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ABSTRACT R

By formulating a numerical analog of the Bates-Damgaard Coulomb approxi-

ﬁation for dipole transition probabilities, but with a Thomas-Fermi potential,
| transition probabilities are calculated for pn - pn-1 + s transitions as a
function of empirical energies. The variation of the calculated values with
atomic number is fownd éo be spproximately factorable. The formulation cbtains
radial wavefunctions'by solution of an initial value problem. Extension of
the Bates-Damgaard tables are given for p ground states and s excited states of
neutral atoms. The scaled Thomas-Fermi or quantum defect methods are recommended
for ions. For intermediate weight atoms, agreement with experiment is found
within 30%. Errors of 40% or more are found in C, N, Pb, and I, where failure
of the configuration assignments is the probable cause. The Burgess-Seaton

quantum defect method is found to give results - 10% + 80% different from the

present formulation.
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I. INTRODUCTION

We present here a simple numerical formulation of the "radial integral"
evaluation for atomic dipole transitions with one-electron jumps. The method
of Bates and Damgaard (1949), (BD), which uses a Coulomb potential for the
central field, is, in essence, duplicated except that a Thomas-Fermi (TF)
potential is used. We shall formulate the extension and then mention its
relation to the scaled Thomas-Fermi (STF) method of Stewart and Rotenberg
(1965), self-consistent field calculations, and experiment.

The present formulation is motivated by a desire to extrapolate the BD
tables for use with the resonance-type transitions (mp" - mpn'1 (m+1)8)
of non-metals. For example, Griem (1964) and Kelly and Armstrong (1962)
have made such extrapolations. The latter authors used the quantum defect
method of Burgess and Seaton (1960) to modify the BD method. This is an
important improvement and is described in section V. The tahles and specific
calculations given here are for the resonance transitions in neutral atoms.
Extension of the tables to ions is discussed in section IX.

Our goal fof the accuracy of such a formulation is 10% in reproducing
other one-electron type calculations for resonance type tramnsitions. Core
changes, configuration mixing, spin orbit interaction, etc. are partially or
campletely ignored in such a formulation. Table 5 gives a comparison with
some experimental values. We find discrepancies between theory and experiment
of factors of two to three in C and N but only factors of 1.3 or less for
intermedialbe weight elements.

The important parts of the BD theory which are retained in this extension




-

vy

1. The radial wavefunctions at large p are Coulambic (except for
normalization) and are determined by the experimental energies. Inaccuracies
of the wave functions at small P are ignored, and indeed, are ignorable.

2. The results are presented in such a way that interpolation is possible.
The BD format is used.

3. A single potential, asymptotically Coulombic, is used for entries
in the tables of the extended BD function,<f.

The important differences are:

1. The potential used is a numerical approximation to the TF potential,
with an exchange approximation, as given by Latter (1955). This potential
is Coulombic at large P out drops faster than 4 /¥ at small ¢ . The
"universal function"; Latter's equations (5) and (9) are used.

2. The atomic number 2 enters the calculation through its appearance
in the potential, but its effects are mainly on the BD function o .

3. Divergences of the wavefunctions for J <« .001 are eliminated by

the numerical method used.

II. THEORY AND COMPUTATION
The formulation is a numerical solution of the one-electron central field

problem defined by the radial Schroedinger equation:
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where C is the core charge, lo = CF with the radius in Bohr radii,

1 is the orbital angular momentum, V ( J~ ) the central potential and 7,4
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is the effective quantum number defined in terms of the empirical energy &
2 2
(in Rydbergs) by éA =C /%’. Set C = 1. We wish to calculate & or

I vwhere,

a
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where j; is the largest of the angular momenta of the Jjumping electron in

(2)

the transition. The quantity 0" is used in BD and I is the quantity = used by

Shore and Menzel (1965). Here,%jlf-—1 =V3 . The normalization

factors, Ql » are given by:

N= [Te o] o

In order to obtain P functimms which are correct at large ¥ we write

> —rz
p(r)= F(r) r e p "

- . PR .

which requires that F satisfy
I°F  dF [22_ 2] 2(zA)=4(L+]) i1 J
irZ T dr [ r Tz |7 F[ r# 26 i/

The asymptotic form of F is taken from BD:
@

Fosa™ 1t 2, %/r%, (6
where
a,= 22 [4(ew) -2/(7+1) | .

