 7(a) and 7(8) for $arfous wall and external flow emissivities. It is
seen that the nongrey effects are more pronounced at the high external flow
emissivity and/or low wall emissivity. The results also indicate that the
nongrey profiles are less sensitive than the corresponding grey profiles to
the various values of external fiow and wall emissivities. 1In general the
results of fig.7 show that the enthalpy profiles for a nongrey gas are not
significantly different from those for a grey gas. This is explained by the
combination of facts that for high Eckert number flows the radiation process
is emission dominated and the Planck mean absorption coefficient used for the
grey gas is the proper mean absorption coefficient for the nongrey emission
process.

Plots of grey and nongrey enthalpy profiles for the low Eckert number
case are presented in figs. 8(a) and 8(b). It is seen that for all com-
binations of wall and external flow emissivities the enthalpy for a nongrey
gas significantly exceeds its value for a grey gas. The curves in figs. 8(a)
and 8(b) also indicate that for low Eckert number flows the nongrey enthalpy
profiles are more sensitive to the wall and external flow emissivities than
the grey profiles. Both results are explained by noting that absorption is
always more significant for a nongrey gas than for a grey gas. In fact, it
is observed from fig. 8(a) that at a high external flow emissivity the effect
of absorption in a nongrey gas is so significant that the geometrical
boundary layer thickness is markedly reduced below its value for a non-
radiating gas.

Figures 9(a) and 9(b) show a comparison of the grey convective heat

flux and the convective heat flux in the absence of radiation for high and
low Eckert numbers, respectively. The results presented indicate that the
ratio of these two fluxes increases with an increase in the external flow
emissivity and/or decrease in the wall emissivity. From fig. 9(a) it is seen
that for a high Eckert number flow the convective heat flux is reduced appre-
ciably below its value for a nonradiating gas and also there is little in-
fluence of the wall or external flow emissivities on the heat flux. Both
results, of course, are explained by the previous discussion pertaining to
the enthalpy profiles for high Eckert number flows. For low Eckert number
flows the results in fig. 9(b) indicate that the effect of radiation on the
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grey convective heat flux is quite significant and is strongly influenced
by the magnitude of the wall and external flow emissivities. 1In particular,
for the combination of high external flow and low wall emissivities, the
grey convective heat flux exceeds the convective heat flux for a non-
radiating gas. This result is explained by the fact that near the wall the
absorption of radiant energy incident on the boundary layer exceeds the
energy loss by emission and hence the enthalpy gradient near the wall in-
creases over its nonradiating value.

The ratio of the nongrey convective heat flux to the corresponding
grey heat flux is shown in figs. 10(a) and 10(b) for high and low Eckert
numbers, respectively. This ratio is generally greater than unity except
for a combination of high Eckert number and high external flow emissivity.
The high Eckert number results in fig. 10(a) indicate that the convective
heat fluxes for a nongrey gas are not significantly different from those
for a grey gas. The previous discussion on nongrey enthalby profiles for
high Eckert numbers explains these results. For low Eckert number flows
the results in fig. 10(b) show that the effect of nongrey absorption on the
convective heat flux is quite significant. In particular, the nongrey con-
vective heat flux is appreciably greater (up to 27%) than the grey convective
heat flux. Also, the influence of the wall emissivity on the results is so
strong that the ratio of the nongrey to grey comvective heat flux is greater
for a combination of low wall and. low external flow emissivity than for a
combination of high wall and high external flow emissivity.

In figs. 11(a) and 11(b) the nongrey radiative heat flux is compared to
the corresponding grey radiative heat flux for high and low Eckert numbers,
respectively. The ratio of these two fluxes is generally less than unity
except for the combination of a high Eckert number and high external flow
emissivity. An analysis of the numerical results from which fig. 11 was
derived indicates that for high Eckert number flows the effect of the op-
tically thin boundary layer on the radiative wall heat flux is to reinforce
the radiant heat flux directed from the inviscid flow to the wall. This
result is explained by noting that the boundary layer in a high Eckert number
flow emits more energy than it absorbs and hence increases the total radiant
heat transfer. However, this increase in the radiative wall heat flux is
negligible except for low values of external flow emissivity where the
boundary-layer contribution to the radiative wall heat flux is a maximum of
17% of the external flow contribution. For these low values of external
flow emissivity, the nongrey absorption effect on the boundary-layer con-
tribution is found to be small (less than 6%). At low Eckert number flow
conditions, the numerical results indicate that the effect of the optically
thin boundary layer on the radiant heat flux directed from the external flow
to the wall is to inhibit it for a high external flow emissivity and reinforce
it for a low external flow emissivity. This reduction (increase) of the total
radiant heat transfer is explained by noting that the low Eckert number
boundary layer will absorb (emit) more energy than it emits (absorbs) for a
high (low) external flow emissivity. However, from the numerical results for
low Eckert number, it is found that the reduction in radiant wall heat flux
at high external flow emissivities is negligible while the increase in
radiant wall heat flux at low external flow emissivities is small (less than

2.5%).
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The radiative heat flux and the convective heat flux are compared in
figs. 12(a) and 12(b). It is seen that, for the high external flow tem-
peratures considered here, 10 000° and 12 000° K, the radiative heat flux
is larger than the convective heat flux with the ratio of the two fluxes in-
creasing with an increase in the external flow and/or wall emissivities and
a decrease in the Eckert number. The results also show that the ratio of
the radiative to convective heat flux increases with an increase in the
external flow temperature and plate length and a decrease in the external
flow pressure and wall temperature.

The ratio of the total (convective + radiative) heat flux to the heat
flux in the absence of radiation is shown in figs. 13(a) and 13(b) for high
and low Eckert numbers, respectively. This ratio, which is always greater
than unity, increases with an increase in wall and/or external flow emis-
sivities with the influence of the external flow emissivity being more pro-
nounced. It is also seen that a significant reduction in the total heat
flux can be achieved by a reduction in both wall and external flow
emissivities.

Figures 14(a) and 14(b) compare the nongrey total heat flux to the grey

+ntal hoatr Fliivw Tram +ha hich Ralrart+ ntimhor racntlie 4n Fio 14 €2\ i+ d4c
wOcas gt riuX. LI0M L nilgn LCKSIT NUMoEr resud.is il Lig. 154,, i 15

seen that the nongrey heat flux is slightly larger than the grey heat flux
for a combination of low external flow and low wall or high external flow and
high wall emissivities. For low Eckert number flow conditiomns, the results
in fig. 14(b) indicate that the nongrey heat flux exceeds the grey heat flux
for the lower wall emissivities. However, in either the high or low Eckert
number case, the results show that the difference between the grey and non-
grey total heat flux is small regardless of the values of the wall and
external flow emissivities.

It is noticed from the results that the differences between the various
grey and the nongrey heat fluxes are small except for the convective heat
flux at low Eckert number where the dominant heat flux is radiative. It
follows from eqs. (65), (74), and (75) that for given external flow emis-
sivity and wall temperature the dimensionless radiative heat flux depends
explicitly on the effective Bouguer numbers (for an optically thin gas)

T{e where the Tge are related to the grey Bouguer number Tpe(= KPeG) by the

expression

The difference between the nongrey and grey radiative heat flux is pro-
portional to the 7/ and they are small (of the order of 10'2) for the cases
under consideratiod’




CONCLUS IONS

The analysis carried out here shows that in the presence of nongrey
radiation it is not, in general, possible to define an effective optical
thickness for the whole flow field. This, in turn, suggests that there
is no grey equivalent to a nongrey flow field.

Optical thickness estimates for a typical reentry mission from Mars
suggest that the boundary layer over a flat plate is optically thin. The
results obtained in the analysis of the optically thin boundary layer indi-
cate that the effect of radiative transfer on the boundary-layer charac-
teristics depends primarily on the Bouguer-Boltzmann number ratio as ap-
propriately defined for boundary-layer flow geometry. From the numerical
results for air, it is found that the effect of radiative transfer on the
boundary-layer enthalpy profile and convective heat flux becomes quite
significant when the Bouguer-Boltzmann number ratio is of the order of
magnitude of 0.1. Other explicit parameters found to appreciably in-
fluence the effect of radiation on the enthalpy profile and dimensionless
convective heat flux are the Eckert number, the wall emissivity, and the
emissivity of the external flow. The numerical results also indicate that
the optically thin boundary layer has little influence on the radiative
wall heat flux except for low values of external flow emissivity at high
Eckert number where the boundary—iayer contribution to the radiative wall
heat flux is roughly 15% of the external flow contribution. Thus, by far
the major portion of the radiative wall heat flux comes from the external
flow region of the shock layer.

The nongrey heat flux results obtained in the optically thin boundary-
layer calculations show that the total nongrey heat flux for Eckert numbers
of interest is greater than the corresponding grey heat flux for a combi-
nation of high external flow and high wall or low external flow and low
wall emissivities. These results also indicate that the differences between
the various grey and nongrey heat fluxes are small except for the con-
vective heat flux at low Eckert number where the nongrey heat flux is up to
27% greater than the grey heat flux. The numerical results also show that
the total wall heat flux may be drastically reduced by lowering both wall
and external flow emissivities, This suggests a scheme for decreasing the
total heat flux to the wall. It should be noted, however, that the emis-
sivity of the external flow depends on the optical properties of the gases
in the shock layer.

