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ABSTRACT

Recent experimental work dealing with the vibratory energy
dissipation of plates with beams riveted to them has indicated
that the dominant damping mechanism is associated with "gas-
pumping" in the space between the plate and the beam. Based on
This deduction, a semi-phenomenological theory is developed which
predicts satisfactorily not only the order of magnitude of the loss
factors, but also their dependence on frequency and on gas pressure.
This theory attributes the damping to viscous forces associated with
gas motion tangential to the plane of the plate, resulting from the

relative flexural motions between the adjacent plate and beam

surfaces. ;Z g
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I. INTRODUCTION

A recent extensive study of joint damping in riveted
structures has revealed that "gas-pumping" in the spaces
between the surfaces in joints may contribute significantly
to the total damping of such structural systems ligii/. This
report represents an attempt to account, at least semi-
phenomenologically, for the experimentally observed data on
riveted joint damping. The primary aim of the work presented
here was to determine whether it is possible to find a gas-
pumping mechanism that would lead to damping values (1oss
factors) agreeing in order of magnitude with those observed
experimentally. It was also hoped that such an analysis might
reveal the dependence of the damping on the ambient pressure,
so that one could then predict the changes in the damping of
riveted structures due to ambient pressure changes.

The specific structure under consideration is a plate to
which a beam is fastened with uniformly spaced rivets [see Fig.
1]. This type of composite structure corresponds to that which
was examined experimentallyl/ and has damping characteristics
which are typical of structural components in many practical
constructions., The analytical approach taken in this present
report is based in part on the work of J. Dimeff, J. W. Lane and
G. M. Coonﬂ/. Their analysis was devised to account for data
obtained on a gas pressure gauge. The operation of this gauge
is based on the energy dissipation induced by the gas (whose
ambient pressure is to be determined) on a vibrating diaphragm.
They concluded that the dissipation is predominantly associated

with the tangential motion of the gas with respect to the plane
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of the diaphragm. This motion is induced by externally induced
harmonic changes in the curvature of the diaphragm. The
tangential motion generates viscous forces that bring about
dissgipation. In this way the above researchers were able to
find reasonable agreement between theoretically predicted values
and the experimental dataﬂ/. However, the system they analyzed
was well defined and, as such, was amenable to precise and

detailed analysis. The system we wish to analyze, on the other
hand, is more complex, and its dynamical parameters may escape
precise definition. To circumvent this difficulty we apply a
rather crude analysis, where parameters are defined "statistically"
in order to remove some of the inherent complexity. (Such an
analysis has been successfully applied to the response of and to

the acoustic radiation from complex structuresé/.)

The analysis presented here is restricted to joint damping
associated with multi-point-fastened riveted, (bolted, spot-
welded) plate-beam systems. We begin by analyzing the dissipa-
tion pertaining to gas flows in the space between two adjacent
surfaces; these flows are induced by harmonically varying pressure
gradients. We show these pressure gradients to be generated in
the riveted plate-beam system as a result of relative flexural
motions between the adjacent plate and beam surfaces. We then
develop the relationship between this relative motion and the
pressure gradients generated by it. Finally, we derive an
expression for the loss factor associated with this type of
dissipation and show this loss factor to be a function of
frequency, the critical frequency of the plate, ambient pressure,
the mass impedance of the plate, the ratio of the area of the
beam to that of the plate, the width of the beam, and the




s e o

Report No. 1374 Bolt Beranek and Newman Inc.

average separation between the plate and beam surfaces. In

this report the dependences of the loss factor on ambient
pressure and on frequency are of particular interest. It is
shown that the expression for the loss factor is in satisfactory
agreement with experimental findings.
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II. DISSIPATION ASSOCIATED WITH GAS FLOWS INDUCED BY
HARMONICALLY VARYING PRESSURE GRADIENTS

We study the motion of a gas occupying the space between
two parallel surfaces separated by a distance h. Consider an
X-y plane halfway between the two surfaces (see Fig. 2). We
assume that the gas motion is induced by pressure gradients
parallel to the x-y plane; the pressure in the z-direction
is assumed uniform. Ve assume the pressure gradient field to
have a temporal dependence of the form exp(iam) and a spatial
dependence of the form exp(-ig.g). Here w/2m denotes the
frequency, E={kx’ky} denotes a wavevector, and X = (x,v)
denotes a position vector in the x-y plane. We take the

equation of state of the gas to be of the form:
pp @ = constant

where p,p denote, respectively, the pressure and the density
of the gas, and n is a constant. (n is unity for an isothermal
process and is equal to the ratio of the specific heats for an
adiabatic process.)

