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The measured change with temperature of spin-wave fre-
quencies in metallic ferromagnets 1s proportional to T5/2.

The usual Landau quasi-particle theory would yield an incor-

rect TB/2 term. Successful theories of the T5/2 dependence

have started out from hamiltonians which may be interpreted

as containing dynamical quasi-particle interactions In the

present paper we supply the needed derivation of the dynami-
cal form of the Landau guasi-particle theory for uniform

systems and comment on its relation to the previous version

of the theory. We show, in effect, that the derivations of

the T5/ dependence by Izuyama and by Kawasaki are exact and

thus complete the justification of Marshall's original ex-

planations. The connection between the present form of %the

theory and the original Landau form and 1ts generalizations
is briefly 1indicated.
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I. INTRODUCTION

Measurements of the temperature dependence of the
1,2

spin-wave (S.W.) frequencies in ferromagnetic Ni and Per-
malloy” have ylelded D = Do(1 + Eg /2‘1‘5/ 2) where D is the co-
efficient of the quadratic term in the spin-wave dispersion

2

relation w(q) = Dg°~ + O(q4). It has been known for over a

decadez’l that the 1tinerant electron model is capable of
describing spin-wave excitations as well as electron-hole
excitations in ferromagnetic metals. An explicit expression

for the coefficient D was derived within that framework by

Izuyama, Kim, and Kubo,5 who obtained D = Do(l + E3/2T3/2 +

E2T2 + O(T7/2)). These authors assumed a single conduction

band and a simplified electron-electron interaction (S.I.)

+ +
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where ak,o'

0. Use of the random phase approximation (R.P.A.) then yields

creates an electron in the Bloch state k with spin

their expression for D. This use of the R.P.A. 1s completely
equivalent to the use of a simple self-consistent field theory,6
in this case Hartree-Fock, in which electrons interact only in

a statistically averaged manner. It is the averaged interaction
which specifically leads to the incorrect T3/2 term in D. A

Landau quasi-particle picture of a ferromagnetic metal can be
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obtained directly from the usual Landau Fermi liquid theory7
simply by making the proper distinction between the two in-
equivalent spin systems, as was done by Abrikosov and
Dzialoshinski.8 Nevertheless, this far more general quasi-
particle theory would still yield the incorrect T3/2 term
because 1t, too, contains only statistically averaged inter-
actions. However, Marsha119 has used phenomenological argu-

ments to develop a spin-wave hamilftonian including inter-
m5/2

actions between spin-waves which in turn give rise to a

term in D. Izuyama and Kubo,10

_ 2
D= Do(l + E,T° + Es /o
employing instead a diagramatic form of perturbation theory.

11 2

again using the S.I. obtained
19/2) by abandoning the R.P.A. and
Izuyama and Kawasaki1 then showed that a more sophisticated
application of the R.P.A. to the S.I. would give a S.W.-S.W.
interaction of the form assumed by Marshall, thereby lending
support to his phenomenological approach. To explain the fact
that the T2 term has not been obser'ved,l-3 it has been sug-

gested by Kawasaki that E, is small.

2
The parameters entering the hamiltonians

5,9,10 dis-
cussed above are not well defined by the various authors,
although Izuyama and Kubo8 do remark that thelr interaction
constant U should be viewed as a particle-particle t-matrix.
If the parameters are the bare interactions and the unrenor-
malized single particle energies, then it 1s clear that all

the large renormalization processes, correlation effects, etc.,

must be taken into account before the spin-wave theory is set



up lnasmuch as the spin-wave energies are small and their in-
teractions weak. If, on the other hand, all renormalizations
are already effected, as we believe they must be, the hamil-
tonlans describe dynamically interacting quasi-particles and
have never, to our knowledge, been derived from first princi-
ples. We thus arrive at the central concern of the present
paper. In order to have an adequate description of the S.W.-
S.W. iInteractions in ferromagnetic metals, one must have a
hamiltonian for Landau quasi-particles contalning fully
dynamical interactions among the quasi-particles in contrast

to the usual formulation7

with statistically averaged inter-
actions. We supply here in Sec. II the lacking derivation
of such a fully dynamical quasi-particle hamiltonian by
making what seems to us to be the minimal required generali-
zation of Landau's original verbal derivation.

5,9,10 a more rigorous

By giving the earlier theories
basis in this way, we complete the demonstration of the essen-
tlal correctness of Marshall's original explanation, as dis-
cussed in Sec. IIT. We also discuss there the relationship of

7

the present theory to the standard Landau theory' and suggest

further generalizations thereof.