Since the pressure in the boundary layer over a flat plate is constant,
the dependence of the absorption coefficient on temperature and density
should be consistent with the requirement that pT ~ const. Thus, it is not
possible to simultaneously have both high temperature and high density in
the flat plate boundary layer. This is why the air boundary layer over a
flat plate is optically thin. In the stagnation point region no such re-
striction exists. Therefore, it is expected that the various contributions
to the divergence of the radiation flux vector in the stagnation point region
are a combination of the usual thin, self-absorbing and thick contributions.
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APPENDIX A

THE DIVERGENCE OF THE RADIATION ENERGY FLUX

VECTOR FOR NONGREY GASES

The general expressiom for F,; ;(xj), the divergence of the spectral
radiation energy flux vector F)j at the point xj, has been formulated
previously by Goulard (ref. 6). For nonscattering gases in local thermo-
dynamic equilibrium and perfectly absorbing surfaces, this relation is

*i av(e,)
Foi,1 (%) = 4K (x)B (x;) - Kv(xi)JVKv(gi)Bv(gi)exP - J K,ds —['—'_2
e "zl - £
x5 cosedA(ni)
- Kv(xi)IABv(ni)exp - J des ;———————TTE (A1)
ny i[xi - Ny

where K, (x,) 1is the spectral linear absorption coefficient which is
related to the spectral mass absorption coefficient Kv(Xi) by the relation

Kv (xi) =p (xi) Kv(xi)

The physical meaning of the three terms on the right hand side of
eq. (Al) are illustrated most easily by use of fig. 1 which depicts a
volume V of radiating gas enclosed in the boundary surface A. The first
term represents the radiation energy emitted by the gas at point X,
where Bv(xi) is the well-known Planck distribution function

2hv 1

c exp(%%z;;;) -1

B (x,) = (a2)

The second term represents that energy emitted by the gas in all the elemen-
tary volumes dV(&j) around the points & in the entire volume V which
is absorbed by the gas at point x;. In this term the point g; is a
"running" point moving along the directed line S(%j) from the point n4

on the elemental surface area dA(ni) to the point x;. The angle between
the unit normal vector n, of dA(n;) and the directed line s(zi) is 9.

It should be noted that tﬁe integra
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X,

i

J des
gi

which is called the optical length from gy to x4, is evaluated by
integrating along the directed line S(%;) whose direction cosines are

2:. Hence the optical length from gy to x; is a function of direction
S%zi). Finally the third term in eq. (Al) represents that energy emitted by
all the elemental surfaces dA(ni) around the points nj; on the boundary

A which is absorbed by the gas at point x Here the optical length from

ni to Xi s
X,
i
J K ds
v
Ny

io

is evaluated by integrating along s(zi) and hence it is a function of the
direction S(li).

Now eq. (Al) can be simplified by introducing the relatioms

2
dV(Ei) = i[xi - Ei] dwds
2
i[xi - ni] dw
dA(ni) = cos 9§

derived from the geometry of fig. 1, and applying the appropriate integration

limits. Thus F,; ;(xi) becomes

X, X,

i i dw

Fvijxxi) = 47 Kv(xi)Bv(xi) - Kv(xi)J j Kv(gi)Bv(Ei)exp - J des ds e
4nin, g,
i i

i dw
- Kv(xi)J Bv(ni)eXP - J des - (A3)

b7 ng

where J denotes integration over a solid angle of 4w steradians and the
47

i
[ is carried out along the directed line S(Zi).

i

Now it is necessary to integrate F over frequency v to obtain

vi,i

the divergence of the radiation flux vector Fi i which appears in the
s

general energy equation of radiation gas dynamics. Thus
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o, oz I F_. .dv (A%)

can be evaluated by integrating eq. (A3) over v. However, before this
integration can be carried out it is necessary that the frequency dependence
of Kv be specified. As has been indicated in the analysis, this has been
chosen as

n
Kv(xi,v) = mlem(xi)gm(V) (A5)

with

14if v e A
m
gm(v) =
| O otherwise

where A, corresponds to the frequency interval or intervals in which the
value of K is Km(xi)' The A, do not overlap and the Km(xi) are not
functions of frequency. Hence the frequency and position dependence of K
is assumed to be separable. An example of a nongrey absorption coefficient
model which might be specified by eq. (A5) is shown in fig. 2.

If the absorption coefficient model of eq. (A5) is now introduced into
the F,; i of eq. (A3) the resulting first term on the right hand side of
eq. (A4}’becomes

0 n n
4n[ K, (x;)B (x,)dv = 4n .Z j ) R (x)g (VB (x;)dv
o j=1 Aj m=1

n
4 -£ Kj(xi)JA B, (x)dv
3

since by definition of gj the sum

n
mlem("i’gm(")

reduces to Kj(xi) as the integration on Aj 1s carried out. If the
definition
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] o 0T4(Xi) 0T4(xi)
JA Bv(xi)dv. = aj[T]JoBv(xi)dv = oy [T(xi)] — = aj(xi) _—

3

™
is now employed the. first term takes the final form

o n
4ﬂJ0Kv(xi)Bv(xi)dv - 40T4(xi) jlej(xi)aj(xi) (A6)

It should be noted at this point that J Bvdv may actually represent a
A
sum of integrals as, for example, in the case of Al in fig. 2 where

) V6 Y10
J B dv = J B dv + J B dv + J B dv
A' v v v v v v v
1 1 5 9

since Ay contains the frequency intervals (v sV (v » Vg ) and (vg,vlo).
It is also obvious that from the definition of %T(x )] that .

n
jzlaj(xi) =1 (A7)

Employing similar techniques as above the second term on the right-
hand side of eq. (A4) becomes

- X X,
ol [ >[ [ ] du g,
oV 1 P £, v ™
i
n *i n
=~ 4n ) f z K. (x,)8 (v)f J ] K (g8 (VB (g,)
j=l/A m=1 4m'n, m=1 v
j i
X,
* du
x expli— J z K - ds}ds G dv
£s . m=1
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§ X, Xy
- 47 K,(x )J J K.(g')j B (£,)dv exp|- J .dslds =—
j=1 i1 4 ng jooi Aj v i RE 47

J i LTSy

X . - X
n i yrh i el a dw
- 4o lej<xi>j4wfn K (5 e (6 TH(E dexp |- Ja K ds| ds 92

Finally the third term of eq. (A4) becomes

X,
0 i
dw
417[ Kv(xi)J B\)(ni)ekp [—- J K\)dsil b dv
o 4 n;

i

n n X n dw
- 47 Z J z Km(xi)gm(v)j4va(ni)exp - J Z ngmds e dv

j=1 Aj m=1 ni m=1
n F Xy )
= ~ 47 Z K.(xi)J I Bv(ni)dv exp}- J K.ds %ﬁ
j=1 4 ey g
S 4 [ (1 ] dw
= - 4¢ .Z Kj(xi)j aj(ni)T (ni)exp - J Kjds U
j=1 4w LNy i

Thus when the absorption coefficient model of eq. (A5) is substituted into
the F,; ; of eq. (A3) and the indicated integration over frequency is
b

carried out, F? i of eq. (A4) takes the final form
’

P (x) = hod ] K, (x)a, (x)T4(x,)
1,171 LR i

J
7 ot 4 i du
- jlej(xi)janIn Kj(Ei)aj(Ei)T (Ei)exp[j jg Kjd%lds pm
1 i
E 4 i d
- K-(x )J a,(n,)T (Tl.)EXp - J K.d aw (A8
=1 T 30 i [_ n, 3 S\ 4n )

When the function @y applies to a single frequency interval (Vj’Vj+1)
it may be written as
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N, S (49)

Introducing the wavelength A by the relation

eq. (A9) reduces to

where

Letting

v =c¢c/X
A
i
J B, ) (A10)
X
o = —FL
j o0
a0
[o]
2
2he 1
=75 exp(he/AKT) - 1 (a11)

ja
[¢]

>
Il

P
>
]

and replacing the definite integral in the denominator of eq. (AlQ) by its
value of 7%4/15, eq. (A1l0) reduces to

4
m

Bir1 3
L —B8 4 (A12)
8 exp(B) - 1

j



or, by defining aj(Bj) as

aj(Bj)

eq. (Al2) reduces to

A plot of a;(B;
given in Trigus (ref. 15

) vs AT i
.

