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PURPOSE: To consider the problem of estimating a decreasing failure-rate function

from a censored or truncated sample.

APPROACH AND RESULTS: 1In the "burn-in" process, items whose failure rate is as-

sumed to decrease with time are put on test (burnt-in) until a fixed amount of
time has elapsed (truncated sampling) or until a fixed number of failures have
occurred (censored sampling). The purpose is to identify and eliminate poor-
gquality or defective items. There is ample evidence to show that the assump-
tion of decreasing failure rate is valid for a variety of types of equipment.
The failure-rate function is estimated under quite general conditions.
In particular, the form of the underlying life distribution need not be known.
The maximum-likelihood estimate of the failure-rate function is obtained under
the sole assumption that this function is decreasing. A conservative upper
confidence bound on the failure rate at the end of the burn-in period is de-
rived, assuming only that the failure rate at the time is no greater than the

failure rate throughout the period of observation. The maximum-likelihood

estimate and the confidence bound are obtained for both truncated and censored

sampling.

BACKGROUND: This study of reliability assessment methods was done by RAND for the

National Aeronautics and Space Administration's Apollo Reliability and Quality

Office. Tt continues research reported by the authors in RM-4749-NASA, Maximum

Likelihood Estimation and Conservative Confidence Interval Procedures in

Reliability Growth and Debugging Problems, January 1966,

AG
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PREFACE

This Memorandum is a product of RAND's continuing interest in
the estimation of reliability and related quantities. The focus here
is on the '"burn-in" phenomenon. The work is a continuation of research
on the estimation of reliability growth and of debugging reported by
the authors in RM-4749-NASA [1].

This Memorandum should be of interest to statisticians, engineers,
and others concerned with various aspects of reliability.

Two of the authors, Richard E. Barlow and Frank Proschan, have
been consultants to the RAND Corporation. The Appendix was written
by Albert Madansky of the Market Planning Corporation, formerly a

staff member of and now a consultant to The RAND Corporation.
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SUMMARY

This study deals with the ''burn-in' process. 1In this process,
items whose failure rate is assumed to decrease with time are put on
test (burnt-in) until a fixed amount of time has elapsed (truncated
sampling) or until a fixed number of failures have occurred (censored
sampling) . The purpose is to identify and eliminate poor-quality or
defective items.

For both of the modes of observation described, we provide a
conservative upper confidence bound for the failure rate at the time
the burn-in process ends, and the maximum likelihood estimate (MLE)
of the failure-rate function.

These results are valid under quite general conditions. In
particular, we do not require that the form of the life distribution
be known. The MLE is obtained under the sole assumption that the
failure-rate function is decreasing. The confidence bound is obtained
under the even weaker assumption that the failure rate at the time
observation ends is no larger than the failure rate throughout the

period of observation.
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1. INTRODUCTION

The phenomenon of '"infant mortality' has been observed in the
analysis of life-test data. It arises when the failure rate is high
during the early period of life and lower for a long period there-
after. The high early rate may result from contamination of the
population of standard items by a small percentage of poor-quality
or defective items that tend to fail soon after they are put into
operation. To identify and eliminate the defective items, a prac-
tical measure often adopted is to 'burn in'" (i.e., put on test) all
items for the period of infant mortality. From the data so obtained,
it is often desired to make a confidence statement concerning the
failure rate that exists after burn-in has been completed, or to
obtain the maximum likelihood estimate (MLE) of the failure-rate
function, or both.

This Memorandum shows how to construct such a confidence state-
ment and the MLE based on either a truncated sample (observation ends
at a fixed time, say T) or on a censored sample (observation ends after
a fixed number of failures, say r, have occurred). Since it is a
complicated matter to compute a confidence limit for the failure rate
in the truncated sample case, the Appendix presents a program for
machine computation developed by Albert Madansky. Examples are
worked out for both censored and truncated sampling to make the
results as clear as possible. To simplify the exposition, a small
sample size and small (and thus possibly unrealistic) failure times

were deliberately chosen for these examples.




2. REALISM OF THE DECREASING FAILURE-RATE MODEL

There is ample empirical evidence to validate the model of a
decreasing failure-rate function for certain classes of equipment.
Mast [8] gives failure-rate curves for several types of subassemblies.
His data for airline electronic and electromechanical subassemblies
yield a decreasing failure rate. 1In a comprehensive survey, von Alven
and Blakemore [11] conclude that semiconductors exhibit a decreasing
failure rate. Holden [6] states that presently available data indicate
that integrated circuits have a failure rate close to that of a Weibull
distribution with a shape factor of 0.5; i.e., the failure rate for

integrated circuits apparently decreases with time.




