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ABSTRACT

A modified optical potential approach is introduced for electron-
atom scattering at low energies whereby the formal optical potential
is used directly in a variational expression for scattering phase
shifts. This approach has the advantage that one may include the
effect of second order optical potential without recourse to the
usual adiabatic approximation. The diagramatic approach associated
with the present method makes it possible to identify different
contributing terms with different physical effects, and thus to assess
the relative importance of various physical effects involved in the
scattering process. To test the approach as a practical method for
low energy electron-atom scattering, we applied it to the case of
electron-helium scattering for energy range 1.2 ev. to 16.4 ev.

Good agreement with available experimental data has been obtained.
The contributions of various multipole components in the second Or-
der optical potential are examined. In particular, the effect of
exchange in second order optical potential, usually neglected in most

calculations, was found to be very significant.



INTRODUCTION

In the theoretical calculation of electron-atom scatterings at
low energies, the difficulty is well-known to be one of complexity.
That is, the problem one faces is to make suitable approximations
to the solution of the complicated, but known, many-body Schrodinger
equation such that good results may be obtained with reasonable effort.
From a physical point of view, the approximation scheme.must take into
account two important physical effects, the exchange effect and the
distortion effect. The exchange effect arises from the Pauli exclu-
sion principle between the incident electron and the atomic electrons.
In general this is taken into account in theoretical calculations by
explicitly antisymmetrizing the trial solution. The distortiom effect,
or the polarization effect, arises from the distortion experienced by
the atomic electrons in the presence of the incident electron's Cou-
lomb field. The distortion or the polarization of the target atom in
turn produces a potential on the scattering electron. Wwhen the scat-
tering electron is stationary, or moving slowly, the atomic electrons
will polarize and adjust adiabatically to the position of the scat-

tering electron. At large distances the dominant polarization poten-

tial is the dipole potential §4- where a is the polarizability of
the atom. This is the familiarradiabatic condition usually assumed
for low energy scattering processes.1 The validity of the adiabatic
condition for low-energy electron-atom scattering is rather dubious.
It has been shown2 that in the case of electron-~-hydrogen atom scat-
tering the incident electron, given to be at rest at infinity, would
be accelerated by the attractive adiabatic potential such that it will
acquire speeds comparable to that of the atomic electrons while still

several atomic distances away from the target atom. For atoms such

as alkali atoms where the polarizability is large, the validity of
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adiakaticity can be expected to be even worse. The non-adiabatic
effect will be considerable. The actual potential as seen by the
scattering electron is therefore a very complicated non-local (ve-
locity dependent) one. 1In practice the conventional theoretical
methods are less able to cope with the above mentioned distortion
effect. The familiar close-coupling met'hod3 does include some non-
adiabatic effects but the complexity of the resulting close-coupled
integro-differential equations severely limits the number of atomic
states one is able to close-couple. This in turn will give wrong
asymptotic values for the effective potential,4 In addition, the
close-coupling method as applied to e~H scattering showed that the
convergence is poor as the number of close-coupled states is in-
creased.5 A more serious practical difficulty associated with the
close-coupling approximation is the fact that it requires a knowledge
of the Wave functions of excited atomic states. This makes the method
much less general in practice than it appears. There are other metheds
such as the variational approach6 and Temkin's non-adiabatic approach7
which do take non-adiabatic effects into account more completely. But
these methods are either developed for special cases or bécome diffi-
cult for complex atom cases and are therefore restrictive in their
practical applications.

Another general approach is the optical potential method where
the effect of the target atom on the scattering particle is repre-
sented by an equivalent one-body potential. The optical potential
approach was first applied to atomic scattering problems by Mittleman
and Watson8 and others. The Pauli principle effect for the cases
where the incident particle is an electron introduces some additional
complications. This was set on a more rigorous basis by Bell and