S

-1—.5— {e-]
A

i _Bj

aj(Bj) -

3

exp(B) - 1 de

aj(Bj+l)

(A13)

(Al4)

shown in fig. 15 using the tabulated data
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APPENDIX B

ASYMPTOTIC FORM OF F? i FOR LARGE Tjo
3

Factoring Tsio outside of the jth bracket of eq. (23), the remaining
terms can be expreéssed as

3, GOR, GG

h| h|
(o] i [e]
¢ G 1o, 0 M ] _
5 xi) oaj(ni)T (ni)exP " Tio J Kjds - j Kjds do
(o] [ J

Now if the following change of variables
n, €,

l_ - l_ _ l_ _
t, = j Kds , t,, = J K.ds , t/ = J K.ds
[ (o] J J [o]

are introduced into the last two terms of the jth bracket above the resulting
equation is
3, GO, GHT e )ﬁtj‘ (DT () )1de /d
a, (x.)K. (x:)T (x,) - 7, K. (x, AtDT (t)exp[- t, (t, - t.)]dt,
J 1] 1) ¢ 1) "jo J( ot %3t J pl TJO( J J)] tde
j1

1
- - - -4 -
- K, (x, o.{t,.)T (t, )exp|—- 1, (t, - t, d Bl
< )LJ(Jl) (e Pempl= Ty (= 1) w} 1)
From this relation it is seen that the exponential term,

y
exp[- Tjo(tj - tj)]

in the integrand of the segond term is the governing factor for the case of

Tijo > 1. For the points & removed from the neighborhood of point
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X:, (t, - t{) has a finite value. Hence if T o 1ncreases indefinitely
tﬁis eiponential term approaches zero faster than Tjo approaches infinity,
so that the second term tends to zero. The same argument applies to the
third term except that it approaches zero much faster than the second term
as T3o 1s increased since it is not multiplied by 7ti,. Thus the third term
in the jth bracket can be omitted. Hence, for T3, > 1 the only radiation
energy contributions to the point x; come from points £4; that are very
close to xj. Thus the lower integration_limit tj1 in the second term
may be replaced by - = since the points nj behave like points at - = _
with respect to x; 1in terms of their radiation energy contributions to X
(This argument breaks down if x; 1is very close to nj, i.e., in the
immediate vicinity of the wall.)

_ Now since the only radiation energy contributions to the point - 4
xi come from the points §&; that are very close to it the variation of o;T
between these points &; and point xj cannot be too large and hence
aj(gi)T4(g.) in the integrand of the second term of_eq. (23) can be replaced
by the Taylor series expansion around its value at Xi» a-(xi)T4(xi). Thus,
aj(t{)T4(tf) in the integrand of the second term of eq. (%1) can be replaced
by i%s Tayior series expansion around tj

3, (eDTHE]) = & T r_ .y 4 [= 4
EPTED = ST + & - v g [5, (e pTe)
(¢ - t) .2 _
: 21 i d 2 [aj(tj)T4(tjﬂ + o e .
dtj

+

Then the integration over t; in the second term of eq. (Bl) becomes

t. t,

J_ I “‘4 7 _ _ 7 /- = =4 J J ) ; ,
J_maj(tj)T (tj)exP[ Tjo(tj tj)] dtj aj(tj)T (tj) _ooexp['[jo(tj tj)] dtj
t,
d__ - —4 J 7 _ 7 _ 7
+ dtj [aj(tj)T (tjﬂ J_m(tj tj) exp['c.jo(tj tjﬂ dtj
t
a

- =4 3 7 2 ’ ’ ...
[aj(tj)'r (tJ.)]J w(tj - tj) exp['cjo(tj - tj)] dtj + (B2)

1
+ —
1
2! dt? _
J

Introducing the change of variable
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into this expression, and using the relations

o
1. [°b PN bH
T [ Y exp(fjoY)dY = (-1) /QTjo) s b=0,1, 2, ..

w00

and

o _1 3. 5
3t, = ZJLi—
i K, i=1 T o5,

3 i

the resulting eq. (B2) reduces to

t.
- r=b, g /
L(ED)T () -1, (t, - t7) at’/
J oyt T(eexpl= 1y (e~ 0] j

___4_
a, (x,)T (x.) 3 L
== lT - 21— Z Rm 3_ [9-(Xi)T4(xiﬂ
jo o K, m=1 " 9x  —J
Jo ]
3 3
1 9 1 9 - - =4 -
+ — )t = T = e GOTGEHS L. L, L s 1 (B3)
TgoK. p=1 P ox [K, wm=1 ™ 5% [ J- 1 1] jo

is obtained where the 2., are the direction cosines of the directed line
S(zi). If eq. (B3) is now substituted into the second term of eq. (B1)
and -the integration over the solid angle carried out the resulting expression

can be written as

] .
T I( X, . . . l T. t. t. ldt,d

3
e 1 - =f ~
= K.(xi)a.(x.)T4(xi) + ; ) 3_ :7'2:— [ﬁj(xi)T4(xiﬂ
J 11 31, m=1 3x_[K, 3x
jo m (7§ “m

4+ terms O(I/T;fo) + - - (B4)

ko




In obtaining this expression the properties

1 1 . 3
g.duo =0, J L. 8.dw=6,./3, ) 2% =0, 4i,j=1, 2, 3
JO i o 17 1377 7 151 ,

were employed where Gij is Kronecker's delta.

Now if terms of 0(i/rgo) and lower are neglected in eq. (B4) and

eq. (B4) is then substituted into eq. (B1l) the resulting experession inside
the jth bracket is

3
1 - -
-3 ] A [5T (B5)
3t j=1 ax, |K. ox, 3
jo i j i

Thus the form of F? I for a A, where Tjo > 1 1is given by the relation
L]
3
1 %o 3 1 3 [— =
-= L {==—1a.,T
3 Z aj (B6)

jo i=1 °x, |K, ox,
i j i

which is a diffusion-type expression.
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APPENDIX C

REVIEW OF THE AVAILABLE ABSORPTION PROPERTY DATA

FOR HIGH-TEMPERATURE AIR

In the course of the research reported here, a survey of the data
available for the absorption properties of high-temperature air was
conducted and a brief evaluation of this data was carried out with regard
to its extensiveness over wide ranges of frequency, temperature, and
density and hence its usefulness in radiation gas dynamics.

Kivel and Bailey (ref. 16) were probably the first to present extensive
data on the radiative properties of high-temperature air. They presented
graphical and tabular data on the emissivity per cm, ¢/L, of optically
thin air in a temperature range from 1000° to 18 000° K and a density range
from 10" to 107° of normal sea level density. However, very little data
was presented on the frequency dependence of the radiative properties. It
should be noted that the data given for ¢/L in this reference can be
converted to a Planck mean linear absorption coefficient by the relation

1
K = 0 (Cl)

P

o

Armstrong et.al., (ref. 17) presented graphical data for the linear
spectral absorption coefficient of air at 12 000° K and sea level density
over a wavelength range of 1167 to 19 837 2. oOther graphical data on the
frequency dependence of the absorption coefficient was given at a pressure
of 1 atm for kT ranging from 2 to 20 ev and hv from 1 to 1000 ev. Armstrong
et. al., also plotted the absorption coefficient at a wavelength of 3967
over the temperature range 3000° to 13 000° K for sea level density and 10~
of sea level density. Tabular data was also presented for the Planck mean
linear absorption coefficient over a range of temperature from 1000° to
18 000° K and a range of densitites from 101 to 1070 of sea level density
This data has been displayed graphically by Davis (ref. 18). Graphical
data for the Planck mean linear absorption coefficient_gas also given by
Armstrong et.al., for densities ranging from 101 to 107° of sea level
density and temperatures ranging from approximately 6000° to 250 000° XK.
The preceding reference is a good survey article on the absorption coeffi-~
cients of high temperature air. However, little data is given on the
frequency dependence of the absorption coefficient for the temperature and
pressure ranges of interest in reentry calculations.

Breene and Nardone (ref. 19) have presented curves of the total spectral
emissivity for a 1 cm thick isothermal layer of air. The wave number range
covered is from 1000 to 62 000 cm~l while the density ranges from 1073 to
102 of normal sea level density for temperatures of 3000° to 9000° K.
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The emissivity data of this reference can be converted to linear absorption
coefficient data by use of the relation

e, = 1 - exp(~ aKvx) (C2)

where x =1 cm and o is a geometrical factor taken as 1.8.

Breene and Nardone also presented data on the total radiance of air for
the same temperature and density ranges considered in the case of the spectral
emissivity. The quantity plotted is apparently derived from the relation

— 1 Kx) .cil‘_
Jp = [1 - exp(- akx)] - (c3)

with x taken as unity. For an optically thin layer, where [l - exp(- aKx)]

J.. = akx — (c4)

with x equal unity. The major drawbacks of the radiative property data

given by Breene and Nardone are that temperatures higher than 9000° K are

not considered and also the data is presented in a form which is difficult
to use in general radiation gas dynamics where the absorption coefficient

is the radiative property of primary interest.

Thomas (ref. 20) presented graphical data on the total emissivity
per cm, e/L, for high-temperature air. The range of temperatures
covered was 6000° to 23 000° K and the range of density levels was 10-©
to 101 of sea level density. This emissivity data can be converted to
Planck mean linear absorption coefficients by eq. (Cl). The data in this
reference would be quite useful in obtaining the Planck mean absorption
coefficient. Its main limitation is that no data was given on the frequency
dependence of the absorption coefficient.

