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ABSTRACT

 The time-barmonic analysis of three boundary value problems con-
aining semi-infinite boundaries is presented. The first problem considered
s a parallel plate waveguide with one plate truncated and radiating into free
pace. The excitation of a dielectric slab and the excitation of an isotropic,
acompressible, plasma slab by means of a parallel plate waveguide with
ne plate truncated are the second and third problems analyzed,. respectively.
Joth TE and TEM polarizations are gonsidered in these open-region problems. E

" A function of a complex variable is factored in each of these Wiener- ‘
jopf type boundary value problems. The function is analytic in a strip and is
actored into a product of two functions. One of these functions is analytic in
! half-plan'e while the other is analytic in the adjacent half-plane with an over-
ap in the regions of analyticity coinciding with the strip. This factorization is
btained by a technique developed in this work.

The technique obtains the factorization for the open-region problem

Tom a function and its factorization that occurs in a related closed-region
sroblem. A closed-region problem is one whose transverse dimensions are
‘inite. The chosen closed-region boundary value problem yields a function of
2 complex variable which can be factored. The factorization of the function
for the open-region boundary value problem is obtained by taking the limit,: as
3 parameter approaches infinity, of the function and factorization appropriate
to the closed-region structure. By this means the factorization and hence the

solution to the open-region boundary value problem is obtained.




It is also found that the limiting piocedure may be used to obtain more
han just the open-region factorization. It is shown that the limit of the com-
rlete closed-region nolution becemel the open-region solution. Hence, this

rields one possible method for the solution of problems of this type.

:lude the average power reflected in the waveguide, the average power radiated
n the space wave, theiaverage power transmitted by the surface waves, and

he radiation pattern of the .lpa.cc wave.

Fad¥ied . .l

: The results of the numerical computations are presented. These in- R
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1. INTRODUCTION

The time-harmonic a.nalys.i.s of certain radiation and diffraction prob-
lems with semi-infinite boundaries requires solutions of the steady-state wave
equation aatisfying various boundary conditions. This class of problems is cAon-
ventionally formulated in terms of the Wiener-Hopf technique, that is, at some
point in the analysis a complex variable equation is solved by analytic continua-
tion. An exhaustive discussion and numerous illuscrations of this technique may
be found in Noble [1958].

Difficulty with the Wiener-Hopf technique is encountered because a ‘fac—
torization of a function of a complex variable must be made. This function of a
complex variable, -vhich is analytic in a strip, mus* be factored into a product
of two .functions. One.iunction of the product is analytic in a half-plane while
the other is a.né.lytic m the adjacent half- plané. with an overlap in the regions of
analyticity coinciding with the strip.

In this work a C-R beoundary value problem will refer to a closed-region
boundary value problem (one whose transverse dimensions are finite; see Fig. 2,
for example). An O-R boundary value problem means an open region boundary
valu= problem (one in which radiation may occur; see Fig. 1, for example),

The factorization in the case of a C-R boundary value problem may be
obtained by using the infinite product expansion of an integral (entire) function’;
see for example Titchmarsh [1932]. This results from the‘f.act that the function

is a ratio of two integral functions. The function to be factored in the case of an
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'vmal factorization procedure, for example Noble [1958], may be made. How-

ver, as usually occurs with such procedures, specific results are ‘difflicul'tﬁ to

RO -3 PR

btain except in a few simple cases. ‘
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- The possibility of attacking an O-R boundary value problem through_‘ a
elat;d C-R boundary value problem, which by its nature is easlier to uulyze. |
as been suggested and attempted to a limited extent by various authors. Noble
1958] expressed interest in knowing how far the results for a parallel plate

uct (semi-infinite parallel plate waveguide) enclosed in a larger parallel plate
‘aveguide, with a finite (but large) spacing between the plates, could be used to
PProximate the results near the mouth of the parallel plate duct when radiating

a unbounded space. Talanov [1959], desiring the analysis of surfave wave
aunching in a dielectric slab backed by a perfect conductor by means of a semi-
afinite parallel plate waveguide, enclosed the O-R structure in a larger parallel
late waveguide. This procedure reduced the O-R structure to a C-R structure,
[e then analyzed this C-R structure and calculated the desired field quantities

or increasing values of the spacing between the plates of the parallel plate wave-
uide, He suggested that the results obtained for the C-R structure are in the :
imit, as the spacing between the plates of the paralle. plate waveguide becomes
arge, the results of the O-R problem. Mittra and Karjala [1964] showed that
he expression for the reflection coefficient of a parallel plate duct enclosed in a

arger parallel plate waveguide yields, in the limit of the waveguide walls ap-



proaching infinity, the expression for the reflection coefficient in the duct when
radiating into free space. Mittra and VanBlaricum [1965] numerically calcu-
lated the reflection coefficient in the duct enclosed in the larger parallel plate
waveguide and showed that the numerical values approached.' as the spacing of
tke plates of the waveguile became largs, the known numerical value of the re-
flection coefficient for the duct radiating into free space. Mittra and Bates
[1965] used a limiting procedure to obtain an extension pf the function-theoretic
.‘ 1 _
technique introduced by Whitehead [1951]. The limit, as a dimension became
infinitely large, of a certain function that occurs in a related C-R problem gave
the desired unknown function necesaary in the O-R problem. The mode match-
ing technique was used in that analysis.

The extension of a C-R boundary value problem solution to yield the
solution of an O-R boundary value problem is expected 1.{ one takes into account
the physical phenomenon occurring. For example, corluider a source in a par-
allel plate waveguide where the medium has a slight lolss. At any location A
within the waveguide the field is made up of two components: a direct wave from
the source and reflected waves from the boundary. The magnitude of the re-
flected waves at A, as the spacing of the waveguide walls approaches infinity,
would :pproach zero due to the loss in the medium. Therefore, point A would
see only the incident field in the limit. That is, we are left with a source radiat-

ing in an unbounded region. The idea of a slight loss in the medium is not re-

strictive. When the analysis is completed the loss is permitted to be as small




desired, in fact, zero. The inclusion of the loss is usually used regardless
he method of solution of these problems.

This work determines a method by which the O-R factorization may be
tined from a related C-R problem. The method i.ﬁvolvu a limit, as a pa>
aeter approaches infinity, as suggested by the physics of these problems.

3 chosen C-KR boundary value problem yields a function of a complex variable
ch can be factored. The factorization of the function for the O-R boundary
ue problem is obtained by takinj the limit, as the transverse dimensioa ap-
aches infinity, of the function and factorization appropriate to the chosen C-R
ucture. By this means the factorization and hence the solution to the O-R
ndary value problem is obtained. |

It is found that the limiting procedure may be used to obtain more than

t the O-R factorizat;on. It is shown that the limit of the complete C-R solu-

" 1 becomes the O-R solution. Hence, this yields one possible method for the
ution of problems of this type. This is a rather useful method as the C-R so-
on is ust;ally r;adily obtained,

Obviously there is more than one possibility for the choice of a C-R
ucture., However, the results obtained for the O-R structure are unique since
O-R scsl,g}ion is a limit point of the C-R sgolutions. This result is expected
m the physics of the problem which implies that the field reflected from a
ndary that is receding to infinity in a lossy medium will be zero in the vicin-

of the source. Hence, the boundary condition satisfied by the boundary that



hat recedes to infinity in the C-R structure is immaterial,

Thke first problem discussed is the analysis of the fields associated
vith a parallel plate waveguide having the top plate terminated (semi-infinite).
The solution is obtained in closed form and thus the method is clearly demon-
itrated. The factorization is verified by reference to the solution for the
ields of a parallel plate duct obtained by Noble [1958], since the function to be
‘actored is the same in each problem. The launching of surface waves on a di-
slectric slab with a relative dielectric constant greater than one by means of a
semi-infinite parallel plate waveguide is analyzed. Solutions for both TE and
TEM excitations are obtained. Numerical results for the power reflected in
:he waveguide, power irapped in the surface waves, power radiated by the space

wave, and also the radiation pattern of the space wave are obtained for various

parameters, The power results for the TEM excitation are compared with
those obtained by Angulo and Chang [1959] who worked with the formal factori-
zation procedure and the differences in the results are noted, The final prob-
lem analyzed is the case where the dielectric slab is replaced by an incom-
pressible, isotropic, piasma slab., This gives the possibility of a relative di-
electric constant less than one. Again, numerical results for the power reflec-
ted in the waveguié}ej‘,‘ power radiated in the space wave, and the radiation pat-
tern of the space w;.ve are presented for various parameters. No trapped
waves can occur in this case.

The boundary value problems investigated here are formulated by a

e v e A a— st

i

RS

S A oo S el - W,

. e o




6

-

method used by Jones [1950] as opposed to an integral equation approach. Four-

ier transforms ;re applied directly to the partial differential equation and the
i;ompl_ex "varhbi:equation is obtained without the use of an integral equation.
ﬁe i.n‘t;gral equation approach would lead to equivalent reiult- as the intejral
equation would be of the Wiener-Hopf type; see for example Morse and Fesh-
bach [1953]. Jones' method also has the advantage that the application of the
edge condition, Meixner [1954], which is necessary in this type of problem, may
be clearly applied. |

The usual method of calculating the fa;' field is by means of saddle point
integration. However, the problems considered here are such that the far field
pattern may be obtained more directly by using an equivalent Huygen source in |
the aperture., The far field pattern‘ is then related to the Fourier transform of
this aperture distribution and in these problems becomes an evaluation of a

function on an interval,



2. RADIATION FROM A TRUNCATED PARALLEL PLATE WAVEGUIDE

2.1 Formulation of the Problem

The first problem considered is a parallel plate waveguide with one
plate fruncated (semi-infinite) and radiating into free space. The structure is
shown in Fig. 1. The incident field, in the parallel plate waveguide section of
the .tl:ucture. is taken to be the TEM mode with the magnetic field intensity
parallel to the walls of the structure. The case of a TE incident field is not
discussed in detail as the function to be factored turns out to be the same as in
the TEM case. However, the TE case can be obtained from section 3.1 by set-
ting the relative dielectric constant (A ) to one.

The incident field is therefore the lowest order TM muode.

: -thz e
Hy ™ © ; osxsb (2.1)
We wish to find the electromagnetic fields which satisfy Maxwell's equation and
the necessary boundary conditions pertaining to this structure with a source as
given by (2. 1).
Maxwell's equations for a medium with loss and the time convention cho-

sen are

vxH=kiae re)E , VxE=% wp, H (2.2)

The loss is due to the conductivity ( &, ) of the medium. From (2.2) it can be

21 .
*%x g time convention
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Fig. 1  Parallel plate waveguide with one plate terminated.




shown that the magnetic field intensity must satisfy

s H +kRA=o0 (2.3)

where
' .
" k= (0'pee, tiwpes) = k +1 k2 (2. 4)

with kl > 0 and k, > 0. Since the incident field is independent of the y-coordi-

2
nate and the entire structure is uniform with respect to the y-direction,the total
field will also be independent of y. Therefore the solution of (2. 3) is equivalent

to solving the two-dimensional wave equation for the scalar potential ¢ K

S I4s +k e, =0

3 x* d 2t (2. 5)

All the field quantities are derivable from ¢ ¢ by letting
Hy = Pt (2.6)

J 3.
Ex= Tme€.—s) 32 2.7
Ey = - —1 LS 2.8
Z "ag,-g) 3= (2.8)
Let

b= 0 r b (2.9)

where ¢i is the incident field and ¢ is the scattered field. Obviously




10

. ~tkz
B ‘¢‘=e ; osxsb , V2 (2. 10)
,, di= o 5 bsx ,VZ (2. 10. a)
wnd ¢ must jatis;y.
. |
ﬂ + .3'.1 -+ kz = O
ax*  oz* ¢ 2. 11)

The following boundary conditions on ¢ ¢ and hence on ¢ may be ob-
tained by recalling (2. 6) to (2. 9) and the fact that the walls of tae structure \' e

perfect electric conductors:

.a):_:;tﬂo at x=0,VZ = %%3'0 at z=0 ,VZ
b)i}::oxt z-b,Z)o#?_fso at z-b,z>o
X X

c) ¢ continuous atx=b, z & 0 =
t -ihz
$(b+o,2) — $lb=0,z)= € y Z &o ‘

where

Pplbto,2) = ¢(z,z)!x= b+o

xmbto= b+ ¥ where ¥ is arbitrarily small
d) iﬁ continuous at x = b,V Z %%@_"AQ = 3’9(5"% z)
ox . X

x=b+o

where aé(bm,z) - Dé(xg)
X

oz
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e) ¢t and hence ¢ must be decaying waves since a loss has been in-
cluded as pu(Z + z")v"—-» ® for xX2b and for
2<0,; o¢x<b.

f) ¢ and |v¢l satisfies the edge condition, Meixner [1954], as the
edge of the plate is approached, that is, ¢ goes to zero as

f-l/zand IVM as z-l/zforx=b. z=0-T.T-Pa .