3. CONFIDENCE BOUNDS

This Section derives confidence bounds on the failure rate of
items surviving the burn-in period. That is, if we denote vy )\ the
failure rate at the time burn-in ends (at time T in the truncated

. , th , .
sampling case, or at the time of the r failure in the censored

sampling case), we may make a statement of the form
() P{asul 2 1-0.

The statistic U, a function of the observations, is called a conserva-
tive 100(1-o) percent upper confidence bound on A.

The following results will be needed.

THEOREM: Let (a) Y be an observation on a random variable (in
general, vector-valued) having distribution function G(y,8), with @
a one-dimensional parameter; (b) §(X) be a one-dimensional statistic
based on the observed vector Y; (c) p(é(g)) be a 100(l-&) percent
upper confidence bound on 6, where p(u) is a decreasing function;
(d) X be an observation on a random variable (vector-valued) having
distribution function F(x,0); and (e) é(z) be stochastically larger

than §(§). Then
P[p(8(®) =2 0|F(x,0)] 2 1-0,

that is, p(§(§)) is a conservative 100(1l-o) percent upper confidence

bound on 8, the parameter of the distribution F.




Corollary: (1) If p(u) is an increasing function and 6(&) is
stochastically larger than é(X), the same result follows. (2) If
p(u) is a decreasing function, p(é(z)) is a 100(l-a) percent lower
confidence bound on the parameter 8 of G, and §(§) is stochastically
larger than §(X), then p(é(&)) is a conservative 100(1-¢) percent
lower confidence bound on the parameter 6 of F. (3) If p(u) is an
increasing function, p(é(z)) is a 100(1-a) percent lower confidence
bound on the parameter @ of G, and é(g) is stochastically smaller
than 6(1), then p(é(g)) is a conservative 100(l-o) percent lower
confidence bound on the parameter § of F.

The theorem and its corollary are proved in Barlow, Proschan,
and Scheuer [1]. These results will now be used to obtain the desired

bounds. We consider both censored and truncated sampling plans,

3.1 CENSORED SAMPLING

Under a censored sampling plan, n items are put on test (or burnt-in)
and successive life-lengths X1 < X2 < ... S Xr are observed, where r is
specified in advance. (If r=n, then the full sample has been observed.)

In the censored sampling plan for exponentially distributed
lifetimes with failure rate A, it is well known (Epstein and Sobel [3])

that an upper 100(l-o) percent confidence limit for the failure rate,

based on the censored observations Yl’ Y2, ooey Yr is given by

2
Xl-a(zr)

@ 2 [Z‘l’yi + (n-r)Yr]

Here, as usual, X%(m) denotes the 1003th percentile of the chi-square

distribution with m degrees of freedom.




Now if X is a random variable with distribution F(-) and failure-
rate function h(-:) such that h(t) = X\, then X is stochastically smaller
than Y, a random variable having the exponential distribution with
failure rate A. Further, the weighted sum [E:;Xi + (n-r)Xr] is
stochastically smaller than the corresponding weighted sum
[2:;Yi + (n-r)Yr], so that §(§) = ﬂ/[z:ixi + (n-r)Xr] is stochastically
larger than é(z). To use the notation of the theorem and its corollary,

let

3) () = % __(20)B(® /2x.

Then by part 1 of the corollary, p(é(g)) is a conservative 100(l-q)
percent upper confidence bound on }.
To sum up, if Xl < XZ < ... < Xr are censored observations from

a distribution with decreasing failure rate attaining the value )\

at time Xr, then

2
X o (21

“ 2[er + (n-r)X
111 r]

is a conservative 100(l-o) percent upper confidence bound on A. This
result does not really require that the failure-rate function be
decreasing -- only that it be bounded below by A over the time interval,

[o,xr], in which observations are taken.

EXAMPLE: Consider the first 6 times to failure: 4, 9, 11, 18,
27, 38, assuming n = 10 items are put on test initially. A conservative

95% upper confidence bound for the failure rate at time 38 is given by




2
X, 95(12) _ 21.026
2[4+ 94 11+ 18+ 27 + 38+ 4(38) ] 518

= .0406;

a conservative 90% upper confidence bound is given by

2
X001 18.549 | o
518 518 +0328.

3.2 TRUNCATED SAMPLING

In a truncated sampling plan, n items are put on test (or burnt-in)
and successive failure times X1 < X2 < ... < Xr are observed preceding
a fixed truncation (or burn-in) time T. The number r of failures
observed is random.