We assume that the Mach numbers associated with the gas
motion are much smaller than unity; then we may approximate
the equations of motion of the gas*[the equations of conserva-
tion of mass and momentum] by:

-1
(npo) g%-— divu=0 |,

(2.1)

(2.2)
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o/

2
u c :
~ 0 <; + £

-~ = - = > grad p + o s (2.3)
np 2

n
o

o

where u = [u,V,w] represents the velocity vector,

grad p ='{-%% s %%,} the pressure gradient, Ps the ambient pressure
of the gas, Cq the ambient sound speed in the gas, v the kinematic
viscosity of the gas, and £ the kinematic viscosity of the second
kind. Ve assume that ¢ is of the order of magnitude of <. As
usual, t denofes time and v2 the Laplace operator.

Imposing the boundary conditions {u,v} = 0 at z = * % h, we
obtain from Eq. (2.3)§/:
o 2
{u,v} T - iwg <1 + 32%-> (grad p) [1 - £o8 lxz ] , (2.4)
P
o c cos(s «z)
o} 2
where
R CIV/ 0 W (2.5)
1/2
5 = (2v/0) : (2.6)

& represents the boundary layer thickness, the depth of
prenetration of an oscillating motion6 .

We have assumed here that edge effects are negligible.
This assumption is valid only if the separation h between the
surfaces is small compared with any linear dimension of the
overlapping area of the surfaces in the x-y plane.

~-5-
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We 1limit our consideration to cases where (5k)2 and
(wé/cOQ) are small compared with unity; it can readily be
deduced that these restrictions hold in the ranges of
frequency and ambient pressure which are of interest in
any practical situation to which this report is directed.

Again, because of the small Mach numbers involved in

the flow, the expression for the power Pa dissipated in the
be

region of overlap between the two surfaces may approximatedé/:

v oy PP o, ?
P, T 2A > vf([Eb dz
(o]

where A, denotes the area of the overlap of the two surfaces.

b
The symbol <« > indicates averaging over the appropriate area,
in Eq. (2.7) over A,.
From Eqs. (2.4) and (2.7) we obtain:
2

he TA
~ 0O b 2
2w < | grad p |= > H_(6)
where
6 = h/6 s

H (6) = [sinh(6) - sin(6)] { 6 [cosh(@) + cos(G)] }~l. (2.10)

The function H (6) in Eq. (2.8) embodies the dependence
of the dissipated power on the ratio 6 of the separation h to
the boundary layer thickness 5. A plot of H_(G) is presented

-6-
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in Fig. 3. We note that H (6) has a maximum at about 6 = 2
and varies monotonically on both sides of this maximum.

This behavior of H_(6) can readily be interpreted with
the aid of Fig. 4. A given pressure gradient parallel to the
X-y plane spends itself partly in generating particle velocity
gradients, and partly in generating particle velocities. The
balance between these twe quantities is determined by the
distance of the plane from the physical surface. The dependence
of the particle velocity gradient and the particle velocity on
the normalized distance from a flat surface are illustrated in
Fig. 4, The power dissipated in a given plane is proportional
to the product of the particle velocity gradient and the particle
velocity in this plane. As indicated in Fig. 4, the energy
dissipated in a plane parallel to the surface varies with
distance from the surface and is maximum for a plane spaced
about %-5 from the surface. It is now apparent that H_(G)
is small if 6<«1, because the driving pressure gradients then
generate large particle velocity gradients, but low particle
velocities, leading, on balance, to relatively little energy
dissipation per unit driving pressure gradient. If 6>>1, most
of the flow is governed by essentially free flow of the fluid.
Littlie dissipation occurs except in a small region near the
surfaces; the substantial part of the driving pressure gradient
is spent in imparting momentum to the gas. For 6 = 2 the pressure
gradient generates particle velocity gradients and particle
velocities which combine most favorably to produce relatively
high dissipation.
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ITI. THE PRESSURE GRADIENTS AND THE LOSS FACTOR

If we can show that harmonically varying pressure gradients
are generated in the gas that occupies the space between the
surfaces of the plate and the beam, then we know that the power
dissipation in a beam-plate system will obey Eq. (2.8), with Ay,
here representing the area of the beam surface in contact with
the plate. For Eq. (2.8) to be valid, however, the width of the
beam must be substantially greater than the separation between
the adjacent surfaces of the beam and the plate. This is usually
satisfied in practical cases, and we assume this inequality to
hold throughout this report. Of course, in a practical case, the
actual separation distance may vary from one location to another;
indeed, if the beam is riveted one would expect the separation
to be greater away from a rivet than in the vicinity of a rivet.
We shall, nevertheless, assume that a typical "average' separation
distance can be specified.

