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Propagation of Spherical Waves Through an Inhomogeneous

Medium Containing Anisotropic iIrregularities

C. H. Liu

Department of Electrical Engineering, University of Illinois

Abstract

Amplitude and phase fluctuations of a spherical wave and amplitude
and phase correlation functions of two spherical waves propagating in an
inhomogeneous medium containing anisotropic irregularities are calculated
in this paper. With ionospheric propagation application in mind (e.g.,
speced-receiver experiments), the medium is assumed to be characterized by
a dielectric permittivity which consists of two parts: an average permittivity
which varies as a function of height and a part which is a random function
of position. For radio frequency waves and weakly random irregularities,
methods of WKB approximation and small perturbation are used to derive
general expressions for fluctuations and correlations. Calculations are
carried out for a specific case where the background medium in a parabolic
plasma layer with small anisotropic irregularities imbedded in it. Results
are compared with the expressions derived for a homogeneous medium containing
anisotropic irregularities. It is found that the corrections due to the
regular inhomogeneities of the parabolic layer depend on various things:
the position of the irregularity slab, the thickness of the parabolic layer,
the spsce between the observation points, the ratio of the maximum plasma
frequency for the layer to the applied fregquency, and the random properties
of the irregular region. The correction may be as large as 15% of the values

for the homogeneous case for some experimental situations. In general, the
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correction for the fluctuations is maximum when the irregularity slab is

at the peak of the electron density profile.
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1. Introduction

The study of wave propagation in a medium with inhomogeneities has long
been a problem of theoretical as well as practical interests in many branches
of physics. 1In general, one assumes that the medium can be characterized
macroscopically by some parameters, such as the refractive index, the density
of the medium, etc., which are functions of space and time. Many authors
have studied this problem in connection with tropospherical as well as iono-
spherical electromagnetic wave propagation, underwater sound wave propagation,
or earth seismic wave propagation [Pekeris, 1946; Budden, 1961]. One aspect
of the problem is to study the wave equation when the medium is characterized
by a smoothly varying parameter, such as the permittivity € (r) in the case
of electromagnetic wave propagation. Special attention has been given to the
so-called stratified medium, a medium in which properties vary only in one
particular direction. Investigations of this problem have led to many important
results such as normal mode theory of wave propagation, surface waves, etc.

[ Brekhovskikh, 1960; Wait, 1962]. Another aspect of the problem is to inves-
tigate the scattering of waves by randomly spaced small inhomogeneities, or
irregularities. This sometimes is called wave pfopagation in a random medium.
This kind of medium is in general characterized by a parameter of the form
1+ El(;b where el(;) is a random variable of position. For weakly random
media, perturbation methods have been used successfully to calculate fluctua-
tions and correlations of the waves [Chernov, 1960; Tatarski, 1961; Keller,
1964]. It is noticed that in this problem, the "background” medium is assumed
to be homogeneous. These two aspects of the problem can be categorized as
wave propagation in a medium with regular inhomogeneities and wave propagation
in a medium with inhomogeneities of a random character. Investigations in

both aspects are far from complete. But, in general, the medium in reality
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is one which cortains inhomogeneities of both types. The problem is then
an even more complex cne. For electromagnetic case, the medium can be
characterized by a permittivity e(?} + 61(;3’ where e(?) is just a function
of space and 51{;3 is a random variable of position. Very little work has
been done along this line, mainly because of its enormous complexity [Chen,
1964]. Yet, in order to investigate wave propagation in, as well as the
properties of, a true medium more closely, this problem is of very basic
importance.

In this report, an attempt is made to study this problem with the appli-
cation to wave propagation through ionospheric irregularities in mind. The
problem is formulated in the usual way so that method of small perturbation
can be applied for weakly random inhomogeneities. The average permittivity
of the medium is assumed to vary only as a function of z. Superimposed on
this regular inhomogeneous ''background” is a weakly random inhomogeneity
characterized by el€;3, A Green's function for a point source in the regular
inhomogeneous medium will be derived and used in the calculation of fluctua-
tions and correlations. 1In the derivation, WKB approximation will be applied
to calculate the explicit form of the Green's function and small perturbation
method will be used to derive the statistical expressions for the fields.

A special example relevant to the ionospherical propagation case will be
studied and the results will be compared with those derived for the case

of homogeneous background [Yeh, 1962; Liu, 1966].

