A Two - Temperature Statistical Model for Farticle Production at High Energies

J. K. Waylane ard T. Bowen
Department of Physics
University of Axizona
Tucson, Arizcea

gPO PRICE
\$ \qquad
July E1, 3.366
CFSTI PRICE(S) $\$$ \qquad

Hard copy (HC)
Microfiche (MF) \qquad

A Two - Tamperature sutictical wohel for Tarticle Froduation at Wid. Zergies *
J. R. Weyland end T. Bowen

Sumery
With the assumption of tow desceniscic
 nomentur distribution, the othe ghth the laretan sot.

 data for pions, kaons, and netymona is ontaned de

 volume. The model is relster to asple whical interpretation.
*This work was parcly supported by MASA Grart NGR-03-002-072.

A Two - Temperature Statistical Model for
 Particle Production at Kigh Energies

J. R. Wayland and T. Bowen

Department of Physics, University of Arizons, Tucson, Arizcne

1. - Introduction.

There have been meny attempts to find expressions for the spectra of particles produced in proton-proton end protononiclei collisions 's. Als but one has had rather limited success in explaining know apectra of prom duced particles. The most successful attempt assumes longitadinel and transverse particle momentum distributions suggested by experimenta. results (${ }^{2}$). Starting with a basic equation from quantan statistical mechentes, we will derive expressions for the monentum distributions. These distributione will be useã to obtain an expression for $d^{3} N / a p d \Omega$.

We will assume that there are two characteristic temperatures: one associated with the iransverse distribution, the other with the jongitudinal. This is suggested by the remeriable independence of the trimsverse parcicie.
(2) M. Kretzschnar, Ann. Rev. Nucl. Sci. , 11, 1 (1961).
(2) G. Cocconi, D. H. Perkins, I. J. Koester, Study \#28 of Eerkeley High Energy Physics Study, UCRL-100e2 (unpublished).
momentom distribution from the energy of the incident particle. One can consider this as s decoupling of the tenperatures wich could occur becmus of the more rapid dispersal of energy associated with the lorgitudinal motion. Another suggestion comes from the sssuned rotational ellipsoid form of the interaction volume. The longitudincl dinension is dependent upon the energy of the incoming particle under a Lorentz transfomation, but the transverse dimension is independent of energy
2. - Derivation of Differential Crose Section.

One can find from a quantum statistical mechanical enalysis that the average occupation numbers for particles produced in a higin energy inter. action can be written (3)

$$
\begin{equation*}
\vec{v}_{\alpha \mathbf{k}}=\frac{1}{e^{\sqrt{x_{\alpha}^{2}+m_{x}^{2}} / T} \mp 1} \tag{I}
\end{equation*}
$$

where, as is usual, the negative sign is for bosous and the positive aim is for fermions. However, equation (i) is not relativisticaly imrarizet. Relativistic invariance requires the exponsmt to be written in in invaijemt form. The exponent can be written as $B \mathrm{k}_{\mathrm{v}} \mathrm{J}^{\nu}$, were k , is the tour nomenta and U^{ν} is the four-velocity ($\left.{ }^{(}\right)$. ($\beta, 1 / 2$). ondy in the $6,4$. system inill $B k_{V} U^{\nu}=\sqrt{p_{\alpha}^{2}+m_{k}^{2}} / T$.

The atstribution of longitudinal particle somentum, p_{n}, for a given
(3) R. Hagedorn, Nuovo Cimento Supp. III, Mo. 2, 147 (1955).
(*) K. Just (private commuicaitions);
J. L. Synge, The Relativistic Gas, Interscience Publ., New York (1957).
nus in momentum space is found by integrating thy over ap, "re wart chanced to the variables p_{1} and p_{1}, the longitudinal and bethe verse mentor
 (modified Bessel Functions of the second typal, and $1 /\left(e^{x}-1\right)$, $2=1$ we can write for bosons (s)

Where $A=2 \pi V_{0} / h^{3}$ and V_{0} is the interaction volume. Upon nowzusation, wis becotaes

We have used c an and then inserted and in the fin g egression. We can use the expression fo: $K_{\text {G }}\left(k_{k} / T\right)$ to $f=a d$

Likewise, to obtain the wonayersenmen distribution we integrate over ir
(5) We can also mi be $1 /\left(e^{x}+2\right) \sum_{k=1}^{\infty}(-1)^{x+1} e^{-k x}$ The for fermata, results should contain a $(-1)^{k+1}$ in each series.
where $\mu_{n}^{a}=p_{1}^{2}+n^{2}$. When we normalize this, we find (${ }^{6}$)

