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ABSTRACT

The fields of a dipole antenna immersed in a lossy uniaxial medium
are determined. A quantity named ""effective resistance! is defined in
terms of the surface integral of the Poynting vector on a sphere centered
at the antenna, and computations of this are presented as plots of the
effective resistance against the radius of the sphere for various antenna
lengths and medium losses. At frequencies below the plasma frequency,
the effective resistance is found to be inversely proportional to antenna
length near the antenna but proportional to the square of the length at
large distances. These results are used to provide an explanation for
the paradox of ihcreasing radiation resistance with decreasing antenna

length which occurs in lossless hyperbolic anisotropic plasmas.
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1. INTRODUCTION

The theory of dipole radiation in anisotropic media has been exten-
sively investigated, and several methods have been used to calculate the
dipole's radiation resistance. Balmain [1964] used a quasi-static ap-
proximation to the problem and used the induced E. M. F. method to cal-
culate the input impedance of a dipole oriented in the z direction. His

relationship, wvalid for short dipoles, is

1 - = ,
Z,’n —lj“&{“FL.K"L {/Yh%—i 1 !ﬂ a-]’ (1.1)

where Zin is the input impedance, w is the operating angular frequency,
€. 1is the permittivity of vacuum, L is the half-length of the antenna, b
is the radius of the antenna, a = mﬁ;, and where K' and KO are terms
in the relative permittivity matrix Km characterizing the medium. The

expression for K is
m
K _=1]-3K" K 0 |. i1.2)

When the anisotropic medium is a lossless plasma operating at a
frequency which is below both its gyroresonant frequency and plasma
frequency, K'/K will be real and negative. Under this condition, the

‘ o

real part of (1.1) will be




- 7 ,
R’"'ZK’,&,L_ , (1.3)

where R, is the real part of the input impedance, ’7 is the characteristic
in

impedance of vacuum, and ko is the free space wave number, Ration-

alized M. K.S. units are used throughout. Hence the input resistance

Rin is proportional to L in *his case, whereas in vacuum R'n is known
' i

to be proportional to L. . Because the medium is lossless the input re-

sistance is equal to the radiation resistance, leading to the surprising

result that a short antenna has a larger radiation resistance than a long-

er onei

If K‘/Ko were positive, however, .Z_,n of (1. 1) would be purely

L
imaginary, so the input resistance in this case would be zero. This
i 2 ,
corresponds to the vacuum space behavior of L , however, because the
higher order ‘erms in (1.1 have been effectively neglected by the quasi-
static approach.

The same problem was investigated by Staras [1964) who used a
volume source distribution which was of finite diameter and had a rather
elaborate form as an approximation to the dipole current distribution.
His results indicated tha' the radiation resistance approaches zero as

2 . , . , . g . .
L~ when K'/K is negative, in contradiction to (1.3) which essentially
o
assumed a linear filamentary current distribution.

Further studies have been made for the uniaxial medium in which
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K'" of (1.2) is zero. Because a scalar factor of the matrix Km can be
removed by a simple scaling procedure, no loss of generality results
from also setting K’ = 1. The relative permittivity matrix of (1. 2) would

then acquire the form

1 0 0
K ={0 1 o0f. (1. 4}
m
0 0 K

Seshadri {1965] investigated the radiation resistance of a dipole in
this uniaxial medium by using a Fourier transform for the z coordinate,
finding the field components in this transform domain, and then expres-
sing the power as an integral in the transform domain with the aid of

Parseval's theorem. His result for the case where K is negative is
~ 7 R
Rin = ZEL » {1.5)

where again {and throughout this study) the dipole was in the z direction.
Equation (1. 5) corresponds to Balmain's relation of {1.3) for this medi-
i . . : 2

um. For K positive, Seshadri found Rin to be proportional to L, cor-
responding to its behavior in isotropic media.

Mittra [1965] studied this phenomenon in a manner similar to that
of Seshadri and arrived at the same results. He pointed out that the ra-
diation resistance is independent of the medium parameter K except for

the fact that it is equal to its free space value when K is positive, but 1s




a completely different value when K is negative. This curious behavior
was attributed to the fact that this simple model is unrealistic because
the med:ium was considered to be infinite in extent and because plasma
sheath effects near the antenna were ignored. He also remarked that
when the medium 1s lossy the input resistance can no longer be called
the radiation resistance.

