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Abstract 

Amplitude and phase fluctuations of a spherical wave and amplitude 

and phase correlation functions of two spherical waves propagating in an 

inhomogeneous medium containing anisotropic irregularities are calculated 

in this paper. With ionospheric propagation application in mind (e.g., 

speced-receiver experiments), the medium is assumed to be characterized by 

a dielectric permittivity which consists of two parts: 

which varies as a function of height and a part which is a random function 

of position. 

methods of WKB approximation and small perturbation are used to derive 

general expressions for fluctuations and correlations. Calculations are 

carried out for a specific case where the background medium in a parabolic 

plasma layer with small anisotropic irregularities imbedded in it, Results 

are compared w i t h  the expressions derived for a homogeneous medium containing 

anisotropic irregularities, It is found that the corrections due to the 

an average permittivity 

For radio frequency waves and weakly random irregularities, 

regular inhomogeneities of the parabolic layer depend on various things: 

the position of Che irregularity slab, the thickness of the parabolic layer, 

the space between the observation points, the ratio of the maximum plasma 

frequency for the layer to the applied frequency, and the random properties 

of the irregular region. 

for the homogeneous case for sane experimental situations. In general, the 

The correction may be as large as 15% of the values 
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correction for the fluctuations is maximum when the irregularity slab is 

at the peak of the electron density profile. 
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1. Introduction 

The study D f  wave propagation in a medium with inhomogeneities has long 

been a problem of theoretical as well as practical interests in many branches 

of physics. 

macroscopically by some parameters, such as the refractive index, the density 

of the medium, etc., which are functions of space and time. Many authors 

have studied this problem in connection with tropospherical as well as iono- 

spherical electromagnetic wave propagation, underwater sound wave propagation, 

or earth seismic wave propagation [Pekeris, 1946; Budden, 19611. One aspect 

of the problem is to study the wave equation when the medium is characterized 

by a smoothly varying parameter, such as the permittivity ~(r) in the case 

of electromagnetic wave propagation. Special attention has been given to the 

so-called stratified medium, a medium in which properties vary only in one 

particular direction, Investigations of this problem have led to many important 

results such as normal mode theory of wave propagation, surface waves, etc. 

[Brekhovskikh, 1960; Wait, 19623. Another aspect of the problem is to inves- 

tigate the scattering of waves by randomly spaced small inhomogeneities, or 

irregularities. This sometimes is called wave propagation in a random medium. 

This kind of medium is in general characterized by a parameter of the form 

1 + E (1') where is a random variable of position. For weakly random 

media, perturbation methods have been used successfully to calculate fluctua- 

tions and correlations of the waves [Chernov, 1960; Tatarski, 1961; Keller, 

19641. 

to be homogeneous. mese two aspects of the problem can be categorized as 

wave propagation in a medium with regular inhomogeneities and wave propagation 

in a medium with inhomogeneities of a random character. Investigations in 

both aspects are far from complete. But, in general, the medium in reality 

In general, one assumes that the medium can be characterized 

-c 

1 1 

It is noticed that in this problem, the "background" medium is assumed 
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is one which cor-tains inhomogeneities of both types .  The problem is then 

an even more complex one. For electromagnetic case, the medium can be 

characterized by a permittivity E (3 + E (aj where E (TI is just a function 

of space and E 

been done along this line, mainly because of its enormous complexity [Chen, 

1964:" Yet, in order to investigate wave propagation in, as well as the 

properties of, a true medium more closely, this problem is of very basic 

importance, 

1 

(3 is a random variable of position. Very little work has 1 

En this report, an attempt is made to study this problem with the appli- 

cation to wave propagation through ionospheric irregularities in mind. The 

problem is formulated in the usual way so that method of small perturbation 

can be applied for weakly random inhomogeneities. The average permittivity 

of the medium is assumed to vary only as a function of z. Superimposed on 

this regular inhomogeneous "background" is a weakly random inhomogeneity 

characterized by E (r). A Green's function for a point source in the regular 

inhomogeneous medium will be derived and used in the calculation of fluctua- 

tions and correlations. In the derivation, W K B  approximation will be applied 

to calculate the explicit form of the Green's function and small perturbation 

method will be used to derive the statistical expressions for the fields. 