2. Formulation

To start with, an infinite, unbounded medium is assumed to be characterized

by a macroscopic relative dielectric permittivity in the most general sense:

(x) 1




wkere both the inhomcgeneous and anisotropic properties of the background
medium are characterized by the tensor 60’ while el represents the randomness
of the medium. Each component of the tensor el is a random function of

position. For weakly random media, Furthermore, it is

€0ij -~ €135 °
assumed that <Elii> = 0, where < > denotes the average. With harmonic time

variation e 10t in mind, the electric field is governed by the equation

LEX = [VI-VVa+kje®]+E@D = -k¢, - EG (2)
and the radiation condition, where I is the unit dyad and k0 is the free
space wave number,

— 4'-o- - v
Define Elkx) = E(x) - Eo(x) (3)
where Eo(;3 = <E(P> 4)

For weakly random medium, |E1l <L IE When (3) is substituted into (2)

ol -

and terms of the same order of magnitude are collected;, the following can

be obtained:

Zeroth order: L Eb(;) = 0 (5)
First order: L E, (X e @ - E.D 6)
rst order: l(x = 0 gl x) ox {

in general, eq. (5) and the proper radiation condition define the average

i -

field E0 uniguely. To find the fluctuation El to the first order, operate
on (6) by L—l, the inverse operation of L (assume its existence), hence,
from (6},
D = KLl e, @ - E®D Q)
1 0 =1 0

In terms of the dyadic Green's function, eq. (7) can be written as
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- - 2 ¢ - - - > K&
R _ - e B P ° P ] ¥
1&3) = kO Ji g‘x,x ) EO‘X ydx (7a)
where G satisfies
LG = I&§Fx") (8)

The mean square values of fluctuation and correlation functions of the field
can be calculated once E; is cobtained from (7a). For an isotropic, homogeneous
background medium such that eo = 1, this problem has been treated by many
authors [Chen, 1964; Yeh, 1962; Liu, 1966]. In the following, the case of

an isotropic, inhomogeneous medium will be considered. In particular, the

permittivity of the medium is assumed to be given by

€@ = g, +e,® (12)

where eo(z) is a function of z only, corresponding to a stratified medium.

For this case, the operator L in (2) can be written as

Ve

2 2
- T vy €
L V" + Kk eo(z)] ; +V c (9)

The relation V u.3~=-V » (eib = 0 has been used in deriving this expression.
If (1) the spatial variation of eo(z) is small in one wavelength, (2)

the correlation length of el(;3 is large compared to the wavelength and (3)

€ (X) does not vanish in the region of interest, then, the last term of eq. (9)

can be neglected. Therefore, in the following, instead of the vector wave

ejuation, a scalar wave eguation will be studied:

-~ 2 2 B - 2 - '{’.,
L, Yixj = [V + k) eo(Z)] Yx) = -k, €, (x Yix) (10)

where ¢(§) may be any component of the electric field.

Following the usual procedure [Chen, 1964; Yeh, 1962; Liu, 1966], define:




R ""' R - e
N - ik - CiUE )
Px) = Y,ix) e = ¢O€X) e (11)
- —
where l}lo(x) is the solution of Loh]Jo(x) = 0.

Substituting (11) into (10), the following equation for U(S?) is obtained:

- .2 - -
LU®) = -ikj €, (x) %(x} (12)

Egs. ¢(11) and {12) constitute the basic equations for the following analysis.

3. Green's Function

Consider a medium in which eo(z) is a positive continuous function of
z and reaches constant values as z approaches + o and - . The boundary
condition for the wave is the usual "outgoing wave' at + co. The Green's
function of the operator LO satisfies:
L, Gx,x') = -47 5(x-x') (13)
where the factor -4y is added for convenience. (Not consistent with G defined

by (8)) Take the Fourier transform of (13)

2 -ik x'-ik_y°
d 2 2 -»> 1 )
[—= + k. €.(@) - kK ] gk ,k ,z2,x') =~ = e x y 5(z-z") {14)
2 7 %0 €o x’ "y T
dz
where 1 Cik ik y
1
glk ,k ,z,X') = 5 [ e = 7V ¢@&%) daxdy (15)
v (2r) -
. o ik x+ik y -
- . .
cx %y = [[ e g,k ,2,%") dk dk (16
-0
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Let uli"z) and u2(z) be the two independent solutions of the homogeneous

equation:

2
du
——§+[k
dz

0 €o(®) - kz] u = 0 (18)

where ul’(z) and ug(z) satisfy the boundary conditions at z—-o and z —s +c0

respectively.

Then the solutions of equation (14) can be written as [Friedman, 1956]

. -ikxx’—ikyy*
. H _ e 9 [ ; —_ !
g(kx,ky,z,z y = - J(“luz) [ul{k,z) uz(k,z Y H(z'-z) + uz(k,z)ul(k,z)H(z z')]
(19)
where H{z) is the Heaviside step function and J is the Jocobian of uy and u,.
From eqg. {16), the Green's function is:
ik (x=-x')+ik (y-y")
G, x") ffex ’ k,2)u, (k,z " YH(z"'-2)
(x,x = P TR [ul( Sy Z uz( L,z YH(Z'=-2) +
-0 12
+ ulqk,z')u2<k,z ) H(z-z')] - dkxdky (20)
Change variables to:
kx = k0 sin © cosEP, ky = k0 sin © 51nl:P, k = k0 cos © (21)
X-x' = r cos 10 y-y' =r sinl}f)1 (22)
q) varies from 0 to 27, © varies from O to 1_2T - i oo, Eg. (20) becomes:
1—21." lw
u z)u {(z')H(z - z)+u (z* )u (z)H(z-z"')
? o
G\xx) fdefd nJ(uyu)
1772
ikor sin O cos ((9— (:Pl)
° e - k. cos © sin © (23)