Define
a=c+2 7 | (2. 12)
-] .
&(x,a) = §£x,¢.) + $ix,a) -'VJT_F.S, ¢x,z) e““dz (2. 13)
@® .Gz
§xa) = T-7'-=‘5"' § bix,2) € dz (2. 14)
. (] * 2z
Fex,@) -1-1;_-7,“( dex,2) ' dz (2. 15)
-
| ! ) @ iz
Bzz) = Q_(::,c:) + Q&) ";';—,p_j;%},g& e dz (2. 16)

From the behavior of ¢ (x, z) for any given x as z > e it can be deduced that
ﬁkp) is analytic for 77> -k, and §_(x,¢) is analytic for 7< k,. Hence
Q(z,c.) for any given x, is analytic in tue strip -kz< 7< k,.
The boundary conditions (except e), in view of definitions (2. 12) to

(2. 16), may now be written in terms of transforms as
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a.l) Jlox)=o
C ' :
*;b.l) gib.',o,‘) = é-:b-o)g) = 0
; _ i
(oD Bbeee) = BLoo®) = - aeTh
P Al §;'(b+a,¢) = 3(b-o,)
le, Q.,fbl" -~ ¢"- 3s < ——+=® for 7> -k
and Bbx) ~ g/ as @~ for 7 < ky
~ (Abelian theorem given in Noble [1958] ). ,
’ -l €z
Multiplying the wave equation (2. 1) by (2w7) € and iptegrat-

i:;g from oo to @ with respect to z gives

d8xa) _ \* Fixa)=o

Tz (2.17)

with |
Y= (k)" = =i (Ka)" 2. 18

. The branch cuts used in (2. 18) and shown in Fig. 2 have been chosen so
" that Ybas a positive real part when -k, 7< kz. General solutions for
§€x,¢.) satisfying (2. 17) a..< in a form convenient for applying the boundary

conditiono are

Bx,0) = Al) Cosh(vz) +C@) Sinh(vz) ¢ oSz <b (2.19)
B(x,a) = B(x) éYz 4 D(a) e*% ) bsx (2. 20)

The solution for ¢(x, y) is obtained, once the unknown functions A, B, C, and

D are found, by using the Fourier inversion integral
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2 21/2

Fig. Z Choice of branch cuts for Y= (a -k ) and the contour

used in the Fourier inversion integral.
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. Q'Pl; -2z J
(%,Z ) = (x,2) € (-
¢ ! ﬂ“?-ﬁ-ﬂr (2.21)

fact that §(x,¢) is analytic in the strip requires that the path of integra-
be in the strip, that is, in (2. 21) -kz< r el kz.

The boundary condition (e) and the fact that Y has a positive real part
-kz £7L kz requires D(@ ) to be set to zero. Likewise boundary conditien

) requires C(& ) to be zero. Now at x 2 b we may write

i.(.b-o) + §ib"ﬂ) = n Cosh(\fb) (Z. zz)
-Yb .
Bere)+ Jbta) = B < (2. 23)
' '
g (b-c) + §+(5 “o)= Y A Sinh(¥b) (2. 24)
} ' ~vb
§-(h+o) + iib‘l‘d) .=y B ) (Z. 25)

» that the @ in the argument of the functions in the above equations has not
1 written for convenience and will not be if it does not lead to confusion.
‘ever, @ , A, B, and Y are still functions of & . Boundary conditions
) and (d. 1) show that §3b+o).§.{b—°) and is now defined as Q:Sb) .

t is,

i |
86 +0) = QL(E-O) = (o) (2. 26)



15

and also
@'ibcro) = Q"{b—o) = o (2. 26. a)
Using these facts in (2. 24) and (2. 25) yields
| §_'_(b) = YA Sinhiyb)=-YB c—Yb (2.27)
The two unknown functions A and B are obtained by solving for the unknown
le) .
Define

D, = §§_b+0) - Q._(b-o) (2. 28)

which is obviously analytic for 7 > -kz. Subtracting (2. 22) and (2. 23) and

using (2. 27), (2.28), and the boundary condition (c. 1) yields

1
Dym —i _ o(e) (2. 29)
i (@ - R) b(a+k)(@—k) L)
where
-Yb ~
L= & Sichlve) (2. 30)

Yb
The function L has branch points at k and -k and (refer to the definition

of ) L is analytic for -k2< 7L kz Therefore, L may be factored into the
product L L_ which bolds in the strip. The function L_ is analytic for 7> -k,
and I, is analytic for 7< k.. This factorization is the d-Ificult step in this
class of problems and it is obtained by a limiting procedure as discussed in sec-
tion 2. 3.

Let




«E@) +Ef) = 1(atk) L& | (2.31)
: Bw) =B +E8 ¥z (a=-k)
th
Es)= fi?z':a‘a‘:_”__ ; analytic for 7<k, (2.32)
Dt T(a+p)Lie)-2kLK); analytic for 7>-k (2.33)
TZ8 (a-R) * Py 2

ultiplying (2.29) by (L, (@) ). (a+ k) and using (2.31), (2.32), and (2.33)

ves

'
b
D, (ati) L) —E(®) = Elo)~ NCETYINT (2. 34)

hich holds in the strip -k, < 77 < kz. The left side of (2. 34) is analytic for
> -kz and the right side is analytic for 7 < kz. Therefore, one side is
¢ analytic continuation of the other and they may both be equated to a function

(@) which is analytic over the whole & - plane.

\
R(b) -
D, (a+k) L@ —E@) = B@ - —2=5 wey J(@) (2. 35)

he application of the edge condition gives the unknown function J (& ). The fac-

)rization obtained in section 2. 3 shows that L+ (a) bf}x:;:.'es as q.-l/z for

1/2
/ as a»x, 7 £ k,. The edge

.~ , 7>-k 2

2 and L. (&) behaves as @

-1 !
ondition (f. 1) shows that Dy behaves as @ a8 @+ , 7> -k, and ® (b)

-1/2 < ies
ehaves as & / as g+»®, 7< kz. The definitions of E_ and E+ given in (2, 32)
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and (2. 33), respectively, show that E behaves as g as ¢+, 7< kz and

- z o
E+ behaves as & 1/ as A+, 7> -k,. Therefore J(&), which is analy-

2
tic in the whole of the & -plane, behaves as a-l/z as qe®o, 74 kz and
as a-l as @+ ®, 7°> -k.. Hence from the extended form of Louiville's

2
theorem, for example Hille [1959], J(a ) must be identically zero, that is

ﬁ'ga) = bE@ (a=-k) L) (2. 36)

Use of (2. 32) and (2. 27) gives

A (x,a) = Ala) Cosh(rx) = b2k Lik) Li@) Cosh(¥x)

fzm v Sinh(Yb) (2.37)
-Yx . Yb—YX
B(x,a)=Blw) € = __ipzkliRle (2. 38)

Tz Y

The formal solution is obtained by inverting (2. 19) and (2. 20) and may be writ-

ten as

o+t 7T

-az
i Ax,a)€ da 3 o&x<h
¢(x,2) = 5= .‘L-nr' g (2.39)
@'f'l.f _ia.Z
= e Bix,a)© da; b
P092) = 7 -Sauir t . (2. 40)

with -k, £ 7" < k, in (2.39) and (2. 40).

2
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2 Choice of a Closed-Region Struct\;re
| The Iactorization of L{a), given by (2.30), is obtained in section 2.3

o

!y hking the lixnit. as a parameter approaches infinity, of the function and fac-
nrisaﬁ;nwwhich occurs in a related C-R problem. The C-R structure should
rield a function whose factorization is obtainable and the limit of the function,
18 the transverse dimension approaches infinity, should be the O-R function
2.30,

It should be pointed out that it is not necessary to resort to a C-R
structure to accomplish the factorization, It is certainly possible to intuitive-
.y choose a function which may be factored and be such that some sort of math-
smatical limiting froceu on the function will yield the O-R function, The
choice of a C-R structure seems to be the easiar choice to make and has the
idded advantage that all mathematical results must be consistent with the phys-
ical phenomenon.

The chosen C-R structure for this problem is shown in Fig., 3. The
thoice of a related C-R structure is not unique. The one chosen here is con-
sidered to be the obvious one, that is, the simplest way to convert the O-R
structure to a C-R structure. The O-R structure is obtained from the C-R
structure by the limit of a, ¢ —» 0o while maintaining a - c=b

The solution for the electromagnetic fields inside the é-R structure

is formulated in the same manner as for the O-R structure in section 2.1. The

o>nly major change is in the boundary condition (e) which must now be
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Fig. 3

Chosen C-R structure coriesponding to Fig. 1.
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e) %ﬁ;out z-a,VZ-’ 99‘—'0 at x=a,V2Z

or in terms of transforms
e.1) Q'(a., <) =0
‘his change will be reflected in the general solution for @ (x, x)inx2>2b,
2at is, (2. 20) will now become
Px,0) = B@) Cosh[yla-DQ+ D) Sinh[¥(a-x); bsx ga(2.41)
uplicating the arguments u-§d in section 2. 1 will then give the follov&ing re-
ults:

Ca) =D =o (2. 42)

= Ala) Cosh(yz) = 3 (k) K (=) Cosh (¥x)
Cix,a) a) Cosh(yz ST VL) | (2. 43)

- “J o izk KSR K@) Cosh(y(a-n]
Déx,e) = B@ CashY(a ) izk L4 P et X o 18

= - hiYb h re)
K@) = K (o) K@) _Sm.:__LE;;'Lh (va) (2.45)

vhere K(a ) is a ratio of irtegral function. Note that K(a) is actually mero-

norphic with poles at
2 z'/,_ m2_ 12 Ve B
a.st(k—("-az)) _:z((-”;-)—k ) (2. 46)
ind hence is analytic in the strip -kZ 7T <& kz. K(a.) is factored into K+(<L).

malytic for 7> -k, and K (a), analytic for 7" <& kz in section 2.3, The
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-1/2
asymptotic behavior for K+(a.) is chosen such that K+(d.)~ a - / as K->=o00

for 7> -kz and K_(a)~ a:l/z as @a-»oo for 7 <& kz. With these condi-

 tions the formal solution for the C-R structure is given by

@7

-taz
$x,2)= L S Crale da; osx=<b
T asir (2.47)
Plx,z) = | D(x,x) € da : bsxso
) ﬁ-wﬁr' , / (2. 48)

with -k, <7< k, in (2.46) and (2. 47).

2,3 Factorization Obtained by a Limiting Procedure on the Function Appro-
priate to the Closed-Region Problem

A formal solution for the EM-fields of the structure shown in Fig. !
is obtained once L+ and L_ of (2.30) are found. This factorization will be ob-
tained by talking the limit of K(@.), given in (2, 45), and its factorization. Re-
call that we are interested in a factorization using functions whose common re-
gion of analyticity is the strip -k2 <7 (Imaq)<L kz and whose product is L{(a)
for values of @ within the strip. This strip of analyticity for L{(Q ) is also the
strip of analyticity for K(a. ). Also recall that Y as defined in (2. 18) has a .
positive real part for @ within the strip. Hence, for any @ of interest

(within the strip), the limit, as suggested by the physics of the problem, gives
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L Lim K = Lim {ssnk(vt_ﬂ Sinh (ve)
| e ot :jf'_’b" Y Sinh (¥a)
Lm‘ Ky = _sJ_nLime - bl@

. b &,c»a (2. 49)
, ‘a-c=b
e
L (Eerime arime ) =Yb

Sinh(ve) =iLim J& -e = € (2. 50)
D Sirhlra) 2CI0 | Jarime @GetTe

4

ause Y= o’,_-i-i?z" with % > © for any & within the strip. Thus, the
ction to be factored for the O-R problem is the limit, as given by (2. 49), of
function to be factored for the C-R problem. This fact enables us to obtain
factorization o)f L{a )} by this limiting procedure.