A special example relevant to the ionospherical propagation case will be 

studied and the results will be compared with those derived for the case 

of homogeneous background [Yeh, 1962; Liu, 19661. 

1 

2. Formulation 

To star", with, an infinite, unbounded medium is assumed to be characterized 

by a macroscopic relative dielectric permittivity in the most general sense: 
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where both t h e  inhomcgeneous and an iso t ropic  proper t ies  of t h e  background 

medium are chzrac te r izea  by t h e  tensor 509 w h i l e  E 

of the  medium. Each coinponent of the  tensor  E is a random funct ion  of 

pos i t i on .  For weakly random media, eOi j  >> e l i j  e Furthermore, it is 

represents  t h e  randomness - - -1 

assumed t h a t  q > = 0, where < > denotes t h e  average. With harmonic t i m e  
li J 

v a r i a t i o n  e -iw i n  mind, t h e  electric f i e l d  is governed by t h e  equation 

2 -+  2 - +  
E(x) = - k o z l  E(x) E S ( 3  = [V 1 - V V  + k2 E 

u - 0 = o  

and the  r a d i a t i o n  condition, where I is t h e  u n i t  dyad and k is  t h e  free 
u 0 - 

space wave number. 

Define 

where 

- -  - +  * &  
E l ( ~ )  = E(x) - E O ( ~ )  

- -  -h+ 

E o ( ~ )  = a(~)> (4) 

For weakly random medium, I El I << l E o l .  When (3) is s u b s t i t u t e d  i n t o  ( 2 )  

and terms of t h e  s a m e  order  of magnitude are col lec ted ,  t h e  following can 

be obtained:  

Zeroth order  : L zeta = 0 

F i r s t  o rder :  

(5 1 

I n  general ,  eq. (5) and t h e  proper r a d i a t i o n  condi t ion  de f ine  the  average 

f i e l d  E uniquely. To f i n d  the f l u c t u a t i o n  E t o  t h e  f i r s t  order,  operate  

on ( 6 )  by L-19 the  inverse  operation of L (assume i ts  exis tence) ,  hence, 

+ -e 

0 1 

from ( 6 j 9  

I n  terms of t h e  dyadic Green's function, eq. ( 7 )  can be w r i t t e n  as 



1. 
8 
I 
I 
8 
8 
8 
I 
1 
8 
I 
8 
1 
I 
I 
@ 
I 
I 
I 

where C, sat isf ies  
u 

L G  
u - 

Il-e mean stpare values  of f l u c t u a t i o n  and c o r r e l a t i o n  func t ions  of t h e  f i e l d  

can be ca l cu la t ed  once E is obtained from (7a). For an i so t rop ic ,  homogeneous 

background m e a i u m  such t h a t  E 

-L 

1 

= 1, t h i s  problem has been t r e a t e d  by many 
0 

authors  [Chen, 1964; Yeh, 1962; Liu, 19661, I n  t h e  following, the  case  of 

an i so t rop ic ,  inhomogeneous m e d i u m  w i l l  be considered, I n  pa r t i cu la r ,  t h e  

p e r m i t t i v i t y  of t he  medium is assumed t o  be given by 

where E ( 2 )  is a func t ion  of z only, corresponding t o  a s t r a t i f i e d  medium. 

For t h i s  case, the  opera tor  L i n  (2) can be w r i t t e n  as 

0 

2 2  BE L = [V + k e (z ) ]  I + V -  
0 0  P E 

4 -c 

The r e l a t i o n  V 0 D = V 0 &E) = 0 has been used i n  de r iv ing  t h i s  expression.  

I f  (1) t h e  s p a t i a l  v a r i a t i o n  of e (2) is s m a l l  i n  one wavelength, (2) 0 

the  c o r r e l a t i o n  length of E (2) is large compared t o  t h e  wavelength and (3) 

€(XI does not vanish i n  t h e  reg ion  of i n t e r e s t ,  then, the  l a s t  term of eq.  (9) 

1 
+ 

can be neglected,  Therefore, i n  t h e  following, i n s t ead  of t he  vector  wave 

equation, a scalar wave equat ion w i l l  be s tud ied :  

f 

0 
lJ 

where $(;) may 

Fo 1 lowing 

be any component of t he  e l e c t r i c  f i e l d .  

t h e  usual  procedure [Chen, 1964; Yeh, 1962; Liu, 19663, def ine :  



+ 4 

where $,<x] is t he  s o l u t i o n  of L 4 (XI = 0 ,  
0 0  

Subs t i t u t ing  (11) i n t o  (lQ)? the following equat ion for  lJ(3 is obtained:  

Eqs, (11) and (l29 c o n s t i t u t e  the basic  equat ions f o r  t he  .following ana lys i s .  