The numerical solution of the radial wave equation was accaomplished by
stepwise integration of Eq. 5, starting at K, = 38.001 and stopping at
F = .001 with AF = -0.05. The initial conditions were F ( f;, ) = 1.0

44

F' (38.001) = -a1/ cf . A Runge-Kutte method by Gill (1951) was used.

1. Built into the Princeton, IBM 7094, computer system. This facility is
supported in part by National Science Foundation Grant NSF-GP5T9.




In the range of values included here, the step size, starting radius and
initial slope condition were determined to be appropriate to give a~2 values
within 1% of those given by exact solutions of the equations. Such a formulation
is limited to small ¥ values because of starting radius limitations. If 7z
is set = 1 and 2/ an integer, the proper normalized hydrogenic P functions are
obtained within 0.001.

The true solution to the problem defined above will, in general, diverge
at the origin because the experimentally determined p/ values are not eigen
values of the approximate potential used. This divergence is found to begin
inF () ) for rz 0.1 but the }’7/ factor in Eq. 4 makes its effect quite small.
For a typical resonance transition as listed in Table 5, we find a3 2% increase
in the calculated values of @ 2 if the wave functicns are arbitrarily
truncated shortwards of "‘ = 0.1. Thus the solution is not strongly dependent
upon cut-off radius.

The potential used is accurate enough that sclutions for the transition
arrays of Table 5 have the proper number of nodes except for the misbehavior

at the origin.

III. PRESENTATION OF THE DATA
Tables 3 and 4 are arranged as extensions of the BD tables for O.S(%
~

Z 2.0 and %z g/( 2.8. We obtain (= from

o (2)= (1/¢) T2 (z) (%> %), (8)

where
Gz ()= 0 (F=7%52)
Now strictly speaking, J is & function of Z but was found to vary only dby

* .03 for Z between 7 and 33. A "medium" value of Z = 15 was chosen. Hence,
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one interpolates between Z values only in finding %«T . lnterpoiation of
(i is best done linearly while ‘31- varies approximately exponentially with
7 ' The specific examples in column 5 of Table 5 were interpolated from
graphs of 1ln & vs % and of (1. vs ( % '7/ ). A comparison with the
directly calculated values in column 6 shows that the error involved in taking

c& =(£ (Z = 15) is not serious.

IV. VARIATION WITH THE POTENTIAL

We ask now, how crucial is the choise of potential? The value of Z is
a convenient parameter for varying the potential. As pointed out above, most
of the variation in the calculated value of U~ is isolated in the function
‘é;' (%) which is tabulated in Table 3. Examination of the entries shows
that at Z 26, d In 0 /d 1n 2z = 0.26, 0.21, 0.10 and 0.02 for Vy = 0.75,
1, 1.5, and 2, respectively. As a rather drastic example, if we use 7/p =1,
we find in going from Z = 15 to Z = 82 that (© has increased only 34% while the
p wave function has gained approximately 3 nodes. At Z = 7, however, U 1is some-
what more sensitive to Z.

Let us examine the source of the variation with Z. The TF potential is
non-Coulombic only for ¥ ,%’1 so that changes in P ( /° ) occur only for

r< 1. The p factor in Eq. (2) thus practically eliminates changes in

the radial integral with Z. This leaves the variation in the normalization
factors, N 2 . Table 1 illustrates the variation with Z of the radial integral,

and N_ of Eq. (2) for energies appropriate to the 2p - 3s transition in N I.