By not equating I and To we have introduced two temperatiures and thus ssewred that p_{1} and $p_{\|}$are approxinately independent (come zustificacion for this can be tound in Appendix A). One woul also cepect this from en inspection of the shape of the interaction volume. The interaction volume is a flat dicis. One could think of the transverse dispiacements as caused by the "tramyersa temorature" and the "thickness" of the disk as associated with the "iongitudinal tamperaiure".
(6) K. Imaeda and J. Avidan, (ruovo Cimento 3e, 1497 (rogh), heve aiso obtained gquation 6 for bosons, which they reter to as planck's distributian They show that this distribution gives a satisfectory fit to date from cosvie
 gives a much poorer fit. H. H. Ahy, N. F. Zapion snc M. I. Shen, (Nuove zimento 32, 905 (1964)); ani E. M. Friediander (Huovo Cimonio b, 417 (1965)), have made the erroneous assertion that the latter fom is necessarily implita by the assumption of axiai symantry. fily, et al., reached this mistaken conclusion by imposing too strong a condition on the fom of the distrioution finction: nanely, that $w\left(p_{i}\right)=f\left(p_{x}\right) \cdot f\left(p_{y}\right)$. This is ongy true if f_{x} and p_{y} are statistically independent, which is yof necossany for wal symetry

The probability of obtaining a particle of mass m and momentuin p_{i} and p_{\perp} is given by

$$
\begin{equation*}
P\left(p_{\|}, p_{\perp}\right) d p_{\|} d p_{L}=N(T) \omega_{\|}^{(N)}\left(p_{\eta}\right) \omega_{i}^{(N)}\left(p_{\perp}\right) d p_{\perp} d p_{\eta} . \tag{7}
\end{equation*}
$$

Here $N(T)$ is the number of particles obtained from integrating equation (1) over $d p_{\perp} d p_{a}$. We have assumed that N is determined by the longitudinal temperature. This gives

$$
\begin{equation*}
N=\frac{V_{0} m c^{2} T}{h^{3}} \sum_{k=1}^{\infty} \frac{K_{0}\left(k a c^{2} / T\right)}{k} . \tag{8}
\end{equation*}
$$

If is the differential solid angle the tranefomantion from dean to day is
(9)

$$
\frac{d p^{d p}}{d p d 2}=\frac{2 p^{2}}{p_{\perp}}
$$

where p is the total momentum of the particle. The flux is found with the aid of $(5),(6),(7),(8)$, and (9):

The average values of \underline{D}_{11} md \underline{g}_{4} are found in Appendix B.
We have calculated the differential cross-section $\frac{\partial^{2} M\left(p^{*}, \theta^{*}\right)}{\partial p^{*} \partial a^{*}}$ in the
C.M. and it is related to the laboratory differential cross $=$ section by

$$
\begin{equation*}
\frac{\partial^{2} \mathbb{M}(p, \theta)}{S p d i}=\frac{\partial^{2} N\left(p^{*}, \theta^{*}\right)}{\partial p^{*} \partial D^{*}} \frac{E^{*} p^{2}}{E p^{*}} \tag{II}
\end{equation*}
$$

We will fit equation (10) to spectra in the C.M. systea (at angles in the forward and backward cones) and use the above transformation to obtain the spectra in the laboratory systam. The interaction volume, ∇_{0}, will act as a free constant to deteraine the normalization to experimental data.

3.- Comparison with Experiment.

A. The Pion Spectra.

From cosmic ray and machine-produced particles we know that for pions $0.2 \leqslant\left\langle p_{\perp}\right\rangle \leqslant 0.6 \mathrm{Bev} / \mathrm{c}$ as $6 \leqslant \mathrm{E}_{0} \leqslant 10^{6} \mathrm{Bev}(7)$. When $\left\langle p_{\perp}\right\rangle \approx 0.4 \mathrm{Bev} / \mathrm{c}$ we find With the aid of (B.3) that $T_{0} \approx 0.16$ Bev. For comparing the above results with
 since experimental data indicates that, at most, $\left\langle p_{i}\right\rangle \sim$ in $p_{0}(7)$. when one makes a best fit to the data from the AGS, the parameter $T=0.38 \mathrm{Bev}$ for nomalization to the 4.75° and 20° date (${ }^{\circ}$) (corresponding to forward and backward cones in the C.M.).