3. Green's Function 

Consider a medium i n  which E (2) is a pos i t i ve  continuous func t ion  of 
0 

z and reaches constant  values  as z approaches + -and  - co- The boundary 

condi t ion f o r  t h e  wave is t h e  usual "outgoing wave" at + a% The Green's 

func t ion  of t he  operator L s a t i s f i e s :  

- 

0 

where t h e  factor -47r i s  added for convenience. Not cons i s t en t  with G def ined 

by (8 )e )  Take the  Fourier  transform of (13) 

- i k  x ' - ik  y g  
6(z-z?) 0 4 )  

X e d2 2 2 -t 1 
[T + kg ~ ~ ( 2 )  k 1 g(kx,k z x']  = - - 

Y' 'R d2 

+ i k  x i - ik  y 
g(k , k  p z , x p )  dk dk 4 +  X 

X Y  X Y  
G(x,xVj := JJ e 

--oo 
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+ u \ k g ~ P 9 ~ 2 ( k j ~ ' )  H(z-e ')]  0 dk dk 

Change va r i ab le s  t o  : 

= k cos 8 (21) kz 0 k = ko s i n  8  COS^^ k = ko s i n  8 s i n q ,  

6 

L e t  u,{z] and u (z) be the  two independent so lu t ions  of the  homogeneous 2 

equat ion:  

2 2 
2 

d u  - + [ k  e ( z ) - ~ ] u  = 0 
dZ 2 0 0  

where u (z) and u I'z:Y s a t i s f y  the  boundary condi t ions  a t  z*-Q and z -  +a0 

r e spec t ive ly  

1 2 -  

Then t h e  s o l u t i o n s  of equation (14) can be w r i t t e n  as [Friedman, 19563 

(19) 

2 "  where HCz) is the  Heaviside step funct ion and J is  t h e  Jocobian of u 

From eq. (161, t he  Green's funct ion is: 

and u 1 

+eo ik-- (x-x ' ) +i k- (y- y ) 

9 v a r i e s  from 0 t o  2n9 8 v a r i e s  from 0 t o  - n - i 00, Eq. (20) becomes: 2 

2 
0 

ikor  s i n  8 cos (9- ql) 
k cos 8 s i n  8 " e  
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T i e g - i n t e g r a t i o n  y i e lds  [Watson, 19581 : 

& +  [ u1 eel z)U,ce, z )H(Z '-z)+ul (e9 z %,(e, z ) ~ ( z - z  '1 3 
G(x,x') '= ki !HA1' $v) s inecosede 

J0Ul9 u2) rl 
(24) 

where H419(v) is  the  Hankel func t ion  of f i r s t  kind and zeroth order ,  v = k r s i n 0  

and fl is the  path of i n t e g r a t i o n  shown i n  Figure 1. 

0 0 

This Green's func t ion  represents  t he  f i e l d  generated by a point source 

a t  ( x ' , y f P z ' )  i n  an unbounded inhomogeneous medium. When the  m e d i u m  becomes 

homogeneous, i t  reduces t o  the  well-known expression f o r  sphe r i ca l  wave. 

Since the o r i g i n a l  assumption for t h i s  problem is t h a t  e ( z )  v a r i e s  
0 

slowly i n  one wave length, t h e  so lu t ion  u and u of eq .  (18) can be repre- 

s en ted  by its W K B  approximations: 

1 2 

z 

- 1 -iko Jq(T)dT 

ul(z) = 1/2 1/2 e 
ko 

z 

+iko Jq(T)dr  
e (26) 

- 1 
u2(z) = 1/2 1/2 

kg 

(27) 
2 2 where q (2') = ~ ~ ( 2 )  - s i n  0. 