The factonzatlon of K(a), given in (2. 45), may be realized by using
fact that K( d.‘) is a ratio of integral functions. Hence, K(@) may be ex-
:¢sed in terms of infinite products from which K-}( ¢.) and K_(d.) may be con-

riently extracted. The results are

-X(a)
Y=|Sinlkb) Smlkcﬂr (""F")e ][Tr('+ ]e © (2.51)
R Sinlhe) -
-8 L
[‘ﬁ"(l-c- %\e ]

K@ = K{-a) (2.52)

eres {
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aE-) - s (eat)” @5

2 2 a 2 2 va

o= (-2f) ) M= (K- () 2.5
he exponential factors are inserted in the infinite products in order to make
.em converge uniformly. The function X (&) is chosen to be analytic and to
ake K+(CL) behave as ¢-1/2 as @-»® for 7> -kz as required in order to
2 able to solve the Wiener-Hopf equation for the C-R problem. The function
X (<) is obtained from a knowledge of the asymptotic form of K+(¢). The
symptotic form of the infinite products is obtained by comparing them with

e infinite product

(2. 54. a)

m L}
Q

,:r.'.—. (‘ + an+b ) = -
here r' (a.) is the Gamma function and [' is Euler's constant. The asymp-
itic form of (2. 54. a) is obtained by the use of Sterling's formula. Since each
finite product in equation (2. 52) behaves in the manner of

= iex + O0) (2. 54. b)

b

v large n, their asymptotic form may be obtained from (2. 54. a) to yield

Ka) =4 E";'(%) thh(@)] +aZ C oy + & - 1'(..) (2. 54. <)

The function )X (&) results in K +( Q.) behaving algebraically for the

slution of the C-R problem. However, when merely using K(a.) to obtain the
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O-R ftctorisation it is not necessary to include this term. Its inclusion does

leld to thc poslibility of obtaining the O-R solution from the C-R solution as

L wm be dincuned in section 2. 5.

expres

(4) and hence K (d.), without including the X (&) term, may be

sed in an alternate form. This will prove to ‘be advantageous when lim-

its are to be taken. In particular, one can write

S ab 1
{
K-lg;) - Em (LQ Slh(hc) o Tl' (|+%)eﬁ'—’. o eH « (2. 55)

with

where:

and

k :‘n(h&\ n=sl

1
Ha) = Lim -L_i i-F(d.,w\ 7(«:) dw

N 2T (2. 56)
—_— & ' .
T G oo R s M
1 ' |

R (@) Fe(w)

a)Fl(w)ha.l simple zeros at %Jr; N=1,2 ) cee

b) Fz(w) has simple zeros at IIOJ! ) n=i)2, <o

'y dFw 'y . dFRw
C) Fl-(“’)" d‘ ’ Fz\(‘o)" 1%—

d) 3 in the contour shown in Fig. 4 with o< r<& /e ) r< €< k,_,
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BRANCH CUT FOR
Va

‘Imiw) T od

w - PLANE

Relw)

.

-k

Fig. 4 Contour used in the representation of K+( a ) given by (2. 55).
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Nr<d<(n+ [as]+1) T
The functions, Fl(u) and Fz(m). may be identified with the functions
hich, when set to zero, result in the characteristic equations which give the
;.nsver'e wave members for the regions b< x< a, z >oandog x5 a,
< 0, respectively, in the C-R structure, Fig. 3. In this particular prob-
n
Fl(w) 2 Sin (wec) (2. 59)
Fz(u) = Sin (wa) (2. 60)
That K (@), given by (2. 55), is the same as K (@), given by (2. 51)
ay be verified by integrating (2.56). For any @ with 7> -k, the integrand
. (2. 56) is analytic with respect tow in -kz <Imw < kz except for the simple
>les at the zeros of Fl(@) and Fz(w). In this case Fll(u) and Fz'(u) do not
ive any poles within 3 . Using the calculus of residues one obtains equal-
y between (2. 51) and (2. 55).

The expression for Hl( Q) may be expanded further by integrating

.ong the path of integration. That is

L]

d+t€ o+i€ c+r2(E-r) Y (1—2 c
(- f +f +0 LS 45
d-2& d+ie o+16 » ol (¢=¥) o-i .

ow

"YNh means the largest integer in Nb .
c c
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o+tle-r) 0-2€

+ § -0
ot+ie o-t(e-r) (2. 62)

because the integrand is an odd function of w.

Also
‘g - fes‘,,., = Qn<l+%.)—%'(1—1)= ° (2. 63)
and
d+ie
~
a-‘-fz'.é 3 (2. 64)

because the integrand behaves as u-z for large w.

Therefore
H“"“zq'r {, f((,g-ii)3(§-—i€)"7c(d,§+i€)3(54‘?'.&)]6!! (2. 65)

1
where € is any positive number such that 0 < € < k?.' that is, H (<) is inde-
pendent of € . A useful representation for K(& ) is now available and may be

written as

[y + He-ay]

K@= S _Lﬁb_ﬁf_l___m.(hs)_ e
Sin(ka) (2. 66)
with Hl(d.) given by (2. 65).

A representation for L(&) for any @ within the strip, -k2<. 7L kZ'

and from which L and L may be chosen, is obtained by taking the limit of




L]

56) a; a, c>-> o while maintaining a-c=b, The limit of the left side of

56) for values of « within the strip is given by (2. 49), that is, bL(a.).

[ 4
2hb
‘.l..airn’.é;n.(_h-ﬁ)_ - (2. 67)
otcup Sinlka)
llet ~

H(e)= Lim Htas
a,c-co

Q-caub (2, 68)

e function f( & , w) is independent of a, ¢ and the function g(;:;.i € ), for

s problem, is

a(g;ie) = cC'os[ccg:;i,g_):l - a Cos [3(§$i6)] (2. 69)
Sin(c (g 7€) Stn [a.(5 F2€)| )
nce

Lim 3(3:%&) - xtb

Rptodoria (2. 70)

fine
L 1]
Gly) = L) Lim  g(g—ie) — Lim  qglg+ie)

ac=b ot mb . (2. 70. a)

m
Y 1
H) = g 'FCG-,O-’) Gw) dw 2. 71)

Ww=o
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here
Gl(u) =z -b/m : (2. 71. a)
It is interesting to observe the physical significance of (2. 70. a).

A, and A

1(m) given by (2. 70. a) is equal to the difference of A 1 2

1 ;nd AZ.

re the inverses of the spacing of the zeros of I-"l(u) and Fz(u). This is ex-
scted if one had worked with the infinite product form of K(& ). The natural

igarithm of K( @) would convert products over n to sums of logarittms over n.

ne could then change the summatior to a sum over ar/a and nw/c, that is, the
{

eros of Fil(m) and Fz(w). As a and c approach infinity, 'w"= ﬂg and w’,',: Lg_r_
ould approach continuous variables w and u?. Also, Amn = n/a and Awln =
/c would approach & and &', In the limit one would obtain
[ J
f -
W ——— - w
u:o-F(a) [Au{" A wn ’ (2. 72)
at
l
{ - \ - e ——
AOJ%. B Wy ™ (2. 73)

omparing (2. 72) with (2. 71) justifies the interpretation of Gl(w).

This method could have been used but it is not as convenient or as suf-
ciently general as the representation given by equation (2. 55) when analyzing
w0Te vdi.fficult problems as in sections 3 and 4. However, it does provide a
heck on the limit of g(;; 1€ ). The difference of the inverse of the spacing of

1e zeros of Fl(w) and Fz(w) can be calculated for increasing values of a, c,

T R v— - W 4PN RPIR T WP Ko IR TR
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ieéb, and the result should ippro;ch the expression obtained for Gl(u),
(2. 70, a). The check in this case iltnml as the zeros of F () and F,(w) are
ob¥ious. A |

The limit of (2. 66) and the results giver in (2, 49), (2. 67), and (2. 71)

show that L{a ) is : : T

skb [H@+ H(-2)]

Lz)= Sin,'\tYL) €@ o e (2. 74)

with H(@.) given by (2, 71). The choice of L+( &) may now be made as

| vza "‘%n"l:r i% +Ha) |

and

L() = L_‘(_"¢) (2. 76)

The range of analytxclty of L+(a.) can be deduced from ﬂ;e regions of analytici-
ty of the infinite product and H(@.). The imaginary part of fn, (2.53), is great-
er than kZ and hence the infinite product in (2, 75) is analytic for 7 > -kz.
The function f( &, w), (2. 57), satisfies the conditions of theorem A, page 11,
Noble [1958] and also restated in the Appendix. Hence H(a) is analytic for

2 and L_(d.) is analytic
for 77 <& kz, the desired range >f analyticity. The product of L +(¢) and

7'>-kz. Therefore, L+( &) is analytic for 77> -k

L_( a.) is obviously L{&.).
The functions L+(a.) and L (@) can be arranged in a slightly different

form which is preferable for numerical calculations.
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Vo,
P -g& - 1, H@)— H-a)
L(q‘)-[LL L-(d?* = I[,(Iﬂ-%)e " R Sinh(rb Y . e[ = ]
- ']'_\".(\"“‘)e{mh A (2. 77)

In this section eqt.atxon {2. 77) will aot be used but its form will be used in sec-
tion 3.

Enauation (2. 71) may be ir .egrated to obtain H(&) and hence L (&) in
closed form. The nature of H(@.) in equation (2. 71) may be obtained once tte

following integration is periormed.

©
% \__«
affo En (, ! (K- ‘*‘")Vg (K- ‘*’;)V;J du (2. 77. a)

Consider the function Q(a, w)

- a k(e
Qla,w) w|n(l+ (h‘-w‘-)"r—) 2 |n( h—w)

JEE {{E=E-w)

l’?.
2__2.
— (=) ) @+ o

(2. 77. b)
The branch of 1n (k ¢ w) is chosen to be in the lower half plane and the
branch o; In (k - @) is chosen to be in the upper half plane. Hence for any .,
sucl that 7->-kz, Q (&, w) is an analytic function of w fcr the Im (w) =

The derivative of Q (@, w) with respect tow for any w in this range is

AAU) = 1+ ) = ey
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refore, the integral (2. 77. a) becomes
¥ | ' .
- ik _ Y
Quw)| =-ia +iE - iy In(£55) 277, &)

hence

Hl@) = z_q_l,s__y In (g-_EI) +igb —‘i.};k C (2.78)

i) TR e

L (a)= L. (-a)and X(-a&)= -X (&) The principal determination of

(2. 79)

logarithm is used, that is, ln (1) = 0. The unknown factor, exp. E-X (G.ﬂ.
:h must be.ana.lytic in 77> -kz. is added so that the asymptotic form of

2 ) is algebraic. The algebraic behavior of L+(CL). and hence L. (@), en-
:s algebraic behavior of J( &) and hence its determination in equation (2. 35)
he extended form of Liouville's theorem. '

For large &L in 7> -kz. we have

thY ‘h(ﬁﬁi) ~ ik I (?'l%) (2. 80)

asymptotic form of the infinite product may be found by the use of equa-

(2. 54. a) and gives

a T—‘n’
(H'F;) € (2.81)
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where [7 is Euler's constant, Therefore if X (@) is chosen as

xom 88 [0+ h( 3]

(2. 82)
then
V2 _ab
L$"[S‘“{“L]) g e™ .
ofigrhegy) - 19 L]
(2.83)

-1/2
with L+(d-)~ a / as g for 7 > —kz. The function L (&) = L+(-d.)

1/2

with L-(a..)~ q,‘ as q-»0® for 77L& kz‘

2.4 Solution of the Problem

The factorization given by equation (2. 83) and the transformed field
quantities given by equations (2.37), (2.38), (2.39), and (2. 40) permit the de-
termination of the field quantities of interest. The scattered fields within the
waveguide are given by

ore”

¢(z,z) -Mf
' LA N

' -z
Léa) Cash (fx) e da ‘olx<h, Z>0
Y Stk (YD) J ’
> (2. 84)

with -kz <7< kz. Since z > 0 and the integrand has no branch cuts in the




34

lowor lnl.f plane, the path of integration may be closed in the lower half plane.

The solution for ¢ is then obtained by using the calculus of residues, for ex-

AR T R Y b e

unple. the rellection coefficient, R, in the waveguide is given by the residue
at @k
g - " R2-12®-=-1%(x) (2. 85)
- - + + o
Higher order reflected modes are available by the same procedure. Note
_that once @ result as given- in equation (2. 85), or those following in this section,
- are reached k may be taken as real and equal to ko. This may be done because

kz is infitesimally small compared to k1 and the evaluation of a function at k

is equivalent to its evaluation at k1 = w'\fp:e-:‘ = ko.
The fields for x> b and hence the radiated field is given by equation

' (2. 40) with Bl (x,& ) given by equation (2, 38), Thg function Bl(x. S~ ) has a
branch cut in both half planes and hence little is gained by closing the contour

| by an infinite semicircle. The radiated fields, asymptotic behavior ofw ¢ given
by equation (2.'40), is usually obtained by an integration procedure known as
the saddle-point method, for example, Morse and Feshback [1953]. However,
in this class of problems the use of equivalence theorems for fields, for ex-

ample, Deschamps [1962], will prove to be more direct and convenient. The

~ field in the aperture is given by

Srer -taz
(bto,2) = S B(bade da: VZ '
¢ * E?‘4+ir' , ’ (2.86)

Recall that Hy (b+o, 2)= ¢t(b +o0, 2)= ¢(b + 0, z). Therefore, .HY in
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e aperture {s given by equation (2. 86). The equivalent electric surface cur-

rent in the aperture is given by

_ A * %
T=iaA=2xH ) =2 dlbrg2) S(x-b)

(2. 87)

The actual far field is equal to the far field due to the equivalent electric cur-

rent 2J. The vector potential due to the current 2J is obtained by knowing

the asymptotic form of the Hankel function Ho(z) (k of ) as described in Har-

rington [1961] and gives

® a0 - -
-2 Lvr
A=< a/ ﬁf S P(b+o,Z,) 6 ~b) el i'¢lzz dx,
- z”'_' Z,_s-o X'_"-ﬁ )

where:
- A
k-ltofosle)z +L,-S'|'n(9)§ =kzZ +kx£

/ - (11._’_22)'/2.