II. THE DYNAMICAL HAMILTONIAN

We consider a uniform system of interacting spin-

1/2 Fermions, realizations of which might be jellium or He3.
The system 1s supposed initially at some time T1 in the
remote past to move according to any convenient independent-
particle hamiltonian, HO, e.g., the free particle hamiltonian.
HO generates a complete set of determinantal wave functions
'T(O) and energies E(O) which depend only on the set of occu-
pation numbers of the single-particle plane-wave states {nk},

the subscript k standing both for wave vector and spin,

1,40 (i, g) = 23 FO(1n3)- (1)

The states }F(O)({nkg) will fall into families of states each
of which is characterized by special symmetry properties,
e.g., total momentum, net magnetization, etc. Each of these
families of states can be labelled by a subscript ™ speci-
fying such family properties, ]P<O)({nk§*), K implying an
appropriate restriction on the {nkz. Within each family there
will be some ground state }F(O)({nk3°<G).

We now suppose that the difference between Ho and
the actual hamiltonian H is turned on adiabatically, i.e.,
extremely slowly, over the time interval TE—T1 which becomes

infinite in the 1imit that Tl recedes to - ., At tlimes



within (Tl’Tg) the motion of the system is governed by the

time dependent hamiltonian
H(t) = By + g(t)(H - H ) , (2)
where g(t) varies smoothly from O to 1 in (Tl’Tg)’

g(t) = O,t<T1§ g(t) = 1’t>T2:

(3)

Followlng the standard arguments of adiabatic pertur-

bation theory,13 we introduce the instantaneous eigenstates,
H(t) $,(t) = E (t) §_(t) , (%)
and the adiabatic transforms of the initial eigenstates.

F (a3, -t = vt F N (ny ). (5)

The latter will, in general, be distinct from the former and

may be expanded in terms of them:

¥ nd t) - icm({nkx,(,wfm(t)exp(;l—i *E (t1)att).  (6)
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Substituting (6) into the SchrBdinger equation yields

: “$.58)

Oy - t) =Z'—Em£:-% Ch(imd, - t) (7)
for a nondegenerate set of energies Em' Clearly, if all of
the energy levels of our macroscopic system were nondegenerate,
then ¢ would vanish since H vanishes in the adiabatic limit.
The adiabatic transforms }F({nk&x}t) of the independent-particle
states f(o)({nk}d) become identical to the instantaneous eigen-
functions j{m(t) at all times, including those times t>T2 for
which H(t) becomes identical to H. Upon neglect of degeneracy,
then, the exact states of the interacting system become identi-
cal to the adiabatic transforms of the single particle states.

This neglect of degeneracy 1is precisely correct only

for the ground state SZ(G of any given family'jk;. It is pos-
sible that the ground states of different families cross, but
H has no matrix elements between them because H(t) preserves
the symmetry properties on which the classification into

families 1s based. We conclude that‘&?({n T2) is an exact

i3 o’
eigenstate of H and further it is the ground state within the
family of exact eigenstates of H of symmetry type X .

We are concerned here with systems for which the
actual ground state is ferromagnetic with magnetization or,
more precisely, total magnetic quantum number M, the symmetry

type X in this case being equivalent to M. The ferromagnetic

ground state‘f;MG is thus the adiabatic transform of the single
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particle ground state '\[151?}) of the family of single particle
states having magnetization.M,}F&o), despite the fact that
?1&8) need not be the absolute ground state of Ho’ the initial
hamiltonian.

Because Y. 1s the adiabatic transform of Yl\(ag)’ it
is labelled by precisely the same set of occupation numbers
as Yfl\(llg)’ {nk_{ MG These occupation numbers correspond to two
unequally filled Fermi spheres, one for each spin. The same

remalins true for the exact ground state'f} Whereas the

MG*
occupation numbers and Fermi spheres originally related to

the individual particles, they now relate to the adiabatic
transforms of the individual particles, the Landau quasi-
particles. Thus the complete set of excited states ’z({nk})
generated by the adiabatic transformation of the independent
particle states provides the basis for a quasi-particle
representation. This representation has the great advantage
that the basis functions are in one-to-one correspondence with
the free-particle states and yet include the exact ground
state. Thus all matrix elements between \Z(G and excilted
states vanish; however, the excited states mix among them-
selves because the adiabatic theorem breaks down for them.