I n  the  neighborhood of t he  turning points ,  po in ts  where q vanishes, 

the  WKl3 so lu t ions  are no longer va l id .  

w e  change t h e  p a t h r l  t o r 2  (Figure 2) such t h a t  on 

zero, then on t h i s  new path of in tegra t ion ,  w e  can approximate u and u 

by eqs ,  (25) and (26) a l l  t he  t i m e .  

now equal t o ;  

I f  i n  the in t eg ra t ion  of eq.  (24), 

q does not approach r2 

2 1 

The o r i g i n a l  i n t e g r a t i o n  along rl is 
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where represents the contributions from the poles or branch points of the 

integrand of e.;. (24) between the two paths rl and r2 (Figure 2) 
contributions correspond to the normal modes and lateral modes. If one only 

C 
These 

considers problems with frequency high enough so that most of the energy 

from the source is transmitted outside of the inhomogeneous region, only a 

very small number of rays, coming out of the source, with directions almost 

parallel to the x-y plane, are "trapped" in the inhomogeneous medium. The . 

Green's function can then be approximated by the contribution fromr alone: 2 
z 2 

For far field outside the region where those "trapped" modes are important, 

k r = k R sin 0 

can be used, Ej; 6'29) is then reduced to: 

is large, (Figure 3 ) 9  asymptotic expression for H")(v) 
0 0 0 0 

where z 

w = qC?)dT 
Z C  

The geometry of the source and field points is shown in Figure 3. Note 

0 
that in this choice of R and 8 



i. 
z - Z '  = R COS eo 

z - Z' = -R COS eo 

0 
r = R s i n  8 

z >  z' 

z < z' 

2 < z' 

- 

10 

8 v a r i e s  from 0 to  7r/2. 
0 

As i n  t h e  case f o r  homogeneous medium, method of steepest desce i t  can 

be used t o  evaluate  t h e  i n t e g r a l  (30). 

the  s o l u t i o n  of eq. (12) can be expressed by: 

Once the Green's func t ion  is  obtained, 

The t o t a l  f i e l d  is  then: 

where 

This f i e l d  $(;I is a random variable  of posi t ion.  The mean of $(;) 
+ 

w i l l  be the  unperturbed f i e l d  $o(x)9 but t he re  w i l l  be mean square f luc tua-  

t i o n s  both i n  amplitude and phase of the  f i e l d .  The e x p l i c i t  form of t h e  

f i e l d  depends on t h e  spatial var ia t ion  of t h e  medium, I n  t h e  next sect ion,  

an example w i l l  be considered f o r  waves i n  the ionosphere. 

4. An Example 

Consider a m e d i u m  €or which E (z) v a r i e s  as 
0 

0 
o < z < 2 z  2 2  

1 - x,[ 1 - (z-z,) /zoJ 

otherwise 

f 0 ( Z )  = (35 1 
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where z and x are pos i t i ve  constants .  Eq0 (351 corresponds to a plasma 

medium I n  w r ; i c a  the e l e c t r o n  a e z s i t y  v a r i e s  parabol ica l ly ,  

0 n 

For t h i s  m e d i u m ,  

i s  ?.he plasma freFuency a t  t h e  peak of t h e  e l e c t r o n  dens i ty  p r o f i l e  s-3 where 

and Lu is tr.e fre;uency cf tne wave, If i n  some reg ion  of t h i s  plasma, t h e  

e l e c t r o n  dens i ty  Las a random va r i a t ion ,  then t h e  dielectric constant  w i l l  

have a rarrdm parr (XI i n  it. Figure 4 shows E as a func t ion  of z. For 

t h i s  medim,  ego (31'1 becomes :: 

* 
1 8 

If t h e  freguency of t h e  wave is high so t h a t  X 

Xm? eqs. (37). 

<< 1, then t o  t h e  order  of m 

(38) can be expressed as:  

The f i e l d  generated by a 

by s u b s t i t u t i n g  eq. :39> 

22 < z 

o < z q < 2 2  
(40.1 

2 3 2  0 :iz p 3  - 32 ' z 42 1 '62 cose f o r  

0 
'm 0 0 0  

p i n t  source a t  t h e  o r i g i n  can then  be evaluated 

i n t o  <-3O), Tke f i e l d  for z > 0 is 
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FIG. 5 
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where 

I 2 2 sin e + - cos 8 t z x 1z - 32 3/'6zOR cos 83 (42) f;e) - i;sin e 
0 R m 0 

1,,'2 and the approximation Llkz) ~ ( 2 ' 1 ~  Z cos 8 has been used for small X 

Method of steepest descent will be used for the calculation of eq. (419 

Fror eqo (421, the saddle point corresponds to 

m 

for kOR >> 1. 