0




Thef?—integration yields [Watson, 1958]:

Gx,x') = kﬁ fH§1)<v)

(1)

where H0

M

[u1€9,z)u2(69z‘)H(z'-z)+u1(e,z')uz(e,z)H(z-z')]

J(ul,uz)

and rz.is the path of integration shown in Figure 1.

sinOcos6de

(24)

(v) is the Hankel function of first kind and zeroth order, v = k_r sin®

0

This Green's function represents the field generated by a point source

at (x',y',z') in an unbounded inhomogeneous medium. When the medium becomes

homogeneous, it reduces to the well-known expression for spherical wave.

Since the original assumption for this problem is that eo(z) varies

slowly in one wave length, the solution u

1

sented by its WKB approximations:

“1(Z)

uz(Z)

where qz(z) = eo(z) - sinze.

and u2 of eq.

-4

—iko f q(T)drT

z

+iko f qg(7r)dr

(18) can be repre-

In the neighborhood of the turning points, points where q vanishes,

the WKB solutions are no longer valid.

(25)

(26)

27)

If in the integration of eq. (24),

we change the path to (Figure 2) such that on q does not approach
ng 1 2 2

zero, then on this new path of integration, we can approximate u

1

and u

2

by egs. (25) and (26) all the time. The original integration along,_; is

now egual to;

(28)
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where fa represents the contributions from the poles or branch points of the
C

integrand of ey. (24} between the two paths r& and.f; (Figure 2). These

contributions correspond to the normal modes and lateral modes. If one only

considers problems with freguency high enough so that most of the energy

from the source is transmitted outside of the inhomogeneous region, only a

very small number of ra§s, coming out of the source, with directions almost

parallel to the x-y plane, are ''trapped"” in the inhomogeneous medium. The

Green’s function can then be approximated by the contribution from,—; alone:

z z
. H(l)f -ik fq('r)d-r -ik fq('r)d'r
> - - lko 0 \V) 0 z' OZ‘
G(x,x") = —; iz e H(z'-z)+e H(z-z")] -
l— - Vd 1 b ‘
[y [a(z)alz")]
- sin © cos © de (29)

For far field outside the region where those '"trapped' modes are important,

€Y

kr = k R sin ©_ is large, (Figure 3), asymptotic expression for HO

0 0 0 v

can be used. E3j. (29) is then reduced to:

3 ﬂ 3 'y 3 T
k -i =
. o i3 1k0[R51n90s1ne-w(e)J - c0s0de '
i me— e e sin® 1/2 for ~o< z<2z
m 0 [a(z)q(z"')]

G(x,x') =
| . .
X N | .
' o i3 1ko[R51n6031n9+w(6)] . c0s6de "
-1i m e e : sin® 173 for z'<z< 400
T () i [a(z)a(z")]
2

(30)

wheré z
w = qg(T)dr (31)

zi‘

The geometry of the source and field points is shown in Figure 3. Note

that in this choice of R and 90



r--an-n,----n--:\w

Z - z' = RCOSGO z> z'
zZ-z' = -R cos 90 z < z' (32)
r = R sin 60 z < z'

60 varies from 0 to 7/2.

As in the case for homogeneous medium, method of steepest descent can

be used to evaluate the integral (30). Once the Green's function is obtained,

the solution of eq. (12) can be expressed by:

U@ = J €, G G cEx) o5 33)
1
The total field is then:
- - i
Px) = Y (x) e (9
where
> (2) - 4} (X') - - kS
¢1(x) = wr J, el(x ) —— ¢0(,) G(x,x') d x (34)

This field ¢(;) is a random variable of position. The mean of ¢(;3
will be the unperturbed field ¢o(;3, but there will be mean square fluctua-
tions both in amplitude and phase of the field. The explicit form of the
field depends on the spatial variation of the medium. In the next section,

an example will be considered for waves in the ionosphere,

4. An Example

Consider a medium for which eo(z) varies as

1- Xm[l - (z-zo)z/zﬁ] 0< z< 2z
€o(2) = (35)

1 otherwise

10
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where ZO and Xm are positive constants. Eg. (35) corresponds to a plasma

medium in which the electron density varies parabolically. For this medium,

X =W W (36)

where Wym iz the plasma freguency at the peak of the electron density profile
and (; is the freguency of the wave. If ir some region of this plasma, the
electron density has a random variation, then the dielectric constant will