Ns does not vary much because the peak of the s-orbital occurs at P = 4.2 where
the potential is 1/)" . The relatively strong variation in N:p occurs because

Pp is localized near P = 1. As Z increases the potential steepens, causing

the electron to spend less time at small | . Since the un-normalized wave-
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functions are Z-independent at large p , the normalization factor NP decreases,
thus increasing the calculated value of ¢ 2.
For the specific cases treated in Table 5, a change in Z of only one or
two was sufficient to cause convergence at the origin. From this study, a
rough limit of 5% can be set on the error due to ignoring the partial divergence

at the origin.

V. VARTATION WITH ENERGY

The effective gquantum numbers, 7/p, of the non-metal ground states
vary fromp_,/O.B tow 1.4 so that in using a Coulomb potential one is
dealing with something like af "1p" Coulomb function - which diverges strongly
at the origin. This divergence appears as a factor, F (-2 ), in the
normalization factor Np» inherent in BD. The large normalization factor near
% = // causes an incorrectly small 0’2. The use of the numerical integration
only to F = .001 eliminates this divergence. The use of the appropriate Z
in the Thomas-Fermi potential then gives more nearly correct absolute values.
Except for the non-zero U~ at 7p = 1, Tables 3 and 4 are qualitatively similar

to the BD tables.

VI. OTHER METHCDS

Burgess and Seaton (1960), in the process of developing their gquantum
defect method, in effect proposed an extended & ( 7/9 ) function.good for all Z.

The dependence on Z is eliminated through the approximate dependence of 71) on Z.

n

They proposed that the BD normalization factor, N; , be multiplied by (Z-1)e

(Z+2)/ (72 +2/) for np? configurations. This factor is derived from

the observation that the extrapolated quantum defect, // =n -2, is a nearly
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linear function of &£ between /6/ = 1 and the ground state energy, and that
the value off/ at '6[ =1isn - 1. Using this renormalization, we obtain
a modified form of the BD function & ( 7/1)) y
Va
Fas (%)= 413 Z (5% /1% 7))
Some points of this function are tabulated under QD in Table 4 and corresponding
v 2 values are listed in Table 5 wnder @ 2 (Q D). The values of %’7;(7/13)
are generally 10-30% larger than the corresponding % ( 7/p, Z) values though
the major variation from high to low 2Z is followed.

Scaled Thomas-Ferml potentials have been used by Stewart and Rotenberg
(1965). They solve the radial equation (3) as the usual boundary value, eigen
value problem, adjusting the radial scale of the Thomas-Fermi potential wntil
the eigen value matches the experimental energy. A TF potential somewhat more
physical than Latter's is used. Because of the small effect of changes in Z,
this STF method will give similar results in so far as their numerical solution
(Numerov's method) is "accurate” at large J* . That is, consistent with the
energy and asymptotic potential.

Similarly, self-consistent field calculations will give the same answers
(approximately) if the calculated energies are near the experimental ones,

and if the wavefunctions are approximated so as to be accurate at large [

VII. CHOICE OF EXPERIMENTAL ENERGIES
o) /
One can formally obtain O ° for transition arrays (nfd -n'#4 ) or
for multiplets (/L - £ ') by putting in appropriate energies.
For an entire transition array, one averages the energies of the terms
in a configuration, weighting by statistical weight. The ionization energy is

the average of the ground state terms of the core. These averages remove (to
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1st order in perturbation theory) the perturbations due to electrostatic and
spin orbit interaction.