-e 2 2 
es eo t X m i z  - 322 0 3 sin eO,'6z 0 cos eo (43 1 

to the first order of X for eo << g/2. Expand f(8) in the neighborhood of m 

where 

f"(e 1 * =: -iil-X (z2 - 322 I t 1  i- 2 tan 2 8 )sin e0/6zO 2 cos eo] 
S m 0 0 

The usual method of steepest aescent yields: 

2 ikoR[l + X zCz - 3Z0)/6zO] 1 m 
R +o(xS = - e 

(45) 

-L Similarly, if the point SOUPCB is located at X'(X';.Y'~Z')~ the field is 

obtained by substituting eqE. (40) into eq, (30). Carrying out the integra- 

tion by steepest descent method, the Greengs function has the form: 

'3 2 3 2 ikoR[l-Xm(z - 32 '  z + 4Z0?,"6(Z-Z')Z 

z p < z < o o  (47) 
- 1  0 G(X,~X'] z - e R 

4 - b  
where R = I  x - X t I  z - z *  = R cos eo" 

In the following, 8 specific configuration will be considered. The 

geometry of the problem is shown in Figure 5. The slab of irregularities 

is in the region a : z .< a 3 b. The badkground electron density varies 
P -  
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parabolically to give eO{x) as in ek0 (353 

level z :P 2z 

TLe observation point is at a 

If the aimension of the irregularities is much larger than 0 (' 

the wavelength, then the contribution for the scattered field comes predomi- 

nately from the scatterer in the neighborhood of the straight line connecting 

the source point and fiela point [Tatarsbi, 19611, 

8 

Therefore, the condition 

<< n/2 is satisfied, the field at BCZ) can then be expressed: 
0 

- i+l (3 
$61 = +oG~ e (48) 

where 

A. + 0 O m  ik r[l - 22 X /32] 
t&o(x> = - e r (49) 

2 3 2 2 -L 

0 + 9,Cx') ik R j l  - zf3-3zP z0*42 )X /6z (z-z >] O m  0 O 3 r  
- e  d x' 

0 
ik - + (x) :A: - 1 

(50) 

Define the logarithaic amplituos Six) and phase departure Q(x) by: 

where 

2 2 3 2  
0 0  0 

A :- r '-~+R+x i r  :z p2-3z lz > / 6 z  + 21-2 132 - R g z  ?3-3z p Z 1-4z ),!G2 (z-Z 9 )  3 
IT 0 0 0 

(54) 

In eqs. (521, (531, and (54) all cristances are normalized with respect 

to the wavelength. 
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The correlation functions of the field at two points x and x are 1 2 

defined by : 

where the normalized correlation function of the medium is defined by 

and 

-c - b +  x = x - x  1 2 

(57) 

Here the assumption is made that the irregularity region in the medium is 

statistically homogeneous so that the correlation function depends only on x. 

5. Mean Square Fluctuations 

To calculate the mean square values of the amplitude and phase fluctu- 
4 + ations, let x1 = x2 = (O,Q,z> in eqs. (55) and (56) and define: 

(591 

The following approximations are Bade in the integrand of eqs. (55) and (561, 

the phase factor A is approximated by: 
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and when they appear in the denominator: 

men from eqs. (551, (563, (591, and (601, the following can be derived: 

Change variables to: 

t 1 1 

1 Z '  = z2 - z Y' = Y; - Y1 9 1 9  
x'  = x; - xq 
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-c 
Further integration depends on the explicit form of p Qx). If 

E 

Integrations over x' and y' can be carried out, 

where 

To the order of X the parameters are: mJ 

(74) 

( 7 5 )  

(76) 

(77) 

Because of the exponential dependence in the integrand, the contributions 

to I1 and I 

of the irregularity slab is much larger than the correlation distance of the 

irregularities, the z '  integration can be extended to -00 and +co without 

come predominately from the region Z '  < lz. Since the thickness - 2 
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introducing appreciable  e r r o r s .  Fmthermore, i n  t he  integrand, t h e  approxi- 

mations z >> z and 3 '  >> z .   car^ be made sirrce I >> f and y 9  >> f a 

f i n a l l y ,  terms of the  order  1/1 c a n  be ceglec ted  compared t o  unity,  s i n c e  

f >> 1 from t h e  starting assumptions. 