Integrating (2. 88) with respect to x, gives
2I-H."o ~tkbSin(8) 3 s z, o7 —iaz,

A= r f ot B(b,a) dc.) dz,
{;:f.' 2.8 Z =-ce -—o+¢1"

and hence

(2. 88)

(2. 89)

_ (2. 90)

(2.91)

(2. 92)

#% §(x) is the delta function.
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B e BT 2 T IR STt
P

ST +thp—2kb Sinls)
l‘_ﬁ‘e.:§+t"f 2leb Si ,B‘(b,—lr.C’asO)

! f (2.93)
n Maxwell's( eqﬁationl we obtain
t Hgﬂ—ik.HS:n(ﬂ)
3hP =t X ~ihb Sin@)
HymB et —2E ~RESE R b o) e Sine) |
3 f;_:' " 2 2.94)

In this problem HY in the far field is

. - f - [ . 9)
-2 tie,b Sinl
. e‘l'" ¥ .-’E . LL:.‘.“-) e Lk, Cos.@) (2.95)
P
0<6< x,

The real power reflected in the waveguide and the real power radiated
1e¢ space wave are obtainable once the number of modes propagating in the
eguide are known. If the guide dimension and frequency of operation are
jen so that only the TEM mode can propagate, the results are:

'3 - - Z -
malized Reflected Power = W__ = |R| “ = |L+(kof (2. 96)

normalized power radiated is given by the Poynting vector.

w
- -
malized Radiated Power = wrad = i—‘:-g ExH ‘fﬁ de (2.97)
=0

.¢ the incident power is kob/w e . Now
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C E."‘f-@ Hy

o 2

Woaa = 4§ | B -RCs 0) im0

de

(2. 98)
\ this problem (2. 98) becomes
W,y = &2 ]L(h,)\z §' | LCk, Cos o)\z de
T e ¥ | (2.99)
The radiation pattern as a function of @ i» giver by
Mgl = | Bt,~h, Cos @) « Sino| 13

nd in this problem is proportional to

| Hyl = | Lk, Cos o) (2. 101)

The numerical value for Wr ’ wrad. » and the far field patterns are

ef.
iven in section 4. Some of the equaticns in this section have been obtained,

rith sufficient generality so that they will apply ir the analysis of the problams
n section 3,

In this section L+(¢l-) and hence L (@) were available in closed form.
lowcever, this is not always feasible as the integration usually cannot be carried
ate ace L+(q.) is obtained in clor ed form, for example (2. 83), the loss may
)@ reduced to zero., Setting & 1 to sero results in kz =0, kl = ko 3 «NF:;;‘, .

[ucreiore, when ¢, =0, k=k_ in(2.83). The path of the Fourier inver-




a8

b integral used in (2. 39) and (2.40) wken dl is greater than zero is shown
Fig. 2. Tkis path must be indented when the loss approaches zero, that is,
m k —> ko the contour is shown in Fig. &.

The equation for L+(<r.) must be interpreted in a similar manner as

Fourier inversicn integral when tkhe loss is reduced to zero. For example,

L) used in (2. 75) and defined by (2. 71) becomes, when k—> kc;,

-9 a.
e SR =~ A
h the contour 5 1 given by Fig. 6. However, no use is made of the inte-
1 form of H{a.) given by (2. 71) and (2. 102) as the closed form is available.
he more difficult problems, discussed in the f?‘;}pwing sections, the integral

m is used and the contours of integration must be interpreted as discussed

e.

Comments on the Method

The factorization obttained in section 2.3 for L{a.) can be verified by
erence to the protlem of the parallel plats duct discussed by Noble [1958].
: function to be factored is thke same in each problem. A comparison of the
torization for L, giver by equatiur (2. 83), with Noble's solution, shows
t they are the same, Hé obtaired the factorization not on L{ d.) directiy but
2 function related to L(a.) and bv use of a formal factorization procedure.

The form of L+ obtained by means of a limiting procedure on K,

f
1
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Im(w)
BRANCH CUT FOR
w-PLANE [ LAY
ek, ek, [coan'oun z,

A Re (w)

Contour used in the integral representation of H( @ )
(2.102), when k—e=k .
o




41

2. 66), proved advantageous because of the generality of Hl(a.) given by equa-
ion (2. 56).. In the problems discussed in section 3 it will be seen that g(w)

:ha.ngés for the various problems and not {(&, w). As already mentioned, a

e

‘heck on the limit of g(gi i&) is available because it is equal to the differ-
mce of the inverse of the spacing of the zeros of the characteristic equations

?l(w) and Fz(w). The form of Hl(a.). equation (2, 56), also applies to certain

i g Mg o NI sy

ther geometries involving coupled waveguides. It is found that in these cases

[N

he form of (2, 56) remains unchanged. One needs only to substitute the char-
\cteristic expressions for Fl(w) and Fz(u) appropriate for the particular geom-
:itry under consideration. For example, this method of solution should be applica-
slefor analyzing radiation from a semi-infinite circular waveguide. The above
liscussion brings out a strong similarity between cylindrical and parallel plate
vaveguide problems that may not be apparent without a close look at these prob-
ems.

The form of L+ given by equation (2, 77) will also prove convenient
vhen numerical calculations are attempted in section 4.

The C-R problem has been used primarily to generate the O-R factor-
zation. However, the relationship between these two problems may even be
nade more general. If the asymptotic form of K_(&), namely X(&). is included

n (2. 55) and hence in the limiting process, \.;: obtain

L K= P L
Q=Cmb
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This follows from the fact that the limit of the asymptotic form of K +( &) be-
comes the asymptotic form of L+(¢). That is, for K+( a.), the X (&) is

given by (2. 54. c¢), namely

:«n--“" [""(%)""""(gﬂ"'m-m{ Q‘_ +— - ‘1")} (2. 104)

The series involving the terms a and 1( o 2y be expressed as

F‘, (w) dw

A duw - f
... :?TT{ W F ﬁ “Fw) (2. 105)

where Fl and Fz are given by equation (2. 59) and (2. 60), respectively. The
contour 2 2 is the same as the contour 2 shown in Fig. 4, except that now
MI < d<(MH)IL . Likewise S , is given by Fig. 4 with MIT <d

< (M+1) .Tc_r .» Integrating along the contours gives ( € is set equal to r)

M—__- [ _ \
AR Wb e S

M -3 € i‘-‘ i
| o i Fl- Jw F-z dw
2me { S R - w? f K=ot F
w=o0-26 Vso+i €
MT-i€ ‘ T +i€

L h dew + ! A dw
fe*-a* Fi - F, (2. 106)

ymo-ig Vmo+l €
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w a and c—> oo but so does M such that M/a == > and M/c —~« , Hence

. may write as a and c become large

MT /o ML
( 3 f o dw - < duw
nai\a, qr.rEf‘wz 1 T{kZ~ w? : (2.107)
wano ) '

nce

|
.:. ('%z.‘.\' ?(':) = Z'"i' [" I (z%.j) —€ ,"(z%ﬂr)J +z117' In =2 k) (2. 108)/%

ierefore, (2. 104) becomes as a, ¢ —» w ; .
1

}

]

i, X@=--ig [_5 (- 68) + b L [t - 24
C=b M

LRERN)

uch is x (@) for the O-R structure as can be seen by comparing (2.109)

3

s

il
~.
IR

e

(2.109)

L e T

th (2, 82).
The fields for 0 € x < b involves the Fourier inversion of Al(x, <),

ven by equation (2.37) for the O-R structure, and of Cl(x. a. ), given by equa-

m (2, 43) for the C-R structure. For any @ within the strip and any 0< x<b,

e e e

e limit as a, c—»a , while a-c=b, of Cl(x, @) is Al(x,‘ £ ) provided (2. 103)
true. That is, K+(¢) includes the term X («) which makes it algebraic

the proper half-plane. Hence the fields in 0 € x < b for the C-R structure
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;pproach. in the limit, the actual fi;lda of the O-R structure.

This establishes, for example, that the reflection coefficient for this
chosen C-R structure converges to the value of the reflection coefficient for
the O-R structure. Indeed, this is what Mittra and VanBlaricum [1965] re-
ported.

Likewise, the limit of Dl(x. & ), given in (2,44), for b £ x< a and
a withi.n the strip is equal to Bl(x. a.), given in (2. 38), Therefore, the
fields for b€ x<a in the chosen C-R structure approach, in the limit, the
fields for the O-R structure for b < x (a goes to infinity on the limit). This
establishes that the O-R solution is a limit point of the C-R solution in all

space, Therefore,O-R field quantities may be obtained from the correspond-

ing C-R field quﬁtities by a limiting process as suggested by Talanov [1959]

and Mittra et.al.[1966].
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3. EXCITATION OF A DIELECTRIC SLAB BY MEANS
OF A TRUNCATED PARALLEL PLATE WAVEGUIDE

3.1 TE Excitation of a Surface Wave Structure

The excitation of a dielectric slab by means of a parallel plate wave-
guide with one plate truncated is analyzed in this section. The surface wave
structure is shown in Fig. 7. The relative dielectric constant of the slab (K )
is assumed to be greater than one and hence the possibility of the structure
supporting surface w;ves. The incident field in the waveguide section is taken
to be the lowest order .'I'E mode with the electric field intensity parallel to the
walls of the guide. A slight loss due to finite conductivities (dl, dz) is as-
sumed in each region. However, when the final solution is obtained this loss
is permitted to approach zero.

The TE polarization is described in detail in sections 3.1.1 to 3. 1.4
as opposed to the TEM excitation. The details of the formulation of the prob-
lem for the TEM excitation follow closely those in section 2 and only the perti-

nent differences and results are given in section 3. 2,

3.1.1 Formulation of the Problem

The total electromagnetic fields are obtained by solving the scalar

wave equations for the scattered scalar potential ¢ « Defme.

b = &+ ¢ 3. 1)
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'

' 3-7’//{/ (377

Fig. 7 Surface wave structure excited by means of a parallel
plate waveguide.
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| -14Z
¢, = Sin(lrf) e’ ; otxsb | NVZ .2)
Ya, y
2 2 . 2 2\'2
i ("a" (’E)) - ‘(({;’)”kd) (3.3)
’2. 2 . Ve, . k
"a'/c (‘f’f'°5o*"--}éﬂﬁ) - kptiky (3.4)

with k3 >0, k4 > 0. Note that the parameters are chosen so that (Zﬂ/b)2>

2
Rekdz > (w/b) . This ensures that the lowest order mode propagates in the
waveguide and that the dielectric slab is excited. The scattered scalar poten-

tial (P is given by the solution of

& + a.z'_é +h:q‘>=-o ‘ 0<x<b (7. 3)
dx* d z*+ |

Yo + ¥d tk d=0 ; bsx

),‘_z \Lz

(3.6)
The constant k is given by equation (2.4). The electromagnetic fields are ob-

tained from

Ey= e £

H, = _{“‘_’P; ¥ (3.8)
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PL.Y

!
Hzg{w e 00X (3.9)

Deiinink Fourier tr;nsforms of 4) by equations (2. 12) to (2, 16) re-

duées the prolilem to the solution of .-
2 2
d 3= _Y P(xa)=c; osxs=b (3. 10)
d x*
2 _
A 5@ Y dlxe) =0 béx (3. 11)
d=*
where:
2 V2
Y, = (a*—ky ) (3.12)

and Y is given by equation (2. 18). The asymptotic behavior of 4) (x, z) re-
sults in Q) (x, o) being analytic for 7>-Min(k,, k 4)""" and E-(x,x)
being’ analytic for 7~ < Min(kz’ k 4).

Reference to Fig. 7, equations (3. 7) to (3.9), and equations (2. 12) to
(2. 116) gives as the boundary conditions on @ (x,a)

a) Q‘.C, Q)= lC

b) Q}-"’*o‘d‘) = Q*_(b-o,a.)- Q;"bl 1)= o

c) &_(b-fo, <L) = Qi_(b-o) a)= 3 \b

' ) .
d) I_U:‘IO)GL) - Q_(b—o) a) =‘/?-{1 b :{'_"—S

** Min = Minimum value of
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o Fh,~a” as a—a for 7< Minlhy,hy)

.Q.(b,d‘" C;..Vz as a—+o for T > =Min (kg_)‘u)
+ .