For individual multiplets we can attempt to use the philosophy inherent
in the Chicago SCF program of Roothaan and Bagus (1963). They say, in effect,
let us calculate the energy of a term, variationally, by finding the "best"

radial wavefunctions consistent with the central field angular functions
appropriate to the term. So, then, let us find the radial wavefunction con-
sistent with the energy of the term and its 1 value. -

However, in the more complex spectra we have difficulty identifying the
unique ionization limit for our "equivalent" one-electron central field problem.
Let us use a term of the NI ground state to show the problem and illus%rate
a possible solution. The 2F’ term has three (parent + 2p) ion terms, 1S,
1D, and 3P. We can express the expectation value of the ion limit energy by

< E PP oumit p>= 2/9E(S)+ 1/ £(%F) +5/78 5(’0),
where the weighting factors are squared coefficients of fraclional parantage
as given, for example, by Racah (1943). Table 2 lists 0—2 for multiplets
in the 2p3 = 2p23 s transition array of NI obtained in this fashion. These

o 2 values are compared with the values obtained by Kelly (1964) using
the much more complicated Chicago SCF program of Roothaan and Bagus (1963).
Exact agreement is not obtained though the general trend down the column is
followed.

However, experimental values obtained from the arc intensity measurements
of Labuhn (1965), assuming pure configurations, disagree by factors of one
to three. Indeed, calculating individual @~ values for each multiplet
worsens the agreement. Labuhn's measurements have received support from the

radiative lifetime determinations of Lawrence and Savage (1966). Analytical
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self-consistent field calculations with extensive configuration mixing

made for these transitions by Weiss (1966) give better agreement with experi-
ment. Thus, one cannot expect a-priori that central field calculations for
individual multiplets will give better transition probabilities than a calcula-

tion for the entire array.

VII. COMPARISON WITH EXPERIMENT

T omr 1) s

Table 5 gives specific calculations for the mpn - mpn
transition arrays of most of the neutral non-metals, excluding the inert
gases. The effective quantum numbers 2?’ and %ﬁ: are obtained from the
average energies, estimating the position of a few unobserved terms. The
energies are taken from Moore (1949-58). Values of g~ 2 obtained both from
Eq. 8 and fraom direct calculation with the correct Z are listed.

The "experimental" values of O 2 1isted under T 2 (IC) are mostly

derived from radiative lifetime measurements and are discussed by Lawrence {1967)
The necessary branching ratios and angular factors were calculated using inter-
mediate coupling theory. The experimental values of g 2 are generally

based on only one or two measurements. The data suggest that these ?alues

can be considered accurate to * 20% except in cases such as C and N and T where
configuration mixing makes such values of CT’2 meaningless within factors of
two or three.

The last column in Table 5 gives the ratio of 0‘2 (Z) to the experimental

value.

IX. EXTENSION TO IONS
Values of 0’2 for the 2p - 3s transitions of OII, OIII, IV, NII, and
NIII were calculated, using Tables 3 and 4 and Eq. (8) with Gf1. The ground

~

state effective quantum numbers, 7945, range from 1.3 to 1.7. The CT'd‘s were
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compared with the corresponding values given in Table V of STF. The present
values were within 20% of the extrapolated BD given in STF and thus approximately
a factor of two lower than the STF values.

This reproduction of the BD values can be explained in terms of the
potential implicit in the use of Eq. (8). It can be shown from Eq. (3) that
Eq. (8) implies an ion potential \./Z (l')= C'2 \4,F (PC) ; where
\/TT ( r ) is Latter's potential as used in the numerical solution. Examina-
tion of \/I (r ) and comparison with the ion potentials of STF shows that
although it is asymptoticélly correct, the scale of the screening is approximatel y
a factor C too small. Thus the potential serves largely to provide a small cut-off
radius for the BD formulation.

A more correct TF potential for use in Eq. (3), with screening further
out, could be obtained from Gombas (1949) or from STF. The additional screening

will increase the calculated values of (T‘e. The numerical calculations required

The ground state guantum defects are closer to their asymptotic value
in ions than neutrals so that the quantum defect method would be expected to
give more accurate results for ions. Thus Eq. 9, Eq. 8 and Table 3 can be used

for the corresponding calculations in ions.
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TABLE 1

RADIAL INTEGRAL AND NORMALIZATION FACTORS FOR NI
vs. Z. 7/p = 1.015; 24 = 1.79.