Sewell (ref. 3) has presented graphical data on the spectral emission
coefficient of air over a wave number range of 6000 to 202 000 cm‘l, a
density range of 10l to 10-6 of sea level density and a temperature range of
4000° to 20 000° K. The linear spectral absorption coefficient K, can be
calculated from the emission coefficient jl by use of the simple relation

h|
A
K =2 (c5)
A By
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where

_ 2he? 1

A ,5 exp(he/aT) - 1

B (C6)

Sewell has also presented graphical data on the mean linear absorption
coefficient K for the same temperature and density ranges as those mentioned
earlier in the case of the spectral emission coefficient. It should be

noted that the Planck mean absorption coefficient may be related to

mean absorption coefficient of Sewell by the expression

KP = K 3 cn

The data on the absorption coefficient of air which is given in this
reference is much more extensive than that of any other reference reviewed
during this survey. Also the data is presented in a form from which the
spectral and Planck mean absorption coefficients c¢an be obtained with ease.
Hence Sewell's absorption coefficient data for air should be quite usable
and useful in radiation gas dynamics problems.

Nardone et.al. (ref. 21) have presented graphically the spectral
radiance J, for a 1 cm thick slab of equilibrium air over a wavelength
range of 606 to 100 000 & at a density of 101 of sea level density for
temperatures of 3000°, 10 000°, and 25 000° K. The quantity plotted was

J. = ¢.B
€A

\ = [1 - exp(- KAL)]BA (C8)

A

where L =1 cm. For an optically thin layer, where [1 - exp(- K,L)]
< 0.1, eq. (C8) becomes

J. = K.LB (c9)

with L =1 cm.

Nardone et. al., also presented graphical data for the total radiance
of a1l cm slab of air over a density range of 10~% to 102 of sea level
density and a temperature range from 3000° to 25 000° K. Imn this case the
quantity plotted was

0T4
JT = [1 - exp(~ KL)] T (C10)

Ll



where L =1 cm. For an optically thin layer, where [1 - exp(- KL)] < 0.1,
eq. (C1l0) reduces to

oT4
= ol
Iy =KL & (c11)
with L =1 ocmn.

The spectral radiative property data given in this reference extends
over a wide wavelength range but is restricted to a single density level
and three different temperatures. It is also presented in a form which is
difficult to use in general radiation gas dynamics where the absorption
coefficient K, 1is of primary interest. The frequency averaged radiative
property data given by Nardone et.al., is quite extensive with regard to the
density and temperature ranges covered. However it is also presented in a
form which is difficult to use when the Planck mean absorption coefficient
is of primary interest.

Archer (ref. 22) has presented tabular data for the spectral distri-
bution of energy radiated by equilibrium air in the temperature range from
3000° to 9000° K for demsities of 10~%, 1072, and 100 of sea level demsity.
These results for the spectral radiant emission are an extension of the
work of Breene and Nardone (ref. 19) to the 1$wer density levels and cover
the wave number range from 1250 to 56 000 cm™ ~. The data given in this
reference are presented in a form from which it would be difficult to obtain the
spectral absorption coefficient KA' Thus its usefulness in general radiation
gas dynamics is limited.

Churchill et.al., (ref. 23) defined an average absorption coefficient
for an isothermal, homogeneous, gas layer of thickness x. Graphical results
for heated air were plotted versus wavenumber with temperature, density,
and thickness x as parameters. The wavenumber range covered was 21 500
to 49 000 cm™l while.the temperature range was 1000° to 8000° K and the

density range was 10O to 107" of sea level density.

Gilmore (ref. 24) presented tabular data for the linear spectral
absorption coefficient of air over a wavelength range of 0.1167 to 1.9836
microns. The temperature range covered was 2000° to 8000° K and the
density range was 101 to 10-% of sea level density. Gilmore also presented
tabular data on the Planck mean absorption coefficient for the same tempera-
ture and density range. The absorption coefficient data given in this
reference is considered to be quite accurate but its usefulness in radiation
gas dynamics is limited by the fact that temperatures above 8000° K are
not considered.

Bowen (ref. 25) presented graphical data on the spectral radiance of
high-temperature air over a wavelength range of 0.2 to 1.0 microm for
density levels from 106 to 100 of sea level density and temperatures from
3000° to 12 000° K. The quantity plotted is apparently derived from eq.
(C8) with, L taken as unity. Bowen also presented graphical data on the
total radiance of air for the wavelength interval 6A of 0.35 to 0.55
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microns over the same temperature and density ranges as those of the spectral
data. The quantity plotted is apparently

SX

where &6A 1is 0.35 to 0.55 microns and JA is given by eq. (C8). The total
radiance of air for the wavelength interval of 0.35 to 0.75 microns was

also given over the same temperature and density ranges as those above. The
quantity plotted is apparently the same as that given by eq. (Cl2) except

A 1is 0.35 to 0.75 microns.

Ashley (ref. 26) has presented graphical data on the linear spectral
absorption coefficient of high-temperature equilibrium air for optical
wavelengths within the range of 3800 to 6500 L. The temperature range
covered was 1000° to 24 000° K while the density levels ranged from 106
to 100 of sea level density. The mean linear absorption coefficient
averaged over the wavelength interval &A from 3800 to 6500 A, LIS where

_ Jax“xdx

Hsa =7 6a

has also been presented for the same temperature and density ranges.

Tabular data has also been given over the same wavelength, temperature, and
density ranges for the apparent spectral absorption coefficient which is

the true absorption coefficient corrected for induced emission. The absorp-
tion coefficient data given in the above reference is quite extensive

over large temperature and density ranges. However the wavelength range
considered is limited to the optical band of 0.38 to 0.65 microns.

Gilmore (ref. 27) gives graphical data on the linear absorption
coefficient of air at a wavelength of 1270 A for a temperature range of
2000° to 8000° K and density levels of 10~3 and 100 of sea level density.
Graphical data'is also presented on the mean absorption coefficients in
the spectral regions of 4100 to 4500 & and 5500 to 6200 & for the same
temperature range and density levels.

In the calculations reported here, Sewell's data was employed because
it is extensive and is presented in a form suitable for nongrey calculation.
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APPENDIX D

NONGREY ABSORPTION COEFFICIENT MODEL AND THERMODYNAMIC

RELATIONS FOR HIGH-TEMPERATURE AIR

In Appendix C it was concluded that the data presented by Sewell
(ref. 3) for the absorption properties of air was the most extensive
with respect to the frequency, temperature, and demnsity and was in a form
from which both the spectral and Planck mean absorption coefficients could
be obtained with ease. Hence Sewell's data has been used to determine the
linear spectral absorption coefficient of air for several representative
combinations of density level and temperature. These results have been
plotted versus wavenumber and are given in fig. 16.

For comparison purposes the spectral absorption coefficient of optically
thin air has also been determined using the spectral radiance data at
10 000° K and a density of 10~1 normal sea level density given by Nardone
et.al., (ref. 21). The results have been plotted versus wavelength and are
shown in fig. 17 along with the spectral absorption coefficient derived
from Sewell's data for the same temperature and density condition. It is
seen from fig. 17 that Sewell's spectral absorption coefficient data and
the data of Nardone et.al., are in fair agreement with regard to order of
magnitude and gross spectral behavior.

From the curves of spectral absorption coefficient in figs. 16 and 17
with particular emphasis on those curves displayed in fig. 17 it is seen
that the nongrey absorption coefficient of air could be mathematically
represented with substantial accuracy by the step function model shown in
fig. 5.

The step function model in fig. 5 appears to be a quite reasomnable
mathematical representation of the spectral absorption coefficient of air
for most thermodynamic conditions except combinations of high temperatures
on the order of 18 000° to 20 000° K and low densities of 10~3 to 10-6 of
sea level density such as those of figs. 16(f) and 16(i). However at these
thermodynamic conditions of low density and high temperature the assumption
of local thermodynamic equilibrium which applies throughout the analysis
presented here is probably invalid (ref. 27).

Now the nongrey absorption coefficient model in fig. 5 represents quite
well the spectral absorption coefficient data for air as given in fig. 17
at a temperature of 10 000° K and a density of 10~1 of sea level density
which are typical of thermodynamic conditions expected to exist in the
boundary layer when the effect of energy transfer by air radiation is
appreciable. Thus the temperature and density dependence used for K1(T,p)
in fig. 5 will be obtained by first determining from Sewell's data the
average absorption coefficient for the spectral interval associated with
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Ky and then corrélating this average absorption coefficient as a function
of temperature and density.