-
have a random part ¢.(x) in it. Figure 4 shows 60 as a function of z. For

1

this medium, eg. (31 becomes:

z
. 0< z< 2z
2 - , 2 2. 1/2 .
W= j. cos O - Xm[l -&T-zo) /zoj 1 dr for 0 (37)
z° 0<z'< 2z
0
2z Z
0 . 2z < z
2 2,2,1/2 2
= j' cos 0-X [1-(z ) /z_ ] dv + J. cos @ dt for 0 (38)
m 0 0
z' Zzo 0< z' < 2z0

If the freguency of the wave is high so that Xm << 1, then to the order of

me eqs. (37). (38) can be expressed as:

3 9 2 0K z< 2z0
w(@) = z cos @ + X {z~ - 3z z_3,6z _cos © for (39)
m 0’10 ,
z :0
2z < z
. 2
w(B) = (z-z') cos 6 - X (z"3 - 3z'2z + 4z3)f6z cos® for 0 (40)
. m 0 0 0 .
0<z' < 2z

0
The field generated by a pcint source at the origin can then be evaluated

by substituting eg. {39) into eg. (30). Tre field for z > 0 is

K -iT k_Rf (©)

- o~ 0 4 0

{ U I LR 4 41

¢0\x) i 7R 5ind e .{ e Jsin @ de z> 0 (41)
2

0 '*
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13
where
y P . z 2, v a2 .
£{08) - iisin e0 sin 6 +~§ cos O + 7 Xmaz - 320),620R cos O} {42)

o .. .1/2
and the approximation |4(z) g(z") ]

n

cos © has been used for small Xm°
Method of steepest descent will be used for the calculation of eq. (41)

for kOR >> 1. From eg. {42), the saddle point corresponds to

~ ) .2 . s 2
es = 90 + Xm\z 3zz0) sin 90,620 cos 90 (43)

to the first order of Xm for eo << /2. Expand £(®) in the neighborhood of

Os,9

~

£(0)  2(e ) + £"(8_) (0 - 95)2/2 + ... (24)

where

~

1" — i - 2_ > 2 . 2
£ (es) = -ij1-X_(z 3zz0)(1 + 2 tan 90)51n eo/ez0 cos eo] (45)

The usual method of steepest descent yields:

2
ik R{1 + X z(z - 3z.)/6z ]
e 0 m 0 0 (46)

N 1
¢0(X) =R

Similarly, if the point source is located at ;ﬁ(x',y',z'), the field is
obtained by substituting eg. (40) into eq. (30). Carrying out the integra-

tion by steepest descent method, the Green's function has the form:

—~

2 2

ik R[1-X (2'3 - 3z"z,_ + 423)/6(z-z')z 1
0 m 0 0 0
G(x,x"'} =

%e z' < z < e {47)

- -
where R =[x - x'|. z - z' = R cos 8,

In the following, a specific configuration will be considered. The
geometry of the problem is shown in Figure 5. The slab of irregularities

-~

is in the region a < z < a + b. The background electron density varies




.
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parabolically to give ¢ (x) as in eg. (35). Tie observation point is at a

4
level z > ZZO(, If the dimension of the irregularities is much larger than

the wavelength, then the contribution for the scattered field comes predomi-
nately from the scatterer in the neighborhood of the straight line connecting

the source point 2nd field point [Tatarski, 1961]. Therefore, the condition

90 << 77/2 is satisfied, the field at B(;) can then be expressed:

. -
- . Tit &
Y(x) = ‘410(::) e (48)
where
A ik r[1 - 2z X /3z]
> 0 0 Om
lbo(x) = e (49)
.2 e TS o 3 . ,2 3 2
o (;) B 1k0 fe (;i) n}lO(x ) 1 elkORLI z 3z z0+4zo)xm/6z0(z zO)JdB;'
1 AT o 1 4,0(;) R
(50)
. 3 2 2
. (;v) ) ig elkor[1 + Xm(z 3zzo)/6z0] -
4] T r
Define the logarithmic amplitude S{(x) and phase departure Q(x) by:
€,(x"
- A r 1 3=,
S(x)rln-K(—)_:Imfbl --4—1"_ LWCOSAdx (52)
-l
€, {x")
, r 1 . 3-.‘
Q¢{x) = -Re ¢1 =4 J -7 sin A d'x (53)

where

- 2 2 3 2 3 2
v P Ve iR S A T Y 782 4 / - 7 T - ? 4 ‘F— !
A = ri-r+R+X ‘|_I \Z 3z ZO'NGZO : 2rz0, 3z R(z 3z z0+4z0),620(z z')]

54)

In egs. (52), (53), and (54) all distances are normalized with respect

to the wavelength.
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The correlation functions of the field at two points ; and ; are

1 2
defined by:
- r rzqid\ sin Al sin A - - 3=
<Q(x1)Q(;;2> s 1 3 =R —7 P, (x') d3xi d xé (55)
(4 v, v 1% 272 €
1 2
r.r <. cos A cos A
-~ 1271 1 gt 3> 3=+
<S(x1)ng2I> = — 5 j' Y — R p%(x ) d x; d x, (56)
4am vV, Vv 11 272
1 2
where the normalized correlation function of the medium is defined by
(x) x.) R P> /<e > 57
P ) = <€, (x;) €,(x,)>/<€, 67
and
L d - -~
x = X, - X (58)

Here the assumption is made that the irregularity region in the medium is

statistically homogeneous sc that the correlation function depends only on x.