+1/2

Boundary condition (e) reflects the fact that Ey = @ and l,~ z atx= b,

A
g - =0, ¥

A solution of (3. 10) and (3. 11) in a form suitable for the application

of the boundary conditions is

Bix,a)= A Sinh(Yx) + C@ Cosh(¥x); o<=x<b (3.13)

-Y% Yx

dix,e)= B@de +D)e ; bEx (3. 14)

Recalling that Y has a positive real part for any & for -k2< 7< kz and the’
~ fact that we are seeking decaying waves at infinity requires that D(Q.) be zero.
Alsc boundary condition (a) requires C(@.) to be zero. We may now write at

x = b, using boundary conditions (b) and (c),

-Yb
@) = Aa) Sinh(Yb) = B e (3. 15)
' 1
B (b-o)+ Pb+o) = A@ V. Cosh(Yib) (3 16)
! ' -YL .
8 (bto) + ﬁ*(b‘ro) =~ Bayyvye oin

A solution for §(b) will yield A(@ ) and B(Q.) and hence a solution for
Q(x. Q. ) and a formal solution for ¢(x. z)

Define
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' -\ '
D= ® (b+a) — P(b-o) (3.18)
-+ -+
' ! -1/2
and therefore D+ is analytic in 7°>-Min(k,, k4) and behaves as . / as
Q>0 in 7 > -Min(kz. k4). Subtracting equations (3. 16) and (3. 17), using

the boundary condition (d), and the results in (3. 15) gives

D.:_ - BB i%;? 2

L(a) b (a.-a) (3. 19)
where: v
L) = Sinh (vib)
Y Sinh(¥,b) +Y, Cosh{Y.b) (3. 20)

The function L(a) has branch points at k and -k, the branch points of
Y . Choosing the branch cuts for Y as was done in section 2, (2.18), and

shown in Fig, 2, results in L(c) again being analytic in -k, < 77 k,. This

2
function must be factored into a product L+ L . The function . L+ is analytic
in 7> -kz and L- is analytic in 7°¢ kz. Again, this factorization is the diffi-
cult step. The factcrization is obtained in section 3 . 1. 3 by a limiting proce-
dure. The method is similar to the one used in section 2.3 and gives the fac-

torization in a form convenient for numerical work. Multiplying (3. 19) hy

L+(c1) and rearranging yields

L(a) (3. 21)

DL L_ga.) — E.ﬂt_a) =— (1G] + EBE@

where:
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C.( ‘)g-'f.f'“' é L_Ld.) 3.22
Iz Bia-pn (3. 22)
@=_rm 3L ]
E@ “-'? Llasg) (3. 23)
E) ==--/-?' b(’;_/&) D—.ﬁ.&) “-}F'ﬂ (3. 24)

Obviously E‘(a.) is analytic for 7 < -k4 and E+(cL) is analytic for 7 >
..Mi.n(kz, k4). Therefore equation (3. 21) holds for -Min(kz. k4)< TL
Min(kz. k4). The left side of (3. 21) is analytic for 7> -Min(kz, k4) and the
right side is analytic for 77< Mi.n(kz. k4). Therefore, one side is the analy-
tic continuation of the other and both sides of (3. 21) may be set equal to J(&.),
which is analytic in th'e whole Q -plane.

-1/2

In se~tion 3. 1. 3 we will find that L+ and L- behave as a. in

1

7’>-k2 and 77 kz. respectively. . Therefore, E ( @) behaves as a. for

. - - . t 3 -
»< k4 and E+(¢) behaves as @ for 7> Mm(kz. k4). Using these re
sults in 3. 21 shows that J(a@ ) behaves as a.'l for 7> ‘Min(kzo k4) and
alsc for 77 < Min(kz. ‘k4). The extended form of Liouville's theorem proves

that J(@. ) is zero. Hence, we obtain

A @)= A Snh(1z)= - T _ﬁiﬁ_;\;f“; jfa\; g"‘) (3. 25)
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~Yx . Yb-Yx |
Biza)=Baye ’--}/.j!—.—' FAR G G~ (3. 26)
“ b (d-."'p|)
. 1d the formal solution as
o417 iaz
P2z [ Al &  daj oxs b (3.27)
-+t 7T
- a+iT Y& '
' xz) = f Bli,@€  da; bsx (3. 28)
(ALSRE
-+ 7

with -Min(kz. k4)<7'< Min(kz. k4) in (3. 27) and (3. 28).

3.1.2 Choice of a_Closed-R egion Structure

The chosen C-R structure is shown in Fig. 8. The formulation of
this problem is identical to that of the O-R problemn in section 3. 1.1 except
for one importuI;t change. The boundary condition which required decayil;-g
waves at infinity now becomes

N Q. a)=o0
This results in the following equation, corresponding to (3. 14), as a solution
of the wave equation (3.11), l’
Jx,a) = B Sinh [Y(a—z;) + D@ Cas‘nE\’(a.—z_)) ; bEX< o (3. 29)

Following the method of solution as outlined in section 3. 1.1 gives
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Fig. 8 Chosen closed-region structure corresponding to Fig. 7.




| C;hpé~ﬂw53nk(w:)=—€ 2 K@IK@) Sinh (1 x) (3. 30)

b (a~a) Sinh (Yb)

D(*)Q)-B(d.‘lgnLVY(a-z)‘_\ =—{f’ : Kle) K&) Siuk&(a-xﬂ_
| N b (173.) Sinh (ve) (3. 31)

atir w:az
, \ = .
¢’~1,Z)=_ri-—ﬂf ‘ C',(x,a.) e dd.) o< x<b (3. 32)
-©+27
. R < a.
@(%Z) ’15_—"(‘ D, (X)G.) < JCK ) bex< - (3.33)
04T

with -Min(kz. k4) LT Min(kz. k4) in (3. 32)- and (3. 33). The function K+(a.)
is analytic for 7> -Min(kz, k4) and behaves as a‘l/z with g—+00 for 7>

-Min(k k4). K (@) is analytic for < Min(lsz. k4) and behaves as a..l/z

2’
with g-+@ for 7 < Min(kz. k4). The product K+( ) K_(c.) is equal to K(Q)

in the strip.

K@= Sinh(YL) Sinh(Ye)
Y Sinh(¥,b) Cash (ve) +Y; Cash (Yib) Sinh(Ye) (3. 34)

The function K(X) is a ratio of integral functions. It is actually meromorphic

with poles at : y Vg,

. 2 42\ % s (Lt
a"ai(k—/(“) = :zu,,-k ) (3. 35)

with ln being the zeros of the characteristic equation (transverse wave num-

bers of the waveguide) for the inhomogeneously filled waveguide.
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Cos (L) -.S'_'.'_.(L(LIE) +C°5(1‘L) Sin (£e) (3. 36)
A '
where: a
2 V2 . '
A= (Lrky =k )" .37

Note that the zeros approach (nr/a) as 1+ .
The functions K+(d-) and K (@) are now readily obtained by using the

infinite product expansions of the integral functions.

a
Var o _“l’ @ a —ﬂ] ~X(x)
Kia) = f;[ﬂ‘(w %) cm].LH'('+ el e

(_‘TT(\-&-.:—_-)Q"%;l (3. 38)
where: ) n
f - Sin (kdﬁjh(kc)
k Sin(k,b) Cos (ke) + kyCos(kyb) Sin(ke) (3. 39)
3 z Yo . 2 2 '/1-
P <k‘-(%r)) = z((ugr) -k‘) (3. 40)
M = (k’.‘- (%E)z.)w.  (3.40.a)
a, = (k* __/(h'-)"’- (3. 40. b)

X(:)=_i%[¢ln(.%.)+blh(%)] -l-a.g'(_Tb 4 T{n) (3. 41)

nT Qy,

The X (@) given by (3.41) ensures that K+(c1) behaves as q.-l/z as Q> °®

for 77> -Min(k,, k4). It is obtained from a knowledge of the asymptotic form
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of the infinite products in (3. 38) by means of equation (2. 54.a). The function
K (@) is equal to K+(-d.). This function, K(Q ), and its factorization will yield

the factorization of L(c.), equation (3, 20}, via limit in a form convenient for

numerical calculations.

3.1.3 Factorization for the Open-Structure

The factorization of L(Q@ ), equation (3. 20), will be done by a limiting
procedure analogous to the method discussed in section 2.3. The only differ-
ence here is that I.(Q) is more difficult {(compare (3. 20) with (2. 30) ) and a
closed form for the answer is not obtainable. However, the form' of the fac-
torization obtained readily lends itself to numerical processing and hence nu-
merical results for the electromagnetic field quantities of interes®.

The relationship between the O-R structure and the C-R structure 1s
seen by comparing Fig. 7 and 8. The O-R structure is obtaiﬁed by letting a,
¢ —» o0 while maintaining a-c=b., Using this limit on K(& ), equation (3. 34),

for any @ such that -k, & 7< kz, gives

2 :
Lim  Ka) = Lim Sinh () Sinh(re) -
)t €+ | YSinh(v,b) Cosh(re)+Y, Cosh (v\b) Sinh (ye)

i

Sinh(Yb) = L(a)
Y Sinh (¥b) + Y, Cosh Ly,b)

(3. 42)
This results from the fact that, for any Q. within the strip, Y has a positive,

non zero, real part. Therefore,
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L'um Cas"\(vc) - |
c+® Sih (Y—c) (3. 43)

The function K(@.) can be expressed in a convenient (for taking limits)
form by first expressing K+(6.) and K (&) in a form like the one used in sec-

tion 2. 3. In particular, we have

. ab i
Y21 oo “Inm H)
K@y = £,[TT O+ S\ e ]-e
ne| n (3. 44)

1
with H (@) defined by (2. 56), (2.57), and (2.58). Again X(CL) is not included
in (3.44). In this case the functions Fl(u) and Fz(w) are the characteristic

equations of the structure shown in Fig. 8, namely,

. F,(w) = Sin (wc) (3. 45)
(@) =@ Cos(we) Sin (w,b) + w,Cos (W) Sinlwe) (3. 46)
with
:. 2 \V2
w=(u*+hk; -k ) (3. 46. a)

The contour used in (2. 56) must enclose the proper zeros of equa-
tions (3. 45) and (3.46), that is, half the total number as the zeros occur in
pairs -_l»_mn. Equation (3. 46) now has the possibility of zeros that give rise to
surface waves and again zercs whose spacing approaches a continuum as a, c,
approach infinity. This is clearly demonat:;'a.ted by "conaidering the zeros of
(3.46) when the loss c‘l and dZ are reduced to zero. Under this condition
there are two possibilities, real roots and imaginary roots.. The imaginary

roots will existif A is greater than one, which is the case being considered
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here. The possibility of A less than one is discussed in section 3. 3.

The real zeros of equation (3. 46) approach +nv/a for large, real, w

- and also the spacing between the zeros becomes infinitesimally small as a

approaches infinity. For imaginary rnots letw = i p (p a real number) and

-

equation (3. 46) becomes

F;(if) =2 D:-C;.:L (/ycm'u(f,b) -+ f, Ces (fyb).s'in‘ (/6v€)] (3.47)
with f, = ((&-— |)b: —/‘." )v" » Equation (3.47) can be shown only to have
zeros for 0 <& |p|< ka_:-l-‘ko. The number of zeros is discrete and there
may actually be none. How many real zeros equation (3.47) may have is de-
termined by the pa.r‘a.metera b, & » ko. When c approaches infinity and p is
positive (3.47) reduces to

# Sin (fib) + far Cas (frb) (3. 48)

which is the characteristic equation for determining the surface roots of a di-
electric slab backed by 2 perfect conductor with a TE-polarization. (See
Collin [1960], p. 474). Therefore, the imaginary roots of (3. 46) which are in
the upper half of the w-plane go into the surface wave roots and the poéitive
real roots go into the continuous eigenvalue spectrum as a and c approach in-
finity for the open structure siiown in Fig. 7. Note that equation (3. 46) is
slightly different from equation (3. 36). However, tley have the same zeros
because 1 = 0 or 11 = 0 are not roots of (3. 36). A zero atl = 0 is present
only when the parameters b, K , ko are such that the transition point of a

new surface wave occurs, We will pick the parameters such that the transi-
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tion point is not obtained. When the loss c‘l and c’z are rcinserted the zeros
will become slightly complex. The previous real roots will now contain a
smaii imaginary component and the imaginary roots will contain a small real
component.

The contour used in (3.44) is the one shown in Fig. 4 with the adcdition
of contours to pick up the surface wave roots in the upper half-plane, if any.
The zeros (nw/a) are now replaced by the on. the zeros [f(3. 46). The radius
r, in Fig. 4, must now be 0 < r<Re(w ), Im(w )<€<L k,, where w_is the
smallest root of equation (3. 46) belonging to the set which goes into a contin-
uous spectrum as a anil ¢ approach infinity.