The behavior of the radiation resistance of short dipoles with length
is related to the power delivered by an infintesimal dipole of finite mo-
ment. Let R(L: be the radiation resistance of a dipole with prescribed
current distribution as a function of its length. The power radiated by
the dipole can be written as

P= —ﬁ—z R (L) (1.6)
where I is the peak value of the current at the center of the antenna. The
peak value convention for alternating currents and fields is used through-
out this study. But M = AIL where M is the dipole moment and A is a
proportionaliity constant which depends on the current distribution. So,

in terms of the dipole moment, (1.6 becomes

p= R(L), 1.7

H2 L
It 1s seen from (1. 7) that for P to approach a non-zero, finite limit as

L approaches zero, Ri(L) must approach zero as L .




The work by Balmain and Seshadri thus implies that the power ra-
diated from an infintesimal dipole in an anisotropic medium character-
ized by (1.2} is infinite. This phenomenon has been observed by other
authors, and has acquired the name "infinity catastrophe.'" (See, for
example, Kogelnick [1960] and Arbel and Felsen [1963]j. To resolve
this, Lee and Papas [1965] have recently presented a new theory of an-

1"

tenna radiation. They proposed that the power obtained by the '"conven-

tional procedure'' is composed of fwo parts, P and P, and that
rev irr
only Pirr is actually absorbed by the shpere at infinity. They contend
that Pirr is finite for an infintesimal dipole immersed in the anisotropic
medium even when K'/K0 is negative, so from (l.7), and using this
method of calculation, the radiation resistance of short dipoles must be
2

proportional to L. Furthermore, a more recent paper by the same
authors _Lee and Papas, 1966] contends that even using the ''conventional
method! of calculation, the power radiated by the unit infintesimal di-
pole in a uniaxial medium {characterized by (1. 4) with K negative ) is
equal to the power radiated in vacuum. Hence, the radiation resistance
of short dipoles in this medium would be proportional to I, , in contra-
diction to the results of Seshadri, etc.

It should be apparent at this point that there is some doubt as to

the radiation resistance of short dipoles in this uniaxial medium. In

order to add some new insight to this quandary, this study investigated



the problem by a different method. All of the above investigators used
either near field methods or Fourier transform methods to compute the
power delivered to the medium by the source. In contrast, Poynting's
theorem was used here to compute the power flowing out of a sphere
centered at the antenna. Some comments are in order, however, re-
garding the validity of this procedure before continuing this discussion.
The fields for the infirtesimal dipole in a uniaxial medium are
given in Clemmow [1963] and the fields are seen to be infinite on a sur-
face known as the characteristic cone when K is negative. Therefore,
the fields cannot satisfy the homogenous Maxwell's equations there be-
cause they are not differentiable and hence do not have a curl. Some
doubt thus exists as to the validity of this solution or of the solution cor-
responding to any source which has singularities of the field in source-
free regions. These singularities occur with many dipole current dis-
iriburtions in uziaxial media with K negative, so it is not really appro-
priate to talk of the radiation resistance in these circumstances. It is,
however, instructive to investigate the '""radiation resistance' of these
sources as if the fields obtained were valid. In this study, quotes are
used around ''radiation resistance'’ whenever it is only the formal quan-
tity obtained from the surface integral of the Poynting vector which is
under discussion, and with no implications that it is to be interpreted as

the radiation effectiveness of the antenna.
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In this study, a filamentary dipole with finite length immersed in a
uniaxial medium was considered. The current on the antenna was as-

sumed to be sinusoidal; that is, expressible as

I@= 1, sn A(L-1=l). 1. 8)

The exact field expressions for the antenna were found in closed form.
Although these fields are singular on three characteristic cones when K
is negative, the surface integral of the Poynting vector was determined
with the aid of a computer to arrive at a plot of the '"radiation resis-
tance'' against the length of the antenna. The problem was also ap-
proached by introducing a slight amount of loss, resulting in fields
which remain finite, and examining the power radiated through spheres
of various radii as the loss approached zero.