Our present task thus is to determine <lgrad p 2> and to
show that (grad p) is of the appropriate form in the case of
a riveted plate-beam system. We limit our consideration to a
plate-beam system in which the area of the plate is much larger
than the beam contact area. Further, we confine ourselves to
the frequency range in which the flexural wavelength of the
vibration on the plate is substantially smaller than a typical
plate dimension. [The analysis presented here can be modified
to account for less restricted cases. However, our purpose here
is to present results in as simple a form as possible.] With the
foregoing restrictions (and in the plate-beam experiments
presented below), the vibrational field on the plate is sub-
stantially diffuse, and thus can be specified in terms of the

-8-
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spatial average of the mean-square velocity field on the plate,
<lVbol2>. This quantify is readily measurable in a given
experiment. Moreover, this quantity is directly related to
the energy Ep stored in the plate-beam system,

~ ' 2
E = Am Vv
p pp<l pol > ’

where Ap denotes the area of the plate, Ap>>Ab, and mp represents
the plate mass per unit area. Eg. (2.8) and the definition of
loss factor, in terms of energy stored and energy dissipated

per cycle, permit us to obtain an expression for the loss
11 23 3{

factor na assoclated with the power dissipated by the
gas motion in the space between the plate and the beam:
o .
P A h 2
N 2 % _<lerad p|®> (g
a @A T <' | 2R m 1D, ° l ‘2 -

It has been established, by experiments on plate—beam systems
of the form considered here, that the loss factor n
independent of <|V [2>, provided that "slapping" between the
two surfaces is av01ded. We thus expect that <«|grad p 2> is
directly related to <[Vb0[2>. We show next that such a

relationship actually exists.

(3.1)

(3.2)
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IV. THE STRUCTURAL MODEL

A schematic representation of the structural system under
consideration is given in Fig. 1. We have stipulated earlier
that we consider the vibrational field of the plate to be diffuse.
Thus we may formulate our problem in terms of a single typical
flexural wave on the plate, and then obtain from this simpler
analysis results which apply to a diffused set of waves with
frequencies lying within a narrow band (e.g. third octave)
centered on the frequency of this single wave. The velocity
Vpo denotes the amplitude of the flexural velocity field on
the plate, except at and near the region covered by the beam,
which region is hereafter called the "strip." The velocity
field on the plate in the strip will, in general, be different
from Vbo because of the beam, which acts on the plate via the
rivets and via the gas occupying the space between the surfaces
of the plate and the beam. The effect of the rivets on the
velocity field in the strip has been studied recently by Uhgarl/.
He has shown that (in absence of gas effects) equally spaced
rivets produce a velocity field amplitude VS that may be sub-
stantially different from Vbo essentially only for kpd < 1,
where d is the spacing between the rivets and kp the wavenumber
of the typical wave on the plate. If kpd > 5, then the difference
between VS and V o is negligible. This result is reasonable, since

D
the "effective area" over which a rivet extends its influence may

be expected to be a disk having a radius of the order of kp-l.

Ungar's resultsl/ can be summarized as:

<AV 1> = <lv 13 sta) CRY

where S(kpd) is a complicated function of kpd when kpd(l, but
becomes essentially unity when kpsz.

-10-
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In addition to the rivets, the gas in the space between
the surfaces of the plate and the beam influences the plate
velocity field in the strip. One may invoke the principle
of superposition to account for both effects simultaneously.
Unfortunately, the effect of the i}vets is assoclated with

the point impedance of the plate, and, as we shall see,

the effect of the gas is associated with the line impedance
of the plate. This difference between the effects renders

a comprehensive analysis rather difficult. To circumvent
this difficulty we assume that the effects are statistically
independent, This assumption eliminates the possibility of
accounting for resonances and anti-resonances that may occur
between the two mechanisms; only gross properties can be
ascertained under this assumption. However, when kpd25 the
conclusion should hold that the influence on the vibrational
field on the strip by the rivets is negligible; in this case
the influence of the gas, if substantial, is the only effect

remaining. We proceed now to account for this latter effect.

In most practical systems the beam has a length much
larger than its width, and is much heavier and stiffer than
the plate strip. Therefore, there occurs a '"bias" towards
X-wise incidence of flexural waves on the stripé/; in addition,
the beam motion can be essentially neglected. [The analysis
can be made less restrictive, but at the expense of higher
complexityZ/. Since most practical plate-beam systems satisfy
the above restrictions, we shall not present a more general

analysis here, ]

~11-
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YWle may consider the typical flexural wave on the plate as
being incident on the strip in the x-direction. This wave
produces a relative motion between the surfaces of the plate
and the beam that is uniform in the y-direction and has an
associated wavenumber in the x-direction equal to k = kp.

It kph<<1 and koh<<l, where ko is the accustic wave-
number in the gas at the appropriate freguenc; thi
motion between the beam and the plate strip will generate a
pressure field having a spatial and temporal component in
the x-y plane which is closely related to the relative
structural motion§/. This pressure field will be independent
of the z coordinate, in consequence of the inequality that

koh<<l, which we shall assume to hold throughout this report.