Using Sewell's graphical data and the relation

K.dw
JGw A

the average absorption coefficient. K; for the wavenumber interval 6w of
74 000 em L to 122 000 cm~! has been determined first for temperature of
8000°, 10 000°, 12 000°, and 14 000° K at a density of 10~1 of sea level
density and then for demnsities of 10‘4, 10'3, 10'2, 10'1, and 100 of sea
level density at a temperature of 10 000° K. Next assuming that the
functional dependence of K; on temperature T and density p can be
expressed in power law form (see eq. (37)) the aforementioned temperature
and density data for the average absorption coefficient has been correlated
using the least-mean-square method to obtain the following relation for

K]_(P »T)

4)2.850

(t/10

.1.)1.009 (02)

Kl(p,T) = 4.370(p/ps

where pg 7,  1s the normal sea level density of 1.225 x 10~3 gm-cm_3.

Once Kj;(p,T) is obtained the relation K,(p,T) for the mean absorption
coefficient associated with the other spectral interval of fig. 5 may be
determined from the following expression for the Planck mean absorption

¢coefficient

K (0,1) = Ky (p,D)ay (1) + Ky(p,Day (D) (03)

provided K_(p,T) and the a;(T), j =1, 2, are known. The a.(T) for the
spectral ingervals of fig. 5 can be determined at any given temﬂerature
from fig. 15 by use of eq. (Al4). The functional relation used for Kb(p,T)
is the correlation formula determined by Olstad (ref. 28) for Planck mean
absorption coefficient data derived from the results of Kivel and Bailey
(ref. 16), Sewell (ref. 3) and Nardone et.al. (ref. 21). This relation is

1.10
1) (D4)

(T/104)6'95

-2
K (p,T) = 7.943 x 10 (o/0,
It should be noted that the density and temperature dependence of KP in
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eq; (D4) is in excellent agreement with that proposed by Goulard (ref. 13)
for the grey absorption coefficient of high-temperature air.

Numerical values of Kz(p,T) have been determined from eq. (D3) for
tem eratures ranging from 4000° to 14 000° K and densities ranging from
10-4 to 100 of sea level density. These data for Kz(p,T) were then
correlated as a function of temperature and density in the same manner as
that employed for K (p,T) The resulting correlation formula for Kz(p,T)
is

)1.205 4)5.47

-2
K,(p,T) = 4.985 x 10 (p/ps.1 (T/10 (D5)

Now the linear absorption coefficients K?(Q,T), K1(p,T), and Ko (p,T)
given respectively by eqs. (D4), (D2), and (D5) may be expressed as mass
absorption coefficients « (T,P), k;(T,P), and «5(T,P) by using the
relation between linear am g mass absorption coefficient

K = pk (D6)

and then employing the equation of state for a perfect gas
P = Tom (D7)

where Z 1is expressed as a function of temperature and pressure by the
correlation formula

4)0.775 )—0.065

Z = 2.11(T/10 (P/Po (D8)

This correlation formula for Z was determined by Olstad (ref. 28) from
the thermodynamic data of high-temperature air given by Ahyte and Peng
(ref. 29). The resulting equations for Kps K1, and ko are, respectively,

0.1065

4)6.772

KP(T,P) 42.22(T/10 (P/Po) (09)

4)2.834 )0.0096

€ (T,P) = 3.431 x 102 (/10 (/e (D10)

and
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0.2182

4 5'106(PIP0) ' (D11)

KZ(T,f) = 16.89(T/10")

where T is in °K and P is in atm with Py equal 1 atm. The units of
Kps K1» and ko are cmz-gm‘l.

It is necessary to know the enthalpy as a function of temperature and
pressure, h(T,P), before the solution to the integral form of the energy
equation can be obtained. The functional relation used for h(T,P) was

4,1.7699 -0.0920

h(T,P) = 5.201 x 10 1(T/10% (B/P ) (D12)

which is a modified form of a correlation formula determined by Olstad
(ref. 28) from the high-temperature air data of Ahyte and Peng (ref. 29).
The units of h(T,P) in eq. (D12) are erg.gml.

If eq. (D12) is written for external flow conditions the resulting
relation is

h = 5.201 x 10't(T s10%1-769%p sp y70-0920 (013)
e e e’ "o
Then from eqs. (D12) and (D13) the expression for h = h/he is
5= T1'7699 (D14)

where the boundary layer condition of P/Pe equal to unity has been
employed. Equation (D14) is the h = h(T) relation employed in the
calculation.

The only remaining property value needed for the calculation of
eq. (76) is the Prandtl number of air. This has been taken as 0.70.

Once the solution h(x,n) for the energy equation, eq. (70), is
obtained the convective and radiative wall heat fluxes may be calculated
using eqs. (72) and (74) provided that the values of pgue and C are
known. The values of pelg can be determined from the relation

2.80 x 10_4(Pe)0'992
p U = (D15)
e e (he)0.3329 ~ 119.9




which was derived from the correlation formulas given by Cohen (refs. 30,
31) for high-temperature air. The units of pg ue 1in eq. (D15) are
gm<-cm” "s.sec”+ when he is expressed in erg-gm~l and P, 1in atm. The
values of C may be determined from the relation

ony %3329 _ 11900
= —= (D16)
Pefe (00 3% _ 1199

where h, 1is the reference enthalpy given by eq. (73).
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APPENDIX E

COMPUTER PROGRAM FOR SOLVING THE BOUNDARY LAYER ENERGY EQUATION
AND SUBSEQUENT CALCULATION OF THE CONVECTIVE

AND RADIATIVE WALL HEAT FLUXES

The solution to the boundary layer energy equation has been determined
by the method described previously using an IBM 7072 digital computer.
From these results the computer subsequently calculated both the convective
and radiative wall heat fluxes. The computer program necessary to make the
computer carry out these actions was written in FORTRAN II programming
language. The variable names which were assigned to the mathematical relations
and symbols used in the text and appendices are presented below immediately
preceding the program listing.

ALPHA aj(TTe) as given by eq. (Al2)
BE2 Bj+1 in eq. (Al2)
BE1 Bj in eq. (Al2)
N number of intervals used in subroutine for aj
ETA n as given by eq. (65)
W W as given by eq. (77)
AMESS integrand of eq. (Al2)
MMN number of n's used
PR Pr
-1

UE u_ , cm°secC

e
TE T , °K

e
PE P , atm

e
TBARW T

W
EPSW €y
EPS a predetermined small number used in the convergence

test
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SIGMA
FPP1

FPP2

POW1
POW2

CE

C

FA(I)
ETA(T)
FPP(I)
FFA(T)
X(I)
E1E(I)
POWER(I)
POW(I)

CON(I)
JUNK

ALAMI (1)
ALAM2(I)
AlE(K)
A1W(K)
BET1 (K)

BET2(XK)

Stefan-Boltzmann constant, erg-cm._z-sec_l-°K_4
fI,(n) at n = 0.05
£/7(y) at 5 = 0.10

L , em
the exponent on (T/104) in the relation for Ké(T,P)
the exponent on (P/Po) in the relation for Kp(T,P)

the coefficient of (T/104)P0W1(P/P0)Powz in the

relation for KP(T,P)

C as given by eq. (D16)

the values of £(n) at n n(I)
the values of n = n(I)

the values of £//(n) at n = n(I)

the values of f(n) at n 0, 0.025, 0.05, 0.10, 0.20

the values of x

the values of €,
je

the exponents on (T/104) in the relations for Kj(T,P)
the exponents on (P/Po) in the relations for Kj(T,P)
4)POWER(I)(P/PO)POW(I) o

the coefficients of (T/10
the relations for Kj(T,P)

variable which equals zero for grey case and unity for
nongrey ‘case

Aj used in eq. (AlQ0), microns
Aj+1 used in eq. (Al0), microns
aj(Te)
aj(TwTe)

B. for o,.(T ) calculation

] J €

B. 1 for a

i+ (Te) calculation

3
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BETW1(K)
BETW2(K)
XKPE
FACT
ACT
TEMP1(K)
TEMP2(K)
AAl

AHE

RHOMU

APOWR
APOW
XK (K)
AHBRW
G1(1)
G1(2)
G1(I)
PR2

G2(1)
G2(I)

G4(1)

G4(2)

G4(3)

Bj for aj(TwTe) calculation

Bj+1 for “j(ine) calculation

=4
- 0.5[e 0, B TOT, + (2 - ew)ejeaj(Teﬂ
1/0.565

he as given by eq. (D13), erg-gm—1

PH, as given by eq. (D15) , gmz-cmf4-sec
Pr u2/h
e'e
POWER(K)
POW(K)

Kj(Te,Pe) , Cm +gm

h
w

n —
fofdn1 at n = 0.0

n
fofdn1 at n

n
fofdn1 at n

I
o
N

n(1)

Pr
2

exp[- £Z c1(1)]
exp [ 35 c1(D)
c2(1)

Iodn, at n = 0.1
ol 2

exP[--§£ G1(2ﬂ at n = 0.2
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G3(1) f2c4(n1)dn1 atn =0
- G3(2) f2G4(n1)dn1 at n = 0.2

G3(I) 762(ny)dny at n = n(I)