Bartholomew [2] has given the distribution of the MLE, @, of the
mean, O, of an exponential distribution based on a sample of n

*
truncated at time T, assuming at least one observed failure. The

MLE is given by
(3) é = [Z:ixi + (n-r)f]/r

where r is the number of observed failures. His result is

-1 i
(6) p (626] - (1- e'“T/9> Z(ﬁ) (‘l‘) (-1t

k
+ exp [— % (n-k+i)]J ka(u) du ,
X

*
Bartholomew uses the expression 'time-censored sample instead
of "truncated sample."”




where ka(') is the chi-square density with 2k degrees of freedom and

2k

(7) X = ?;-max[O,BO-T(n-k+i)/k].

Albert Madansky has written a computer program to implement
Bartholomew's result (see Appendix). The output of Madansky's pro-
gram is a lower confidence limit for the mean life of an exponential
distribution, based on a truncated sample. That is, if 60(6)

satisfies
(8) a=Pi[6 =20 (0],
and if 9;1(') exists and is an increasing function, then
-1 . a
@ = P[0 "(8) =el,
or

-1 A
(9) l-a = Pe[e 29, (®].

Equation (9) states that e;l(é) is a 100(1-a) percent lower confidence
limit on ©. Since, for the exponential distribution, the mean, 8,
and the failure rate A, are mutually reciprocal, Eq. (9) can be

rewritten to yield a 100(1-o) percent upper confidence limit on A:

-1 &
(10) 1-o = P,[A < 1/8 "(8)].

Thus, Madansky's computer program provides confidence limits for
the mean or, alternatively, for the failure rate of an exponential

distribution, based on a truncated sample.




To our knowledge, Madansky's program is the first to provide
these limits precisely. The computational difficulty of solving
Eq. (9) has in the past forced dependence on approximate solutions
whose accuracy is not known. The program, then, is useful for
truncated sampling from exponential distributions, but our interest
in it stems from its applicability to more general situations, as
we will now show.

From Eq. (6) we see that Pe[é 2 90] increases with 8. From the

definition of 90(9) (Eq. (8)) we see that for 8 < §',

o=2[620(0)] <P,,[6=20 ()]

Since « = Pe.[§ 29 (8")], then @ (8) =6 (8"); that is, §_(-) is an

increasing function. The following diagram may clarify this argument.
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-1, . . , . -
Thus eo (<) exists and is an increasing function, and hence 1/901(-)

exists and is a decreasing function.

Now we consider sampling from a distribution with failure-rate
function h(-) such that for 0 <t < T, h(t) 2 h(T) = A say. The
argument of Sec. 3.1 for the censored case shows that, for each value
of r, §(§) is stochastically smaller than é(X). If we identify p(@)
with 1/6;1(6), we can apply our Theorem and conclude that p(é(&)) is
a conservative 100(l-o) percent upper confidence bound on )\, the

failure rate at time T.

EXAMPLE: Suppose n = 10 items are put on test (or burnt-in) and
failures are observed at times 4, 9, 11, 18, 27, 38 preceding a fixed

truncation time T = 50. We compute

~

8 =1 [4+9+11+18+27+38+4(50)] = 51.1666.

For o = .05 and o = .10, respectively, Madansky's program yields
.03510 and .03116 as conservative 957 and 907 upper confidence bounds

on A, the failure rate at time T = 50.
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4, MLE OF A DECREASING FAILURE-RATE FUNCTION

Marshall and Proschan [7] have devised a procedure to obtain the
MLE, ﬁ(-), of a decreasing failure-rate function, h(-), based on a
full sample. Proschan [10] has extended this procedure to more general
sampling situations; this section reviews these results as they apply
to censored and truncated samples.

We first describe the procedure to obtain the MLE, ﬁ(-), for a
censored sample. Only a slight addition is required for the case of
a truncated sample, as we shall indicate.