We consider two infinitesimally narrow plate strips,
both having their long axes parallel to the y-direction.
One strip is centered at position x' and the other at position
X on the x-axis, as indicated in Fig. 5. We may choose
position x at the origin of our coordinate system so that
x' is measured relative to x (see Fig. 5). The differential
pressure on the strip at position x' relative to that at x
is given by [(p—po) exp(—ikpx)] exp(—ikpx'). The effect
of this pressure field on the strip at position x can be
computed with the aid of a spatial plate transfer function
T(x'|x), defined by :

1 t k 1 1
T(x'[x) = 5(x') + 7? exp([i-n(x )]kpx )

such that the effective pressure differential, Perr (x) at x

-12-
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is given by:

. 1 . i
peff(x) = (p—po) exp(—lkpx)k/;T(x |x) exp(—lkpx ) dx' ,
where the time dependence has been suppressed and

( 1 x'>0
n(x') =

1

-1 X <O

Here m represents the total loss factor of the plate, and the
integral in Eq. (4.3) is taken over the width b of the beam.
Note that p_po (x) dx is the effective force acting on the
strip at x. The delta function in Eq. (4.2) takes account
of the self-transfer of the local pressure field at position
x. From Egs. (4.2) and (4.3) we obtain for the effective
pressure differential amplitude:

k. b

Popp = (P-D,) <1 + —}% > = (p-p,) B ,

where we assumed that nkpb<<1. The expression represented
by B must be modified if the foregoing inequality is violated;
see Eq. (4.3).

Because of the assumption that the effects of the rivets

and the gas are uncorrelated, we may consider the effect of the
gas starting with a strip velocity Vs. This velocity now plays
the role of a dummy variable whose mean-square value is directly
related to the mean-square velocity on the plate via the function

-13-
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S(kpd), see Eq. (4.1). The effect of the gas on the plate

strip velocity is to induce a change in the velocity amplitude
Vs to a value which we denote by Vb. The change in the velocity
amplitude in the strip, from VS to Vb, can be related to the
effective pressure that produces it in terms of the 1line

impedance of the plateé/:

whereig/
Z; = Mamp/(l-i) . (4.6)

The velocity amplitude Vp may be eliminated from Eqg. (4.5)
by use of Eq. (2.2), averaged over the coordinate z, and applica-
tion of Eq. (2.4)=. This procedure yields the equation:

2,2

. k_"ec
\h . ~
m, 11" Tz [ 1 - H(6) + 1H_(6)] } (0-p,) = V, (4.7)
where
-1
H+(9) = [ sinh(6) + sin(G)] {? [cosh(e) + cos(e)] } . (4.8)
Noting that kp2 = wgm/cOQ, where ah/zw is the critical frequencylk/

of the plate, we obtain, from Egs. (2.8), (4.1), (4.5) and (4.6):
A np w
g (8) 0 (F)we (9
Apmpw h

=14
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where
2 2
np B w np B w
ez[l-—g—— -%(I—H+)]+[—%——+—§)H_:] ) (4.10)
Loy mph Loy mph

It is clear that My is independent of the level of
excitation of the plate-beam system (provided that impacts
between the surfaces of the plate and the beam are avoided).
By the nature of our derivation, the loss factor Mys @8
stated in Eq. (4.9), refers to a narrow frequency band
centered about

The factor (S5/G) is simply related to the ratio of the
spatial average of the velocity field amplitude in the strip
to that on the entire plate. The factor a%/hg which appears
in n (and G), is of particular interest. It multiplies
those terms that are concerned with the inertial motion of
the gas, and is a measure of the normalized time that is
available for this motion to be established and maintained.
This aspect becomes clear when one remembers that wé/w is
equal to (co/cp)e, where c, is the phase speed of the
flexural wave. The time variables in the gas are related
to the sound speed €y while those in the plate are related
to Che Thus, if wé/m is large, the inertial motions in the
gas are accentuated and the effects of these motions are
amplified,

Two significant aspects of the function G deserve

special mention. The first is that the value of the function
G is governed by a parameter that is the ratio of the impedance

-15-
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of the gas to that of the plate. In particular, the former
impedance depends on the ambient pressure. If the ambient
pressure is sufficiently low, G is approximately unity,
indicating that the motion of the plate in the strip is not
affected by the presence of the gas. On the other hand, if
the ambient pressure is sufficiently high, the value of G
exceeds unity. Then the gas acts so as to inhibit the
relative motion between the surfaces of the plate and the
beam, an effect which tends to diminish the value of the
loss factor na. The second aspect of the function G is
that it indicates that a resonance condition between the
motion of the gas and that of the plate strip can occur,
However, because of the real part in the line impedance of
the plate and the dissipative term in the inertial moftion of
the gas, this resonance is weak and does not appreciably
affect the value of na.

Eq. (4.9) constitutes the central result of this
report. However, before it can be used to yield practical
results, one must examine more closely the parameter 6 = h/p
where 5 = (2v/w)l/2.