To make the transformation from one incident particle energy to another, we note that

$$
\begin{equation*}
n_{s}\left\langle E_{s}\right\rangle=X_{s} E_{0}, \tag{12}
\end{equation*}
$$

where K_{s} is the fraction of the total energy content possessed by the secondaries of type s, and ${\underset{s}{s}}^{\mathbf{s}}$ is the average energy of the secondaries. If one uses equation (1) to calculate the average energy it is found that (E) a T^{3} with the condition $m / m \rightarrow 0$. Fiven with m / m of the order of one this is a fair
(7) V. S. Barashenkov, V. M. Mal'tser and I. Patera, JINR-P-1577 (unpublishedi.
(e) Baker, et al., Phys. Rev. Letters I, 101 (2961).
 $n_{s}=$ number of charged secondaries $=1.8 \mathrm{E}_{0}^{\text {wh }}$ and the retio of chaiged pions to all charged secondaries as $\left.0.8 e \pm 0.05(1)^{9}\right)$, Thus $n_{\pi^{i}}=1.5 \mathcal{E}_{0}^{1 / 4}$. At $E_{0}=30 \mathrm{Bev}, n_{\pi^{2}}=3.5$. We are interested in either π^{*} or π^{m}, so if $n_{\pi^{+}}=n_{\pi^{-}}$we have $n_{\pi} \approx n_{\pi^{+}} \approx n_{\pi^{-}} \approx 1.7$. Using equation (B.2) we can find $\left\langle s_{s}^{*}\right\rangle$ as a function of Φ. From the value of $\left\langle E_{s}^{*}\right\rangle$ we find $\left\langle E_{s}\right\rangle$. For

$$
\begin{equation*}
K_{\pi}=\frac{n_{\pi}\left\langle E_{\pi}\right\rangle}{E_{0}} \tag{13}
\end{equation*}
$$

we find $K_{\pi}=.26$. The results of fitting equation (10) with the aid of 111 to the pion spectra are show in Figures i, 2, 3, 4, 5, and 6 for vaxious angles and incidant enarefies (${ }^{20}$). Because of the approximations of the statistical model used, the fit is not expected to bo good for $<$ is Bev.

We can take the interaction volune in the above analysis to be an ellipsoid with two of the axes equal to the Compton wavelength corresponding to tine thperature T_{0} and one to the temperatire $T_{\text {. }}$

$$
\begin{equation*}
V_{0}=\frac{4 \pi}{3} \quad\left(\frac{c \hbar}{2} c\right)^{2}\left(\frac{i k}{T} c\right) \tag{24}
\end{equation*}
$$

One would expect a to be on the order of one. For e reasonable fit to the pion data, we find $T=0.38 \mathrm{Bev}$, and $a=0.56$.
B. The Kaon Spectra.

When one applies this approsch to the positive kaon spectra from the AGS (${ }^{8}$), the best results are obteinecifor $\mathrm{T}_{0}=0.160 \mathrm{Bev}$ and $m=0.38$ Bev.
(*) D. H. Perkins, Study \#10, 11, of Beriseley High Energy Physics Study, UCRL-10022 (unpublished).
(10) D. Dekhers, et al., Phyrs. Rev. 137, 8962 (1965).

This is show in Fig. 6. Because of the difference in the production channels open to negative keons we have fitted its spectra with $T_{0}=0.150 \mathrm{Dev}$ and $T=0.30 \mathrm{Bev}$. This is also shown in Fig. $6\left({ }^{12}\right)$. In fitting the keor data we have used an average for $\left\langle p_{1}\right\rangle=0.46 \mathrm{Bev} / \mathrm{c}\left(^{7}\right.$) and to estimate the inelasticity coefflcient we have taken $n_{K^{-}} / n_{\pi^{-}} \approx 0.04$.
C. The Antiproton Spectra.

We can use the same type of enalysis to fit the antiproton spectra. If we take $T_{0}=0.160$ and $T=0.160 \mathrm{Bev}$, the results of epplying equation (10) with the aid of equation (11) are shown in Figs. 7 and 9. Again we have assumed that $\frac{a_{\bar{p}}}{\bar{p}} E_{0} 1 / 4$ and have taken $n_{\widehat{p}} / n_{\pi^{-}} \approx 10^{-2}$ (in order to find the inelasticity coefficient K).
D. Results.