That K+(¢.) given by (3.44) is the same as (3. 38) czn be verified by
using the calculus of residues. The only singularities within the contour are
the zeros of F,() and F, (). Fl'(w) and F, (u) do not have any poles within

=. I
The contour integral for H;(d.) can now be written alorg each path

and gives for the surface waves

‘(-F(a.w)gcméw=—§.{\n HW) _ﬁ‘r‘,_—r-.} (3. 49)

where P, is a zero of (3.47) and M is the number of zeros. The integrals

along the other paths give the same results as in section 2.3. Therefore,

‘/& _zq'—b- ™ —-rfq{' H’.(C,)
[T Z
\e . + o Y o Y I
Ka) = £, h(w Fn) l ‘ﬂm(a ey :)c e

(3. 50)
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with Hl(a.) giver by (2, 65). The function K (&) = K_,,(-“-)- Hence,

® - F“ H(¢)
K(u)-wc':‘o['[_f.(u-%)eﬁbj B’T(H—rr—-.)e P"]‘ .

a = 1
| gh T HEa)
Fh\.TT(|-S;)e ""T] [‘"’(' _r_? eh’"f'f"_-[ e &

n=g nsi (3.51)

Taking the limit of (3. 51) and using (3. 42), (3. 39) yields

« ‘z’*ﬁ’] [ oy I ]
Lim K@) = L.(d.) - SM(kJB) '[.ﬁ-|(‘+?;)e _E‘U-—)
a,cwm —tk Sin(lyb) + kg Cos(kyb)

a-c=b

- -
= H(a) +H(-a)

. ﬁ(l-rrz—‘?)eihtﬂ, :‘ (- ——1-195——‘) HP:]‘ €
he| n= k +ﬁ" (3. 52)
where P, is now a surface wave root (positive root) of (3.48) ,. M the num-

ber of roots, and

L 8
Hia) = Lm H(a)

) a.-c-h
with H (Q.) given by (2. 65).

(3. 53)

Define ( € > 0)



61

oyC>® ol 2wl acem) p(e_ie) F(§-i€)

o.-c-b

PR . \ - r ', e -—'1._ !‘\1
.._.+Cr('§ -2¢€) '—'-'Lm 9(E-¢€) = 1t _ Lim iﬁ@-ze)_ r,_ts-zeij =
)

wbE@- Cos(ﬁ’;b)+85m U.l;}— 2 = Cos (w,b)

=—/Sin (Wbl + =" Lo (3. 54)
27¢ [ w Sinlwb) —iw Ces Lw.b)j .
and w..g-ze
Loy o , 3(§+i6)
-zbf + Gz(§+7-€) :L,'i-}f 27 B

r
{ in(wb) .,.mg[%‘ Cos(wib) = z'.Sin(u.g)}\- i.%’. Cos(w,b)
L s n | ,

2rE [ Sin(o) + 1w, Cos (W b)) (3. 55)
.o . . w=§ +2€
P 1 aq-?e
H(CL\-———I'F(G. w)dw +g¥(1,w)G(w) dw g\c(d.,w) Gy(w) dw
w=e weo-1€ Wao+lé (3. 56)

with Im w°< e<L 'kz. In this form the terms due to Gl and G2 can be consider-
ed th: perturbation, due to K varying frcm 1. The equations (3. 52) and
(3. 56) give L(a ) in a suitable form for obtaining L+(a.) and L ().

The choice for L+(CL) may be made as
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_Vz 00 a -?F’%'
L(Cl)s Sfﬂ(kjl?) ,[TT (|+ I-B-)e )
* | =tk Sinle,b) +k Cos(Ryb) | ™' "
a7 X(e)
- H@) — X(=
a a kR
o[II:(H' k+ﬁ‘)e e (3. 57)
and
L (a)= L+(-d.) (3. 58)

The function L+(cl) is analytic for 7 > -Min(kz. k4). This results from the

- fact that ﬂn. equation (2. 40), has a positive imaginary part greater than k4.

and therefore the infinite product is analytic for 77 > -k The function H(Q. ),

40

equation (3. 56), is analytic for 7°>-k, as f(Q, w) and Gl(w) and Gz(u) satisfy

2
the conditions of theorem A, page 11, Noble [1958] and restated in the Appen-
dix,

The solution of the Wiener-Hopf type equation, (3.21), requires that
L+(CL) and hence L_(a_) have algebraic behavior for large G&.. Therefore,
the term e-X(a') must be included in (3. 57) to énsure this behavior. The
asymptotic form of (3. 57) will dictate the choice of X (&), e

The infinite product behaves as

-ab N '&b[r'-\-ln _T_\+§b
PTOT(I-f-i)e o ate &) ‘ (3. 59)
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for 7> -Min(kz. k 4). The finite product behaves as

M
[~ §
Tl'(|+;"=="="cL )é’fh‘:?? ~a e""i'z e
n=i k- +P!- (3. 60)
Also
-2 | +( w)dw . Q—lig—-‘hlhnv?é
| “S;'F% L (\A (3. 61)
which is obtained from the work in section 2. 3.
This leaves the term
o-16€ Df‘z.é
f f(e,0) G (w) dw ~ I +(a,w) C—,_(w) Jw
w=0-iG C wsosi€ : : (3. 62)

Consider it in two parts by referring to the definition of f(&, w) given by (2. 57).

One term is

o-i€ . ‘ o+i€
I@=- j‘(u- 2 G—(w)Jw f(k A G-(w)Jw
wzo-i€ wzo+l€ . (3. 63)

which behaves as ( Q) . (constant). These integrals converge because Gl(w)
and Gz(w) go to zero for.lar.ge w on the contours indicated in (3.63). The re-
maining terms of (3. 62) are

o-16 . Y-

I‘(db-\fln(l -fﬂé-“?) Guwdo — f'hO"l"T{-——\) G,(w) dw (3. 64)

Nm—i‘ . -"l' . 'w.o*le .
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Changing the variable in the second integral of (3. 64) to -w and using the def-
initions of Gl(a) and Gz(w) given by equations (3. 54) and (3. 55), respectively,

jives for Il(d)

o-i€
rey= [ i+ e G do (3. 65)

The path of integration may be closed in the lower half plane since Gl(w) goes
to zero on the infinite semicircle. The integrand of (3.65), however, may
have poles atw = i p where p is the surface wave pole at equation (3. 48), and

also the branch of Nk + & is in the lower half plane. Therefore,

-
I.(d.) = 'E" lh(|+ﬁ%-_rf‘) +f; ‘h(l_ +.'T;_——$'1) G'l(“’\ dw . (3. 66)

The branch line integral of (3. 66) is equal to

-i® .
’ it Y_ | (|- 1 ‘} G.(w) dw ~vConstent
_.[ Y_l"“ M ?w‘“—l’-‘) ,"( L w"—-h"> ' (3.67)
a8 >0 . Therefore
T(x) ~ ln(a™) (3. 68)

for 77> -Min(k,, k4). Combining these results gives
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ab 4+ T+ 3-===—-l a zon
.l > <+ ) "2;.‘8_'_',") {3. 09)

'
L~ @ Exp[_;.‘;__[_

ND‘

Hence, the cholce of X (@) as

. . | 4 ¥ |
xemexplige[re ] +of +10rod e

(3. 70)
will result in L+(-<L) remaining analytic for 7 > -Min(kz. k 4) but now behav-

-1/2

ing algebraically, namely, & ,' a8 @ -»20 in this region. The function
L_(Cl) is given by L+(-a.) and hence L_(c:) behaves as CL-I/Z as @.->® for
< Min(kz. k4). The product L+(Q) L (@) is still L(a) in the strip because
of the fact that X (-@) = - X (@) (refer to the definition of X (@) given by
equation (3. 70) ). '

Reducing losses, o‘l_and dz. to zero once L+(cL) is obtained, yields
a simplification in th_g »_equations. Setting dl and o’z to zero results in k = ko.

= WKk . Also €0 in equations (3. 56) and (3. 63). Now G,(u) = -G *w)

1
with w real (refer to equations (3. 54) and (3. 55) defining Gl(u) and Gz(w). Te-
spectively) and the loss reduced to zero. Therefore, we obtain for (3. 56) and

(3. 63), under the conditfon that the loss is zero,

"Ha) = -J’.,C(a.,w) (—% -+ G-(u)) dw (3. 71)
. 3

4 | s
Tta)= - ~ I (R=a?) Gwyde (3. 72)
: o |
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where:

w* ]
b =Cos @b) Sin(wb) L@, =~
;[w’- S:t(u.b) + w? Cos"(w.b)] (3. 73)

Glw) = 2 Ra G'.(u\‘%"

7Y

2

W, = (w"-i- (K=-1) ko ) (3. 73. a)
" and El is the contour shown in Fig. 6. Convergence of the integral in the de-

finition of I(a.), (3. 72), is ensured as G(w), (3. 73), goes tb ZEero as W—p 0O 4

A form of L+( Q) that is extremely converient for numerical work

when the loss is reduced to zero is given by

e ro —2‘% vz V2.
L) = [_é_ L(a.] | Lera)e | [s.:nL(Y. L} .
L) b Y,
E'(ﬁh-d)etn"r
| ¢ T 1 X@
2 “Th+pr H) - X(=
[ Y, ] ﬁ‘("kbz-i-f’?—d.)e L+ P o (<)
Y Sin A \ s \ - .
[Y Sinh(%L) +Y, Cash(tib) 3 (e + ) TR 3. 74)
where: .

H ()= -Lj FF(& ) —f(—@w)] +G-(w)) dw

(3. 75)
with X (@) defined by equation (3, 70) with k = k , I(@) by equation (3. 72),

G(w) by equation (3. 73), ﬁn by equation (3. 40), Y1 by equation (3. 12), P, the

real positive zeros of (3.48), and by setting kd 5 N K kd-.’ k ='k6 wherever .

they occur.
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3.1.4 Solution of the Problem:

The evaluation of the field quantities of interest is obtained by the
Fourier inversion integrals given in (3. 27) and (3. 28). The function L+(<L)
is given by (3. 74) and L (@) = L+(—<r.). Within the waveguide section of the
structure, 2 >0 and 0 < x € b, the modes are obtained from equatioﬁ (3. 27).
The contour may be closed in the lower half plane enclosing only pole-type
singularities. The calculus of residues gives the modes directly, in particu-
lar, the lowest order reflected mode (only reflected mode carrying average

real power) is

- 2- (Pl) ( |) |n T il"z
E, —z—??. L LAY S b) e. 576

Hence, the reflection coefficienf is
R=- @) |
/5. - (3.77)
The far field is again obtained by the use of the Huygen equivalent source in
the aperture x = b + 0 in a manner analogous to that described in section 2. 4,
The only difference is now we have an equivalent magnetic curren’ in the aper-

ture. The results are

. iR, +2g-ik,LStn(e)
= Ekﬂj,o_e——f o L_-'@') o Sin(é) ¢ L_S,k,('-os 0)
: (Zf b KCasB-’-F,

(3. 78)
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’ 2 2"
with f- x +2,0 <Lo0<x, mdko=u"] Po €°o

In the results given in (3. 77) and (3. 78) the loss has been made negli-
gible, in fact, zero. The loss set at zero results ink = ko and k'd = \l/c'ko and
hence equatfon (3. 78). The loss will also be set at zero in the results that

follow.
The average real power reflected in the waveguide and the average

real power radiated in the space wave are

Normalised Reflected Power = W__ = IR| 2 (3. 79)

Normalized Radiated Power = wra d =

1L‘!a Lf'“j | stn(8) e LS (h.&:e) Jo

R Cos 6) + 4 (3. 80)

The normalization consists in the incident power being set to one. Recall that
the parameters are chosen so that only the lowest order mode propayates in
the waveguide. Therefore, the higher order reflected modes carry zero aver-
age real power.

The structure of Fig. 7 has the possibility of the existence of surface

waves. The surface wave modes for b € x are obtained from

o4i7T

YL—Yz—ia.z
E(;rz)—-wvr Stnh(xb) € de . b-:z Z<o

zb ) LY Sih(Yib) + % Cosh ’
y o i TP LY Sehvib) +% Cos s L) .

Use of L (a) = L{( Q)/L+(d~) is made in (3. 81). The surface waves are given
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by e the positive zeros of

Y Sinh (Vib) + Y Cosh (vib) (3.81. 2)
with @ realandk & « < NK'lk . The possibility of surface waves exists
n o )

n

because KL >1 is being considered here. The residues of the integrand of

(3. 81) at the surface wave poles give ihe surface wave modes as

M -RX—ta,Z | |
Eﬂa % L._(f') %' Resn ®* © ; bgx, Z<o (3. 82)
where:
b 2
Resn = el h,pn_StaChnb)
Lz (a,-p) [Sahn S thb) =P Cos(hyb) Sin(h b) + |
(3. 83)

P, (0 < pn < Nk -l'ko) is a positive root of (3. 48) with the loss sei io zero.
M = number of surface waves (number of positive real zeros of (3.48) )
a ’ 2 + 2 3.84
=
n | <o " Pn (3. 84)

\

h"='/(lc—l)'?:“F: >0

(3. 85)
The surface wave modes for 0 € x< b are obtained from
o+tT .
__d T LY Sish(YB) + YCosh (vb) ] (3. 86)

The residue of the integrand of (3, 86) at the surface wave poles again gives

for the surface wave modes.
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-PHL -Z.d-',z

L L L4 S:h("'"x)
E_J.:!bl'_ Lyv)"z" Resn * & SvOnD) os_zsb) Z<Lo (3.87)

The surface wave modes are orthogonal in the following sense:

b

oo
j‘E-; Ey dz=o; ném (3. 88)
°
Hence, the total real average power carried by the surface wave modes is the
sum of the power in each mode. This gives the normalized real average power

carried in the surface waves as

2 l Z ™ l r- ~2Pn b
W =27 LY Z|an |Resn € .
woaT 2 1= Sin(hyb)

.0 _S_E:_(_’In.lz)_ +L’. - S:"(Z;'FL)

Z Pn z + b (3. 89)

An inspection of the results given in this section shows that once
L+(O') is ‘mown (o real), the radiation pattern of the space wave, the power
reflected in'the waveguide, the power carried in the surface waves, and the
power carrieti in the space wave can be determined. These numerical calcu-
lations are discussed and the results p’ri"ef;ented in section 4.
The radiation of a truncated parallel plate waveguide in free space,
Fig. 1, with an EY incident may be obtained from the results of section 3.1 by

setting the relative dielectric constant to one. This value of the dielectric
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constant removes any surface wave phenomenon and hence any equations for

surface wave quantities are set to zero.