-16-~
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V. THE DEPENDENCE OF THE KINEMATIC VISCOSITY ON THE
SEPARATION DISTANCE
If the linear dimensions of the space between the beam
and plate are large compared with the molecular mean free path,
the kinematic viscosity obeys:

vV = %-CA s

where ¢ denotes the average speed of the molecules and A denotes

the mean free path. [In air'at 20°C ¢ <~ 4.6x1040m/sec and
A = (5.5x10—3/po) cm (for P, in mm Hg).]

However, if the gas is confined to a space which has a
linear dimension nearly equal to or smaller than the mean free
path between intermolecular collisions, then the expression for
the kinematic viscosity depends on this dimensiong/. One may
argue that the nature of the kinematic viscosity does not change
except that now the molecular-surface collisions are in control
of the gas dynamics rather than the intermolecular collisionslg/.
Since the former collision process is associated with a mean free
path that depends on the separation h, the kinematic viscosity
would also be a function of h. Unfortunately, there exists at
the present time no firm theoretical basis for ascertaining the
point of departure from one regime to the other. However, on the
basis of previous work&/ dealing with a closely related problem,
it appears that, when the mean free path of intermolecular
collisions becomes greater than about a thirtieth of the
separation distance h, the kinematic viscosity reaches an
asymptotic value and the expression for this quantity is given
by:

-17-
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~1- —1
v¥se (hs™)

where s is a dimensionless constant equal to about 30.

Egs. (5.1) and (5.2) can be conveniently combined into a
single expression:

; s<cha™t

noj -
ol
=

-1
1l < -1
v=3¢ch (s +hi"") ={

% 5‘(3_1h); s>ShA™T |

From Egs. (2.6), (2.9) and (5.3) we obtain:

6 = {:E? [ s + hA'l] };/2 .

c

We are now in a position to compare our theoretical predictions
with the available experimental data. However, before we do so,

it may be helpful to examine some of the asymptotic forms of the
loss factor na.

-18-
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VI. ASYMPTOTIC BEHAVIOR OF THE LOSS FACTOR Ny

It is apparent that Eq. (4.9) is rather complex and
involves many parameters of the structural system and of the
gas. Although present-day computers permit us to arrive at
numerical results without great difficulty, we can more readily
gain some insight into the behavior of na in some regions of
interest by examining in turn the functional factors that
combine to form the expression given in Eq. (4.9) for na.

The factor AbnpO/Apmpwau is seen to be simply the ratio
of the absolute value of the stiffness impedance Abnpo/'wh of
the gas in the space between the two surfaces to the absolute
value of the inertia impedance of the plate, Apmpw. This ratio
is thus a measure of the relative energy stored in the gas and
the plate under ideal conditions. The factor S/G is a measure
of the influence of the rivets and of the gas in the interspace
on the motion of the plate (if the two effects are assumed
independent, see Section IV). Finally, the factor (ué/w)ﬂ_
is a measure of the efficiency with which the gas dissipates
the energy that is imparted to it by the plate motion.

A. The asymptotic behavior of H_(9)

1. Low ambient pressure regime, hA'1<s

Since ¢ ¥ ¢,» it 1s clear from Eq. (5.4) that at low ambient
pressures, for which hA-1<s, 6 is substantially less than unity,
by virtue of our assumption that hk0<<1. In this case then:

-19-
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2
~ B
H(0) ¥ - = 2= (6.1)
3¢
and
~ 4
1 - H+(9) 0 (67) . (6.2)

This regime is characterized by relatively large particle
velocity gradients, but by small particle velocities. The
efficiency of dissipation by the gas is low (see Section II).

2. High ambient pressure regime, (hA-l) (koh)>>4
In this regime 6>2, see Eq. (5.4). The asymptotic value of
H () then is:

H (6) = (6)7! = n7t <§§>1/2 , (6.3)

),

and

1-H (6) =1 - H () . (6.4)

This regime is characterized by relatively large particle
velocities, but by low particle velocity gradients. The
efficiency of dissipation by the gas is relatively low
(see Section II).

The efficiency of dissipation has a maximum value when
6 %2, H .= H (2) = 0.4 (see Fig. 3).

-20-
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B. The asymptotic behavior of G
1. Very low ambient pressure regime, hA-1<<s

In this regime (mg/w) H (0) is small for the frequency range

np_B
of interest. Also, the ratio a = 02 of the absolute value

m_w h
P
of the effective surface stiffness of the gas (npoﬁ/mh) to the
absolute value of the surface mass impedance of the plate

- EWal! PR JTRF T

((me) is small. From Eg. (4.10) we learn that G is unity
under these conditions. In this regime the gas motion hardly
affects the vibration of the plate in the strip. The mean
flexural motion of the plate in the strip has its maximum
value in this regime, provided that S & 1.

