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I ABSTRACT 

I 
I This report presents an analytical formulation for  evaluating peak 

pressures in thick targets impacted by hypervelocity projectiles of subnormal 
bulk densities at normal incidence. 
with available hydrodynamic computer program (PIC WICK) calculations for 
describing peak pressure propagation. 
aluminum target impacted by reduced density aluminum projectiles of 
densities 2.702, 0.9, 0.44, 0 .2  and 0.1 gm/cc. 

I The formulation gives good agreement 

Calculations are made for an 
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PEAK PRESSURES IN THICK TARGETS 
GENERATED BY REDUCED DENSITY PROJECTILES 

by J. F. Heyda and T. D. Riney 

General Electric Space Sciences Laboratory 

SUMMARY 

An existing analytical method for calculating peak pressures in thick 1 

targets impacted by end-on oriented cylindrical projectiles of like material 
at hypervelocities is extended t o  cover the case of projectiles of subnormal 
bulk density. Pro-  
jectile densities assumed in the study are 2.702, 0.9, 0.44, 0.2 and 0.1 

Projectiles and target a re  assumed to be of aluminum. 
I 
i 
I gm/cc. Two impact velocities a r e  considered, 20 km/sec and 7.6 km/sec. 

It is shown that the method gives good agreement with computer 
program (PICWICK) calculations which evaluate numerically the hydro- 
dynamic phase of impact at 20 km/sec with projectiles of densities 2.702, 
0.9 and 0.44 gm/cc. The method is then employed to investigate impacts 
at the lower densities, 0.2 and 0.1 gm/cc, and at the two impact velocities, 

pressure propagating into the target as a function of projectile density. 

I 
I 

I 
I 

I 20 km/sec and 7.6 km/sec in order to investigate variation in peak axial 

A t  20 km/sec it was found that projectiles of the same mass but of , 
differing densities will give essentially equivalent peak pressure profiles in 
the target for densities as low as 0.44 gm/cc. 
providing the projectile densities a r e  greater than some limiting density above 

This is still true at 7.6 km/sec 

I 0.9 gm/cc. 

The calculated initial peak pressures at the target surface at impact a r e  

I greater for the higher density projectiles for equal projectile mass and veloc- 
ity. 
axial pressure of the decaying shock for low density projectiles of 0.1 and 
0.2 gm/cc density exceeds that for  higher density projectiles (0.44 gm/cc 
and greater). 
strength effects in the target flow field and hence must remain tentative until 

The analytical model used in making the pressure profile calculations is 
strongly dependent on the form of the Hugoniot function used for the subnormal 
density projectile material. Thus, the conclusion is considered tentative 
until supported by an appropriate sensitivity study. 

However, after the shock has progressed well into the target, the peak 
1 -  

, 
l 

This conclusion does not take into account strain-rate and 
I. 
I supported by detailed computer program calculations that include these effects. I 
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INTRODUCTION 

The operation of a space waste-heat radiator, as well a s  some other 
spacecraft components, involves the rather lengthy exposure of large vul- 
nerable areas  to meteoroid bombardment in space. 
weight penalty associated with the armor or  other protective material  for  
these devices requires that realistic damage relations be determined to 
permit the development of efficient, lightweight meteoroid protection. 

The possible severe 

In the evaluation of the meteoroid hazard to space vehicles, an 
important area of uncertainty is the effect of the physical characteristics 
of the meteoroid on i ts  penetrating ability. 
important to l a r g e  components such a s  space radiators appear to be of 
heterogeneous, porous structure of low average bulk density around 0.2 
gm/cc (ref. 1). A t  present, no experimental data a re  available concerning the 
impact of heterogeneous projectiles of such low densities even at  the lower 
limit of the velocity range of interest, 7.6 km/sec. It has been speculated 
that impact damage resulting from such particles might not be the same as 
from solid particles of the same mass (ref.  2). 

The majority of the meteoroids 

Laboratory acceleration devices a r e  currently unable to achieve the 
typical meteoroid velocities of 20 to 30 km/sec even with well defined solid 
projectiles. 
geneous low -density fluffy projectiles appears well beyond the present state 
of the art. 

The laboratory simulation of hypervelocity impact by hetero - 

In view of the limited capability of experimental techniques in 
simulating hypervelocity impact by heterogeneous low -density meteoroid- 
particles, the Flow Analysis Branch of the Lewis Research Center has 
recognized the desirability of employing theoretical techniques in the In- 
vestigation of this problem. 

Theoretical impact programs using high speed computers have been 
developed to study the cratering of metal targets subjected to impact by sub- 
normal density projectiles of either homogeneous o r  heterogeneous structure. 
The programs, designated PICWICK, have been developed to solve the system 
of equations governing the visco -plastic model which accounts for  the inertial, 
strain-rate and strength effects in the cratering process (ref. 3). 
the strain-rate and strength effects a r e  neglected, the model reduces to the 
hydrodynamic model. 
a particle-in-ce11 numerical scheme and utilized only the internal memory of 
the IBM 7094. 
ical scheme as  PICWICK I but utilizes external tape memory to permit a 
larger number of cells in the computational mesh. 
crete  mass point representation of the material  in the second phase of the 
calculations is replaced by a continuous mass representation. 

When 

The original version of the code, PICWICK I, employed 

A later version, PICWICK 11, employs the same basic numer- 

In PICWICK I11 the dis-  

It i s  a purely 
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Eulerian scheme a id  permits over 2200 computational cells using internal 
I storage only. 