The MLE, ﬁ(-), is a step function, constant between observations,
and obtained as follows. Let Zi be the total time on test between the
(1-1)°% and the i failure, i = 1, v.., r; X, SX, < ... < X_ denote

1 2

the ordered times to failure observed from the sample of size n; and

let Xo = 0, Thus, Z, = nX 22 = (n-l)(Xz-Xl), ceay Zi = (n-1+1)(Xi-Xi_1),

1 1’
Z = (n-r+l) (X -X Y. 1f it happens that Z-1 > Z-1 = = Z_1
Tt Ty r r-1 1 2 Tt r ’
then
(11) he) =27Y, X, . <tsX,i=1
=2, io1 i? =1, ..., r.
If a reversal exists, i.e., for some j, Z;l < Z;il, then form the
average
(12) [(z.+z )/2]'1.
j j+l
1f
-1 -1 -1 -1 -1
2 L. = P 2 2 L., 2
Z) 2/ = lerz, 2] 22, z_,

then
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-1 . . .
5Zi s Xi_1 <t <X, for i =1, ..., j-1, j*¥1, ..., r

7~
fily
w

AN
a3

7~
T

) = -1
l[(Zj+zj+I)/2] L X <ESX .

If not, continue the "averaging' procedure until a decreasing sequence
has been obtained. The end result will be of the form

-1
[(Z1 + .. + Zkl)/klj ,0st s xkl

-1
(14) [(z + .o +2Z Y/k,] T, X, <t <X
k,+1 ky+k, 172 ky k +k,

f(t) =

-1
[(Zk1+"'+kc +ee 2/ -k = eee -k DI,

Y phoowp S5 =5
No estimate of h(:) is made beyond Xr in the censored sampling case
because no observations are available in that interval.

For the case of a truncated sample there is an interval (Xr’T]
beyond the last observed failure time, Xr’ in which no failure is
observed. The MLE, h(-), on the interval [0,X_] is obtained exactly

r
as for a censored sample. For t > Xr’ h(t) = 0.

EXAMPLE: Consider again the data of the examples of Sec. 3.
In a censored sample, six times to failure were observed ~-- 4, 9, 11,
18, 27, 38 -- from n = 10 items initially put on test. We arrange

the calculations for the MLE as follows.
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. _ i _ -1
i Xi Zi = (n 1+1)(Xi Xi—l) Zi

1 4 10-4 = 40 .0250
2 9 9:5 = 45 .0222
3 11 82 = 16 .0666
4 18 77 = 49 .0204
5 27 69 = 54 .0185
6 38 5+11 = 55 .0182

There is a reversal between the initial estimates for the second and
third intervals, so we eliminate this reversal by forming as common
estimate for these intervals, [:(l;5+-16)/2:|-1 = ,0328. Now there is

a reversal between the estimate for the first interval and the new
estimate for the second and third intervals that we just combined.

We eliminate this reversal by forming, as a common estimate for these
three intervals, |:(40+-45+16)/3:|-1 = ,0297. We have now eliminated
all reversals and have as the MLE of h(:), based solely on the assump-

tion that h(*) is decreasing,

.0297, 0 <t <11
.0204, 11 <t < 18
.0185, 18 <t < 27
.0182, 27 <t < 38.

(15) h(t) =

No estimate of h(-) is made for t = 38, since no data are available
for that interval.

In the example of Sec. 3 for a truncated sample, we supposed the
same sample size and failure times as above, with continued observa-
tion, but no more failures, until the truncation time, T = 50. The
MLE in this case is given by Eq. (15) for the interval [0,38], and

h(t) = 0 for t > 38.
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Appendix

A LOWER CONFIDENCE LIMIT FOR THE PARAMETER OF THE EXPONENTIAL
DISTRIBUTION BASED ON TIME-CENSORED DATA

*
Albert Madansky

In [2] Bartholomew derived the sampling distribution of 8§, the
maximum likelihood estimator of the mean of an exponential distribution
based on time-censored data where at least one failure has been
observed. In the simplest case, where Eys eoes tn are independent

observations on a random variable with density function

(16) £(t) = %’e O bt <w

with the restriction that t:i is observed only if t < T, the maximum

likelihood estimator of © is

n
a 1 -
(17), 6 == {aiti + (1-a )T},
i=1

where

1 if ti <T,i=1, ..., n

a, =

0 if ti>T’ i=1, ..., nj

and

r=E ai.

i=1

*

The author wishes to acknowledge the stimulation of Harold Gruen,
the encouragement of Ernest Scheuer, and the help of Margaret Ryan in
developing this program.
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The distribution function of 8, given r = 1, is given by Eq. (6).

To obtain a lower confidence limit GL for 8 based on the distri-

~

bution of 6, one must solve the equation

1 - n\ -(n-k) - k i -iT/§L~
(18) Y = /B, Z@e Z(i)('l) ® '
1-e k=1 i=0
where
X
e-t tv-l -
—(\T:T)—.'— dt, ifx 20
(19) ¥(x,v) = 170
0, if x <0

and Y is the desired confidence coefficient.