The introduction of loss was accomplished by allowing K of (1. 4
to become complex, or of the form «-jp where P is positive. A medium
which has (1.4) as 1ts relative permittivity matrix could be a plasma
with an infinite static magnetic field applied in the z direction. K being
real would correspond to a plasma with no collisions between electrons,
whereas K would be complex if the plasma had a finite collision fre-
quency. No loss would occur in the x or y directions because the elec-
trons cannot move in a direction perpendicular to the infinite magnetic

field, so no collisions would occur as the result of an applied electric



field in these directions.

Briefly, then, the problem studied here was to find the ""radiation

resistance'' of a z directed dipole immersed in a lossless uniaxial medi-

um by Poynting vector methods without questioning the validity of the
fields obtained. and to study the power flow from the dipole when the
medium is lossy, representing an environment closer to reality, in
order to present resulis which are more physically meaningful than

those obtained for the lossless case.




2. THEORETICAL DISCUSSION

The most convenient method to obtain the fields of a localized cur-
rent distribution in a uniaxial medium would be to use the principle of
scaling discussed by Clemmow [1963] and by Bates and Mittra [1966].
Both papers are primarily concerned with the case where K is real and
positive. Clemmow mentioned that the scaling procedure gives correct
results when K is negative, but neither paper discusses complex K.
Furthermore, application of the scaling procedure for complex K is
difficult for many sources. For example, when scaling a line source
such as J :%I(Z)S(X)S(y) terms such as S(Kx) appear. If Kis real, itis
well known that S(Kx) =/ lKl')g(x): however, for complex K one must
use S{Kx) = (l/K}S{X) to achieve results which satisfy Maxwell's equa-
tions. A valid criticism for this procedure is that the definition of the
Dirac delta funcrion is not valid for complex arguments. The purpose of
this section, then, is to develop a procedure to find the uniaxial fields of
a line source by scaling only the vacuum fields and not the source itself.

2.1, Justification of the Scaling Procedure

Jwt

Maxwell's equations for a uniaxial medium with e time depen-

dence assumed are

vxn :waoKmE'.'j (2. 1}
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-VXE = JjwaeH, (2. 2)
where 1 0 0
K _=]0 1 of, (2.3)
m
0 0 K

and/u. 1s the permeability of vacuum, E is the electric field intensity
vector, H is the magnetic field intensity vector, and J is the current

density vector. Eliminating E from (2.1) and (2. 2) results in
-‘ — — - ——
VX (Km VXH)-B2H = vX(Kn J). (2.4)

Defire the Fourier transform of the vector field components as

3 & . .
%? (/g'yy,)n):—(é',?\[/‘]‘g?(x)#)i) e J?@o(ﬂx‘fmg hi)c/ld#dz, 2. 5)

where E = x, y, or z, and A is a source or field vector. Transforming

both sides of 2. 4} results in the matrix equation

— — — PR —

0 tikn -jkm| [1 0 oo +jk n -jk m| [Bk
(0] O O O
kn 0 +3k & 0 1 o0f]l-5kn 0 +ik R H,
ik Hik -ik Hik y
1 Vot
i -jk = l+jk -jk 2
_—r;kom J 6? 0 | _0 0 =d Lt o j O,Q 0 | |Hz
fix 0 +ikn -jk mjil 0 O Jx
(o] O
2 |~ -
-k fHy| = |-k +ik o 1 ol|3y| . .6
o y jk n 0 ik R y| - (2.6)
H -k kL 0 o 0o =172
z Hk om o -k K

Considering cnly z directed currents and simplifying,
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B 1 T~ [~
(nz-‘r-l-li—xn‘2 -1j ("Eym ) (-Qn) Hx -mJ
o1 2.1 g2 . ~ j ~ o
(-— n +— §°- (- = (2.
{ Kz?m) n ¢ §°-1) (-mn) Hy K ko 7 , 2.7
P 2
(-fn) (-mn) (m”+Q -1) | |Hz] | 0]

where J(x, v, z) = 2J(%, v, z). Multiplying both sides of (2. 7) by the in-

verse of the matrix on the left results in the equations:

N Im(F e mrent—| .
HX - szterA ' ) (2. 8
T IR+ m* 4 nt—1) .