Z In. Ng N,
1.235 1.89 3.22
7 1.378 1.868 1.034
15 1.382 1.865 0.7314
33 1.318 1.857 0.5608
51 1.266 1.849 0.4847
.82 1.202 1.837 0.4374
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TABLE 2

VALUES OF O ° FOR N T

‘X = 2p 2p° 38 #p Z’s  Eq. (8) OTHER QD mxp©
1200 kg bp 0.967 1.795 0.132 0.131%*  0.230 0.34
1495 % °p 1.018 1.875 .138 .159% .2ko .26
1243 ) %p 1.018 1.823  .168 1682 .303 .18
1742 2p %p 1.0L7 1.875 7k 87 .30k .26

412 p %p 1.0b7.,  1.823  .230 .198% Lok 0.20
- Entire array 1.015 1.79  0.208 0.197°  0.360

a. Kelly (1964) SCF

b. Stewart and Rotenberg (1G66) STF

¢. From Labuhn (1965) Arc, multiplied by 0.75 as recommended by Lawrence and
Savage (1966).
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TABLE 3
L% s
-y y/A ,

Ve P P s 0.75 1.0 1.5 2.0 BD
0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.948 0.988 1.001 1.0 0.968 0.967
0.4 0.784 0.895 0.928 0.899 0.837 0.842
0.6 0.593 0.745 0.779 0.701 0.636 0.643
0.8 0.403 0.551 0.565 0.447 0.ho2 0.409
1.0 0.223 0.329 0.306 0.191 0.176 0.181
1.2 0.065 0.108 0.062 -0.017
1.4 -0.055 -0.069 | -0.117 0147
1.6 -0.121 -0.171 | -0.206 -0.191
1.8 -0.129 -0.189 | -0.205
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TABLE 4
Fz (4, 2)
% QD BD 1 7 15 33 51 82
0.5 0.291 - 0.063 0.195 0.470 0.606 0.670 0.739
0.75 0.596 - 0.143 0.461 0.717 0.880 0.956 . 1.031
1.0 1.0 0 0.264 0.745 0.976 1.15 1.23 1.31
1.5 2.12 1.45 ] 0.866 1.54 1.69 1.83 1.90 1.97
2.0 3.68 3 3.00 3.03 3.07 3.12 3.14 3.17
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TABLE 5

SPECIFIC CALCULATICNS COMPARED WITH EXPERIMENT

c? g2 EXT BD  EXP, o “(z
Z’s % EtQ;J.)8&9 Eq. 8 o (2Z) O"E(IC) —-E);g—)_
c 1.91 1.13 .29 0.15 0.170 0.362° 0.47
si 2,065 1.32 .90 0.587  0.583 0.65% 0.90
Ge 2.06 1.35 1.16 0.88 1.03 0.80% 1.29
Sn 2.12 1.39 1.22 0.96 1.17 1.12 1.07
Pb 2.07 1.4 1.74 1.52 1.76 1.25% 1.4
N 1.79 1.015 .36 0.21 0.170 Table 2 0.36
P 1.85 1.16 0.68 0.57 0.603 0.60% 1.0
As 1.97 1.22 0.7 0.66 0.780 -
Sb 2.02 1.27 0.80 0.80 0.977 -
o¢ 1.76 0.93 0.21 0.12 0.127 0.115° 1.10
1.80 1.08 0.55 0.48 0.9l 0.50% 0.99
Se 1.81 1.12 0.64 0.74 0.8u42 -
F 1.97 0.881 0.06 0.0k4 0.016 -
c1 1.84 0.996 0.2k 0.2k 0.266 0.202% 1.33
Br 1.90 0.994 0.17 0.23 0.407 -
I 1.87 1.101 0.52 0.70 0.758 0.40%

a. Intermediate coupling + lifetimes, Lawrence (1967).

b. 1656A,7T = 3.1 nsec., Lawrence and Savage (1966).

c. from 1302 £, 77 = 2.4 nsec., Savage and Lawrence (1967).
d. BSTF gives 0’2 = 0.137.