In the late stages of the cratering process it has been found that the 
particle -in-cell scheme does not give sufficient resolution of the flow 
process because of the discrete nature of the mass representation. 
continuous mass representation used in PICWICK I11 is thus best suited for  

strength and strain-rate effects predominate. On the other hand, a heter- 
ogeneous projectile configuration can best be described by the particle-in-cell 
scheme. Consequently, the numerical calculations w i l l  use PICWICK I1 to 
study the early stages of the flow process until the projectile has buried itself 

used for  initial data for subsequent PICWICK III calculations which will con- 
tinue until, hopefully, strength and strain-rate effects stop the flow process. 

I The 

I following the flow when the pressure pulse has attenuated to the point that the 
I 

I 

1 
I into the target. At  this point the field variables w i l l  be read out on tape and 

I 

Even in the particle -in-cell representation, the mass distribution 
within each cell used to describe the projectile material is assumed to be of 

material a s  homogeneous and heterogeneity occurs only in the cell-to-cell 
variations. 
would necessarily be treated a s  a homogeneous sub-normal density material. 
At  the other extreme, the projectile material may have no pores and would be 
represented by a homogeneous material of normal density. 

I 
I uniform density. Within each cell, therefore, the method treats the projectile 

A projectile material with a large number of very small pores 

\ 

In carrying out computer calculations with PICWICK I in earlier 
studies (ref. 4 ), it w a s  found that the local values of the pressure obtained 
fluctuated about the true values of the pressure due to the discrete nature of 
the difference scheme employed in the program and to the fact that the pres- 
sure is independently calculated at  each time cycle. 
calculated values of the velocity and momentum components a r e  more 
accurate since their values a r e  obtained by integrating the incremental 
changes over all the preceding time steps. 

On the other hand, the 

I 

I Fluctuations in the pressure computed from PICWICK I give rise, for 
example, to  a polygonal peak axial pressure-versus-distance profile in the tar- 
get which weaves itself about the t rue profile. Such fluctuation makes it dif- 
ficult to compare the response of a target to distinct impact situations involving, 
for example, projectiles of differing densities but of equal mass  and speed. To 
effect such a comparison would require a better resolution of the pressure 
pulse and its variation with distance. To this end an existing analytical 
model for determining peak axial pressure in a thick target (ref. 5)  has been 
extended to treat impact by projectiles of subnormal bulk density. 
considers the projectile to be homogeneous and thus treats the limiting case 
of many small pores and, for normal bulk density, the case of no pores. It 
furnishes a continuous curve of peak axial pressure a s  a function of shock 
penetration along the axis of symmetry for arbitrary impact speed of a right 

1, 
I *  

The model 

I 

~ 
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circular cylindrical projectile of arbitrary aspect ratio and density. Although 
the model assumes hydrodynamic flow, it is nevertheless useful in giving a 
preliminary indication of how reduced projectile density affects pressure 
decay in the target. Thus we shall see that for impact speeds from 7.6 to 
20 km/sec, two projectiles of the same mass and speed but with densities 
of 0.44 and 0.2 gm/cc produce noticeably different pressure profiles in a 
thick target. 
theoretical considerations and partly on empirical deductions from smoothed 
PICWICK I computer program calculations and as such can be used to  predict 
peak axial pressures independently of additional computer runs. 

It should be stated that the analytical model is based partly on 

The inputs to  the analytical model involve: projectile shape, speed 
and density; undisturbed target density and speed of sound; the Hugoniot 
values of the pressure, density, sound and shock speeds in the target at 
impact; and several parameters derivable f rom them. 
review and formulate the model in detail. 

In the next section we 

Since the Hugoniot values depend on the equations of state employed 
for  projectile and target materials, a separate section of the report  is 
devoted to equations of state and a method for making Hugoniot calculations 
is outlined. 
graphically. 

Results of such calculations are displayed both tabularly and 

The succeeding section presents the results of applying the model to 
specific impact situations involving normal and subnormal density aluminum 
projectiles and a normal density aluminum target. 
program calculations a re  also displayed for comparison. 

PICWICK I computer 

Conclusions which follow from a study of these impact situations a re  
then given along with a general discussion of the results. 
by a list of specific references to material cited earlier in the text. 

This is followed 
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ANALYTICAL MODEL 

In this section t Lere is presented a detailed description of the analytical 
model for determining the peak pressure back of the shock as it propagates in 
the target after impact. Part  A treats the case when the impacting projectile 
is of normal density; part B gives the extension of the model required for pro- 
jectiles of subnormal bulk density. 

A. Normal Density Projectiles 

Consider the hypervelocity impact at speed V of a right circular 
cylindrical projectile of radius L and length .t at normal incidence into a 
thick target. (Fig. 1. Definitions of symbols a re  given in Appendix A). 
For a short time tl  after impact the peak pressure of the pulse propagating 
into the target will remain constant at the impact Hugoniot value pi and the 
speed of propagation hi will also be constant. In the immediate vicinity of 
the axis of penetration into the target the shock front will be planar and the 
target material between it and the moving projectile-target interface will  
be a region of unattenuated pressure pi. Immediately after impact this 
region begins to be relaxed by a rarefaction front originating at the pro- 
jectile periphery. This front eventually attenuates the peak pressure on the 
axis at the point R 1  at time t l  since impact, where R1 = R i t l  (see Fig. l(a) 
where the situation in the projectile material is also indicated). A t  a t ime 
ti < t l  the rarefaction fronts will be tangent to the axis and the region of 
unrelaxed pressure pi in target and projectile is actually separated into two 
parts (see Fig. l(b) ). 
the original target surface at a distance equal to 

0 

. 