Squires9 who used basis wave functions and.a diagramatic approach
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similar to the Bruckner-Goldstone's linked-cluster perturbation
expansiogDWhich.was successfully applied by Kelly to the atomic
correlation energy calculations[' Formally, this optical poten-
tial does contain all the non-adiabatic effects, as previously
describeg, through the propagators which contains operators for
the scattering electron. Conventionally, after obtaining the
formal optical potential expression; one proceeds to calculate the
scattering wave function by solving the one-body Schrodinger equa-
tion with the appropriate optical potential. However, the fact that
operators for the scattering electrons are contained in the propa-
gator makes the optical potential extremely difficult to evaluate
and one is forced to make the adiabatic approximation. Moreover,
even the adiabatically approximated second-order optical potential
can only be evaluated in its asymptotic region, yielding the ex-
pected dominant -*EE; dipole polarization potential. To remedy
the divergent behavior at small r, some ad hoc cut-off parameters
must be introduced such as the parameter 4, in the Buckingham type
potential -é;ijai . Unfortunately, there is no consistant
criterion for choosing the parameter d.l2
To avoid this difficulty, we suggest a modification of the
conventional optical potential approach. 1Instead of trying to soclve
the optical potential expression and then trying to solve the sub-
sequent Schrodinger equation, we use the optical potential directly
in a variational expression for the scattering phase shifts. The
associated diagramatic approach in enumerating different perturba-
tion terms in the optical potential expression has two advantages.
First, it enables one to improve the phase shift as one includes

higher order optical potential in a systematic and tractable fashion.
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Secondly, it is possible to associate different physical effects with
different diagrams. Thus one is able to evaluate the individual con-
tributions of the direct and the exchange part of the optical poten-
tial for each multipole component.

Of course, our main aim is to obtain a general method that is
also practical. As in common with any perturbational approach, the
convergence of the optical potential expression depends on the basis
wave functions one uses, which in turn depend on the "Single-particle
Potential” one chooses to generate them. For a well-chosen single
particle VS, one hopes to obtain good results with the inclusion of
only up to the second order optical potential. The second order op-
tical potential contribution to the phase shift can be then evaluated
without recourse to adiabatic approximations or the introduction of
any ad hoc parameters. In this paper, we have adopted the above pro-
cedure in a calculation of electron-helium scattering for energies
from 1.2 ev. to 16.4 ev. with gratifying result.

In Section II we review the single particle potential and the
result of the formal optical potential, first derived by Bell and
Squires. The variational expression for phase shifts in terms of
optical potential is given. The application to the e-He scattering
is carried out with numerical procedure described in Section III.
Results and discussions are presented in Section IV. Concluding

remarks are given in Section V.

Section II: REVIEW OF THE FORMAL OPTICAL POTENTIAL

The formal optical potential for a system of identical fermions
was first derived by Bell and Squires9 in the context of nuclear

scattering problems. The result is of course applicable to electron-
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atom scatterings as well. 1In their treatment, Bell and Squires ob-
tained the formal optical potential through the construction of
Green's function for the system. In the following brief review,
we aim to give some plausibility argument for their final optical
potential expression. To add some clarity, we have made a slight
deviation by invoking-the result from the Brueckner-Goldstone linked-
cluster perturbation expansion.lO For detailed derivation we refer
readers to the original papers by Bell and Squires.9

The system we are considering is the scattering of an electron
by a neutral atom with z atomic electrons. The total Hamiltonian
for the system, neglecting the motion of the heavy atomic nucleus,

is:

Z+/ Z+/
H= X T + ZX i
i=/ »i?j

(2.1)
Where the symbol T is the sum of the kinetic energy for the

electron and the nuclear Coulomb interaction acting on it.

Frcbens’
A K. + V (2.2)

hd A

1

and 1@;15 the mutual Coulomb interaction between the ith and the
jth electron.

The scattering equation we are interested in solving is

/9"35 (g77) = F VA (z+7) (2.3)

wWhere E is the total energy of the system.

2

£ = & + ko
° Z2m/ (2.4)

i.e. the sum of the energy of the initial neutral atom, eo

2
and the initial kinetic energy of the incident electron k;,‘%)bfa
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To construct a basis from which a perturbational expansion for

the solution jﬁ can be obtained we first approximate the effect of
the interacting particles by a single particle potential v® so that

the total system is approximated by an unperturbed system ja with
Z#/ e
=& (LrY)
4 =EFH
V4
= - =ZZUT|—— \
H ////0 <73 </ ~ L/ (2.5)

The choice of the single particle potential VS, at this point,

a Hamiltonian

S

is completely arbitrary except that it should be Hermitian so that

the single-particle wave functions J? satisfying
r

(T+V)g = ¢ 2

(2.6)
form a complete orthonormal set. The unperturbed Z + 1 particle
wave function‘jt is a Slater determinant formed from (Z + 1) single
particle states sz . Physical condition makes it desirable that
Z states:hlﬂashould represent the ground state of the atom. This
demands that the V° should generate a complete set of Jﬁ} such
that the lowest Z states coincide with the Hartree-Fock states of
the ground state atom. The complete set of ji? are used as the
basis for perturbation expansion.