5. Mean Square Fluctuations

To calculate the mean square values of the amplitude and phase fluctu-

ations, let ;1 = ;; = (0,0,2z) in eqs. (55) and (56) and define:
I, = 41r<<Q2> + <Sz>)/<ef> (59)
1, = 47 (<Q% - <s2>>/<ef> (60)

The following approximations are made in the integrand of eqgs. (55) and (56),

the phase factor A is approximated by:




|

A =(1/2y" + Eya? + y2y = 77'(X‘2 + 579

where

L =z'(z-z").z

Uas
v

2
- S — 0, 1y
- X [ (= 3z zo)z(z 2z ')-4z

120" + &'

li

nv

and when they appear in the denominator:

Then from egs. (55), (56), (59), and (60), the following can be derived:

P &N

1
II=EJJ %

cos[ni(xiz + yiz)

-1 P X' voa2 12

I2 = f J —— cos['nl(x1 +y, )
v

¥ [ ‘ [

x' = x, 7 X, v =Y, -V,

1§ L} L
v i [
a' = (x, + xl)/2 , P (v, +vy,

The q', B' integration will yield:

p, x") 57

11 = % e, — sin [ ? 1, (x'2
4,8, dymmy) M2
- 0t

1 Pex) Y 2

12 = ) B [ sin ] 0 (X'
45,8, (ym)) N2

3

N 2 2
t 1 —_y
oz 1/12z0z (z-z7)

' 12 12 13 =13
Ny(x,” +y,7)] dx;” dx,

t 12 12 +13 '3
+N,(x, + Y, )] dxi dx,,

L -
s z' =z z

/2, Y

U]
~
N
[\
+
N
Pt -
-’
N
N

+ y'z)] dx' dy' dz' dy’

+ y'2)] dx' dy' dz' dy'

(61)

(62)

(63)

(64)

(65)

(66)

67)

(68)

(69)

(70)

16
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Further integration depends on the explicit form of pe (x). 1If

_xﬂz,/‘lz - yl2/12 - 212/12
X y z

P = e (71)

Integrations over x' and y' can be carried out.

yi=a+b +b -z'2/2§
1 e
I. =q¢4 Im f dy' f dz’ (72)
1 . . tyr_ 1 v 2 .2 1/2 2 .2 _.1/2
y'=a z'=-b 4t Lonn, (Cl/ly -1)7 (el 1)
a+b  +b -z'z/ﬂi
1 e
I_. =7 Im f f dz’ (73)
2 fot 1 ¢ 2 2 s 1/2 2 2 s 1/2
y'=a z'=b 4,5y, (Cp/ty ~DTTE/L -1)
where
2 ' ' 't
€ = Gy - m)/mgn, 79
2 ' 1 tor
C, = (@, + 1]1)/1721;1 (75)
To the order of Xm, the parameters are:
L] 1 1) 1 _1 ~ [y ? ] H
4%, Ln.m,) = 1-2¢ L +LL) (76)
2 ' ' 12,1 1241
cl =2, - L) +4k, T, - L) (77)
2 ~ v ' 12,7 t2.1
c, =2et, +L) - al,’L, +L,7L) (78)

Because of the exponential dependence in the integrand, the contributions
to I1 and I2 come predominately from the region z' < 1z, Since the thickness

of the irregularity slab is much larger than the correlation distance of the

irregularities;, the z' integration can be extended to - and +c without



introducing appreciable errors. Furthermore, in the integrand, the approxi-

mations z >> z' and y' >> z' can be made since z>> £ and y'>> £. And

finally, terms of the order 1/¢ can be neglected compared to unity, since

4 >> 1 from the starting assumptions. Introducing these approximations in

the integrals I, and I the z' integration can be carried out and yield:

1 2°
a+b
3,12 - sy {1
Il = 7 lzg_b + ZXm af fl(y Y dy’]
a+b
3/2 . A et .
I, =7 1 ! By [1 +2X £ (y')] dy’
a+b
3,2 i a+ﬁDy a + ﬁDx
v o J i T 2tz 2 o (v
£1+D ) 17
y v x x
where
4y ' 12 ! : 12
Dy = 4y'(z-y')/ yz 5 D = 4y (z-y")/. Z
a+0H 2 a1 1)2)1/2 - (1-DD)
, x Xy
aly = 5
2(1+Dx) (1+Dy)
7 \
{1+D 2 1’ {1 D2)1 2 + (1 - D_D )
By') = Y
2(1+Dx) (1+Dy)
X 2 2 2 2 2
) Y bl - (6z —2z)v'/ iz ~z= 6z - ' (v -
flﬁy ) v ,3z0 ; Qezo Z)y ‘6z0 + (z/2zO z /6z0 2zo/3z)[1+z/(y z) ]
4 2 3. 2 2 2 2 2
N X, , PR - o - T/
fz(y ) = -y ‘3zzd+<ZT6Z0) Y ,6zz0 (3z" + 4z0) y' /6z z

The y'-integration for iI. is elementary and yields:

1

3/1b[1+2x F]

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)



.

. 5 a2 .
F, = [a3 - (z—c)3j/9zo + (GZO—Z)[(z—c)2 - az]KIZZﬁ

+ (z/2z0—z2f6z§—2zo/3z)[b + zxn[(a+b-z)/(a-z)]] /b (87)

The integration for 12 cannot be carried out in general. However, if the
slab is thin or under conditions that Dx and Dy are some constant average
values Bx and By’ then g and 3 can also be represented by their average

values, a and B respectively. I, then becomes:

2
- a+BD a+pD.
12 = 33/2 lz bp(1 + 2XmF1) + 2y3/2 lxx { 3 Zz + = fz ] F2 (88)
£7(1+p7) L£7(@14)
y y X X
where
F, = --[('a+b)5 - a5]/5zz2 + (z+6z )[(a+b)4 - a4]/24zz2
0 0 0
- (3z2 + 4z§) [(a+b)3 - a3]/18z2z0 (89)

From eqgs. (59) and (60), the mean square values of fluctuations are given by,

<>

[t}

<€§> (‘I1 + 12)/87 (90)

<>

1

<> (1, - 1)/80 (91)

where I1 and 12 are given by egs. (86) and (88).

In the following, some special cases will be considered for a thin slab.
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(1) D>> 1. For this case, the mean square values of phase and the logarithmic

amplitude are found to be equal.




.
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<Qz> = <Sz> = <€f> 1[1/2 b -!z[l + 61]/8 (92)

where 61 is the contribution from the regular inhomogeneities of the medium.

2 2 2 2 2
51 = 2xm[-a /’3z0 + a(6z0-z)/620 + (z/2z0 -z /6z0 - 2z0/3z)(1 - z/c)] (93)

(2) DK 1.

<Q2> = <e§> 1[1/2 Izb [1 + 61]/4 (95)
1/2 =2 - = -2
<sz> = <e?1> T lzb (3 1)x + ZDXDY + 3Dy) [1 + 61]/64 (95)

where 51 is given in (93).

6. Correlation Functions

The general expressions for correlation functions are given by eqs. (55)
and (56). If the two receivers are placed at (-x,0,z) and x,0,z) respectively,
the correlation functions can be calculated explicitly. The following approxi-

mations are made in the calculation

1] ~ 1 l '2 1 t 2
ro+R -1, S5y, + (x) - x2,/2)7] (96)
&
~11 . 2 : 2, .2
T, v Ry Ty =g vy 4 (xp 4 x2y/2)] (97
L
~ 1 to ) "9 1}
= n.< - /
Ay ny, + X0 - & Ty (98)
* 5] "2 "2 %
By, = Muly, +X,7) - 8.7/, (99)




21

where
9 v ¥ '
= - xz /z + & /2
X, = x - Xz,/z +8./2q, (100)
3 ° v . s“ , §
x2 = K, + X2y Z - .2/2n2 (101)
g“‘ 5 2 ' , 2 ] 2
1 < Xm xz114z0 + z(zl - 320)]/6z0(z—z1)z {(102)
E" ° 9 2 v -
Sy Xm xzz[4z0 + z(z2 - 320)]/6z0(z—z2)z (103)
and Li and n? are given in (62) and (64) respectively. Define,
I, = 4<Qa> + <5 52) /%€ (104)
I, = 4ﬂ§<QlQé> - <SISé>)/<e§> (105)
Putting the above approximations into integrals (55) and (56), egs.
{(104) and (105} .can be written
G
1 Pe ** P2 T2 T2 2 1 "2t M2 L 3ar g
13 = ;J f Z—,—-T- COS[?]I(XI +y1 ) nz(xz +y2 ) 'Z(gl /7]1 Ez /ﬂz)Jd de xz
1 V2 %5102
(106)
o) "
_ -1 € Pt 2 T2 B2 2 1 e"2 v M2t 3-et 3
Ly =7 S J.'ZZTZT’ cos{n, (X "4y M, (X, 4y, - 3E T/ £, /m,) 17k d 7%,
Vi Y2 %35
(107)