65(1) exp[ZE ci(n)] at n =0

@5(I) exp[—g£ 61(D)

c6(1) [£7 (] %65(1) at n =0

e SOgdn, at n = 0.05

G6(2) [£77 ()] Pexp(ZE GG} at n = 0.05
G6(3) [f”(n)] 2exp(-g£ G)} at n = 0.1
G7(1) f2G6(n1)dn1 at n =0

G7(2) f2G6(n1)dn1 at n = 0.1

8 (1) 66(1)

G8(2) G6(3)

G8(3) {[%”(nﬂ zexp[%E c1(2ﬂ} at n = 0.2
G7(3) J068(n )dn; at n = 0.2

G9(1) G4(1)G7(1)

c9(2) G4(2)G7(2)

G9(3) G4(3)G7(3)

612(1) l£7/m] Zes5¢1) at n = n(
G11(1) G9(1)

c11(2) G9(3)

G13(1) G7(1)

G13(2) G7(3)

G13(I) le12(n)dn; at n = n(I)

G11(I) €13(1)G2(I)
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G1l0(1)
G10(2)
G10(TI)
CZERO
G10(MMN)
G3 (MMN)
AHBR1(I)
AHBRO(I)
CONST
CONS

TBAR(I)

TO(I)
DONST
ABC(I)
APOWR
XK1(I,K)
AB(T)
XKP (1)
W(I)

QW (1)
G15(1)
XT
XK 1A (K)
XKP1

WT

InGQ(n Ydn, at n = 0.0
o 1 1

fnG9(n )dn, at n 0.2
o 1 1

s2611(n)dn; at n = n(D)
C0 as given by eq. (81)
Gl0(I) at n = s
G3(I) at n = ns
(hin)n in eq. (84) , n = n(I)

ﬁo(n) as given by eq. (80) , n = n(I)

4
—4PrcTeL/uehe

CONST- (T _,P )
[fﬁ ) 1/AA1 )
in’n s N = T](I)

1/AA1 , 0 = (D

(ho)
CONST-Kj(Te,Pe)aj(Te)

CONST*G3(I)/G3(MMN)

POWER (K)

Ej(T) at n = n(I)
ABC(I)X(J)

EP(T) at n = n(I)

W of eq. (77) at n = n(I)

the integrand of the integral in eq. (74) at n

W(I)G5(I)

T at n = 0.1

L
o

.1

sl

j(’.'f) at n

k (T) at n = 0.1
P( )

Wat n= 0.1
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QT QW at n = 0.1

AGAIN(1) IEQW(nl)dnl at n =0
AGAIN(2) ISQW(nl)dnl_at n = 0.2
AGAIN(I) slQu(n,)dn; at n = n(I)
G17(1) f2G15(n1)dn1 at n =0
G17(2) fgW(nl)exp(%E lefdné)dnl at n = 0.2
G17(1) s2615(n;)dn; at n = n(D)
G19(I) G17(I)G2(I)

G19(1) G17(1)62(1)

G19(2) G17(2)G2(2)

G20(1) G19(1)

G20(3) G19(2)

XT1 T at n = 0.05

XK1B(K) Ej(T) at n = 0.05

XKP11 EP(T) at n = 0.05

WT1 W at n = 0.05

WIGl WT1 exp(%E GG)

oTx £ (n) exp(ZE 1, edn,)dn, st n = 0.1
G20(2) G4(2)GTX

TERM2(1) /9619(n,)dn, at n = 0
TERM2(2) IEGZO(nl)dni at n = 0.2
cX CONST* X(J)

TERM2(I) f2G19(n1)dn1 at n = n(I)
AHBR2(I) ;Eﬁut)n in eq. (84)

sS bl [anBR2(1) - AHBR1(D)
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SUMA

AHBAR(I,J)
T(I,J)
C1(J)
TERM2 (MMN)
S(J)
QWR(J)
AGATN (MMN)
QWCO(J)

QWC1(J)

M§N1[§H3R2(1> - AHBRl(I)]‘
1=1

the solution for h , n = n(I) , x = X(J)
the solution for T , n = n(I) , x = XD
C, as given by eq. (82), x = X(J)
TERM2(I) at n = "6

s as given by eq. (65) , X = X(J)

gy 35 given by eq. (74) , x = X(J)

AGAIN(I) at n = Ns

Ao 28 8lven by eq. (72) , x = X(J)

q.,, 88 given by eq. (72) , x = X(J)
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PROGRAM WITH EXPANDED ETA AND EXPANDED W
SUBROUTINE ALPHA(BE2,BE1l+NsVALUE)
DIMENSION AMESS(400)+2(400)
D0 1 I = 1,400
AMESS(I) = 0.0
Z(I) = 0.0
1 CONTINUE
AN = N
NN =N + 1
Z(1) = BEl
IF(BEL) 6+3,7
6 STOP
3 AMESS(1) = 0.0
GO Y0 S
T IF(Z(1) = 112.) 16416417
16 AMESS(1l) = (Z(1)#+3)/{EXPF(BEL) - 1.)
G0 70 18
17 VALUE = 0.0
RETURN
18 CONTINUE
5 CONTINUE
IF(BE2 - 112.) 19,+19,20
20 D2 = (112. - BE1l}/AN
GO TO 21
19 DZ = (BE2 - BE1)/AN
21 CONTINUE
DO 10 JJ = 24NN
Z(JJ) = Z2(JJ - 1) + DZ
11 AMESS(JJ) = (Z(JJ)==3)/(EXPF(Z2{JJ)) - 1.)
10 CONTINUE

NM = N - 2

NM = NM

SA = 0.0

SB = 0.0

DO 4 L = 2,NM,2

SA = SA + AMESS(L}

SB = SB + AMESS(L + 1)

4 CONTINUE

SA = SA + AMESS(N)

VALUE = {.15398)%(DZ/3.)={AMESS(1) + 4,«S5A + 2.2SB + AMESS(NN))

VALUE = VALUE

RETURN

ENO
700 DIMENSION GL(45)+FFA{5)4G2(45)+G3(45),G4(3)+FAL45)4ETA(45)¢6G5(45),
7001G6{3):G7{3)4G8(3),G9(3),G10(45)+GL1(45),GLl2{(45),+G13(45),AHBRO(45),
TOO02AHBR1{45) o TBAR(45) yAB(45),4G15(45)+sG17(45)+¢619(45),G20(3),TERM2(45)
TO03,AHBR2(45) s X{10) s AHBAR(45:10)ABC{45) s W(45)FPP(45) XK1B(10).ALAM1
7004(10)ALAM2(10) +POWER{10) oPOW(10),CON{10),ALE(10),ALW(10)+E
TOOSIE(L1O) 2 TEMP2(10) s XK(10)4sBET1(10)¢BET2(10)BETWL(10) +XKP(45),QWR(10
7006)

DIMENSION TEMP1(10),C1(10),0W{45),AGAIN(4S5),S5(10),QWCO(10),QWCL1(10

1)

DIMENSION T{45410)+TO{45)+BETW2(10)¢XK1(45410),DONST{10)XK1A{(10)
701 READ 20.NUM

PRINT 21,NUM

NUM = NUM

READ 20+MMN

PRINT 136,MMN .

READ 100, PRJUE,TE,PE, TBARW,EPSH,EPS
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490

702
703
104
705
706

READ
READ
POW1
POW1
POW2
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

IF JUNK = 0

S7

56

58
970
971
972
973
974
975
978
979

9717
980

62
60

63

65

64

IF(JU
READ
READ
GO TO
PRINT
CONTI
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
IF(JU
PRINT
PRINT
CONTI

100+ SIGMA,FPPL.FPP2,XL
1G0. POW1,POW2,CE

PDW1
POW1
POW2
100,C
101.(FA(L),
101+ (ETA(I)s 1
101, (FPP{I), I
101, (FFA{I),1=
101, (X(I)» =
100, (ELE(I)y I
v
1
I

 J
'
vI=1
1

100, (POWER(I)
100, {POW(T),
100, (CONI(1)»
55+ JUNK

I = 1,MNMN)

1+ MMN)

» GREY CASE, [F JUNK = 1,

NK}56¢56+57
100, ( ALAML1{(1),
100 ( ALAM2(I),
58

59
NUE

920,PR

921.UE

9224TE

923,PE

924, TBARW

925, EPSHW

9284 EPS

929 ¢ XL

50, POWl

51y POW2

52, CE
92T,{ELE(I), 1
930, (POWERL(I),
450, ( POWI(I),
451s( CON(I),
32, C
NK)60+60562
926, {ALAML{I)
9764 ( ALAM2(T)
NUE

I
I

1
I

I

I
’

1

I

1, NUM)
1,NUM)

+NUM)

1+ NUM)
1,NUM)
1sNUM)

1+ NUM)

NON-GREY CASE

1y NUM)

IF{JUNK) 63463,64

DO 65 K = 1,NUM

ALE(K) = 1.0

AlW(K) = 1.0

CONTINUE

GO 10 66

DO 150 K = 1,NUM

BETLI(K) = (14388.)/(TE®ALAM1(K))
BET2(K) = {143884)/(TE*ALAM2{K))
BETWL(K) = BET1(K)/TBARMW
BETW2{K) = HBET2(K)/TBARMW

BAY1l = BETL1l(K)