2. High ambient pressure regime (hA‘l) (koh)>>4
The expression for G in this regime is

GO

where

a = —=> : (4.6)

If o is small compared with unity, in spite of the high
ambient pressure, G is essentially unity in the frequency
range above the critical frequency, and regime B.2 here is
similar to regime B.1. Below the critical frequency, G is
essentially equal to (w /w) signifying that the inertial
terms in the gas domlnate the motion of the gas between the
two surfaces. In both of these cases the function G is
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independent of the ambient pressure. If (a/4) is greater
than both unity and (ag/hﬁ, then G is a function of the
ambient pressure. The flexural vibration of the plate
strip is inhibited by the compressibility of the gas in
the space between the two surfaces. This effect leads to
low loss factors, which decrease with increasing ambient
pressure. Note that a/ﬂ dominance, and thus a pressure-
dependent G, can always be reached if the ambient pressure
is increased sufficiently. Thus, increasing the ambient
pressure in order to bring about higher loss factors has

a limited range of applicability.

Some features of our discussion of this section are
sketched in Fig. 6.
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VII. COMPARISON BETWEEN THEORY AND EXPERIMENT

There are available some experimental data on joint
damping that concern the loss factor na as a function of the
ambient pressure p_ and the frequency f = w/2w. These data
were obtained by Cérbonell and Ungar légii, by a method
described in some detail in references 1, 2 and 3. It is with
these data that we compare our theoretical calculations.

| The test system consists of an alumingm plate,
%E x 20" x 14", to which an aluminum beam, %- x 1" x 17",

has been attached by means of bolts with 3" spacing. The
system was placed in a vacuum chamber in which the ambient
pressure could be varied from atmospheric pressure (760 mm Hg)
down to about 1 mm Hg. The loss factors of both the bare
plate, and of the plate-beam system were measured in third-
octave bands as functions of ambient pressure., The con-
tributions to the loss factors due to the presence of the

beam were computed from:

=Ny s (7.1)

where npb denotes the loss factor of the plate-beam system,
and np the loss factor of the bare plate. If the measured
ﬁa is dominated by gas-pumping effects, then one would expect
a close relation between ﬁa and the theoretically determined

M,

a Thus, we compare our theoretical estimates of na with ﬁa.
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We have inserted the appropriate values of the
experirental structural system and of the gas (air) into
Eq. (4.9) and carried out the calculations with the aid of

13/

a digital compute . In these calculations we assume

n =1.4 [setting n = 1 does not alter the results signifi-
cantly, see Fig. Tc.] Computations were carried out for
ambient pressures between 1 mm Hg and lelO4 mm Hg (the

experiments were carried out in the ran

experimen were e from 1 mm Hg to

760 mm Hg only) and frequencies between 1 keps and 10 keps.
The lower frequency limit was chosen to be compatible with
S(kpd) ¥ 1, in order to avoid the complexities in S(kpd)

which occur for kpd S 5. The calculations are presented

with s = 30. Changes in s in the range from 20-40 were

found not to affect the results substantially in the ranges
for which experimental data are available. The value for the
separation h was chosen to be 7.5x10-3cm. (This value appears
not to be unreasonable. Computations carried out for h in the
2em to 3x10_30m indicate that the value of 7.5x10 Zcm

leads to loss factor values which are in better agreement with

range 3x10°
the experimental data.)

It was found empirically that the experimental data in
the range of interest can be best presented by plotting the
loss factor as a function of the parameter po/f3/2. We have
thus chosen to present the comparison between theory and
experiments in terms of this parameter. The comparison
on this basis is presented in graphical form in Figs. 7
(a,b,c,d and e). It is apparent that there is reasonable
agreement between the predicted values and the experimental
data. The agreement is satisfactory, not only in terms of
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"order of magnitude," but also in terms of the functional
dependence of the loss factor on the frequency and the
ambient-pressure variables.

The avallable experimental data }42;2/ were obtained
without the guidance of a working theory. Consequently,
although some aspects of these data can serve to test the
theory, a critical experimental validation of the theory
requires additional measurements, designed specifically to
bring out the most crucial aspects of the theory, such as
the dependence on the separation h. Such a program of
experimental studies is contemplated for the near future.

-25-
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VIII. DISCUSSION AND CONCLUSIONS

We have shown that gas-pumping in the space between the
plate and the beam can be made to account satisfactorily for
the observed dissipation in a plate-beam system. However, the
values of two parameters, s and h, both of which play signifi-
cant roles in the determination of the loss factor, had to be
chosen empirically. It would have been more satisfying if
these parameters could have been determined directly by
independent experiments or analyses. It is hoped that such
an examination of these parameters will be forthcoming.
Nevertheless, the analysis does permit one to estimate how
to optimize the dissipation of a given system as a function
of ambient pressure, and the separation distance h.
Similarly, changes in the loss factor with changes in these
parameters can be predicted and used in the design of structures
incorporating plate-beam systems of the type we considered above.