A s  shown in reference 4 the point R1 is located below 

1 - 
2 1/2 

R1 - [ c . ~  - x2 R ] 9 

1 i i  

where xi = po/pi is the compression ratio across the shock moving into the 
target and ci is the speed of the rarefaction front in the moving pressurized 
material. 
behind the shock at impact. 

Here po is the undisturbed target density and is the density 

Once the pressure pulse along the axis has passed the point R1 a rapid 
decline in its peak value and speed of propagation occurs. 
R > R1 the peak value p is determined from the Hugoniot function p(x), where 
x = p d p  and p is the density behind the shock at this  position. 
the-shock at position R may also be obtained as a function of X. 

by R we find from the Rankine-Hugoniot relations for the conservation of 
momentum and mass across the shock that 

A t  an axial position 

The speed of 
Denoting it 
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where u is the particle velocity behind the shock. [Velocities E; and u a re  
taken with respect to  the original target surfaceil Eliminating u then yields 
the result 

The peak pressure p a s  a function of R requires knowledge of R as 
a function of R. 
propagation speed as  a function of position is known a t  this time. 
tionship adopted here i s  based on the following heuristic considerations. 
When the rarefaction fronts reach R1 there is an intense energy release 
along the axial direction which occurs in a very short time interval and 
approximates a line blast. 
R < R l ,  is assumed to have, subsequent to the energy release, a speed 
equal to that of a planar blast wave. 
account for the strong axial gradient in the energy dissipation along the axis. 
However, the line blast effect diminishes the planar blast wave speed by an 
amount that is proportional to the speed of a cylindrically radial front. To 
follow this empirical reasoning we denote in Figure 2 the a r c  PG as a small 
section of the actual shock front adjacent to the axis an instant after the front 
has passed R1. If there were no energy release on the axis this front would 
be planar and along GC. From the figure we note that for 8 very small, 

No exact theoretical relationship giving axial shock 
The rela-  

The shock front, moving a s  a planar front for  

This assumption is made in order to 

6t = O P  = oc -PC 
= OG sec 8 - DE 

O G - F P  
= R - R s i n e ,  (R = OG) , 

Hence, the front speed in direction 8 is . - 
i i  = i t -  R s i n e ,  

which gives the de.composition into planar blast wave speed fi 
blast wave speed R . Now it is known from blast w a v e  theory 

ri = B / J m  0 ’  

. - 
R = D / R  = D / R  sin e , 

6 

(3) 

and cylindrical 
that 

(4) 



where Ro is the effective center and B and D a r e  constants. 
and (4) and lettbg 8 -  0 gives the axial shock front speed as 

Combining (3) 

D 
8 R 2 R 1  . B E i =  Go R - Ro (5) 

For  convenience we introduce new constants A, k which a r e  related to B and 
D by 

and rewrite (5) a s  

R = A  4k - 4k2 ] , R 2  R1 R - Ro 

Relation (7) supplies R as a function of R and combined with (2)  w i l l  
furnish the peak axial pressure in terms of axial position R. 
in terms of R it is convenient to take x as the independent variable. 
it we get p from p = p(x) and k from (2)  and (7), whence one plots p vs R. 

I For  plotting p 
Using 

I 

To determine the axial pressure profile in a specific case one must 
1 know the values of the parameters A, k, Ro. The parameter A, which has 

dimensions of a velocity, m a y  be determined by requiring the profile to have 
a point of inflection at R = R1. 
lost, however, i f  one approximates the physical process by a continuous 
curve with a continuous slope. 
leads to an explicit determination of A in the form 

I 

I 

In actuality it has a corner there: little is 

In reference5 it is shown that this assumption 
I 

A = k. f (@)  , ( 8 )  
1 

where f(8) depends only on the material properties of the target: 

51 - 448t 8P2 - 3 
f ( B )  = 8(1 - 8 ) ( 4 -  P )  

i 

and @ is in turn computed from the formulas 

d 
@ = 4d l  (1 - <) , 

dl = Pi/(Pi i. c 1 - X;lP;) 9 

(9) 



where p: (dP/dx)x= x. , etc. 
1 

1 

As Vo ranges over all hypervelocities of interest, the dimensionless 
quantity B varies f rom -1 to 0. 
tion beginning only with the third decimal place, being approximately 1.055. 

has dimensions of a length and can be regarded as 

The quantity f ( 8 )  , however, exhibits varia- 

2 The parameter k 
a measure of the average distance over which the line blast effect is operative. 
It i s  convenient for  generality to consider k in non-dimensional form, namely 

Once the dimensionless parameter K i s  known, k is then calculated from 

1 / 6  
k = K & ( + )  . 

For determining K use w a s  made of the hydrodynamic computer code 
program (PIC WICK I) solutions of the partial differential equations describing 
the impact generated flow in the target. 
(see reference 5 for a detailed report of the numerical work). 
put into the non -dimensional form 

This was done in the following fashion 
Equation (7) w a s  

0 
R R 

t 1 2 " -  l l - + - T  R 1' 
in which, for a given impact situation, 
A t  R = R1 we require 
this data point. We find 

A i s  known from equations (8, 9, 10). 

L 

R k = &.; thus 0 - can be evaluated f rom (13) by using 
1 

R R1 2 - - L = T + [  [ K2 (14) 

1 -  A 

R1 
For  a selected impact situation - is computed with the aid of (1) and com- L 
puter program data for the speed of peak pressure propagation alo?g the axis 
then furnishes many (R,  &) points. 
curve defined by Equation (14) gives an optimum fit to the (R ,  R )  points of the 
computer program data. 