In treating a system of identical fermions, it is desirable to
use second quantization formalism since the commutation relations of
the creation and destruction operators for single-particle state
automatically take care of the Pauli principle between electrons.
Using the basis just defined, the Equations (2.5) become, in the

second quantization formalism,
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and

(2.7}

y ot _ Sm t
//_-WZM <pplvim 777%7”/ /:Z”L@/V/ 448

f

The 7’! and 7 are the usual creation and destruction opera-
n
tors for single particle state :f . They obey the Fermi-Dirac anti-
"

commutation relations. The exact expression for the matrix elements
s
(ff/lf'/un» and <p/|//mp> are
oo ez ’ /
—= ’ i — Y
<rpfrinn> = //j';(zf)f; (r’) T PP e drdr

<pWVim> = jjf;rr) Viz)ﬁ(z) dx

The summation of the matrix elements is over distinct elements

only, e.g. ¢ 7;/)/'//»71} is not distinct from the matrix element

<gelvinmy .
Let us designate g;(z) as the Hartree-Fock ground state of

atom. The number Z is used to remind us that the wave function is
a Z electron function. Following Goldstonelo, the single particle
states occupied in é(z) are called unexcited states -v_rhile the rest

ﬂ ‘s are called ’excited states. An unoccupied unéxcited state
is called a hole, and an occupied excited state is called a particle.
The unperturbed scattering system IL, (2+/) is

4 = 7: /& > (2.8)

Goldstone'® showed that the true ground state of the atom &
is
% — f"/ 14(’) /é; >
T <&/ B>

(2.9)
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T Yw = () Het) o W) dt - 42,
= el (2.10)
and HE - Ht ot

Ht) = e * e ™ e
The true ground state 45 , through wWick's theorem, may be
represented by a sum of distinct diagrams where a "particle” is
represented by a line directed upwards while a "hole" is represented
by a line directed downwards. The unperturbed ground-state Hartree-
Fock atom is the "Vacuum" state. The matrix elements (7;/1/‘/%11, >
and <p/ Vs/n) are represented as graphs shown in Fig. 1.
Carrying out the time integration, one obtains
g=2 (4)
y X Z;-—/Z
L (2.11)

where the sum is over linked diagrams only. In general, the dia-

grams representing §ﬁ has no particle or hole lines at the bottom

but has a maximum of 2 z lines at the top, z particle lines and

z hole lines.

Similarly the true solution for the entire scattering system
15 = E? (, ; //,’)4/3;;

4=0 £o/7’0+-¢l£
L

is

[

= = ) (2.12)
v e
The diagrams representing dp has only one particle line at the

bottom (incoming electron ko) and a maximum of 22+ / lines at

the top, z + 1 particle lines and z hole lines.
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To obtain the true scattering electron wave function )&[A)

we project J/}:ﬂ) onto f(z)

%(‘é’)_—. <§(Z)/'-'E (2t1) > = Asr (E H,r~E )—fé (2.13)

L
In terms of diagrams, is the sum of all linked diagrams where

a particle line of ko is directed upward at the bottom and only one
"particle" line at the top as illustrated in Fig. 2. The optical
potential for this particle, as first derived by Bell and Squires,

is then

/
Wa; = ,é, H ( H) (2.14)
LP

Where the symbol LP means that one sum diagrams only that are
linked and proper, using the designation of Bell and Squires.9 By
"proper" they mean those linked diagrams which are not linked by one
particle line at any intermediate state. The diagram Fig. 3a is
a proper diagram while the diagram Fig. 3b is not. The reason for
the requirement of the "proper" diagrams in the optical potential
expression can be explained as follows. If there is only one "par-
ticle" line at some intermediate state of the diagram, it means that
out of the (Z + 1) electron system there are Z electrons in the un-
excited states, i.e. the atom is in its ground state. Thus the
restriction on “prépér"-diagpams is equivaieht.to the restriction in
conventional optical potent?élaformglgtion that the ground state of
atom can not occur in the intermediate state.8

Since the optical potential 2&; is defined for the basis states

~21 . the scattering electron satisfied the one-particle

Schrodinger equation:

(7+ V> + 1, o/,

) Zlh) = _,; H(4)
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Lonr 2
(4 V70 Ve ) A= K Al e