With adjustment of three paremeters it is possibie to obtain good agrement with experimental data over a jerge range of inciaent energy, lab angle, and secondary particle momentum. The method works equally well for different types of perticles. The results for the various parameters are given in Table I. One notes that: (a) the transverse teaperature, To, is the same for all particles; (b) the longitudinal temperature, T, is the same for pions and K^{+}, decreases for $K^{* \prime}$, and further decreases until it is equal to the transverse temperature for $\overline{\bar{p}}\left(^{12}\right)$.
(${ }^{12}$) It is also possible to fit the CFFN data with an expression of the type oŕ equation (io). (${ }^{22}$) Imaeda and Avidan obtain a velue for m_{0} of 0.122 Bev , somewhat lower than our value. However, they obtained this value from secondary particles produced in cosmic-ray jets.

One can drop the surmation from the ebove equations, keeping only the $k=1$ term, without changing the results significantly. Then we can write equation (10) as

It is interesting to rote that the interaction volume, Vo, for pions is approximately ten times greater than for kaons and 100 times greater than the antiproton volume. One also notices the following: (a) the fit is not good in the low (1 to $3 \mathrm{Bev} / \mathrm{c}$) secondary momentum renge for low production angles for complex nuclear targets; (b) the 0° spectra changes markedy from that of angles greater than $0^{\circ} ;(c)$ in the pion spectre there is a large difference between the π^{+}and $\pi^{\boldsymbol{\omega}}$. When one exarnines the number of particles in the C.M. system at high monention in the beckerard direction Eron heavy torget nuclei it is found that there are more particles produced than predicted by this model. This is probably due to the nucleon-nucleus interaction involving more than one nucleon in the terget nucleus. This would account for (a). However, (b) and (c) cannot be accounted for by this analysis.
4. - Discussion.

An inspection of the results of fitting equation (10) to the spectra for different pariicies inaicutes that thera is rather good agrement with experimental data for: (a) $\mathrm{E}_{0}>15 \mathrm{Bev}$; (b) secondary momentum greater than about $3 \mathrm{Bev} / \mathrm{c}$ for small angles; (c) angles $>20^{\circ}$. Also, the inelasticity coefficient, K, is within the measured range of experimental values (but, perheps, a little large).

Basically we have assumed that the production process occurs by creation of a fireball that in turn "boils off" the secondary particles. The momentum distribution of particles in the fireball is a combination of two approximately independent distributions characterized by two temperatures. To determines the transverse distribution and T the longitudinal distribution and number of pariicles produced via the quantur mechanical number density. The longitudinal and transverse modes appear to be only weakly coupled during the expansion of the fireball. Antiprotons seem to be boiled off at a stage of the interaction process when the transverse tenperature, To, and the Iongitioinas temperature, T, are approximately the same; the pions end kaons, at unequal temperatures. Because of the flat disk shape of the interaction volume, tine transverse modes remein coupled among groups of particles longer than the longitudinal modes while the particles are moving apart toward eventual freedom. As a result, the transverse momentum distribution of a boiled-off particle may be charaiterised by a lower temperature then its longitudinal momentum distribution.

TABLE I

Parizcle	$\mathrm{T}_{0}(\mathrm{Bev})$	$T(\mathrm{Bev})$	K	α
π^{+}or π^{-}	0.16	0.38	0.26	0.56
K^{+}	0.16	0.38	0.032	0.75
K^{*}	0.16	0. 30	0.0109	0.984
$\overline{\mathbf{p}}$	0.16	0.16	0.0043	0.231

The authors wish to thank Dr. K. Just for a very helpful discussion. Also, we would like to thank Dr. R. Hagedorn for sending us conies of his paper before publication.

Appendix A - The Correlation Coefficient.

To check the possibility of expressing a given distribution of known form as the product of two new functions, one should compute the correlation coefficient. In our case,
(A.1)

$$
P(p) \sum_{\|}(n) \quad\left(p_{\eta}\right) \omega_{L}^{(n)}\left(p_{L}\right)
$$

can be checked by computing the correlation coefficient, p

$$
\begin{equation*}
\rho=\frac{\left\langle\left(p_{\perp}-\left\langle p_{\perp}\right\rangle\right)\left(p_{\|}-\left\langle p_{n}\right\rangle\right\rangle\right\rangle}{\left\langle\left(p_{n}-\left\langle p_{n}\right\rangle\right)^{2}\right\rangle^{2 / 2}\left\langle\left\langle p_{\perp}-\left\langle p_{\perp}\right\rangle\right\rangle^{2}\right\rangle^{2 / 2}} \tag{A.2}
\end{equation*}
$$

We find that

As we go to higher energies $m / T \rightarrow 0$ and $p \rightarrow 0.109$. for pions $\rho \div 0.103$ at $\mathrm{E}_{\mathrm{o}}=30$ Bev. ρ decreases slowly for increasing m / T. We can assume that (A.1) is a reasonable approximation. We also remark that p_{x} and p_{y} are not strictly statistically independent, a requirement which several authors have mistakenly imposed (e).