K is then selected so that t.he R vs R 
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From a study of the computer program computations for many 
individual impact cases for like-material impacts of aluminum, lead and 
iron it was determined that K has the form 

-113 K = a v o  

where o! is a parameter characterizing the target material. 
dependence is principally on the sound speed co in the undisturbed material. 
In fact, it was found that 

The latter 

, (16) 113 a = 0.368 co 

so that K can be written as 

- 1 /3  

K = 0.368 (+) , 

where 0.368 is a dimensionless impact constant whose further identification 
must await future refinements of the theory. 

With the determination of K, the remaining parameter R is now 
0 

known from equations (13, 14), namely 

0 2K 
R 

L L 
- - 

1 -  

The time of arrival t at an axial location R of the peak of the pressure 
pulse propagating in the axial direction in the target can be obtained by in- 
tegrating the differential equation (1 3) and evaluating the constant of integration 
with the known data at point R The result is 1' 

R1/E 
t- t - =  2AK - 

L ki 

3 - i  

- K 3 (LnK t T) 20 . (19) 

This completes the description of the analytical model in so far as impacts 
with normal density projectiles a re  concerned. 
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I 

B. Subnormal Bulk Density Projectiles 
I 

To extend the model to be applicable to impacting projectiles of I 

1 

I 

I 

subnormal bulk density it is necessary to modify formula (17) for K. 
addition an appropriate model is needed for the Hugoniot equation of state 

function p(x) for a material of subnormal bulk density can be made to depend 
on the Hugoniot function of the corresponding normal density material. 
How this is done is considered in detail in the following section on Equations 
of State. 

In 

of the projectile material, p = p(x). The selection of a realistic Hugoniot I 

I 
I 

To determine K, computer program calculations using the PICWICK I 1 

I 
code were made for impacts of subnormal bulk density aluminum projectiles 
into a thick normal density aluminum target at an impact velocity Vo of 
20 km/sec with projectile densities of 0.9 gm/cc and 0.44 gm/cc. For  
each case the projectile size was taken to be L = .C = 0.26192 cm. In addition 
to these two subnormal density cases there is also available the computer 
program data for a normal density projectile of the same size and speed from 
the work presented in reference 5. 
for impacts at 20 km/sec of aluminum projectiles of densities 2.702, 0.9, 
0.44 gm/cc into normal density aluminum, a density factor was deduced for  
inclusion in  formula (17) for K given by 

I , 
I 

On the basis of these PICWICK I calculations 1 
I 

I 

1 t 0.15 (1 - 6 )  , (20) I 
I 

where 6 = subnormal density/normal density. 
is therefore 

The modified formula for  K 

~ 

K = 0.368 [ l  t 0.15 (1 - 6 1 (21) 

It is of some interest t o  speculate on the meaning of the factor (20). 
As was pointed out in reference 4 the impact generated flow i s  an energy 
dependent process and one would expect the dimensionless parameter K to 

density of the undisturbed projectile material. 
i s  pT co2, where pT and co a re  the density and sound speed of the undisturbed 
target material. The ratio may be written as 

involve the specific projectile energy E = - 1 pp Vo 2 , where p is the 
2 P A natural scaling factor here 

2 
E - _ - -  1 ', - = & 6  (&) , 

'T co 2 'T 0 0 
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whence 

I In view of (21) one would expect then that 

with the identifications 

const = *368 = 0.328 , 
6 s z -  

6-1 /6 
M 1 t 0.1541 - 6) 

The right member of (23), obtained by strictly empirical calculations, 
suggests the f i rs t  two terms of the binomial expansion of 

1 (1  - 6 )  t * e *  

-1 /6 . 
These manipulations would appear then to indicate that (21) is an approxima- 
tion to the form of K given by (22). In the present study the form (21) w i l l  be 
used, however, since it is based on direct computer program calculationa 

Emsoying (21) and an appropriate Hugoniot iunction p(x) for the 
projectile material one can now compute peak axial pressure profiles in 
the target, as outlined in part A, for projectile impacts of arbitrary sub- 
normal density projectiles. It should be emphasized that the profiles ob- 
tained will be strongly dependent on the specific Hugoniot function p(x) 
adopted fo r  the projectile material. The sensitivity of these profiles to a 
change in the form of the Hugoniot function is not, however, investigated 
in this report. 
Hugoniot function such an investigation would involve extensive computations 
which would more properly form the substance of a separate report. 

Owing to the complexity of other possible forms of the 
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EQUATIONS OF STATE 

In the computer program calculations for impact generated flow in 
the target, the equation of state employed i s  that due to the research group 
at Los Alamos (ref. 6). For a material of normal density po this equation 
expresses the pressure p as  a function of density p and the internal energy 
I per unit mass, 

I 

where 

and the coefficients a l a  aZ, bo, b l ,  bz, co, c1, Q0 a re  constants whose 
values a re  specified for  a given material. 
given for several metals in reference 5. 
in the gm-cm-psec system of units appears in Appendix B. 

Values of these constants a r e  
Their specific values for aluminum 

The analytical model described in the preceding section employs 
Hugoniot functions for both target and projectile. 
for the target material (normal density aluminum) is obtained in the usual 
manner by replacing I in (24) by 

The Hugoniot function p(x) 

I 

P 
2 

, 

which i s  the Rankine-Hugoniot relation for conservation of energy across the 
shock, and solving for p as  a function of x = p o / p .  
are  the pressure and density immediately behind the shock; Io and po , the 
energy and pressure for the undisturbed state a r e  taken equal to  zero. 