A problem of some import is to examine the validity of
the theory in the lower frequency range, where S(kpd) may
differ from unity. There are two practical difficulties
associated with such an examination: 1. The complex nature
of S(kpd) makes calculations difficult and cumbersome.
2. Experiments would have to be made on fairly large structures,
and thus would require a large vacuum chamber.

The above analysis did not account for the dissipation
associated with acoustic radiation. It is important to realize
that this dissipation can be relatively large in plate-beam
systems even below the critical frequency5 . In particular, if
the plate-beam system is examined under ccnditicns where the
plate is unbaffled, ﬁa’ defined in Eq. (7.1), contains the full
measure of the dissipation by radiation since the unbaffled bare
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plate has substantially smaller radiation efficiency than the
ribbed plateé/. In the experiments discussed in Section VII
the acoustic coupling between the plate-beam system and the
vacuum chamber was not accounted for. It is thus possible
that at the higher ambient pressurés and frequencies, where
the predicted loss factors are relatively small, the acoustic
coupling between the plate-beam system and the vacuum chamber
could distort the observed data significantly. This coupling
may explain some of the discrepancies between theory and
experiments in this range, and should be considered in future
studies.
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FIGURE CAPTIONS

1. Beam Riveted to Plate
b = Beam Width, 4 = Rivet Spacing.

2. Coordinate System
h = Separation between Plate and Beam Surfaces.

3. Dependence of H (6) on Ratio 6 of Average Beam-to-Plate
Separation h to Boundary Layer Thickness sg.

L4, Dependence of Particle Velocity, Particle Velocity Gradient,
and Energy Dissipation in a Flowing Gas On Normalized
Distance from a Solid Surface (Schematic).

5. Geometry of Infinitesimal Plate Strips, Used in
Determination of Effect of Gas Pressure on Velocity in
Beam-Covered Plate Region.

6. Dependence of Loss Factor on Ambient Pressure (Schematic)
w/2r = Frequency, ® /217 = Critical Frequency,
a¢ = Ratio of Effective Surface Stiffness of Gas to
Surface Mass Impedance of Plate.

T.a Comparison between Theoretical and Experimental Values of
the Loss Factor M,

7.b Comparison betveen Theoretical and Experimental Values of
the Loss [actor N, -

7.c Comrarison vetueen Theoretical and Exwverimental Values of
the Loss PFactor na.
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FIGURE CAFTIONS (Continued)

7.d Comparison between Theoretical and Experimental Values of
the loss Factor na.

(.e Comparison between Theoretical and Experimental Values of
the Loss Factor na.
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Rivets

FIG.1 A BEAM RIVITED TO PLATE
b= BEAM WIDTH, d= RIVET SPACING
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ARBITRARY SCALE
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VELOCITY GRADIENT, AND ENERGY DISSIPATION
IN A FLOWING GAS ON NORMALIZED DISTANCE
FROM A SOLID SURFACE ( SCHEMATIC )



‘NOI93Y 3L1Vi1d 03¥43A00-AV3IE NI ALIJDOT3IA
NO 34NSS3d¥dd SVI 40 133443 40 NOILVNINYILIA NI
a3sn ‘Sdi1yls ILv1d TYNIWSILINIANI 40 A¥LINOID <914

BOLT BERANEK & NEWMAN INC

(x93 1-) dx3(x)d=( x)d

(x9y1-)dx3(°d- d)=(x)d

|
Jv__ _T.I.x_u .i“ Tx_u A///
_ \
2/ i (o _m d N\
N . \F
: — = — N — — — N =
S K\H X N
m <z f 31Vd
o Z Wv3ig
(71
x q -




BOLT BERANEK & NEWMAN INC

REPORT NO. 1374

31V1d 40 FJONVAIdIN I

SSVYIN 30vd4dNsS 0L SY9 40 SSAN4411LS IIV4dNS FA1103444
40 OILVY =0 ‘AONINDIYA TVIILIYD = £2/°m AONINDIYS = Lg/m
(J1LVINIHOS) 3¥NSS3I¥d INIIGNY NO ¥01JdV¥d SSOT 40 FJINIANI43Q

(377v3S 907 AYVYH1184V ) 3HNSS3Hd LNIIGWV

9°914

[<<§ = [>>0
/ /.IHVV
[
N A/
% o
/ L~
A.[.ll‘k‘\
e
(my O3VAu NGHU\.. P \.\
> —
N \ ~AAA3\O3VJ,I‘.\;
N W A
/A/ i\\ \
- €p>>2p>>lp
1>>(m/Bm) 371>
4+ 1<'p=p Pk
A\ \\
N Prid
= .Il\