The total optical potential [é; is then

Lo/
op = -+ 1/5'* Zé;
choice of Ssingle Particle Potential
The general optical potential in Eq (2.14) yield in first order,

three different diagrams as shown in Fig. 4a, b, c. If one chooses
the single particle v® to be the Hartree-Fock potential léF defined

by its matrix element
. Z - \ -~ .
(ﬁ/[;F/y)zkél((on/V/jn)"("n/r/”/]>) (2.15)

where the summation is over all the Hartree-Fock orbitals of the
ground atom state. The potential in Fig. 4c cancels exactly the
terms shown in Fig. 4a and Fig. 4b. The first order optical poten-
tial vanishes exactly and the leading terms are the second order
optical potentials, direct and exchange, as shown in Fig. 5a and
Fig. 5b. These are the terms we shall retain in our calculation.

As mentioned before, the closer one chooses the single particle
potential V°® to resemble the actual scattering situation the better
the convergence. A close examination shows that the single particle
states one generates with %} is, except for the constant energy
difference term, equal to the usual static approximation with ex-
change.3 Thus even in zero order we have a phase shift value which
is expected to be correct at high energies.

Another remark can be made about the choice of V°. The choice
of V° is by no means limited to the one in equation (2.15). For

example, we can write a more general expression,
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. s
i|Vij>= E (contvljes-<cnrinis)
e . - (2.16)
FA(1-2 L) Y (1-Z, 7 )

The projection operator‘I;projects out the nth Hartree-Fock atomic
state orbital; VP is some arbitrary potential one may wish to intro-
duce. The expression equation (2.16) will always satisfy the condition
that it generates the Hartree-Fock ground states of the atom. We shall
return to equation (2.16) later in the discussion.

When we choose Vi=|/

HF
configuration space is, more explicitly,

£° 2 2 4 /
/‘;:., V- E2 . 2 [l Gy (V-] ) 0D A £.9 (0
zZ

., the single particle equation (2.6) in

=2, $0n m) fag dod (S )R ) = €400

(2.17)

The Hartree-Fock orbitals of atomic ground state is generated
since for i=n the direct and the exchange terms cancel so the state
n sees a potential due to the nucleus and (N-1) other orbital elec-
trons. For excited states, no such complete cancellation occurs so
the state n sees a field of nucleus and N orbital electrons. From
the works of Kelly for Be and Oll, one expects that no bound excited
states. This was found to be true also for the Helium case here. We
invoked the Levinson's theorem and looked for other bound excited
states but none were found.

The continuum single particle state Jf(é,l,”‘,ﬂg)is determined
by letting é;:: E;S in equation (2.17). Since helium atom is

close-shelled, we can assume spherical symmetry and write
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;? 6é‘zi,h) >/t (t%jf);};;(aéj

ja}[/”‘/”‘s) =

where the Y (957) is the usual spherical harmonics and X (1m )is
dm s =

the spin eigenfuctions. The radical function k(é jjr)satisfies the
P

radical equation, Lo R [,é/ 4z r)= ,ézfe/é/! ; ) where

2 2m Aueler )5 A (4+1) (
= /- 4 » 2= e £ (41, 2.19)
Za = [ dr? £° (v v') - r j
At large distances from the atom where the potential is effectively

zero Rk 4 ;)")becomes
Prhlir)ek kr [aa &6 0) 7,(4r) - § (L0) ¥ /ér)]

(2.20)

"“{fi’p e (br + & 0be) — %’ij’)

The j (bv) and %(kr) are the spherical Bessel and spherical
Neumarfn functions respectively. We adopt the normalization given
in equation (2.19). With the radial wave function ‘R(klﬂ 5 Y) thus
normalized it can be shown:Ll that in calculations one may replace
the summation over intermediate states 9& by an investigation over

k with a factor(-;—z—d, i.e.
= [ 2
% (75)] A
(2.21)

The 50(4,?) is the zeroth order scattering phase shift, which

is very similar to the result of static approximation with exchange.
Scattering Phase Shift

As mentioned before, it is impracticable to solve the Schrodinger
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equation of the scattering electron since it will then be necessary to
make the adiabatic approximation of the optical potential Eé; « To
avoid this dilemma, we shall instead obtain phase shift through a vari-
ational expression.13 (Normalization convention (2.20) is imposed

hereo)

)
§ 4= 5 - —é[k*(é,e: r)(L-A") Plhssr) Ar

(2.22)
A2, z2» (br1)

tion ?(él ; y) satisfies the radial equation (2.19), we thus

where . But the radial func-

have.