In this relation, p and p 

Before proceeding further with the explicit forms of the Hugoniot 
functions it is well to fix the notation to be followed. 
report only Hugoniot values of the flow variables will be used there is no 
need to distinguish values immediately behind the shock in either projectile 
or target from values well behind the shock. 
to denote Hugoniot values except at the instant of impact when a subscript i 

Since throughout the 

Thus no subscripts will be used 

12 



will appear. 
for the target medium and a subscript o will denote the undisturbed state 
before impact. Pressure,  density, particle velocity, shock veloFity and 
specific internal energy a re  represented by the letters p, p , u, R and I, 
respectively. V denotes projectile velocity. 

Barred letters wil l  be used for the projectile mediiiaz, qabarred 

0 

In obtaining the Hugoniot functions for the projectile material of - 
subnormal bulk density, p 
ratiott 

< p , it is convenient to introduce the "porosity 
0 0 

- 
6 = P O b O  

and the density ratio 

- -  
The Hugoniot function for the projectile material, which we denote by p(x), 
can then be obtained by substituting 

into 5 = f (j, 3 and solving for 5 as a function of < 
one to obtain an expression for the Hugoniot of a reduced density material 
from the equation of state for  the same material of normal density. 
mental verification of data obtained using this procedure is documented in 
a series of recent Soviet publications (references 8,9, 10). 
is the same as  relation (26) but writtenfor the projectile material. 
the correct internal energy behind the shock propagating into the projectile 
material. 

This procedure enables 

Experi- 

The relation (28) 
It insures 

-- 
Withthese notations the Hugoniot function p(x) turns out to be 

- 
= 26 

where 

13 



F2(z)= 69 - 2  x - - ( l - b x ) ( b  1 X 2 t ( 1  - x ) [ ( b l - b 2 ) x  - - t b 2 ] 1  , 0 2 0 

Bars a r e  not put above the material parameters a l ,  a2, etc. since the 
projectile - and target materials a r e  the same except for their equilibrium 
densities ( p  and po) .  I 

0 

If w e  denote the right side of (29) by H (x, 6 ), then in te rms  of this 
I 

functional notation the Hugoniot for the target material i s  written down 
directly a s  

p = H ( x ,  1) , O <  x <  1 , (30)  

so that (29) becomes identical with the target material Hugoniot a s  6 4 1. I 

To compute the Hugoniot values of pressure, density, particle 
velocity and specific internal energy at the time of impact it is convenient 
to write down the relations (in laboratory coordinates) for the conservation 
of momentum, mass and energy across the shocks which begin propagating 
in the projectile and target materials at this time. 
fashion for the two media we have: 

Written down in parallel 

TARGET PROJECTILE . - 
Pi = DO(VO - Ui)(V0 t iii) pi = Po ui Ri 

- 
i (1 - S G . ) ( V  t hi) = Vo - u 

1 0  
(1 -xi) Ri  = U. 

1 

Already incorporated into these equations is the fact that a t  impact pressure 
and particle velocity a re  continuous across  the interface, i. e. 

- - 
9 u = u. P i  = P i  i 1 

14 



Eliminating the initial shock velocities from (31) and 
we obtain the relations 

0 

By adding these relations and substituting H(Zi, 6) for p. in the first of them 
and H(xi, 1) for p. in the second, w e  obtain 

1 

1 

However, since 

0 

- 
Pi = Pi' we have the additional equation 

The simultaneous solution of (35), (36) yields xi and G. and their substitution into 
(34) then allows ui , Ii , I i , pi to be evaluated. 
for  computing these Hugoniot values has been written and used on the IBM 1620. 
The results of these computations a r e  displayed graphically in Figures 3 through 
7. 

1 - 
A simple iterative program 

Figures 3 and 4 show plots of the Hugoniot function (29) for  normal 
density aluminum and for the reduced densities & = 0.9, 0.44, 0.2 and 0.1 
gm/cc. 
impact of projectiles of these densities with normal density aluminum are 
indicated on the curves. A striking feature of the curves is their multi- 
valuedness for  This multi-valuedness in effect reflects a property 
which is characteristic of a porous medium, namely that it has negligible 
resistance to even a very weak compressive force, being collapsed to  normal 
density almost instantaneously. Hence for  V 
model for the behavior of a porous medium, &at the corresponding Hugoniot 
value is p = 

back to pass through the point x. = = = 1. 

Impact velocities corresponding to the pressures generated at 

> 1. 

. 
= 0 one expects, with this 

and thus the Hugoniot curves in Figures 3 and 4 will swing 
P O ,  

PO 

1 
B 

Figure 5 which i s  a crossplot of Figures 3, 4. shows the initial impact 
pressures as functions of the impact velocity. 
it appears that there is an upper limit to  the pressures achievable through 

For densities of 0.2 and less, 
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subjecting the material to very strong shocks. 
pressure is approximately 1.65 Mb. 

For = 0.1 this limiting 
0 

Figure 6 gives the variation with impact velocity of the density ratios 
and p / p ,  in the target and projectile, respectively. In the target the PlPO.  

density ratio p / p  
whereas in the projectile the corresponding density ratio F / p  decreases to 
a minimum and then increases. 
occurs at approximately Vo = 15 km/sec. For subnormal densities of 0.2 
and less, it is evident that extremely strong shocks wil l  not compress the 
material t o  normal density. A reason for this i s  supplied by Figure 7 which 
shows how the specific internal energies I, r behind initial shock fronts in 
the target and projectile materials vary with increasing impact velocity. 
wil l  be noted that I increases rapidly with Vo and particularly so for the 
smaller values of 
temperatures the projectile density 
of po = 2.702 gm/cc. 

increases monotonely as the impact velocity increases 
0 

For densities below 0.44 grx?/cc this minimum 

It 

. A t  such elevated values of 7 and corresponding high 
0 is kept well below the normal density 
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I RESULTS AND DBCUSSXQN 

I 1. 
impacted at hypervelocities by end -on oriented right circular cylindrical 
projectiles was extended to include subnormal density projectiles. 
puter program (PICWICK I) calculations used to aid in making this extension 
were for impacts of subnormal density aluminum projectiles into normal 
aluminum at an impact speed of Vo = 20 km/sec. (= 2 cm/p  sec). 
impact cases were run, one for a projectile density of 0.9 gm/cc and the 
other for 0.44 gm/cc, in each case the same size projectile being used, 
namely a cylinder of radius = length = 0.26192 cm. 
3 /  1611 diameter sphere). 