BAT2 = BET2(K)

CALL ALPHAI(BAT2,BAT1,398,ANS)
ALE(K) = ANS

BAT1 = BETWL(K)
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150

454
455

41

151

456
714
715
457

716

152
458
718
459
690
720
721
722
202
124
725
726
727
203
729
730
731
132
735
736
137
738

BAT2 = BETWZ{K)

CALL ALPHA(BATZ2,BAT1,398,ANS)
AIW(K) = ANS

CONTINUE

CONT INUE

PRINT 404, (A1E(K)y K = 1,NUM}
PRINT 405,{AlW(I)s I = 1,NUM)
XKPE = CE#((TE/10000.)#%POW1)#{PE##P0OW2)
PRINT T1l,s XKPE

FACT = EPSW#{TE#=4)x5IGMA

ACT = 0.0

DO 41 K = 1.NUM

ACT = ACT + ELE(K)#ALlE(K)

CONTINUE

ACT = ACT ~ TBARW#%4

DO 151 K = 1.NUM

TEMPL{K) = =~ EL1E(K)=AlE(K)

TEMP2(K) = ~(.5)={EPSWsAIW(K)#(TBARW2=4) + (2. — EPSW)sELE(K)=AlE(
1K) )

CONTINUE

PRINT 360, FACT
PRINT 361y ACT
PRINT 179+ (TEMP1{K),y K
PRINT 406, ({TEMP2{K)}, K
AAl = 1./1.565)

AHE = ({TE/.002401)%=AAl)»(PEx=(-AAl®,.052))

PRINT 407,4AHE

RHOMU = (.0002796)#(PE*»=2(.992))/(AHE*%{,.3329) -~ 119.9526)
PRINT 33, RHOMU

AAZ2 = (PR«{UE==2))/AHE

PRINT 67, AA2

DO 152 K = L 4NUM

APOWR = POWER(K)

APOW = POWI(K)

APOWR = APOWR

APOW = APOW

XKI{K) = CON(K)=((TE/10000.)*#APOWR)*{PE=#APOW)

CONTINUE

PRINT 408, (XK{I), [ = 1,NuM}

AHBRW = TBARW=#AAl

PRINT 409, AHBRW

G1(1l) = 0.0

Gl(2) = (.03333333)#(FA(Ll) + 4.#FFA(4) + FA(2))

DO 202 I = 3,MMN

Gl(I) = (.0666666TY#(FA{]I-2) + 4.»FA(I-1} + FA(I)) + G1(I-2)
CONTINUE

G2(1) = 1.0

PR2 = PR/2.

DO 203 1 = 24MMN

G2(1) = EXPF{(-PR2#G1(1I))

CONT INUE

G4(l) = G2(1)

G = (<05/3.)%(FA(]1) + 4.%FFA(3) + FFA(4))

1+ NUM)
1+ NUM)

[

G4(2) = EXPF(-PR2%G)

G4(3) = G2(2)

G3(1) = 0.0

G3(2) = {.03333333)%(G4(1).+ 4.%G4(2) + G4(3))

DO 204 I = 34MMN
G3(I) = {.06666667)%#{G2(]-2) + 4.2G2(I-1) + G2{1)) + G3(I-2)
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204
740

142
205
144
745
146
147
750
751
752
753

756
758
759
760
764
765
206
167
768
769
770
771
772
113
207
776
177
778
779
208
781
782
783
784
209
785
788
789

115

153

790
791
300
900
907
291

CONTINUE
G5(1) =
DO 205 I
G5(I) =
CONTINUE
G6(l) =

GG = (.025/3.)%(FFA{l) + 4.=FFA(2) ¢ FFA(3))

6612)
66(3)
67(1)
67(2)
68(1)
68(2)
G8(3)
G7(3)
G9(1)
69(2)
69(3)
DO 206 1
G12(1) =

L | T T | IO [ O | 1 1}

CONTINUE
CZERO =
DO 209 1
AHBR1(I)
AHBRO( 1)
CONTINUE
CONST =
PRINT 11
PRINT 14
CONS = C
PRINT 70
CONS = C
DO 115 1
TBAR(1)
TO(I) =
CONTINUE
DO 153 K
DONSTIK)
CONTINUE
PRINT 10
DO 300 1
ACC(I) =
CONTINUE
DG 250 J
MM = 1
CONTINUE

1.0
= Z'MMN
EXPF(PR2%G1(1I))

FPP{1l)==2
(FPP1l=s2)#EXPF(PR28GG)

(FPP2xx2 ) #EXPF(PR22G)
0.0 )

{e05/3.)#(G6{1) + 4.%G6{(2) + G6{3))

G6(1l)
G6{3)
(FPP{2)%u2)%G5(2)

{«03333333)#(G8(1) + 4.%G8(2) + G8(3})

O.o
G41(2)«G7(2)
G2(2)=G7(3)

= ] 4MMN
(FPP(I)==x2)%(G5(1)

0.0
GI(3)
0.0
G7(3)

= 3,.MMN

(. 06666667)%#({G12{1-2) + 4.=G12(I-1)

G13(I)+G2(1)

0.0

+ Gl12(1)) + G13(1-2)

{.03333333)#(G9{1) + 4.%G9{2) + GI(3))

= 3'MMN

(.06666667)#{(GLLII-2) + 4.#Gl1(]I-1) + Gl1L{I)} + GlO(I-2)

{l. — AHBRW + AA2%G1O0(MMN))/G3(MMN)

1, MMN

moaou

AHBR1( 1)

— 4,#PRaSIGMA#(TE##4) XL/ (UE=AHE)

7,CZERD

2y CONST
ONST#*XKPE

+ CONS

ONS

= 1,MMN

= AHBRO(I)=#%,555
TBAR(I)

1+ NUM
CONST#XK{K)®AL1E(K)

2+ {DONST(K)s K = 1,NUM)

= l'MMN
CONST=#G3(1)/G3(MMN)

= 1,10

AHBRW + CZERO*G3(I) - AA2#G1lO0(I)

62



796

154
602

211

157

159
623

160

161

48
615
635
616
618
620
212
637
638
640
641
642

162

163
648

DO 211 I = 1.MMN

DO 154 K = 1o,NUM

APOWR = POWERI(K)

XKL{(I+K) = TBAR(I)*»*APOWR
CONTINUE

AB{I) = ABC(IM¥=X(J)

XKP(1) = TBAR(I1)#»POWl

CONTINUE

DD 156 I = 1yMMN

WII) = XKPE#XKP{I)})#{(TBAR(I)x=4)
QWII) = XKPE=XKP(I)*{TBAR([)*=4)

CONTINUE
DO 157 I = 1,MMN
DO 157 K = 1+NUM

WII) = W(I) + XKI{K)#XKL1(I,K)eTEMP2(K)
QW(I) = QW(I) + XK{K)®XKL(I,K)#TEMP1(K)
CONTINUE

DO 159 I = 1.+MMN

G15(I) = WII1)=G5(I)

CONTINUE

XT = (TBAR(2) + TBAR(1))={(.5)

DO 160 K = 1,NUM

APOWR = POWER(K)

XKL1A(K) = XT»#APOWR

CONTINUE

XKP1l = XT#**POWl

HT = XKPE#XKPLl#(XT#%4)

QT = XKPE#XKPl#{XT#%4)

DO 161 K = 1,NUM

WT = WT 4+ XK(K)®#XK1A(K)*TEMP2(K)

QT = QT + XK{K)#XKL1A(K)#TEMP1(K)
CONTINUE

AGAIN(1) = 0.0

AGAIN{2) = (.03333333)#(QW(1l) + 4.=QT + QW(2))
DO 48 1 = 3,MMN

AGAIN(I) = (.06666667)%{(QWI{I — 2) + 4.#QW(I -~

1) + QW(I)) + AGAIN{

1L - 2)

CONTINUE

G17(1) = 0.0

G17(2) = (.03333333)#(G15(1) + 4.=WT=EXPF(G#PR2) + G15(2))
DO 212 1 = 3,MMN

Gl7(1) = {.06666667T)1%{G15(1-2) + 4.%G15(1-1) + G15(I})) + G17(1-2)
Gl9(I) = GL7(I)=G2(1I)

CONTINUE

G19{1) = 0.0

G19(2) = G17(2)=G2{2)

G20(1) = Gi9(1)

G20(3) = G19(2)

XTL = {(XT + TBAR(1)) *(.5)
DO 162 K = 1+NUM

APOWR = POWER(K)

XK1B(K) = XTl==APOWR
CONTINUE

XKP1l = XTl==POWl

WTl = XKPLll#XKPE®{XTlx#4)
DO 163 K = 1+NUM

WTl = WT1 + XK(K)#XK1B(K)=*TEMP2(K)
CONTINUE

WTGl = WTL#EXPF(PR22GG)
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650
651
666