S b0 = She) - [ RUgpsr) (L-L,) R(kasr) Ar

> (2.23)
L oyam *
= é(é,l) - 'é,, /?)[Z)/I;[U') y’; ,?(,é[;rjjy
The correction to zeroth order phase shift is,
ASh)= 8 4+ (k1) — 540
(2.24)

_ 2/ ° ¥ _
~(55) ) ®wasr) U, Rlhesr) dr
¢ /a
In the present calculation, we shall only retain the contribution
due to the second order optical potential corresponding to Figures 5a
and 5b. The direct and the exchange potentials contribute respectively
2
Z Y
46 (b, )= -3 _L e_?_fz)z <k, 2|V [k &>
ol R, A Sy LA T

2 m Zm 2m/

GNP, sy

2 2
é," f;ﬁ;l /éaié"‘A‘J
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S

5, (b 7)
J?,, Y

— __/’)/ )/ )Zé(/v 2 ) [[< n/V/é ' OKR A |V b, > 40 ip”

A T +"54, P (2.26)

S (4 4 po®)

The angular momentum indices of k.,k', k” states have been

suppressed in equations (2.25) and (2.26). The integrations over
4’ and f” are used since we have adopted the normalization as

given in equation (2.20). The atomic state n for helium is in /s
state. Both orbital electrons in helium contributes to the direct
part, while only one orbital electron contributes to the exchange
part. When angular momentum indices are specified, we can further
identify the contributions from various multipole components. For
example, let ko be in S-state, then for k' and .K" both in S-state
we have the monopole component while dipole contribution comes from
k' and k" both in P-state. We shall use the notation [ Y /, A"
denote these multipole contributions. For helium, where’the atomic
orbital state 1is S-state ji=n5 , the matrix element for monopole
component for S-wave is denoted (SSSS) and the dipole component
comes from matrix element type (SSPP), etc. For P-wave, the mono-

pole component matrix element is (PSPS) while the dipole component

comes from (PSSP) and ' (PSDP) matrix elements, etc.

Section III: NUMERICAL PROCEDURE

In this calculation the ground state helium wave function
were taken as the "compromise wave function" of Roothaan, Sachs
and Weiss.14 The integro-differential equation (2.17) for the
radial function of the continuum states was solved by Numerov's
method.15 The solution is integrated out from origin to R=lOAo

(unit is Bohr radius). Iterative procedure is used and convergence

criterion is satisfied when successive values of the integral
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oo )
S‘ ?IS (r (";77/) R(k-.z“ Y)df differ by less than 0.000l1. We have

used a mesh size 0.01 A, throughout. Zeroth order phase shift
éo (,L/,Q) and the normalization were computed by fitting the wave
function at two points in the asymptotic region, usually R=9..5AO
and R=lOAo.

In evaluating all integrals or matrix elements, Simpson or
modified Simpson rules were used. In the integration over k'
and k" we used the limit k' and k" = 10. Higher k', k" region

gives negligible contributions.

Section IV: RESULTS AND DISCUSSIONS

In Table 1 we have tabulated the phase shift values from the
present calculation for f= p and = /) partial waves in energy
range 1.2 ev. to 16.4 ev. Also presented there are our zeroth
order phase shifts. To compare with other theoretical calculations,
these are plotted in Figures 6a and 6b. For S-wave phase shifts,

16 giffers

the static approximation with exchange of Morse and Allis
from our zeroth order values through the energy difference term.

For P-wave, the energy difference term vanishes and indeed our zeroth
order result agrees well with that of Morse and Allis. The calcu-
lation of LaBahn and Callaway17 takes into account the distortion
effect (dipole component only) but employs the adiabatic approxima-
tion. As can be seem, our result lies between that of LaBahn and
Callaway and that of Morse and Allis. It is not too surprising

since the adiabatic-exchange calculation of LaBahn and Callaway in
general tends to overestimate the polarization effect while the

static approximation with exchange of Morse and Allis completely

neglects it. It is interesting to observe that at low energies our
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results are closer to the results of LaBahn and Callaway but move
toward the values cf Morse and Allis as the energy of the scattering
electron increases, indicating the growing importance of the non-
adiabatic effect. At higher energies we expect our result to approach
that cf our zeroth order phase shift. It seems that even in this
application where the polarizakility of helium is relatively small,
the non-adiakatic effect is still appreciakle and the adiabatic con-
dition can be valid only at very low energy regions. For more polar-