The analytical model for computing peak axial pressures in thick targets 

The com- 

Two such 

(Volume equivalent to a 

The peak axial pressure in megabars obtained in the PICWICK calcula- 
tions for the projectile density of 0.9 gmlcc is shown by the set of solid points 
plotted in Figure 8 a s  a function of the distance R (in cm) below the target sur-  
face. 
The analytical model furnishes the corresponding continuous pressure and time 
profiles, the dotted portions corresponding to the region of high unattenuated 
impact pressure up to the time when lateral rarefaction fronts finally relax the 
peak pressure on the axis of penetration. 
2.55 M b  over a distance of 0. 305 cm and a time of 0.25 psec. Forasolidaluminum 
projectile of normal density withthe same size and speedthe impact pressure is 
4.88 Mb (see Figure  3), a much higher value owing to the larger impacting energy. 
Figure 8 indicates a rapid decline in peak pressure, the pressure pulse being 
effectively dissipated within the first two centimeters of target material. 
time versus axial distance of the shock front advancing into the target is r e -  
plotted in Figure 9 on log-log paper, 
solution exhibits shortly after impact a linear variation in 
log t,  implying thereby an R,  t-relation of the form R- t . In general, 
one would expect for the log R,  log t-plot a profile curve of the type shown in 
Figure 10: initially, over the unattenuated pressure region, R = Rit ,  giving 
r ise  to the initial straight portion of the profile with slope = 1, the next portion 
covers the shock speed range ki > fi > co between the impact shock speed fii 
and the undisturbed sound speed co, in which portion the 2/3 slope is attained 
for a certain time interval; a s  the shock decays into an elastic wave one has 
the variation R = cot ,  giving r ise  again to a segment of slope = 1. The 2/3 
is of interest in comparison with that predicted by other analytical models for 
hypervelocity impact. 
instantaneous energy release giving rise to a spherical blast wave with self- 
similar flow be ind the front. For  such a model the R,  t relation assumes the 
form R - too’. For comparison the 0.4 slope is indicated in Figure 9. As 
is evident the (R,  t )  points from the PICWICK I computer program calculations 
show a distinctly different trend, being reasonably close to the analytic solu- 
tion proposed in this report. 

The encircled points give the corresponding times since impact (in psec). 

This pressure stays at approximately 

The 

This plot indicates that the analytic 
variables log R, 5% 

One such model (ref. 7 )  assumes a point source of 
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Computer program computations for  the 20 km/sec impact of the 
0.44 gm/cc projectile appear in Figure 11 along with the continuous profiles 
obtained through use of the analytical model. 
is shown in Figure 12. 
apply also to Figures 11, 12, namely the initial region of unattenuated pres-  
sure followed by a ra id decline; the shock penetration versus time variation 
of the form R - t'l'during the major portion of this decline; and the fairly 
good agreement of the model with the computer results. The impact pressure 
is 1.74 Mb, reflecting the smaller projectile energy associated with the lower 
density. The pressure pulse is effectively dissipated over the first 1.5 c m  
of target material. 

The R ,  t-plot on log-log paper 
The same characteristics observed in Figures 8, 9 

2. 
model for investigating the effect of a projectile's density on the pressure 
pulse which propagates into the target. 
was  reported in reference (4) where computations were made using the 
PICWICK I computer program comparing the flow fields generated by equi-mass 
cylindrical projectiles of aluminum of densities 2. 702, 0.9 and 0.44 gm/cc 
impacting a thick normal density aluminum target. 
of the projectile was taken equal to its length 4, and the impact velocity was 
kept at  20 km/sec. 
cm. In keeping with the equi-mass assumption, the reduced density projectiles 
were accordingly larger, the radii of the 0.9 gm/cc and 0.44 gm/cc projectiles 
being, respectively, 0.37782 and 0.47965 cm. For comparison of the flow 
fields generated by these three projectile impacts calculations were made of 
the total momenta of the flows both in the forward axial direction and in the 
outward radial direction. 
The agreement for  each of the momentum plots is quite remarkable. 
addition t o  these plots the magnitude of the peak axial pressure as a function 
of the distance below the target surface was plotted for each of these impacts 
in Figure 15. The pressure values f rom the PICWICK program a r e  of course 
much rougher than the integrated total momenta; nevertheless, approximate 
coalescence of these profiles is evident well above 0.3 Mb which is the estimated 
threshold pressure in aluminum below which strain-rate and strength effects 
become important during the cratering process (see ref. 4). This fact, together 
with the agreement in the total momentum plots of the three impact situations, 
leads to the conclusion that the density of the projectile has no essential effect 
at least f o r  the case of 

A principal aim of the present report is the use of a specific analytical 

An initial investigation of the effect 

In each case the radius L 

For the normal density projectile L was taken to be 0.26192 

These a re  shown plotted in Figures 13 and 14. 
In 

aluminum with density as  low as 0.44 gm/cc. 