Following the usual procedure of transforming into a relative and center of
mass coordinate system, the a°. ' integrations can be carried out immediately

to give

> L 2 |

p, x*) y 2 o

I; = JJJJ. ——— sin =l Kx°fA)2+y %1- %(Elz/nl-gzz/nz)] dx dy dz dy
48, L,y M2

(108)



T 13
p (xg) 172 17 -— 72 ¥ 1] 11 T A
= ffff & sin = % ‘l'(xr+A)2+y i- 7]i E 171+§2 /772)] dx dy dz dy
48, L, {n,my) n tn,
(109)
where
—-— 1 (1] 1 "o
A = 2xy/z- & /m o+ 8,m,)/2
When eg. {71) for pe (;’) is substituted into (108) and (109), the x' and y°
integration can be performed in the similar manner as in the last section.
Furthermore, if the same assumptions are followed as before, the integrals
13 and 14 can be written approximately as:
2
7l 1z
X z 2x(a+b) 2xa 3/2
= - 1
13 ye [erf( ) erf(IE)] + Xm T ” F3 (110)
2
71l =z o
1, = — Im{i(1+iD y M2 lerse 2x(a:-b)1/2 - erf( 2xa v )]}
y ! z(1+iD ) L _z(1+iD )
x X x x
3/2
2
+ Xm m 2 Im F4 (111)
where
2
1222 _pzaz -p2 (a+b)
x 2, . 3 3
F3=-—2-———§—(4z0+320z—z)Le - e ]
6z z°(4x )
o
2 2 2 2 2 2
{4z_ - 3z) -p.a -p, (a+b) -p.a
0 - 3 3 2, 3 3 3
4 —————— [a"e -(a+b) e 1 + —[a"e - (a+b)
6zz 2
0 9z
0
2, .2 2 '2
-p.{a+b) Py
- 3 ] + —— 2 55 f «, e dy'
2z 1
a+b _sz,z
, 2 2 y' 3 .
+ Qz/zo z /3z0 4z0/3z) af -7 e dy (112)
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= ..gl 2
QDx—l)IXz

1 .2 2 2, 2,
F, = Vi 14z, + 3zz_ - z -~ i(z+6z )z /x }°
4 = F2 = . 1/2 ;s .
(D -i)1 Z&D -i) / q—14x2)6252 0 0 0
X y 0
2 2 a, 2
~p,a -p,(a+b)
.
le - e ]
. 2,2
z {4z =-3z) -i(z+6z )z /x —pza2 —p2(a+b)2
0 0 0 2 4 2 4
+ 5 [2” e - (a+b) e ]
6zz0
2 2 2
-p,a -p (a+b)2
21 .3 P2 4 3
+-§ —3 ia e (a+b) e J
ZO ,
. 2 2 2
zZ{z+6z_) -p,a -p (a+b)2
0 4 4 .4 4
- —5 5= 5 [a” e - (a+b) e ]
M7z (D -i)=z
x x 0
a+b _pZY'Z
" 2,2 y' 4 "
+ (z/z0 z /3z0 4z0/3z} J' ¥z e dy
a2 2,  a+b _.2 .2
) -i 4x [l _ 2z(3z + 4z0)] j_ 4 P,y o
22- .2 lg* T 53<- . v ° Y
17z27{D -i)z 347z7(D -i) a
X b4 0 b4 X
2 a+b _sz,z
) -iléx z 6 4
T4 a2 - 2 J v®e dy’ (113)
'z z (D -1i) a
X 0 x
2 2.,2 2
p3 = 4x /lxz (1142)
2 2,,2 2 -
= =i e | (D -i
P, i4x ", xz (Dx i) (115)

For a very thin slab. the following approximations are obtained:
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~ 2 2 2 22,22
~ . - - ¢ -
F3 = [ab(4z0 + 3zoz z )/3zoz + (4zO 3z)ab{4x a /lxz 1)/3z0z
+ 2a2b(8a2x2/1222 - 3)/9z2 + 4x3a46/92212z2
X 0 0 x
2 2 —4x2a2/liz2
+ ab’(z/z0 -z /320 - 4z0/3z)/(a-z)] e (116)
~ ab .. 2 2 (42=32)ab ;12,2
F, = —5 (4zo+3z0z-z ) + T [ 5 5 = - 1]
3z =z 0 27z7 (D -1)
0 X X
2 2z(z+6 )a3 2 2
22°p , -i8a°x %9 -iax“a
. [12z2('n 5 3]'31222“—} 5 {lzzz(]-) .)'2]
z0 X X xz z0 X * b 4 b- :
2 2 -
2 +idx a2/12z (b -i)
z 4z .. 2 4 x x
+ @E- __0 _ 0) ab + -idx a e
- 2 22 - . . -
z, 3z 3z a~z = gy zzz @ -1) @ _i)1/2(D —1)1/2
x 0 x b4 y
(117)
3/2 —4x2a2/liz2
= 1
13 T b z[e + XmFS/bJ (118)
2 2,2 2 -
idax a"/0"z"(D ~i)
~ 3/2 = =12, = -1/2 z
I, = w° blz Im[1\1+1Dy) (1+Dx) e + XmF4/b] (119)
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From the definitions {(104) and (105), the correlation functions can be expressed

by
<Q,Qp
<SISé>
where I, and I, are given by egs.