3.2 TEM Ex.cita.tion of a Surface Wave Structure

In this section we will obtain the excitation of the surface wave struc-
ture, shown in Fig. 7, for a TEM mode incident in the waveguide. The inci-
‘dent field is

Hyis eiki4% 0 ¢ x2b, VZ
with k d given by equation (3.4). The iérmula.tion of the problem follows ex-

actly the one given in section 2 except that now the presence of the dielectric

must be taken into account. The results of the analyli; are

H, = b, . (3. 90)

3.91
B4 3k (3.91)

1.3 3. 92
e, ¥ % (3.92)
-ikyz
b= & + ¢35 o=x=<b,Vz (3.93)
¢t' c|> ) b~£'r<', vZ (3.93.a)
where:
Y=Y, =twke —q, ; osxsb " (3. 94)

Y=VY,=2we, -0, ;3 bSx (3. 94. a)
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and

®eIT

-taz
- ol A (x d.)ea-da.‘ osx<b
$ox,2) =g | Aix, )

-otir

(3. 95)

o+iT ioz
Pz, 2) = ‘[ Bix,a)e daj bsx (3. 96)
’ W—w-tér'

A = E4 Lik) L@ Cash (¥ix) 3. 97)
T2 Y, Sinh (Gib) (@—key)

(L)@ e

2z v (a=-ky)

B,("; Q) = — (3. 98)

with £ | = YZ/YI and Y/, defined by equation (3. 12) and Y by (2. 18).
The function L(@.) for this polarization of the incident field is

_ YY, Stmh(Yb)
L@ Y Sinh (¥ib) +Y K, Cosh (Y b) (3.99)

This function is factored by the method of section 3. 1.3 by using the related

closed-region function

) = —_ YV, Sinh(¥e) Sinh (1ib)
Y, Sinh (Yb) Cesh (ve) +k Y Cosh (4b) Sinh(¥c) (3. 100)

with the result

Y
L.‘(—Q_)- (a.-a—h)" (e +ky) M () (3. 101)
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_ab
Ve res Hia) — X (<)
Mga)= [Sinlhyb] ,It_,m;;)e‘”‘”] - € =
& s:..(h,b)—i/c.kCo“%ﬂﬁ,(t«»ﬁ;ﬁ)é e +ﬁ’~‘] (3. 102)

L@ = (a-k)(a-ky) M{a) (3.102. a)
and k is defined by equation (2.4) and B_ by (3.40). The numbers p are the
surface wave zeros given by the zeros of the characteristic equation.

k.,p Cosbp) = p, Sin(bp) (3. 103)
p= (ky — R - F") ‘2 (3. 104)
The function H( @) is still given by (3.56), X (&) by (3. 70), and I(a) by

" (3. 63), but now the functions Gl(w) and G, (w) become for this problem

_ -2k, Cas(w,b) + %’T Sin(4b) +wb [C-s(u.w +ilc,-3—: .S.'n(u.b)]

Glw) = b : (3. 105)
L 272 [—z’w/c, CosCaub) + oy Sin (u.b)]

W, = (Ul‘f'k:--kz) (3. 106)

Gl = — GEw) (3. 107)

This results in L+( @.) being analytic and behaving as c!.l/z as a4.-+® for
7">-Min(kz. k4). Likewise L_(CL) is analytic an+ hihaves as d.l/z as
aQ»ofor 77 <L Min(kz. k4).

The form of I.*( @ ) that is convenient for numerical calculations when

the loss ¢« 1 and c’z are reduced to zero is given by
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eb )
® =t
L44)=(d+k,s'f(q+ K'e) | Lt - S!n‘w.(Yo b,
"_.(‘B.,—a) é%# Y,

% Ho)-X@)
.r ] = (3. 108)
LY, Sinh (k) +KY Cosh (Vb)

TR+ +a) &

where:

psons [ewfeal B ol o

with 21 the contour shown in Fig. 6 and G(w) given by

w’—
K Stn(whb) Cosab) | 57 — “’J‘*’ K wtb
T K* Wt Ca(@b) +WE Sintab) )

)"

Gw) = -,,‘}.-—- (3. 110)

w, = (W*+ (k-1 k:

The X (@) is given by (3. 70) with k , = Nk, k= k  replaced throughout.

(3.111)

The I( @) used in X (&) now becomes

L 2

-« - )

T =-«f - Gw de 5112
)

with G(w) given in (3.110). This integral converges as U(w) behaves as Sin(w)
for large w. The P, become the positive real zeros of (3. 103) with kd = NE! k.o.
k= kog kl = K .

The results of interest for this problem are obtained as was done in
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section 3. 1.4 and are merely stated here. The normalized (incident energy

set at one) reflected power

2. Vv 2

Wret = 4R b (3.113)

This follows since the parameters are restricted to values such that only the
1/2

lowest order mode can propagate in the waveguide. That is, A / ko < n/b.

The normalized power radiated in the space wave is

2

(R, Cos ©)
Wad" ,L(IC k.)l ’L’ hLC:seq.lc‘"-k de -

with the radiation pattern given by (0 < O<r)

[Hyl= |  LihGae) \
Y| eCse+ k™

The normalized energy in the surface waves becomes

(3.115)

W, = v'lL“‘/"'%ﬂ ZCL-,Dresn' {Lc_b+1cs.n(zh L)+h,$nhL)

Sw h“p n=\ " 2 f (3.116)
where M is the number of surface waves and

zh”

Dresn = - i (3.117)

@n-k*k,)- L{ap) « D
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D= ap, Sulhyb) +bduﬁ"n Coshb) byl Coslhy) +banf kSin(hab) 5 o)

o, = ( .k:'-l-ﬁ,")v"‘ (3. 119)
ho= (=1 ks —p*) * 2o (3. 120)

These numerical calculations are discussed and the results presented in sec-

tion 4 along with those for the TE-polarization.

3.3 Excitation of an Incompressible, Isotropic, Plasma Slab‘

The structure in question is still given by Fig, 7 but with one change.
The dielectric between 0 & x < b is replaced by an incompressible, ilotropi?.
plasma medium. This plasma medium behaves as a dielectric with a rel;tive
dielectric constant less than 1. This results from the ‘fact that the relative 1:-

electric constant for this medium is

K =(1- (3.121)
t A
X - -;“)’-: ' ' (3. 122)

with Wy the plasma frequency and w the wave frequency, for example Budden
[1964])

Values of the relative dielectric constant less than zero are not of any
interest as it is iuipossi]gle to have propagating waves in the %veguide. How-
ever, there are propagating modes for the relative dielectric constant between

zero and one. It can be shown, for this range of £ , that the structure will

not support surface waves.
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The analysis of this problem may be extracted from sections 3.1 and
3. 2 by considering the effect of 0 < £ < 1 on the analysis. It is found that the
only change occurs in G(w), given by (3. 73) for the TE case and by (3. 110) for

the TEM case. Recall that w, in these equations is

1
2. 2\1/2
w = ((/c Nk +e ) (3. 123)
2
with w varying from zero to infinity. The quantity (£ -1) ko is now negative.

Hence, for values of w < N (1-k ,ko. w_ becomes imaginary. The choice of the

1
sign of the imaginary number is immaterial as G(w) is not a multivalued func-
tion of w. Therefore, the results of sections 3.1 and 3. 2 stand unaltered for
the case of 0 £<1. However, all surface wave phenomena is non-existent for

this range of A and the equations in those sections must be interpreted accord-

ingly.

3.4 Discus.si.on of the Method for the Dielectric Slab Structure

Basically the related C-R structure was used only to obtain the O-R
factorization. However, the O-R and C-R solutions may be related as was
done in section 2, 5 in the following way. To be specific, we will discuss the
TE case.

The function L+( a) given by (;3. 57) is the limit, a, c-’fwk’le a-csb,
of K+( @) given by (3. 38) if we include the X (&), (3.41), in K+( 6”.) {recidl tha‘tX(
makes K+( Q) behave algebraically). This is true if the limit of (3. 41) is (3. 70).

We may write (3.41) as
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» y )

X@)=Q@ +a ?:-'[(kl -4) "~ (k’- (!g):) (3. 124)
Convergence of. the léries is ensured because ln = nn/a + O(1/n) for large n.
The function Q(&.) is equ.:1 to X (@) in section 2.5 and is given by (2. 104).
Recall that the 1_ are the roots of equation (3.36). Taking the limit of X (&)
given by (3L 124) yields |

Moo

G_\,—';':,,, Xa)=1 f,”_._b +resh ‘n(.’%) + % +I@)+ a2, T e (3.125)

a.-¢=ab
with I( @) given by (3. 63). The limit of Q(@ ) had already been obtained in sec-

tion 2. 5; refer to equation (2.109). Now equation (3. 125) is I (&), (3.70) for
the O-R problem. Therefore, the limit of K+(d-) is L+( @ ). Hence, one may
now show that the limit of Cl(x. a ) and Dl(x. &), given by equations (3, 30)
and (3. 31)‘1 ‘respectively, for the C-R structure, become Al(x, & ) and Bl(x. a.),
giv§n by equations (3. 25) and (3. 26), respectively, for the O-R structure.
Therefore, the complete é-R solution becomes, in the limit, the O-R solution.
This means that instead of formulating the O-R problem one could obtain the
soiution by formulating a related C-R problem and taking the limit of its solu-
tion as dictated by the physics. This pﬁenom;:na is what Talancw.f29594 sug-
gested would happen., In fact, he solved the C-R problem - for a TEM exci-
tation and calculated the energy in the slow waves of ths inhomogeneously

{
b

filled guide and claimed that their value as a =» o© is the energy in the sur-
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face waves,

In section 2 we obtained the factorization for the C-R problem in a
particular form. The advantage of doing this should now be obvious. As a
and c become large, the series which occurred could be recast as integrals
providing the spacing between adjacent zeros of the characteristic equations,
Fl(w) and Fz(u). was known. This representation yielded the information as
the function obtained, -b + G(w), by taking the limit of the integral representa-
tion, is the desired in.fo'rmation. In particular, -b + G(w), should be the differ-

®

ence of the inverse of the spacing of the zeros of the characteristic equations.

That this is so is verified in section 4 with numerical calculations.




4. NUMERICAL RESULTS

The usual field quantities of interest in problems of this type are ob-
tainable once L+(d) is known (Creal). That is, the average power radiated
in the space wave, reflected in the waveguide, and trapped in the surface
waves (if any) and the radiation pattern of the space wave are given as func-
tions of |L+(d)| » This can 'be seen by referring to equations (3. 79), (3. 80),
(3. 89), and (3. 78) for the TE polarization and (3.113), (3.114), (3.116), and
(3.115) for the TEM excitation,

" The function |L+(o' )| is given in convenient form for numerical pro-
cessing by (3, 74) and (3. 108) for the TE and TEM polarizations respectively,
To indicate what is i.n:rolved in the evaluation of |L +(d )' , a close look at the
TE case is made. The evaluation of ‘L +(d )' for the TEM polarization will be

similar. Taking the absolute value of (3. 74) for real arguments gives

h=\

"_.(‘3,,-6) K l -ﬁ-,(ik:‘ﬂ’n “")l

2 ReH,s)-Ek - Re TCs)
| Y . e
- IY.S:»L-(Y.L\*'Y. Cosh (1) (4. 1

.o o va
'H(.‘)I‘ Ig_.(ﬁnﬂ') Sinh(Y.L)I . Tt (k. +p5 — G)I .