(37TVIS 9071 AYVYHLIGHV) ¥OL0Vd4 SSO1




> oL y019¥d4 $S0T IHL 40 SINTYA TYLININI¥IdX3

> ANY TVO1L3¥03HL NIIMLIg9 NOSIYVdANOD BL 914
<t

s 2124/

_0Ixg 0l .0l ol ¢ ¢-Ol
z2- % ¢ Z Nmmmulfmcm g T 6es06 b ¢ 2z Preelock A2 p-0l
v /

2 /
<
x , [4
o /
o /
- / :
A b\ S
\_\ 9
p
/f 8
\\ 6
A ¢-Ol
3
Q
al | A ALl a ,
/
/ :
A
< x\ v
~ Al /
0 A / M
S Tl A A—x 7 m
DI V.
m A A A Sdovse! A H..ol
a A\ S~ / o e b SdM | A
W N~ WO,.0IXSL=Y OE=S'SdONI—— Sd4I¥008A
x AVIIL3HO3IHL TVAINIWIHId X3
1 [ TTTTT T T T 5.01%2




"L y010V4 $SOT IHL 40 SANIVA TVLININTY¥3d X3

Q
b
~ ANY TVYOI113¥03HL N3IImLIg NOSIYYAdNOD 4G °'914
<
s VA
W Oxg _ol ¢.0l 4.0l 6.0l
27¢ 2
= by ¢ 2 68,96 vt ¢ 2 68,96 vt ¢ 2 68296 v € o2 4 o
]
2
< / :
5 i
5 \\ ¢
(@]
b
” 175 ‘
9
.
8
& £ ¢-Ol
o 3
w 2
N + m
N, o b
m // 4 *]
~ ) >
o /I 1‘ ‘1 O Av “ ¥ °
2 N e L
f— Sw, _ A% m
: S ysEe
& R 1| | [Wog.0ixgz=y0g=s ‘Sdowg— 293349 g
o IVOIL3H0O3HL IVINININIEX3
| | | 111 1 1 | | | |
2-0I%g

bt ' l '



Q Ol 4y019V4 SSOT IHL 40 SINTYA TVLINIWIY¥Id X3
= ANY TVOI1L13I¥03HL NIIMLI9 NOSIYVdWOD 9L2°91d
<J
s VA
wl
zz 0P8 o 20,06 b ¢ 2 ¢0si0c b ¢ 2 v-Oke,0c v ¢ 2 ¢-Ol
as 1 7 -0l
X /7
o /’ \
= AN L ]
| L )’ \ \%
| m / \
5 7 €
% / e v
" (%]
7 d °
Z d 8
” \\ y4 m-o_
| / ® 3
, /
, 4 °
| ' 2
” N\
N
‘ 7 ¢
W _M l/ —& |\Ivv\ b
W = Ny mm\w M
W S O T !
W W SdOX G © w,-o_
e IWWNIHIOSI ——— SdOM b O
i WO, OIXG2=Yy'0E=S 'SdINV{ | 1yavigY —— SdOM2E @
VDI L3H03H VINIWIEIX3
——— =S5S S55Saa— 501X2



°L yo12v4 $SOT IHL 40 SINTVA TVINIWI¥IdX3

Q
W ANY TVvI113403HL N3IImM13Ig9 NOSId4VYdWNOD PL°914
<{
2 21e4/°d
w,.0Ixg -0l ol _0l -0l
Z? 2 ¢ - , v S
z b ¢ 2 mmk.mmévm 2 68496 b ¢ 2 68,96 v &€ 2 .0l
X
o /
z A o o
w / 2
- A :
& 5 v
\\ §
W 9
4 .
8
6
v 4w m-o_&
N
II \' 4 , a
N \ 4 4
NG Y/ :
N ,
< VAPV .
0
: = 9
o AV et Sttt L
W v Sdod8 m
o . i . . SdoM €9 V ol
) WO..0IxGL= 0€=S SdONE9—— SdONGC W e-
o vII13H03HL JVANIWINIIXT |
(48
5.01%2




DL 40194 SSOT IHL 40 SINTVA TVINIWIY¥Id X3

m ANY 1V¥O1L3403HL N3IImLIg NOSI¥VANOD L7914
=
<
2 2147
.0l
2205, ¢ o 2Ogr00 v ¢ 2 m;o_mm%rwm b ¢ 2 To_mmnwm b & 2 s -0l
o TT i
X
2 /
: 7 N
m \\ ¢
T
|
14
g L :
9
/ L
{ 6
s ¢-Ol
~ : S
N n
// : , 5
]
/1 \\ i
174
N 1 G
© 9
o .
< 8
. L SdoX Ol O 2-0
g WO, OIXG'L=Y‘0E=S ‘SdON0l—— SdOM 8 ®
i IVOILIHOIHL IV LNININILXI
o
5.01X2