3 4
and (119) for a very thin slab.

<X (1

= <P Iy + 1,)/87 (120)
= <€f> (13 - 14)/871’ (121)

(110) and (111) in general and eqs. (118)
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Again, as in the last section, two special cases will be considered for
a very thin slab.
(1) D>> 1,
Egs. (117) to (119 yield for this case
1/2 %> —4x2a2/liz2
=< =
<Q1Q2> slsz> T blz <¢-1 e (1 + 62)/8 (122)
2
where 4x2a2/1iz
52 = XmF3 e /b (123)
The normalized correlation functions are defined by
pQ(x) = <Q1Qé>/<Q%> and ps(x) = <slsé>/<s%> (124)

Using the results derived in the last section, the expressions for normalized

phase and amplitude correlation functions can then be written as

—4x2a2/1iz2
pQ(x) = ps(x) = (1 +8) e (125)
where
5§ = 62—61
2 2 2 2,2 3
= 4a x Xm{3azo(4z0—3z) + 5a z]/4z01xz (126)

is the correction in the correlation functions to the first order of Xm°

(2) D<< 1
For this case, the normalized correlation function for the phase is

expressed approximately by:
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_4x2a2 12,2
pgx) = L6 * 27

And the normalized amplitude correlation function is:

- - - - 2 2
16a2x2Dx(3DX + D - 4a2x2Dx/z21i) -4x a /Ixz
ps(x) =i1l- 55 3 Zz o ] e (’4‘83 (128)
z 47°{(3D +3D + 2D D)
X x y Xy

All these expressions reduce to those derived by Yeh for the case Xm = 0.

7. Results

It is noticed from eqs. (93) and (126) that the corrections due to the
regular inhomogeneous background to the mean square fluctuations and correla-
tion functions depend on various things: the space between two observation
points, x; the position of the satellite. z; the position at which the maximum

of the electron density profile is, the position of the irregular slab,

a; as well as the *ransverse dimension of the irregularities, Ixu In the

following, these corrections are plotted as functions of the ratio a/z0

for three different cases: z = 2z z =5z /2, z = 3z

0° 0 Several points of

0°
interest are observed:
(1) The correcticn to the fluctuation, 61, is positive for all the

cases which are consistent with the assumptions. This is to be expected

physically. Since for the medium considered, < 1, and the ratio

€o

€ "€ 'is higher for this medium than for a homogeneous one. Therefore,

10

the fluctuation due to scattering is higher,
{2y 61 kas a maximum about the point a/zo = 1, corresponding to the
case when the irregular slab is near the peak of the electron density profile.

Physically, this corresponds to the case when €. / € is largest, hence
P4 1 0 > >

maximum fluctuation.
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(3) Thte correctiocn to the normalized correlation functions, 6§, is shown
in Figure 7. For some values of a/'zO less than one, 6 is small and negative.
It becomes increasingly positive when the irregularity slab is below the peak.

{4} Irn Figure 8, the normalized correlation function is plotted against
the distance between the two cobservation points. t is compared with the
case for homcgeneous background. The correction is more appreciable for
greater separation when the magnitude of the correlation is very small.

(5) A numerical example using z = 700 km, z_, = 350 km shows that the

0

correction to the fluctuation is about 17%.

8. Conclusion

in this paper, the problem of wave propagation through an inhomogeneous
medium containing anisotropic irregularities has been treated by various
approximation methods. Tae mean sguare values and autocorrelations for both
anmplitude and phase of the wave were found to be affected by the regular
inhomogeneous background. With ionospheric application in mind, the case
of a plasma medium with parabolic electron density profile and small irregu-
larities imbedded in it was studied. The corrections to the mean square
values and correlation functions due to the regular inhomogeneities were
calculated to the first order of Xm’ the sguare of the ratio of maximum plasma
frequency to the freguency of the wave. It was found that these corrections
depend on the height of the electron density maximum, the height of the
transmitter, the distance between the observation point and the height of
the irregular slsb. e corrections are found to be appreciable for some
experimental situations. Other electron density profiles which may represent
more closely the true ionosphere can be treated in a similar manner. It is

hoped that the results will be of some practical use to the interpretations
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of earth satellite scintillation data. Due to the nature of the approxima-
tions made. the results are applicable only to high frequency waves and media
with weakly random inhomogeneities. Further work skould be done along this
line for a more complex medium where both inhomogeneities and anisotropies
exist. The medium in reality, the ionosphere for instance, is exactly one
of this nature.
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