Appendix B - Derivation of $\left\langle p_{1}\right\rangle$ and $\left\langle p_{\eta}\right\rangle$
For the normalization of w_{p} and ${ }_{\perp}$ distributions ye note that for w_{n}
(B.13)

$$
\begin{aligned}
I & =\Omega A\left(\frac{2}{\pi T^{2}} T \int_{0}^{\infty}\left(p_{\|}^{2}+m^{2}\right)^{3 / 4} K_{3}\left[\frac{\left.1 p_{n}^{2}+m^{2}\right)^{1 / 2}}{T}\right] d p_{\|}\right. \\
& =\Omega A m^{2} \operatorname{TI}(m / T),
\end{aligned}
$$

and for w_{1}

$$
\text { (E.1b) } \begin{aligned}
1 & =\Omega_{0} A \int_{0}^{\infty} p_{1}\left(p_{1}^{2}+m^{2}\right)^{2 / 2} K_{2}\left[\frac{\left(p_{1}^{2}+n^{2}\right)^{1 / 2}}{T_{0}}\right] p_{1} \\
& \approx \Omega_{0} A m^{2} T_{0} K_{2}\left(m / x_{0}\right) \quad .
\end{aligned}
$$

Now

$$
\begin{align*}
\left\langle p_{\|}\right\rangle & =\Omega A \int_{0}^{\infty} p_{1} d p_{\perp} \int_{0}^{\eta} p_{h} d p_{\|} e^{-\frac{\left(p_{1}^{a}+\mu_{z}^{a}\right)^{2 / 3}}{T}} \tag{Be}\\
& =\left(\frac{2 \pi T}{\pi}\right)^{13} \frac{K_{\text {战 }}(m / T)}{K_{2}(m / T)},
\end{align*}
$$

and
(By)

$$
\begin{aligned}
\left\langle p_{\perp}\right\rangle & =\Omega_{0} A \int_{0}^{\infty} p_{\perp}^{2} d p_{\perp} \int_{0}^{\infty} \Phi_{\|} e^{-\frac{\left(p_{j}^{2}+\mu_{2}^{2}\right)^{2 / 2}}{T o}} \\
& =\left(\frac{\pi m T_{0}}{2}\right)^{1 / 2} \frac{K_{\alpha A}\left(m / I_{0}\right)}{X_{a}\left(m / T_{0}\right)}
\end{aligned}
$$

The universal function $K_{50}(x) /\left((x)^{1 / 2} K_{2}(x)\right)$ is shown in Fig. 9.

Figure Coptions

Fig. 2. Nomentum spectra of pions at: 4.75° and 9°, observed at en incident energy of $10 \mathrm{Bev} . \mathrm{s}^{6}$. (50% target efficiency).

Fig. 2. Momentum spectra of pions at 0° sind 5.7°, observed at an incident energy of $18.8 \mathrm{Bev} / \mathrm{m} .\left({ }^{20}\right)$.

Fie 3. Momentum spectra of pions at 4.75° and 9° observed at an incident energy of 20 Rev . © ${ }^{6}$. 50% target efficiency).

Fig. 4. Monentum spectra of pions at 0° and 5.70 : Deerrea at an incident meray of 23.2 nev/e. ${ }^{10}$.

Fig. 5. Momentum spectra of pions at $4.75^{\circ}, 9^{\circ}, 23^{\circ} ; 20^{\circ}$, and 45°, observed at an incidert energy of 30 Ber. (1. (50\% target exaciency;

Fig. 6. Monertun zpectra of kans st $4.75^{\circ}, 9^{\circ}, 13^{\circ}$, and 20°, observed at an incicent energy oi $30 \mathrm{Bev} . \mathrm{e}^{3}$) (50\% target efficiency.

Fig. 7. Momentur spectra of antiprotons at $4.75^{\circ} ; 9^{\circ}$, and 13°, observet at an inciaent energy of 30 bev. (s).

Fig. 8. Monentur spectine of antiprotons at 0° and 5.7°, observed at an incident energy of $23.1 \mathrm{Bev} / \mathrm{c}$. ${ }^{10}$.

Fi5. 9. The function $\frac{K_{\text {get }}(x)}{\sqrt{x} K_{2}(x)}$ given as is furction of $x=m / T$.

FIGURE I

figure 2

figure 3

FIGURE 4

FIGURE 5

figure 7

FIGURE 8

FIGURE 9