izable atoms such as the alkaii atoms, one may have to take into

Fh

account the non-adlabatic effect even at zero energy.
The total cross section is plotted in Fig. 7 along with the
thecretizal calculatior of LaBahn and Callaway17 and two experimen-

tal results, one by Ramsauer and Kollath18 and the more recent one

by Golden and Bandelalg The result of Morse and Allisls, which
follows closely with the experimental result of Golden and Bandel at
higher énergles bit diverges to infinity at low energy, is not dis-
played in Fig. 7. We have =xtended our curve below 1.2 ev. by
extrapolating cur phase shift valiuves beleow kX=0.3. Our result is
very good and lizss, in general, between the two experimental results.
In particular, the shape of our curve is remarkably similar to that
of Golden and Bandel.

The momentum transfer cross secticn data cffers another com-
parison. This is shown in Fig. 8. Again our result gives much
better agreemznt with the experimental data of Crompton and Jory20
and that cf Frost and P'nelpsa21 Thus the result of this calculation
indicates that the present approach, with the inclusion of second

order optical potential, is sufficient to yield good results for

electron-atom scatterings.
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- The diagramatic aprprpach of the present method, as mentioned
earlier, offers the possibility of assessing the contribution of dif-
ferent physical effects. There are two questions of interest we can
explore with regard to the contribution of the second order optical
potential to scattering phase shifts. The first one concerns the ex-
change contribution of the second order optical potential. The second
one concerns the relative impcrtance of different multipole components
in the second order optical potential.

Calculations to date usﬁally include the adiabatically approxi-:
mated direct effect to the seconrd order while retaining only the first
order exchange effact. In Figs. 9 and 10 we have plotted the mono-
pole, dipole and guadrupole components of the second order direct
and exchange contribution to the S-wave and P-wave phase shifts
respectively. The direct contribution comes from both orbital elec-
trons while only one corbkital electron of parallel spin contributes
to the exchange term. In most cases, the direct and the exchange
contributions have opposite sig”s and therefore they cancel each
other. So the net contribution (exczpt for Fig. 10a) from each mul-
tipole is the difference between the direct (D) and the exchange (E)
curves in Figs. 9 and 10.

For S-wave phase shift, as seen from Figs. 9abc, the exchange
contribution from the monopole compornent is very large, being near-
ly half that of the direct one. In the dipole part, the exchange
contribution is less, but is still about 20-30% of the larger
direct contribution. For quadrupole,; the exchange part is about
40% of the direct one although both are small.

For P-wave phase shift, the monopole component of the exchange
part, surprisingly, has the same sign as the direct one. The total

monopole contribution in this case (Fig. 10a) is the sum of the
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two curves. The dipole contribution for P-wave comes from two types
of matrix elements, the PSSP and the PSDP type. Their exchange con-
tribution is identical to the P-wave monopole exchange (Fig. 10a)
and the quadrupole exchange (Fig. 10c) values respectively and thus
are not individually drawn there. Since these two exchange contri-
buticns have opposite signs, the nat dipole exchange contribution
for P-wave is smzll. For the quadrupole contribution we have cal-
culated the matrix element of PSPD type. The exchange contribution
is slightly larger in magnitude than the direct part.

The curves in Figs. 9 and 10 also show the relative importance
of different multipole contributions to the phase shift. In general,
as expected, the net dipole contribution is indeed dominant since
the long range polarization effect comes from here. However, the
net monopole contribution is quite sizable especially for the S-
wave case, being in general about 50% of the dipele contribution.
The net gquadrupcle contribution is in general much smaller. High-
er multipole cortr_butions are expected to be small and therefore
are not included.

From these, one concludes that in general the exchange contri-
bution of the second order optical potential is very significant
and must be properly included along with the direct part.

22, LaBahn and Callaway

In a recent dynamic-exchange calculation
observed that a better result can be obtained when they included only
the dipole contribution component while neglecting the monopole com-
ponent. In the light of the present calculation this may be explained
as follows. In their calculation, as in most calculations made to
date, the second order exchange effect is neglected. For the most

important S-wave phase shift, our present calculation shows that

the net monopole contribution {see Fig. 9a) turns out to be nearly



-19-

equal to the exchange part of the dipecle contribution {Fig. 9b}.