3. 
pact effect of particles of average bulk density as low a s  0.2 gm/cc, a logical 
f i r s t  step would be to extend the computer program (PICWICK) calculations to 
projectile densities below 0.44 gm/cc and also for  impact velocities down to 
the lower limit of interest, namely 7.6 km/sec. 
but, owing to the finer resolution required in the calculations, the continuous 

Since, a s  discussed in the INTRODUCTION, interest centers about the im- 

This is presently being done; 
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mass code (PiZ-Jv'iCK X.U) w i l l  have to he gsed. 
lower densities and velocities a r e  not yet available. 

At this time results for the 

A preliminary investigation in this direction can, however, be made 
using the analytical model to compare peak axial pressure profiles for equi- 
mass  impacts at a given velocity as described above. 
an investigation are presented in Figures 16 and 17. 
used, in addition to the 0.9 and 0.44 gm/cc cases,  were 0.2 gm/cc and 
0.1 gm/cc. 
densities have radii L = 0.6238 cm and L = 0.7859, respectively. 
pleteness w e  list below the densities and sizes of the five impacting projectiles 
considered in Figures 16, 17. 

The results of such 
The subnormal densities 

Equi-mass cylindrical projectiles (L = 1)  of the latter two  
For  com- 

2.702 
0.9 
0.44 
0.2 
0.1 

0.2619 
0.3778 
0.4797 
0.6238 
0.7859 

1.0 
0.333 
0.163 
0.074 
0.037 

The impacts in Figure 16 a r e  for Vo = 20 km/sec,  those in Figure 17 for  
Vo = 7.6 km/sec. 

The peak axial pressures are plotted in Figure 16 as a function of 
distance penetrated below the target surface. Their early coalescence for 
the densities 2.702, 0.9, 0.44 verifies the computer program (PICWICK I) 
results shown in Figure 15, thereby lending some measure of confidence in 
the profiles displayed for the 0.2 and 0. 1 density cases. Indeed, this 
coalescence for 2 0.44 i s  quite remarkable. Thus, for projectile 
densities above 0.44 gm/cc it appears quite conclusive that a thick aluminum 
target experiences the same peak axial pressures for  different equi-mass 
impacts of a given hypervelocity beyond only a short initial distance into the 
target. 

0 

Times of arr ival  of the peak of the pressure pulse at given axial 
locations are also plotted for the five impacts in Figure 16. 
jectile densities 2.702, 0.9, and 0.44 gm/cc, the corresponding t ime 
profiles tend to  differ by a constant amount. Thus the curve for the 0.9 
impact is approximately .07p sec higher than that for the 2.702 impact and 
that for the 0.44 impact is about .15gsec higher. The same result was 
observed in the computer program (PIC-WICK I) calculations in reference 5 
where the values . 05 and . 12 psec were estimated by smoothing rather rough 
data. 
in relation to the computer program results. 

Fo r  the pro- 

This furnishes another measure of confidence in  the analytical model 
The time curves for the 0.2 and 

19 



0.1 density cases do not show common t'parallelism'' with the other time 
curves, as might be expected judging from the non-coalescence of the pres- 
sure profiles. 

Figure 17  shows the results of the equi-mass impacts at the lower 
limit of the velocities of interest, 7.6 km/sec. 
pressure profiles for the 0.2 and 0.1 cases are clearly distinct from the pro- 
files for the higher densities. 
and 0.44 density impact cases at about 0.2 Mb, which i s  already within the 
0.3 Mb threshold for strain-rate and strength effects. 
coalescence with the profile for the 2.702 impact i s  approximate only, occurring 
at very low pressure. Since the analytical model does not incorporate strain- 
rate and strength effects into its formulation, being entirely a hydrodynamic 
model, about all one can conclude here is  that the lower limit of subnormal 
projectile density to give "density effect independence" in impacts is  above 
0.9 gm/cc. However, the strong departure of the pressure profiles in the 
0.2 and 0.1 gm/cc cases from those corresponding to the higher density 
cases does suggest, as  in the 20 km/sec impacts, a higher level of peak 
pressure propagating in the target for  very low density projectiles of a given 
mass and impact velocity. 
axial locations R a re  also presented in Figure 17. The curves corresponding 
to the 0.9 and 0.44 gm/cc densities show a constant separation of 0.18 p sec 
and an approximate separation f rom the 
and 0.405 Fsec, respectively. 

Here, a s  in Figure 16, the 

There is coalescence of the profiles for  the 0.9 

Their additional 

The time profiles of peak pressure arr ival  at 

= 2.702 time profile of 0.225 
0 

It is apparent from Figures 16 and 17 that the pressure profiles for 
the impact cases involving the low projectile densities of 0.2 gm/cc and 
0.1 gm/cc a r e  separate and distinct from those corresponding to projectile 
densities of 0.44 and above. This is quite unexpected and contrary to  intuition. 
Since the analytical model used to compute these profiles is strongly dependent 
on the form of the Hugoniot function employed for the subnormal density 
projectile material, it is not possible to  say at this time whether this phenomenon 
represents physical fact or is a consequence of the specific model adopted for  
the behavior of the reduced density material under compression. 
settle this question one would need to  make a sensitivity study of the analytical 
model in which variations of the pressure profiles with changes in i ts  basic 
inputs would be considered. 