This means that in general the quasi-particle representation

of H has the property

<{nk.£°‘ IHl{nf{Ll> = O&." f({nkh ,{nf(}.‘ ): (8)
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where f does not vanish unless {nkg‘ or {n'k}a\ equals

{nk} Mg and
1§n,3,.> = 0(T,.7 )W) (In3 . )- (9)

It is convenient at this point to forget about the
classification of states by symmetry types, to drop the index
o, and to eliminate the corresponding restriction on the
{nkj. The various matrix elements of H can be grouped
according to the number of changes of occupation number in-
volved, a kind of cluster expansion:

o0
by

<In N [Hl {n 3> -8 (I3, 0}) (10)

where é/k is the number of changes of quasi-particle occupa-
tion number involved in passing from {n&& to{nk} .  Thus

8, vanishes unless {nkk is 1dentical to {nﬁg, g1 vanlishes
unless they differ in two members, 85 vanishes unless they
differ in four members, etc. In addition, the %,‘ vanish if
elther {nkﬁ or {nﬁ} equals {nkzc when/M.> 0. We can make
this last restriction explicit by the use of projection
operatorqip which vanish when acting on the ground state from

eilther the left or the right

g.({nd,{nf})= S ng o) h(inf) REND) (R RETIOH

(11)



where the Lyu no longer are restricted in their action on the
ground state and are defined for that case by continuation
from low-lying excited states.

The matrix elements offp in (11) may be written ex-

plicitly as

K (ind,in3) = J{nk%’fn&’; - J{nk’;’{nlée Jinkle,{nf{} )

(12a)

i.e., /6) =1-FP (12b)

The cperator P may be decomposed into the product

P({nd,inl}) = gﬂ”nk,ng ng,nj =ZTPk(nk,nl'() (13a)

where nkG is the value of n, in the ground state. The matrices
Pk are diagonal in the nk,nﬁ representation and hence independ-
ent of one another; it is convenient to reexpress Pk as

P, =1 - Dy - (13b)

Two equivalent expressions are readily obtained for Py by

. . G G .
direct examination of the matrix Grnk)nk n, )nk.



In (14) a tilde

Ly

Py

- 11 =~

= 2?k =5, if nkG =1,
(14a)
_ G
=1l-p ifn~=o0.
n n
<k ~k
= (1) (g, - n,%1) = @) . (1)

indicates an operator in second quantization,

is the ordinary number operator, and l?k is the number

operator which switches from electron to hole character below

the Fermi surface. Using (14a), for example,,ép may be writ-

ten as

f: 1 - 17(1 -ik). (15)

One sees immediately, that any factor in (15) containing an

exclted quasi-particle state, ))k_= 1, forces JP to unity,

whereas if no excited quasi-particles are present,éa is forced

to zero. Note that,ip can be expanded in powers of the;g.k

and truncated after the term of degree equal to the number of

exclted quasi-particles present.

Let us now introduce quasi-particle creation (ka)

and destruction (Ck) operators as the adiabatic transforms

of the particle

-
|

= U(TE’T].) ak Uf(szTl)

creation (akf) and destruction (ak) operators,

= U(T,,1y) 2 YU¥(T,,7))

(16)
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Because of the one-to-one correspondence of the a's and C's,
the C's have the same properties in the quasi-particle basis
as the a's do in the independent particle basis. Thus, the
operator represented by the matrix element g, can depend only
on the quasi-particle number operators ka Ck’ h1 must contain
products like C*k Cypts kK'#k, as well, and h, must contain

+ k,withkfk3,k4ork kK

k2 k

Translation invariance requires that h1 vanishes because of

products like C1 C

the restriction kf: k' and that k, + k. = k., + ky in h

1 2 3 2°
Putting all this together permits us to obtain an
explicit expression for the hamiltonian in terms of the quasi-

particle operators:

_ + 1 1 + +
H= Hd( {Ckckl)-l- 2 K i' a[vq(k:k', ccC ) Ck+q k q k' ]+,@
s »

afo, k'{k+q
(17)

where we have truncated the cluster expansion by keeping only
terms for which//4g_2. In the spirit of this cluster approxi-
mation, the justification for which is that H need be accurate
only for low-lying states of excitation containing few excited
quasi-particles, we may expand Hd({C;CE‘) about the ground

state energy in powers of the J'le and terminate the expansion

after second order:

Hy(16k0 ) = EG+§EKJEK+% kl:, w 9ne doy
(18)
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where
H, ( )
€y = d dd'nindG , (19)
and
x
_3H({npd )
T = Jn, dn,, : (20)

The number-deviation operators arn are defined in (14b).
. (18) may also be expressed in terms of the EZK through
a modified version of the identity implicit in (1%),

Y= 0 Iy (241)

Substituting (18) into (17) and replacing Vq(k k';{cj Gt) by
the extrapolation to the ground state of its eigenvalue

Vq(k,k') for low-lying states gives the desired hamiltonian

H=Ey;+3 €,dn, 29[ ! Ty °[r-lk°[5lk'+

k! k, k!