The neglect of the szcond order exchange contribution and the omis-
sion of the moropole contribution thus balances each other and gives
a result very close to the correct one. On the other hand, if both
the direct dipole and moacpole contributions are included but with
their respective exchange parts neglected, as in their calculation,
the tctal contribution becomes larger than the true one by almost a
factor of twc. Since this near cancellation is purely coincidental,
bcth the exzchange effect and the monropole contribution should be
properly Included in any calculation.

In this application we tave not calculated phase shifts for
enargiss bzlow 1.2 ev. The single particle potential v° we have
used for this calculation is the Hartree-~-Fock potential VHF' The
zeroth order phase shift is essentially the result of static approxi-
mation with exzrange. 1In this sense, the present calculation is ex-
pected to be more accurate as energy increases. The second order
optical poten+izl -ocrntribaticn ther carries the load of describing
the entlire distortinn effect.

For extremely low ena2rgy reg.ors whare the polarization effect
is most important and the ad abatl: approximation is most likely to
be useful, one may chcose a slightly different single particle po-
tential V® and 3s the one in equation (2.16} with Vb equal to some
commonly used polarization potential such as the Buckingham poten-

tial or the type of potential given by Bethe23 and Callaway-~

Temking24

The zeroth order phase shift then includes already the
effect of adiabatic polarization. The first order optical poten-
tial will not in general wvanish. The first and the second order

optical potential will carry a much lighter load of ‘describing

only the non-adiabatic corrections. The flexibility of the choice
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. S " s N .
in V© shculd enable one to use this approach in a wide range of
energies.

Section V: CONCLUSION

In this paper we have introduc=ad a modified optical potential
approach for the calculation of elastiz electron-atom scattering at
low energies. The method is general and in principle can be readily
applied to cases where the target atom is more complex. Corrections
to the elastic phase shift by higher orders optical potential can be
included in systematic manner and the Pauli principle is preserved
in each order. From tre results of cur application to the e-He
scattering in this paper, the approach is shown to be able to yield
excellent results with the inclusicn of only up to the second ordér
optical potential. This important feature makes the present approach
not only general but also practical. The freedom in choosing the
single particle potential v° gives the method an additional degree of
flexibility. Another feature associated with the method is the fact
that one may study the influsnze of varlous physical effects in de-
tail. Thus in the e-He case w2 fcound that the effect of exchange
in the second order optical potential is actually very significant.
Higher order diagrams, for example, can yield information on the
influence of the many-body correlation effects on the scattering
prccess.

Perhaps the most appealing feature of the present approach is
its simplicity. Once the single particle potential v® is chosen,
one can simply generate the complete set of single particle wave
functions and compute the second order optical potential contri-
butes to phase shifts in a straicht-forward manner. There is no
need for the dubious adiabatic approximation, with its usual prob-

lems such as the determiration of the dipole polarizability value
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a or the uncertainty of the choice of ad hoc cut-off parameters.

The modified optical potential approach is now being applied to
other more complex scattering situations. These investigations are
necessary to further assess the usefulness and limitations of the
present method as a practical approach for general electron-atom

elastic scatterings.
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(a)

Figure 1. - Diagrams

elements:

(a)
(b)
(c)
(a)

Am, AMm
6 /’-‘;\
A
»r A 1,
(b) (c)
n n

()
representing various interaction matrix
Single particle potential,
Direct interaction with hole state n,
Exchange interaction with hole state n.

General interaction matrix elements
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Figure 2. A general diagram for

A | AN NS
h ™
f ko bo

(a) (b)

Figure 3.
(a) A linked and proper diagram.
(b) An improper linked diagram where a single

particle line occurs in intermediate state.




Figure 4.

(b) (c)

Phase shift corrections from the first order

optical potential diagrams.

Figure 5.

A
B, T Ko

(a) (b)

Phase shift corrections due to the second
order optical potential diagrams.
(a) Direct term.

-

(b) Exchange term.




V74
— L2aB4mny & C’Aaﬂj/ﬁ)’

i s
23 é
[RESEA T Caccila7rox

22 /6

Morse K Aerss
2.t
2.0t
//9F

P - i

. . , ) —
63 (4 95 0,6 ¢7 08 0.9 Jc / b
Fr6. 6 a

- Wi PUASE SHIFTS




SLIHS FstHy FAM S/

72 27

W g 2Ry

TV ww

NOILY702 76D INFS7Y,

Ay X% wvgvy

AV«

110

AN\Q

1€0

1270



S /0 <3 20
ENERGY (ev)

Frg. [

Jo7AL  CRoss  SecTioN g7 ( 4,2 )
e LaBaww R Caeaway”

FRESENT ([ALCULAT?ON
o amsaveRr B /1/04447// }EXP
- Govew & Bavvee”




v g

&

~
Q

ﬂ/?//.sm/\/ CHRosS SECT/oN ﬂ; ( 402 )
G

LaBaw & Cucamny’

FRESENT CALLULATION
_______ ComproN & Tory *

—_— Freosr & Pyecps’®

7

0
/ }ExP.