To help 
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GONC LUSIONS 

1. It has been shown that an existing analytical model which describes 
peak axial pressures in a thick target impacted at hypervelocity by a cylin- 
drical projectile of like material can be extended to  describe impacts by 
projectiles of like material but of subnormal bulk density. The peak pres- 
sures and their times of arrival at axial locations in the target a r e  in good 
agreement with the results obtained from a numerical solution of the defining 
partial differential equations through the u s e  of the PICWICK I hydrodynamic 
computer program for densities down to  0.44 gm/cc. 

2. Subnormal bulk density projectiles of aluminum of a given mass impacting 
a thick normal density aluminum target at 2 0  km/sec show no special density 
effect on the peak pressures propagating into the target for projectile densities 
of 0.44 gm/cc and greater. A t  7.6 km/sec the lower limit of projectile density 
for "density effect independence" is above 0.9 gm/cc. 

3. For the very low subnormal bulk densities of 0.2 and 0.1 gm/cc the 
corresponding projectile impacts, on the basis of the specific model adopted 
here for the behavior of reduced density material under compression, yield 
peak axial pressure profiles which a r e  separate and distinct from those ob- 
tained from impacts of equi-mass projectiles of higher density. 

4. 
of the Hugoniot function employed f o r  the subnormal density projectile 
material. 
evaluated before f i rm conclusions can be reached regarding the pressure 
profiles in the target arising from impacts by very low density projectiles. 

The analytical model presented here is strongly dependent on the form 

Its sensitivity to other forms of the Hugoniot function needs to be 
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APPENDIX A 

SYMBOLS 

A constant in shock propagation velocity eq. (7 )  

constants in equation of state formula (25) a l a  a2 

bo, b l ,  b2 constants in equation of state formula (25) 

constants in equation of state formula (25) 
0' c1 C 

B constant in eq. (5) 

C hydrodynamic sound velocity 

D constant in eq. (5) 

E specific projectile energy 

F Hugoniot function 

f equation of state function 

F1, F2, F3 

H Hugoniot function 

h 

auxiliary functions used in defining Hugoniot F 

function defining extrapolation of f along tangent line 

I specific internal energy 

k D /B 

L projectile radius 

E projectile length 

VL2 a 
- 
L 

P Hugoniot pres sure  

R axial coordinate 
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point of convergence of lateral rarefaction fronts R 1  

constant in eq. (7) 
0 

R 

t time since impact 

time for lateral rarefaction to propagate to axis ti 

1 time associated with point R t l  

U particle velocity 

V impact velocity 
0 

X 

tY constant in formula for K 

B constant used in evaluating A 

6 
- 
P / P  
0 0  

P I P  - 1 
0 

e off-axis angle 
P 
P undisturbed target density 

density behind shock propagating into target 

0 - 
undisturbed projectile density 

a? P I  
0 

@ constant in equation of state formula (25) 
0 

Subs c ript s 

0 undisturbed state 

i value at impact (does not apply to letter t) 

P pertaining to projectile 

T pertaining to target 

R dR /dt 

Ba r  above letter denotes corresponding quantity for the projectile material. 
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APPENDIX B 

EQUATION O F  STATE CONSTANTS FOR ALUMINUM 

( g m - c m -  1 sec) - s y s t e m  of units 

a = 1.1867 

a = 0.76300 

b = 3.4448 

b l  = 1.5451 

1 

2 

0 

= 0.96430 

c = 0.43382 

c = 0.54873 

b2 

0 

1 
Q = 1 . 5  

0 

0 
P = 2 .702  

Note: In the g m - c m - P s e c  s y s t e m  the unit of pressure  is the megabar. 

(It is useful to remember that 1 k m / s e c  = 0 . 1  cm/P sec. 
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- - - 

INTERFACE POSITION 
SHOCK FRONT/ 
IN TARGET 

Sketch showing the central volume within which the material 
i s  still subjected to the unrelaxed peak shock conditions. 
The times depicted are (a) 0 < t < ti and (b) t = t..  

1 

( b )  

Figure 1. 



D G  

Figure 2. Shock geometry for derivation of speed of peak pressure 
pulsc along axis of penetration. 
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Figure 5. Initial impact pressures as  functions of projectile impact velocity 
for normal and subnormal bulk density aluminum projectiles into 
aluminum target. 
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Figure 6. Dimcnsionless densities behind initial shock fronts in aluminum 
target and projectile as  functions of projectile impact velocity. 
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Figure 7. Variation of specific internal energy behind initial shock fronts 
in target and projectile with projectile impact velocity for normal 
and subnormal bulk density aluminum projectiles into aluminum 
target. 
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Figure 9. Log-log plot of shock penetration distance versus time since 
imp act. 

35 



LOG R 

Figure 10. Schematic of shock penetration profile. 
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Figure 12. Log-log plot of shock penetration distance versus time since 
impact. 
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Po= 2.702 

x Po= 0.9 
o P o =  0.44 

L = .26192 

Lt= -37782 

C = -47965 
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ALUMINUM 
V, = 2.0 CM/pSEC 

TIME AFTER IMPACT, t , (p  SEC.) 

Figure 13. Total forward axial momentum for flow fields generated by equi- 
mass, equi-velocity aluminum projectiles of indicated bulk 
densities impacting an aluminum target at 2 crnlpsec. for time t 
after impact. 
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Figure 14. Total outward radial momentum for flow fields generated by equi- 
mass, equi-velocity aluminum projectiles of indicated bulk 
densities impacting an aluminum target at  2 cm/Psec. for time t 
after impact. 
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Figure 15. PICWICK I computations of peak axial pressures in aluminum 
target for impacts at 2 cmlpsec of equi-mass aluminum projectiles 
of densities 2.702, 0.9 and 0.44 gm/cc. as functions of axial d i s -  
tance below target surface. 
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