t h e  i n t e g r a l s  I 

And 

Introducing these  approximations i n  

and X2' t h e  z '  i n t eg ra t ion  can be c a r r i e d  out  and y i e l d :  
1 

a+b 

I1 = 3d'2f f b  + 2Xm f l ( y ' ]  d y ' ]  
z a 

(799 

a+b 

where 

DX = 4y' (z-y")ffxz 2 

2 2  2 2 
f l ( y q 9  = - y l  ,132 (62 -z]y'/62 + C Z , ~ ~ Z  -2 1'6z2-2z0/'3z9[ l+z i (y ' - z ) ]  (84) 0 0 0 0 0 

The y ' - i n t eg ra t ion  f o r  I is elementary and y i e l d s :  1 

~ ~ ' ~ 1  b [ l  9 2X F1] 
2 m I1 
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where 

F1 = 3 - ( z - C )  3,  j/’9Zo 2 i- Q6z -z][ (2-C) 2 2  - a ] / ‘ l2~,  2 0 

2 .  2 
0 0 

i. (a/2z -2 ,/6z -2z0/3z)jb + &f(a+b-z)/(a-z)]] /b (87 )  

The i n t e g r a t i o n  for  I cannot be ca r r i ed  out  i n  general .  However, i f  t he  

s l a b  is t h i n  o r  under condi t ions tha t  D and D are some constant  average 

values  I> and 5 

values,  a and p r e spec t ive ly .  I then becomes: 

2 

X Y 

then a and p can a l s o  be represented by t h e i r  average 
X Y Y  - - 

2 

where 

2 2 3 - (32 +. 4Z0) [ (a+b) - 

From eqs.  (59) and C60Ip the  mean square 

3 2 
a ]/18z zo (89) 

values  of f l u c t u a t i o n s  are given by, 

(I1 + 12)/&IT (90) 

where I and I2 are given by eqs ,  (86 )  and (881, 1 

In t h e  following, s o m e  spec ia l  cases w i l l  be considered f o r  a t h i n  s l a b .  

(1) D >> 1, For t h i s  case? the  mean square values  of phase and the  logari thmic 

amplitude are found t o  be equal. 
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where 6, is the contribution from the regular inhomogeneities of the medium. 

2 2  2 2  6, = 2X [-a /3z0 i- a(6z0-29/6z: + (z/2z 0 - z /6z 0 - 2z0/3z)(1 - % / c ) ]  (93) m 

(29 D .=< 1. 

where 6, is given in (93). 

6 ,  Correlation Functions 

(95) 

(95 1 

The general expressions for correlation functions are given by eqs, (55) 

and (56)" If the two receivers are placed at (-x,O,z) and x,O,z) respectively, 

the correlation functions can be calculated explicitly. The following approxi- 

mations are made in the calculation 

20 

1 '2 P t 2  - 1 1  
r 1 + R 1 - r  1 - -  - 2 7 1 %  + (XI - xz, /z)  3 

- 1 1  
p s + R 2 - p  2 - - -  

52 
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where 

c x; L. x' 2 + xzp 2' z - E2',2q2 

and 5'  and q ?  are given in (62) and (64) respectively. Define, 

Putting the above approximations into integrals (55) and (56), eqs. 

(104) and (105) ean be written 

Following the usual procedure of transforming into a relative and center of 

mass coordinate system, ?he a'. P '  integrations can be carried out immediately 

to give 



22 

where 

When eq ,  (71) for  p (z'9 is subs t i t u t ed  i n t o  (lS8) and (log), t h e  x '  and y p  

i n t e g r a t i o n  can be performed i n  the s i m i l a r  m a n n e r  as i n  t h e  last  sec t ion .  