' + +
+ izg (k,k') ck+q c:k,_q Cpr ck]P. (21)

q%o,k'-k

The projection operators may enclose the term in Jgk JEL{'

because 1t automatically annihilates the ground state.
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IIT. DISCUSSION

Eq. (21) glves a quasi-particle hamiltonian contain-
ing dynamical interactions among the quasi-particles. It may
be put into closer correspondence with the hamiltonian of the
conventional form employed by Izuyama and by Kawasakl in their
derivation of the T5/2 law by writing the Jék out explicitly

G

+ L]
as C K Ck -Lnk :

/
_ + 1 + o
H=U+32 € ¢ c +5 = vq(k,k'ﬁcchk,_qck,ck?,
k! K, k'
d (22)
where
1 G G
U =g, +,63§ AN S T ,6), (23)
K, k!
/
=€ - G
Ek k /sz’ Ty xr By ,@ (2%)

and the restrictions in the sums over k,k' and g present in

(21) have been eliminated through the reordering of

+

¢"r Cpr C' T, and through the identification

k' “k!

fk k! = Vo(k’k—') = ng_k(k:k‘)' (25)
Thus Vo(k,k') and Vk,_k(k,k') in (22) originate in a way for-
mally different from the origin of Vq(k,k'), q f o or k~k?',

and the derivation of (22) in no way guarantees continulty,
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i.e., that

£y g = Lim Vq(k,k') - ILim Vq(k,k‘) (26)
q—>o0 g —> k'-k
should hold. However, if we suppose our system to be extensive,
Eq. (26) must hold. The requirement of extensiveness is equiva-
lent to requiring that the effect of a uniform distortion of
the system be the same as the effect of the 1limit of a slowly
varying distortion. An elementary calculation done either on
(21) or on (22) then shows that (26) is required.

The Hamiltonian (22) differs in form from that em-
ployed by Izuyama and by Kawasaki in the appearance of the
projection operator,ép, This would in no way modify the final
results of their calculations because they study the equation
of motion of spin-wave creation operators. This guarantees
that in the course of the analysis H or a related operator is
not applied directly to the ground state. The projection
operators then either drop out by reducing to unity or can be
incorporated into the definition of the spin-wave operators.

In this way we are led to a deeper understanding of the T5/2
term obtalned by Izuyama and by Kawasaki as an essentially
exact result.

The relation of our hamiltonian in the form (21)

to the conventional Landau theory7

is fairly straightforward.
The E:k in (21) are obviously identical to the single quasi-

particle energies of Landau. On the other hand, the fk Kt in
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Eq. (21) are not identical to the interactions in Landau's

theory,7

nor are the Vq(k,k') identical to the interactions
entering generalizations of Landau's theory to nonuniform
systems.lu’15 Nevertheless, one can derive the usual form of
the Landau theory from (21) simply by summing virtual ladders.
The justification for this is that the density of real excited
quasi-particles is low and the residual interaction Vq(k,k')

is of finite range. The result is that the Landau interaction
is the t-matrix corresponding to our Vq(k,k'). The derivation
evidently breaks down in principle when the t-matrix has poles
on the real fregquency axis associated with collective modes
lying outside the free particle continuum, as occurs, for
instance, in ferromagnetic metals at the spin-wave frequencies.
Hence the present analysis affords a starting point for going
beyond the Landau theory to obtain rigorously a hamiltonian
containing, for example, quasi-particle-spin-wave interactions
as well as splin-wave-spin-wave interactions. 1In the absence

of collective modes, the transformation from the dynamical

form (21) to the usual Landau form changes the basis wave func-
tions from plane-wave states for the individual quasi-particles
to scattering states, and similarly for the field operators.

We note in closing that our hamiltonian for dynamic-
ally Interacting quasi-particles has been derived for a uniform
system whereas, of course, all real metals are nonuniform
because of the electron-ion core interaction. In attempting

to repeat the derivation of (21) for the nonuniform case, we
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have found that the adiabatic transformation argument becomes
so intricate as to lose much of its pedagogical value, and we

have not yet carried it to completion.
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