= 2.
Hy K& A (&%

0 i2.10)

Tt
|

where
2 \
A= (Lemts n2o) (1L L= Fmr—n?) (2.11)
The above equations imply the existence of a potential X{x, Yy, 2} =
8A(x, y, z) such that H=VXA. From (2.8), (2.9), (2.11), and the matrix

which corresponds to the curl operator, the potential in the transform

domain is recognized as

i , .
= {2.12)
A KR (F*+ gm> + n*-1)

Let J= 5(x)8(y)$(z)3 corresponding to a unit infintesimal dipole in the 2z

direction. In the transform domain, this source is
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J = 2y . (2.13)

From (2.12), {2.13), and the inversion integral for (2.5), the z compo-~
nent of the vector potential corresponding to this source can be written

in the {x, y, z) domain as

4 o0
R J Ko S -
A =~[[/[(;1T)’K(T(L11+mez+ i) e Aol mg nz)cfaac]mol)". (2. 14)

Rearranging (2. 14) results in the equation

+ oo ; B.nz
Sy (fr m P e’
Ad= <2W)3K_[_/e ['/(Kz T ,_,)O/Vzl odlolm. (2.15)

The integral in brackets can be integrated directly using Cauchy's integ-

lg2—1—2
ral formula. The integrand has two poles, one atn = -N I_R-T g™ K

1—— o—1—2m

and the other atn =+~ 1 X g m Defining the square root of the

: @
@

complex number re’’ as '\]Pr-‘eJ—f for -m{®¢w, and noting that K will have a
negative imaginary part, the poles will be in the second and fourth quad-
rants of the complex plane for all values of X and m. Closing the con-

tour on the top will then allow the integral to be evaluated for z>0.

Equation {2.15) then becomes

(2.16)

i (re AU emy - 2 g )
Ad=5re ff VY 2 e

>




»

13
1
Perform a change of variable on (2. 16}, 1etting}= dd cos@
1 . .
m:E‘psnupgx:rcosé,andy:rs1n9. Then,
e ej(vw5(¢'e)- 24 ot —""(— ;)
Ad = 57 e polpely (2.17)
BflK ,gl-—’— 2 . /
o -T ° K f

Equation {2.17) can be easily integrated with respect to @, resulting in

the one dimensional integral

f—(”

(2.18)

Ad = 41rr

2 2 2
Performing another change of variable, withar = N’? -K ko . NCK ko s

results in the contour integral

B (v /K=
/‘?4=,,¢WE-[€ i (V+/~KE) J;(r'Jar*+z1r,/—KJa.l')' dv  2.19)

where for K = d-jB, P?0, the contour C will be as shown below.,

™ Re ()

This contour can be deformed onto the positive real axis because the

integrand is analytic. The integral in (2. 19) then becomes an integral
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from zero to infinity, a definite integral which is given in Bateman

[1954]. The result is

e]ﬂaﬁz+ K(*)f.l-a-g.")l
Ad= s oty - (2 20)

Equation {2. 20) is then recognized as the vector potential for the
. . o, .
same source in vacuum after a suitable change of variable. If Ad(x, v, 2)

designates the vector potential for the unit z directed dipole in vacuum,

then

Ay, 2) = AZ(’\/_KX, N'Ky, z) . (2.21)

All of the above steps are valid for the imaginary part of K strictly neg-
ative and for z positive. Equations (2.20) and (2. 21) also hold for z
negative by symmetry.

The vector potential for a line source E:’z\l(z)g(x)S(y) is easily
found by superposition using (2. 21). Expressing the superposition in

integral form results in the equation

Alx, Y, z) :ﬁ(o{)Ad(x, y, z-o )de . (2.22)

—0

Substituting 2. 21) into (2. 22) results in

+ oo
Aty 2) = 10850 K, N Ky, 2-of)det (2.23)
-0
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Finally, recognizing (2.23) as a scaled version of the vector potential

for the same line source in vacuum results in
A%, v, z) = AW Kx, N Ky, z) . (2. 24)

where Ao(x, y; z) is the free space vector potential for the line source.