Furthermore, i f  t he  s a m e  assumptions are followed a s  before,  t he  i n t e g r a l s  

I 

e 

and I4 can be w r i t t e n  approximately a s :  
3 

where 

2 2  2 2 
'P3" -P3 (a+b) 

(4z0 + 32 z - z ) [ e  - e  I F3 - 2 2 0 
2 

I 2z2 
X - 

6z0z' (4x ) 

a +b 2 92 
2 ' 4  -p3Y 

2 .  2 
3 -p qa+b') 

" e  I +  4x J y e  "Y 2 2 2  a 92 I z 
O X  
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2 2  

1’2 (-i4x ‘y6z.z 

<E -1jl z 
1 X X 2 2 2 2  142 + 32.2 - z - i(z+6z ) z  /x 10 

2 2 0  0 0 
F =  4 

0 
2 2  a 2 - P4a - p4 Ca+b9 

ie - e  1 

2 2  2 2  2 2 
-P4(a+b9 

1 2 - (a+b9 e 
2 -P4a z (42 -329 -i(z+6z 9z /x 

6zz 

0 0  0 -+ 2 [ a  e 
0 

2 2  2 2 
3 -P4Qa+b) 

- (a-bb) e 3 2 1 3 -P4a 
t , 2 [ a  e 

0 
z 

2 2  2 2 
4 -p4 Qa+b9 

I - (a+b9 e 
4 -pqa z{z+6z 9 

2 2 -  3f z (Dx-i]z 

0 
2 [ a  e - 
0 X 

a+b 2 -2 
2 2  -p4Y 

i- Cr‘zh - z /3z0 - 4z0/329 J -y’ e dY 
51 Y -= 0 

2 a+b 2 92 
2 22i3z2 + 42 ) - P4Y 

1 J -f4 e dY ’ 
-i 4x 1 0 

a 
2 [,* 2 2 -  12z2<5 - i ) z  

4- 

31 2. (D - i )  
X x o  X X 

a+b 2 92 
2 -p4Y 

dY 
-i16x z 

4 4 2 -  2 3.4 z z (D - i j  
x o x  a 

+ 

2 2 . 2 2  
p3 = 4x ;lxz 

For a very thin slab, the following approximations are obtained: 

(1139 
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2 2 2  2 2  2 2  - 
F3 z [ab(4z0 + 32 z - z 1/3z0z + (42 - 3z)ab(4x a /f z - 1)/3Z02 

0 0 X 

2 ,  2 2  2 2  2 3 4  2 2 2  
i 2a bq8a x /‘I z - 3)/‘9zo s 4x a 6/9z f z 

X o x  

2 2  2 2  
-4x a /f z 

+ ab(z/z - 2 2 2  /3z0 - 4z0/3z)/((a-z9] e X 

0 

(4z0-3z)ab 2 2  - ab 2 2 -i4x a - 11 - -  
2 ~4zod3zoz-z ) + 1 2 2 -  I z (Dx-i) 

X 
0 

3Z2 32 z 0 
F4 - 

2 2  2 2 2  2z(z+6z )a  -i4x a 
3 

- 21 
2a b -i8a x 0 

[ 2 2 -  - 31 - 
+ 2 [ 2 2 -  9z f z (Dx-i) 31 2 2 2 -  z z (I3 -i) 1 z (Dx-i) 

o x  x o x  X 

+i4x 2 2  a /dxz 2 2 -  (Dx-i) 

e 2 4  
0 ab + -i4x a b 

42 
0 

0 32 

z 
2 

-1 y +cy-- -  2 2 2  - - i) 1 / 2 ( ~ ~ -  1 11’2 
gDX 

91 z z (5 -i, 2 32 a z  
0 x o x  

2 2  2 2  
-4x a /d2z - 3/2 

I3 = n b f Z [ e  + XmF3/bi 

2 2  2 2 -  
i4x a /f2z (D - i )  

(119) 
Z 312 . b12 I m i i g i + i 5  9 - 1/2 (?+Ex)- me X + XmF4/b] 

I 4  Y 

From the def ini t ions (104) and (105), the correlat ion functions can be expressed 

where I and I a re  given by eqs. (110) ana (111) i n  general and eqs. (118) 

and (119)for a very th in  slab.  

3 4 
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Again: as in the last section, two special cases will be considered for 

a very thin slab., 

(1) E>> 1. 