S &y /0 ey
ENERGY

Frg. B

/5 CVy



NOLLL?7E/ AL
vz 42
VoIS
. s#ov3a (7)
* LY, F
Zid
7 .
$ 7

W%\Q
s Q )
g _ SUNVNINOINVGD T TP /% w\\
o /L7777,
SUAHS FSPHSL M-S~ FHL O SNO/L x\QQ
| rPFIHLNO
6 TS
(#q T M\ i
L] AM
T Qn
N i \,«\\x u\ I“\Q
] -4 ‘ |
7/ \.
(¥a -
4
+
570dryavi g ] od /T Q STRTONGLT -
| 77 1 .
37
o {s0°
v




-

LV L23X/T = .
Z = SUNINIIHTD  F70o /L7
SLAIHS Z et
Sthd MM o FHL 2L SNOLRGIUND)
o/ 29/

q
S0 o7
Ws M.Q

m—

R 4
-~ %.\ ‘n.@ oy
(-7 “ \ .
. @w\

»d

+da
7705 YAV
77047

770 0Ny

1/0°

{zo’

.MDQ‘

4p0"
150




5.

6.

10.

11.

12.

13.

14.

References

H. S. W. Massey, Rev. Mod. Phys. 28, 199 (1956),
M. H. Mittleman, Ann. Phys. (N. Y.) 14, 94 (196l1),
N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions.

an Ed. (Oxford Press, New York 1949),

M. H. Mittleman and R. T. Pu, Phys. Rev. 126, 370 (1962),

M. H. Mittleman, Advances in Theoretical Physics, vol. 1, P. 283,

(Editor K. Brueckner) Academic Press (1965),
P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1961),
C. Schwartz, Phys. Rev. 124, 1468 (1961). For an authoritative

review, see L. Spruch, Lectures in Theoretical Physics, Vol. IV,

P. 161 (Boulder, 1961).

A. Temkin, Phys. Rev. 126, 130 (1962).

M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198 (1959).
B. A. Lippman, M. Mittleman, and K. M. Watson, Phys. Rev. 116,
920 (1959),

J. S. Bell and E. J. Squires, Phys. Rev. Letters 3, 96 (1959),

J. S. Bell, Lectures on Many-body Problem, Edited by Caianiello,

Academic Press (1962),

J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).

H. P. Kelly, Phys. Rev. 131, 684 (1963)s Phys. Rev. 136, B 896
(1964),

M. H. Mittleman, Private Communication,

Te Yo Wu and Ohmura, Quantum Theory of Scattering, P. 59,

(Prentice-Hall, 1962).
C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. Phys.

32, 186 (1960).




[ 4

15. M. G. Salvadori and M. L. Baron, Numerical Methods in Engineering,

(Prentice-Hall, Inc., Englewood Cliffs, N. J., 1961).
16. P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
17. R. LaBahn and J. Callaway, Phys. Rev. 135A, 1539 (1964),
18. C. Ramsauer and R. Kollath, Ann. Physik 3, 536 (1929):; 12,
529 {1932),
19. D. E. Golden and H. W. Bandel, Phys. Rev. 138, Al4 (1965),

20. R. W. Crompton and R. L. Jory, IVt.h International Conference on

the Physics of Electronic and Atomic Collisions (Science Book-

crafters, Hastings-on-Hudson, N. Y. 1965)APq118.
21. L. S. Frost and A. V. Phelps, Phys. Rev. 136, 21538 (1964),
22. Private Communication, to be published in Phys. Rev. Their
result is very close to the result of the present calculation.

23. H. A. Bethe, Handbook Der Physik, (Edwards Brothers, Ann Arbor,

Michigan, 1943) V. 24 pt. 1, P. 339 ff.
24. J. Callaway, Phys. Rev. 106, 868 (1957),

A. Temkin, Phys. Rev. 107, 1004 (1957]).