668
669
670

GTX = (.05/3.)1%#(G15(1) + 4.#WTGLl + HT*EXPF(PRZ'G))
= G4(2)#GTX

G20{( 2}
TERM2{

n

TERM2(2}
CX = CONST#X{J)
DO 260 I = 3,MMN

TERM2(

6701-2)
260 CONTINUE

671

844
846
672

676
677

261
981

679
680
281
681

683
282
904
684
280
685
686

688

285
983

250

DO 672
AHBR2(

n

I
I)

i

0.0
(+03333333)#(G20(1) + 4.%G20{2) + G20(3})

(06666667} #(G19(1-2) + 4.#G19(I-1) + Gl9{I}) + TERM2(1

1+ MMN
AHBRO(I) + AB{I)=TERM2(MMN) - CX=*TERM2{I)

IF(AHBR2( 1)) 844,846,846

STOP
CONTIN

UE

CONTINUE

$Ss =0
SUMA =
DO 261

.o
0.
I

(0]

1+ MMN

SS = SS + {AHBR2(I) - AHBR1(I))

SUMA + ABSF{AHBR2(I) - AHBR1l(I))}
CONTINUE
PRINT 932,MM
PRINT 673,55

SUMA =

PRINT 931,SUMA

IF(SUMA-EPS) 280,280,281
CONTINUE

DO 282 1 = 1+.MMN

AHBR1{I) = {(AHBRL{I) + AHBR2({I))#{(.5)
TBAR(1) = AHBRL(I)#%{.565)
CONTINUE

MM = MM + |

G0 TO 291

CONTINUE

DO 285 1 = 1+MMN

AHBAR(I,J} = AHBR2(I)
TBAR{I) = AHBAR(I+J)#=(.565)
AHBR1(I) = AHBR2(1I)

T(I.,J) = TBAR(I)

CONTIMUE

PRINT 933,MM

Cl(J}

S{J) =
QWR{J)
QWR(J)
QWCot(J
QWC1L(J

CZERD + CONST*X({J)*TERM2(MMN)/G3(MMN)

RHOMU#UE=X{J )= XL
FACT*(ACT + (2.#SQRTF{C#S(J))/(UE)I=AGAIN{MMN))
QWR{J)}

}
)

CONTINUE

DONSTH{
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

1)

170
171
170
174

-(SQRTF{ {(C#RHOMU=UE)/(XL#X(J))))»AHE*CZERO/PR
~(SQRTF({C#RHOMURUE)/ (XL#X(J))}))=AHE=CL{J) /PR

DONST(1)

173, (ETA(I)eAHBRO(I) s {AHBAR(I+4J) ¢J=1410)41I=1yMMN)

170
170
172
170
175

173 (ETA(LI) o TOUI) 8 (TlIsJ)eJ=1s10)+I=14MMN}
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PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
G0 TO

170

170

177 _

17645 (X(J)sC1{J)sS{JI)4QWCO(J) ,QWCL(J)
170

170

701

+QWR(J) +J=1+10)

20 FORMAT(12)

21 FORMAT(29H THE NUMBER OF TERMS IN W IS I4)

32 FORMAT(5H C = E16.8)

33 FORMAT(9H RHOMU = E£16.8)
50 FORMAT(8H POWl1l = E16.8)
51 FORMAT{8H POW2 = E16.8)
52 FORMATI(6H CE = E16.8)

55 FORMATI(I1)

59 FORMAT{10H GREY CASE)

67 FORMAT(L15H PR#UE*=22/HE = E16.8)

70 FORMAT(8H CONS = E16.8)

71 FORMAT{7H KPE = E16.8)}

100 FORMAT (El4.8)

101 FORMAT( 5El14.8)

102 FORMAT(9H DONST = El6.8)

117 FORMAT(9H CZtRO = E16.8)

136 FORMAT(28H THE NUMBER OF ETAS USED IS 14)

142 FORMAT(9H CONST = E16.8)

170 FORMAT(2H )

171 FORMAT{54H HBAR)
172 FORMAT({54H TBAR)
173 FORMATI(F4.1411F10.6)

174 FORMAT(114H ETA HBARO XBAR =.1 XBAR =42 XBAR =.,3 XBAR =.4
1741 XBAR =.5 XBAR =.6 XBAR =, XBAR =.8 XBAR =.9 XBAR=1.0)}
175 FORMAT(114H ETA TBARO XBAR =.1 XBAR =.2 XBAR =.,3 XBAR =.4
1751 XBAR =.5 XBAR =.6 XBAR =.7 XBAR =, XBAR =.9 XBAR=1.0)
176 FORMAT{F5.1,5E16.8)

177 FORMAT(86H XBAR C1 S QWCOo
1771 QGWC1 QWR )

179 FORMAT(12H TEMP1(K) = El6.8)

360 FORMAT(8H FACT = El16.8)

361 FORMAT(7H ACT = E16.8)

404 FORMAT(7H AlE = E16.8)

405 FORMAT(7TH AlW = E16.8)
406 FORMAT(9H TEMP2 = E16.8)
407 FORMAT(7H AHE = E16.8)
408 FORMAT{6H XK = E16.8)

409 FORMAT(9H AHBRW = E16.8)

450 FORMAT({7H POW = E16.8)

451 FORMAT(7H CON = E16.8)

673 FORMAT(6H SS = E16.8)

920 FORMAT{6H PR = E16.8)

921 FORMAT{6H UE = £16.8)

922 FORMAT(6H TE = E16.8)

923 FORMAT(6H PE = El6.8)

924 FORMAT(9H TBARW = E16.8)

925 FORMAT(8H EPSW = E16.8)

926 FORMAT(9H ALAM]l = El6.8)

927 FORMAT(7H E1E = E16.8)

928 FORMAT({7H EPS = E16.8)

929 FORMAT(6H XL = E16.8)

930 FORMAT(9H POWER = El6.8)

931 FORMAT(8H SUMA = El6.8)

932 FORMAT(26H THESE ARE THE RESULTS OF 14,11H ITERATIONS)

933 FORMAT(28H CONVERGENCE OBTAINED AFTER 14, 11H ITERATIONS)
976 FORMAT(9H ALAM2 = El6.8)

END
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APPENDIX -F

THE OUTER-EDGE BOUNDARY CONDITION FOR THE ENTHALPY

‘In previous investigations dealing with the radiating boundary layer
-on a flat plate the enthalpy boundary condition which has generally been
specified for the outer-edge of the boundary layer is the one given in

eq. (63),

h—*h.e as y — o

However, there appears to be some question as to whether this is the

proper outerzedge boundary condition for the enthalpy. A brief study of
this outer-edge boundary condition problem indieates that it is not suf-
ficient to only require that the enthalpy in the outer part of the

boundary layer be asymptotic to some arbitrary value of the external flow
enthalpy h . The conclusions of the study, which agree with the comments
of Olstad ?ref. 28), show that, in addition, it is necessary to also

insist that the value of h be consistent with the condition that the
divergence of the radiatiofi flux vector in the outer part of the boundary
layer be asymptotic to the value of the divergence of the radiation flux
vector for the external flow in the vicinity of the wall. In this manner,
the enthalpy solution to the boundary layer energy equation (6) will

have asymptotic character and its value on the outer-—edge of the boundary
layer will be equal to the value of the enthalpy for the radiating external
flow in the vicinity of the wall. Thus, the proper value for hg in eq. (63)
is the wall enthalpy for the radiating external flow.

The outer-edge boundary condition which was employed in this investiga-
tion is the arbitrary value of he given in eq. (63). Of course this
boundary condition for the enthalpy is only a first approximation to the
proper outer—edge boundary condition discussed in the previous paragraph.
However, the resulting enthalpy profiles in fig. 6(a) indicate that this
approximation is quite good for the high Eckert number flows considered
‘in the investigation. TFor the low Eckert number flows investigated, the
resulting enthalpy profiles in figs. 6(b) and 8 indicate that this approx-
imation is quite good for a combination of high external flow and low
wall emissivities, but only fair for high wall and/or low external flow
emissivities.

From figs. 6 and 8, it appears that the first-order approximation
for the outer-edge boundary condition is poorest for a combination of
low Eckert number, low external flow emissity, and high wall emissivity.
Hence, the effect of this approximation on the wall heat flux results
will be greatest for the aforementioned emissivity and Eckert number
conditions. The quantitative effect of the boundary condition approxima-
tion on the heat transfer results has been estimated for the combination
of low Eckert number, low external flow emissivity, and high wall
emissivity. The estimates yield the following values for the magnitude
of the effect of the boundary condition approximation on the heat flux
results at these specific Eckert number and emissivity conditions:
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Figure 1.- Radiation contributions to the point x; from the elementary cone
of solid angle dw whose axis is the directed line S(gj).
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Figure 2.- Example of a nongrey absorption coefficient model obeying eq. (11).
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(a) u’/h_ = 16, T 10 000°K, L = 10 m
e e e

Figure 6.- Enthalpy profiles at x = 1.0 for the grey radiating air
boundary layer on a flat plate; P, = 0.1 atm, I, = 2000° K.
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