The scaling procedure for the field components can be derived

—_ _— — -1 —
similarly using the equations H =VXA and E = KmVXH with (2. 24},

(Y
resulting in the equations:
E_(x,y, 2) = VK Ez(\FKx, N Ky, ) (2. 25)
E (v 2) = NK E‘;(«fo, N Ky, z) (2. 26)
E_(xy,2) = EZ('\/_KX, N'Ky, z) (2.27)
H_(x,y, 2) = VK H:(JKX, N Ky, z) (2. 28)
H (. v, 2) = VK Hsr(\/_Kx, N Ky, z) . (2. 29)

Equations (2. 25) through (2. 29) represent a means of obtaining the
fields of a line source in the z direction immersed in a uniaxial medium
from the vacuum fields of the same source. The procedure is valid for
all K with a negative imaginary part, as demonstrated above. The val-
idity of the procedure for real K can be established by allowing K to ap-
proach the real axis from below. If the fields approach a limit uniform-
ly as K becomes real, the procedure of (2. 25) through (2. 29) should be
valid for K real. Unfortunately, this is not the case for some sources
when K is negative as the fields approach infinity in certain directions.

This point will be discussed further in section 4.
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2.2. Dependence of the Radiation Resistance on the Medium

Parameter K

The above development of a scaling procedure for K complex es-
sentially completes the theoretical background necessary for this study.
However, analysis of the preliminary numerical results has led to an
interesting theoretical discussion regarding the behavior of the radia-
tion resistance of a filamentary current distribution with changes in the
medium parameter K. The result of this discussion (which appears be-
low) 1s that muitiplying K by a real and positive constant does not affect
the radiation resistance of z directed line sources in the medium. The
discussion to follow, however, departs from consideration of line
sources exclusively in order to develop the phenomenon in full general-
ity, and then proceeds to line sources as a special case.

If the sources considered are only those for which the scaling pro-
cedure outlined by Clemmow [1963] can by applied without difficulty, the
method would relate a source and field distribution in a uniaxial medium
to a corresponding vacuum source and field. If the fields are trans-
verse magnetic with respect to z, the equivalence is particularly simple
and is repeated below for the relative permittivity matrix of (2. 3).

Here the quantities without superscript refer to the uniaxial medium

whereas the superscript ''o'" designates free space quantities.

E_ixy 2} = VK E:(\/_KX, NKy, z) (2.30)
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E (Y, 2) = N'K E;’I(\fog N Ky, z) (2. 31)
Ez(x, y, 2} = E:('\/—Kx, N Ky, z) (2.32)
H_(x,y,2) = VK Hz('\/_Kx, NKy, z) (2.33)
H (%, 5 2) = NK H(;('\/_Kx, N'Ky, z) (2. 34)
Hz(x, v,2) =0 (2.35)
J ey, 2) = NK Ji(«fo, NV Ky, z) {2.36]
3,6 ys @) = NK J?('\/—Kx, N Ky, z) (2.37;
I oy, z) = KJ‘Z’(\/”Kx, N Ky, z) . (2.38)

1f one considers two unaixial media with relative permittivity

matrices
1 0 0
ml
LO 0 Kl_
1 0 0
and K =1{0 1 0 . (2. 40)
m2
o 0 K,

then for each admissible source-field pair in medium 1 there is a cor-
responding pair in medium 2. The relationship can be made explicit by
relating fields and sources in each medium to free space using equations
(2.30) through (2.38) and effecting a change of variable to obtain the re-
lationship between quantities in mediums 1 and 2. The results are:

En >) = 1 (2. 41)
X(xy y,z)=Db Ex(bx, by, z) . ,
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E'(x,y,z) = b E! (bx, by, z) (2.42)
y y '
Tt = 1
EV(x, v, 2) = E (bx, by, z) (2. 43)
] — ! . .
H_(x,y, 2z) = b H (bx, by, 2) (2. 44)
H'{x, vy, z) = b H' (bx, by, z) (2. 45)
y y '
H';(x, Vs Z) = H‘Z(x, v, 2) =0 (2. 46)
" - t
JX(x, y,z)=Db Jx(bx, by, z) (2.47)
I (x, vy, 2) = b J' (bx, by, z) (2. 48)
y y
2
J’z'(x, ¥y, z) = b J‘z(bx, by, z) , (2.49)
where b 2 (2.50)

VK

and the "' and ' refer to mediums 2 and 1 respectively. Considering only
real and positive b, the power delivered by a source in medium 2 can be
related to the power delivered by the equivalent source in medium 1.