Eqb. (11'7; to (1193 yield for this case 

where 2 2  2 2  4x a /1 z 
/b 

X 6, = X F  e m 3  

The normalized correlation functions are defined by 

Using the results derived in the last section, the expressions for normalized 

phase and amplitude correlation functions can then be written as 

2 2  2 2  -4x a /I z 
X pq(x9 = p,(x) = (1 + 6 )  e 

where 

- &l 6 = 6 ,  

2 2  2 2 2 3  = 4a x X [3az (4z0-3z) + 5a 21/42 1 z m O  o x  

is the correction in the correlation functions to the first order of X .. m 

For this case, the normalized correlation function for the phase is 

expressed approximately by: 
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2 2  2 2  -4x a \I z 
X - 6 i  e Pi": '  

And the normalized amplituoe correlation function is: 

2 2- 2 2 -  2 2  2 2  2 2  - 4a x D /z Ix) 16a x Dx(3GX + 

z 1 (3D 

-4x a /f z 
Y X l e  ( 1  + a)  (128) 2 2 -2 psix> = 11 - 

t 3f12 f 2s 6 9 
x x  Y X Y  

All these expressions reduce to those derived by Yeh for the case X = 0. m 

7. Results 

It is noticed from eqs, (93) and (126) that the corrections due to the 

regular inhomogeneous background to the mean square fluctuations and correla- 

tion functions depend on various things: the space between two observation 

points, x: the position of the satellite. z ;  the position at which the maximum 

of the electron density profile is, z the position of the irregular slab, 
0'  

a, as well as the f,rsnsverse dimension of the irregularities, 1 

following, these corrections are plotted as functions of the ratio a/z 

for three different ctises: z = 22 z = 52 /zp z = 32 Several points of 

In the 
X 

0 

0 9  0 O 0  

interest are observed: 

is positive for all the 

cases whicn are consistent with the assumptions, This is to be expected 

6 1 Y  (1) 14;e correction to the fluctuation, 

physically, Since for the medim Eonsidered. < 1, and the ratio 

'is higher for this medium than fo r  a homogeneous one. Therefore, 
' 

the fluctuation due to scatrering is higher, 

(2) 6 bas a maximum about the point a/z = 1; corresponding to the 

case when the irregular slab is near the peak of the electron density profile. 

1 _- 0 

is largest, hence, 1 'Eo  Physically: this corresponds to the case when E 

maxirnm f luctustion, 
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6-3) PLe correction to the normalizes correlation functions, 6, is shown 

in Figure 7 ,  For some value3 Gf a/z less than one, 6 is small and I-regative. 

It becomes increasingly psirive when the irregularity slab is below the peak. 

0 

i43 i~ Figure 8, the nsrlnallzed correlation function is plotted against 

the distance between the two Gbservation points. It is compared with the 

case for homogeneous backgrounci. The correction is more appreciable for 

greater separation when the magnitude of the correlation is very small. 

(5) A numerical example using z = 700 hp z0 E 358 km shows that the 

correction to toe fluctuation is about 17%- 

- 
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8. Conclusion 

In th is  paper, the problem of wave propagation through an inhomogeneous 

medium containing anisotropic irregularities has been treated by various 

approximation methods, 'I%e mean square values 2nd autocorrelations for both 

amplitude and phase of the wave were found to be affected by the regular 

inhomogeneous background. With ionospheric application in mind, the case 

of a plasma medim with parabolic electron density profile and small irregu- 

larities imbedded in it was studied, The corrections to the mean square 

values and correlation functions aue to the regular inhomogeneities were 

calculated to the first order of X the square of the ratio of maximum plasma 

freGuency to the frequency of the wave. It was found that these corrections 

depend on t he  height of the electron density maximusc, the height of the 

transmitter, the aistancs between the observation point and the height of 

the irregular slab, Tre corrections are founa to be appreciable for some 

experimenzal slxuations, Other electron density profiles which may represent 

more closely the rrue ionosphere can be treated in a similar manner. It is 

hoped that the results will be of some practical use to the interpretations 

m j 
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of earth satellite scintillation data, Due to the nature of the approxima- 

tions made the results are zpplicable only to high frequency waves and media 

with weakly random inhomogeneities, 

line for a more complex medium where both inhomogeneities and anisotropies 

exist. The medium in reality, the ionosphere for instance, is exactly one 

of this nature 

Further work skould be done along this 

This work was supported by NASA Grant NSG24. The author wishes to 

express his gratitude to K. C. Yeh for his many suggestions and reading of 

the manuscript and Yo To Lo fo r  some helpful discussions. 
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