A computer program was devised to solve Eq. (18) utilizing the
following features:

1) Since some iterative procedure must be utilized, the program
adopts the procedure described in [9] and programmed by W. Frank in
FORTRAN. In its usage at RAND the program is a subroutine called GRT,
which in turn calls a subroutine AUX, which embodies the equation to
be solved.

2) Our program uses as a starting value for GRT the value of 8.
Perhaps better start-values, such as the lower confidence limit for
® in the uncensored case, would appreciably speed up convergence, but
our experience with this start-value leads us to feel that it is

pragmatically adequate.
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3) To evaluate the chi-square integrals (19) in the computation
of (18) we use two Hastings approximations given in [4] and [5].
Their maximum error is .0003. These approximations are embodied in
a subroutine called CHISQ.

A listing of the program follows.

$1IBFTC TCEDD
C LOWFR CANFINENCE _IMIT FOR RELIABILITY BASHD ON
C TIME-CENSHRED EXPONENTIALLY DISTRIBUTED DATA
DIMENSTION X(100),C(2)
COMMON NCAP,THAT,T,GAM
READ 1 4NyNCAP,T
READ 24 (X(I)yI=1,N)
READ 3,GAM
XN=pN
XNCAP=Nr AP
THAT = (XNCAP-XN}= T
SXI = 0.
DO 4 1 = 1,N
4 SXI = SXI + XxX{1I)
THAT = (SXI + THAT)/XN
C(l)=1./THAT
CALL GRT(14+CyINsD)
XLIM=1,/C{1)
PRINT 6¢NCAPyNo T GAMy THAT y XL IM
FORMAT(2I5,F1045)
FORMAT(8F10.5)
FORMAT(F104.2)
FORMAT(1HOZ215¢F1l0.54F10.242E20.8)
END
$IBFTC AUX
SHBROUTINE AUX(RT,FRT)
COMMON NCAP,THAT, T ,GAM
IF(RT.GT.04) GO TO 10
FRT = 10.%%20
RETURN
10 S = 0.
XN=NCAP
Cl=1.
ce=1.
DO 1 I=1,NCAP
II=1+1
XI=1
Cl=Cl*{XN=XI+1l.)/XI
DO 1 K=1,11
XK=K~1
IF(K.FEQ.1) GO TO 6
C2=C2%{XT-XK+1.)}/XK

o wn -
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6 U =(XI#THAT-( XN-XI+XK)*T)*RT*2,
NF = 2%]
IF(U.LT.0.) GN T 7
CALL CHISQ(UeNF4PR)

G 10 8
7T PR = 0.
B8 IF(AMOD{XKe2e))3+2,3
3 CN = -1.
Gty TO 9
2 CN = 1.
9

E = EXP{={(XK+XN=XI)*T*RT)
S = S+CL¥C2%RCNHE*PR
1 CONTINUF
Fl = FXP(=XNXT#*RT)
FRT = S/{1.-F1)-GAM
RETURN
END
$IBFTC CHISO
SUBRODUTINE CHISQ(U,NF,PR)
YNF=NF
W2=2./YNF
W1l=SORT(W2)
W3=W1l*W2
IF (U.LT.YNFIGO TO 1
T=SORT(U)=SOQRT( YNF)
Ze5~e1323%W1-.0036%W2+,0038%W3
Al=.2784+,0783%Wl~,0051%W?
A2=.2304=4024THW1=-.0018%W?
A3=.0010+.0592%WL~,0852%W2+.0398%W3
Ab=,0781l=e090h%WL+,0923%W2=,0366%W3
CR = A/(1oe+ALRTHAZRTHR2+AIRTRXI+ AL T k%4 ) x%4
PR = 1.-CR
RETURN
1 T=SORT(YNF/2.)%AL0GIYNS/U)
A= .5+.1323%W1+.0036%W2-.0038%W3
Al=.1968-,0452%W1-.0128%W2+,0067%W3
A2=.1152-.0990%W]1+.0539%W2~.0168%n43
A3=,0004+,0442%Wl-,0866%W2+,0398%W3
A4=.0195=.0629%WLl+.,0T708%W2-,0269%W3
PR=A/ (1 +ALRT+A2RTHRT+ABIXT %3+ A4 *T k%4 ) %%4
RETURN
END
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