The real part of Hl(d) is given by

R RIE 5 S YRR A LA A # i)



Re .LX{ t’%ﬁ_‘_‘)_ﬁ}(ﬂ; +G'(u)> dol -

ko
-l J‘ {'"
2
L=o

This result is obtained since the square root term is purely imaginary for

k-d
ke-w®- g

(4. 2)

} .<.% +&(w)> duw +9_’21>. + Re IT)

w>ko. The definition of ﬂn, (3. 40), and the fact that we are considering the

case where only one mode propagates in the waveguide (-1& <{El ko< ég-r) j)

gives
:ﬂ Ig" +5) - ,6’.-!—6\
ﬁ(ﬁ""g) P (4. 3)
Therefore, equation (4. 1) becomes
73
3
L] -|ere) subaw T )
B0 ]|
Y2
H,(S)
[ J Y\ . e z (4. 4)

Y Sinh (Y,b) + Y, Cesh (Y, b)

with Hz(6) given by

81
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(4. 5)

(d :_‘_ "a" "\'d b )
H) 2'0,,, lo[tke =& +o e '<"7r? o+ G—(u\) da

and G(w) given by (3. 73). The convenience of L+(¢) as given in (4. 4) is now
obvious. We are left with only a finite integral to evaluate.

When |¢| is less than ko' the integrand of equﬁon (4. 5) becomes sin-
gular atw = w = (koz- o'z) 1/2. This results from the fact that we have reduced
the loss to zero. However, this is an integrable singularity, as one expects,

and may be handled in the following way. Rewriting equation (4. 5) for 6 <&< k,

. gives ‘!,
cw +6 2 _
Hz(ﬁ)-.%.af (ln} I:’-u?- i'( .(—%1-6‘@))-(‘)1 .2,2:%:)_0__:3. I) . !rar' +G'(wo\>

ke
+-z!;- (—qbr- + G'(Uo)) j‘ ( 'n w,(w,-w)

W=o

) do

The first integral in equation (4. 6) is no longer singular at W and is conven-

(4. 6)

iently bandled by a digital computer. The second integral in (4. 6) can be ob-
tained in closed form. For negative values of & we have, Hz(d) = -H,(I¢1).
Therefore, Hz(d) is obtained from (4. 6) for all ¢ and hence |L+(d)| is conven*-‘-“
iently calculated. The characteristic response of the structures for both TE
and TEM excitations will be given in graphical form in what follows.

In going from a series to an integral, which occurs when obtaining
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L(a) and L (@) by letting a and c approach infinity in the representation of
K(@), we needed knowledge of the spacing of the zeros of the characteristic e-
quations. We concluded that the function b/x - G(u) is the difference of the in-
verse of the spacing of the zeros of the characteristic equations F,(«) and
Fz(u) as a, c~»oo , For example, the characteristic equations are given by
(3. 45) and (3.'46) and G(w) by (3. 73) for the TE polarization. This conclusion
may be verified by actually finding the zeros of Fl(u) and Fz(w) and seeing if
indeed the zeros behave, as a and c approach infinity, in a manner given by the
function b - G(w). The result of this is shown in Fig. 9 for the TE excitation.
One can :ee that, for c/b equal to 80, the curve obtained from a knowledge of
the zeros is identical to the theoretical curve given by b/r-G(w). For c/b= 8
there is some difierence, as expected. That is, only in the limit as a—9» 0O
does G(w) hold.

The response of the structure to a TE polarized source is shown in
Figs. 10 to 15. The relative diclectric constant (/K ) has three distinct ranges:
a) the plasma phenomena with 0 < K < 1.0; b) free space radiation with
K = 1.0; c) the surface wave phenomena with K > 1.0. The response of
the structure for values of K in each of these ranges is given in Figs. 10, 11,
12, and 13. Recall that these are ncrmalized values with the incident energy
set at 1 or 100 per cent and the maximum far field value set at one.

An inspection of Figs. 10 and 11 shows that it is possible to have all

the incident power radiated in the space wave. This is also true for the sur-




Y R

i & &

Ny, g

‘(9% °¢) pue (G °g) Jo sox3z ayy

Jo a8patmowy © wolj paureIqo S$IINSIX Y3 YIIM (gL *¢) 4q WA (m)D-u/q jo uosizedwoy ¢ -Brg

9 S v £ 2 ! 0
m -~ 7 | T T T T o)
4ro
420
£=9 €0
2=
01 = .
220 W ¥o
0S2=9 ¥O4 (9'S) ONV .
(SH'E) 'SO3 WOYd Q3NIVIBO o 1§50
(™9 - 2/q —
490
420
480
460
o




POWER

IEyl

Fig. 10

85

% WRAD
1001 R
80}
. K=0.5 ,
60+ | —— WRAD = RADIATED POWER’
---+ WREF = REFLECTED POWER
40} |
\
20} \
WREF
\
i.—- an_snl an | i L k.b
4 S 6 7 8 9 °
1.0
8 keb = 5.0 —— —Heb =83
' K=0.5
6F IEyl = FAR FIELD VALUE
At
25
o) n A 1 1 1 1 - §
20 40 60 80 100 120 40 160 180
Power distribution and far field patterns for an isotropic, incom-

pressible, TE excited, plasma slab.
!




#h

Lo DN SN WY T s £ S AR e il IR N i i, Wb B 5 e .

86
POWER
% WRAD
oo} R
8ol K=1.0
—— WRAD = RADIATED ROWER

6oL ! R ~-- WREF = REFLECTED POWER
40}

\
20 \\

\/-v_ml»:r
o 1 \l il NP S 1 1 1 - k.b
315 35 4 45 5 55 ¢
IEyl |_o‘..
—~—k b = 6
.8 - k.b bl 3.5_-'
|Eyl = FAR FIELD VALUE

6}

Y

2F

o [ 1 1 1 —

20 40 60 80 100 120 140 160 180

Fig. 11 Power distribution and far field patterns for a TE excited, par-
allel plate waveguide radiating in free space.
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Fig. 12 Power distribution and far field patterns for a TE excited surface
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face wave structure, 'lhown in Fig. 12, until the structure starts to support
surface waves. Onc;.e surface waies can be supported, a transfer of power
from the space wav'e to th.e surface wave occurs. The structure will support
surface waves only v;'hen TK—-?kob >w /2. The incident power may all be
transferred to the s'urface waves by a suitable choice of parameters as seen
in Fig. 13. There are no .fa‘.r field patterns plotted in Fig. 13 as the power ra-
diated in this.f::ase is :;egliéible compared to the power carried in the surface
waves. Fig. 13 a'lso‘ shows the effect of two surface waves existing on the
structure, This is the maximum number that the structure can support since
we assumed fhat the parameters are such that only the lowest order mode can
propagate in the"wavegu'iciie. The effect of holding kob constant and varying K
is shown in Figs. 14 and 15.

The response of the structure to a TEM polarized source is given in

1
. ¢

Figs. 16 to 19. The structure is again quite efficient as the reflected power
‘may be made negligible with all the incident power radiated in the space wave
. (refer to Figs. 116 and 17). 'When K is greater than one the structure supports
a surface wave and again the power is transferred from the space wave to the
surface wave as seen in Fig, 18, Only one surface wave is supported with the
iv:luel of parameters that permit only the lowe st order mode to propagate in
.the waveguide. The effect of varying /K is shown in Fig. 19.
A check on the algebra and computer results is possible by using the

~ conservation of energy principle. The sum of the power radiated in the space
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wave, ‘the power reflected in the waveguide, and the power carried by the sur-
face w;fei (if any) must equal the incident power. This equality was obtained
to within 0, 5 per cent. This also gave a check on the far field patterns as the
radiated power is equal to a constant times the integral of the square of the
far field function. A verification of "the numerical work for the radiated power
is then an indirect verification of the far field pattern.

A comparison of the numerical results for the TEM excitation of the
surface wave strﬁcture. given in.;‘ig. 18, with théie published by" Angulo and
Chang [1959] shows that they are not in agreement. The results given here
should compare with their results with "h" set to zero. Their' results show

that the reflected power has a maximum at kob approximately 1. 25 with a

~ corresponding minimum in the power radiated. Our results do not display

these phenomena. Another paper by Angulo and Chang [1958] ’giv)el the results
for a cylindrical geometry. The results published there have the functional
form of our results given in Fig. 18. One would not expect the !change in the
geometry from cylindrical to rectangular to cause the change in response as

found in their two papers.
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Fig. 17 Power distribution and far field patterns for a TEM excited par-
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5. CONCLUSION

The solutions of three Wiener-Hopf type boundary value problems
have been given in this work. The problem of a parallel platerwaveguide with |
one plate truncated and radiating in free space was solved in section 2. A ver-
ification of the factorization was obtained by reference to the soluticn of a semi-
infinite parallel plate waveguide radiating in free space given in Noble [1958]
The function to be factored is the same for both problems.

The excitation of a dielectric slab (surface wave structure) and the ex-
citation of an incompressible, isotropic, plasma slab by means of a truncated
parallel plate waveguide were given in section 3. Both TE and TEM polariza-
tions of the exciting field were considered. The results for the TEM excitation
of the surface wave structure were compared with those obtained by Angulo
and Chang [1959] and the differences noted. They used a formal factorization
procedure in their paper. The graphical results for the TE excitation of the
surface wave structure and the graphical results for both TE and TEM excita-
tions of the incompressible, isotropic, plasma slab presented in section 4 have
not, to the best of the author's knowledge, been given elsewhere.

The factorization, one of ‘the key steps, was obtained by a techaique
described in this work. The factorization was obtained by taking the limit, as
the transverse dimension approaches infinity, of the function and factorization
appropriate to the related closed-region structure. A closed form of th;s fac-

torization was obtained only in section 2. In the more difficult problems dis-
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cussed in section 3, the factorization was in a form convenient for numerical
processing.

Tﬁ;l technique for obtaining the factorization is certainly applicable
to other open-region problems as discussed in section 2. 5. For example,
this technique should prove useful for finding the electromagnetic fields asso-
ciated with an incompressible, anisotropic, plasma slab when excited by a

truncated parallel plate waveguide.
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APPENDIX
- Region of Analyticity of a Function Given by an Integral Representation
Let G(a ) be defined by equation (A-1)
ca)= [ qla,n 43 (A-1)

The conditions under which G(“% ) is analytic are given in Noble [1958], page
11, and are presented here for convenience.
Theorem: Letg(a,¥v)=f(?)h(a, T ) satisfy the conditions
(i) (x,T) ii a continuous function of the complex variables a and )
where & lies inside a region R and ¥ lies on a contour C.
(ii) h(a, v ) is a regular function of @ in R for every ¥ on C.
(iii) £(<3) has only a finite number of finite discontinuities on C and a
finite number of maxima ard minima on any finite part of C.
(iv) £f(2*) is bounded except at a finite number of points. If < 0 is

such a point, so that g(a, P )—» o0 as -p_, o’ then

[3(&,‘3)4‘3 = lim ‘f q¢a,3)dT

S+o0 -

exists where the notation (C - § ) denotes the contour C apart from a small
length § surrounding 70, and lim ( § =~ 0) denotes the limit as this ex-
cluded length tends to zero. The limit must be a,r~vached uniformly when @
lies in any closed domain R' within R,

(v) If C goes to infinity then any bounded part of C must be smooth

and conditions (i) and (ii) must be satisfied for any bounded part of C. The in-
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finite-integral defining G(& ) must be uniformly convergent when & lies in
any closed domain R' within R.

Then G(c.) defined by (A-1) is a regular function of & in R.
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13. ABSTRACT

~/The time-harmonic analysis of three boundary value problems containing semi-
infinite boundaries is presented. The first problem considered is a parallel plete
waveguide with one plate truncated and radiating into free space. The excitation
of a dielectric slab and the excitation of an isotropic, incompressible, plasma
‘slab by means of a parsllel plate waveguide with one plate truncated are the second
and third problems analyzed, respectively.

A function of a complex variable is factored in each of these Wiener-Hopf type
boundary vaiue problems. The function is analytic in a strip sand is factored into
2 product of two functions. One of these functions is analytic in a half-plane
while the other is analytic in the adjacent half-plane with an overlap in the
regions of aralyticity coinciding with the strip. This factoriza-ion .s btained
by a technique developed in this work.

The technique obtains the factorization for the open-region problem from a
function and its factorization that occurs in a related closed-region problem. A
closed-region problem is one whose transverse dimensions are finite. The chosen
closed-region boundary value problem yields a function of a complex variable which
can be factored. The factorization of the function for the open-region boundary
value problem is obtzined by taking the limit, as a parameter approaches infinity,
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13. ABSTRACT (continued)

of the function and factorization appropriste to the closed-region structure. By
this means the factorization and hence the solution to the open-region boundary
value problem is obtained. ;

It is also found that the limiting procedure may be used to obtain more than
Just the open-region factorization. It is shown that the limit of the complete
closed-region solution becomes the open-region solution. Hence, this yeilds one
possible method for the solution of problems of this type.

The results of the numerical computations are presented. These include the
average power reflected in the waveguide, the aversge power radiated in the space
wave, the average power transmitted by the surface waves, and the r~-“iation pattern
of the space wave. :