The power is defined as

P! :f‘/:/’-}f”(x’ Vs 2} ° E“*(Xy y, z} dxdydz . (2.51)
~ oo

Using equations (2. 41l) through (2. 49), and noting that since b is real the

scale factors do not affect the conjugation,
4+ o0

2
= :mb [E‘X(bx, by, z)J) *#(bx, by, bz)t. .. ] dxdydz . (2.52)

Let x'=bx and y'=by. Then,

4 00
P! :Iff[E;((x" y', z}J' sk (x!, y', z)+. .. ] dx'dy'dz . (2.53)
X
- O
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The right side of (2.53) is then recognized as P'. Thus in a uni-
axial medium the power delivered by a source distribution which pro-
duces a transverse magnetic field is the same as the power delivered by
its corresponding source in another uniaxial medium as long as the ratio
K,

—— is real and positive.

K

A simplification results if the source is a z directed line source;
that is, expressible as
T'(x, v, 2) = 21(2)§(x)8(y) , (2.54)
The results of section 2.1 are then applicable and a development paral-
lel to that above except using (2. 25) through (2. 29) would show that the
power delivered by a line source in medium 1 would be equal to that de-

K

livered by the same source in medium 2, again as along as R is real
1

and positive. If in addition K1 and K_ are real it is meaningful to speak

2
of radiation resistance. Because the radiation resistance depends only
on the power and current, both of which are the same in the two media,
the radiation resistance of the source must then be the same.

In particular the radiation resistance of a z directed dipole in a
uniaxial medium with K real and positive is the same as it is in vacaum
if the current distribution of the dipole is the same in the two media.

Furthermore, if K is negative and the procedure of (2.25} through (2. 29j

is valid, the "radiation resistance' of z directed dipoles in this medium
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would be the same as it is for K = -1. In numerical computations, then,
only the case where K = -1 needs investigation. This invariance of the

radiation resistance under multiplication of K by a real and positive con-

stant is in agreement with the results by Seshadri, etc.
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3. NUMERICAI, PROCEDURE

As stated before, the objective of this research is to study the
""radiation resistance' of dipole antennas in uniaxial media using Poyn-
ting vector methods. The first step, then, would be to find the fields of
the dipole. The scaling procedure outlined in equations (2. 25) through
(2. 29) relates the desired fields to those of the same source in vacuum,
hence reducing the problem to that of obtaining the vacuum fields for
the source.

Consider, then, a dipole antenna in the z direction with half-
length L. If the dipole is assumed to have a sinusoidal current distri-

bution, that is

J=2 1. s:nJ%.(L- l2) §09 §(4) (3. 1)

then the exact fields of the source in vacuurm are known [Jordang 1950].
A simple, but algebraically involved, application of (2. 25) through (2. 29)

to the vacuum fields results in the uniaxial fields, which are:

ynrrsne

e ﬁﬂL(e-jﬁn"' e—Jﬂ.a _ zcosdL e—Jﬁ.v 5.2



4T Wweo r N 1 sin@ r
L 6—1/40’2 e‘—j 6’5
+ =cos ~ .
+<i = Co 9) = Z coSK. L ) (3.3)
where:
M= t+/(cose-L5)+Ksin?e' (3. 4)
b =r/cos?*e +Ksinte (3. 5)
n=r/lese+LE)? +Ksinte’, (3. 6)

and where r, 8, and @ are the polar coordinates variables.
Having the uniaxial fields for the source, the next step would be to

compute the Poynting vector E, which is defined as
— I ——— ——
P=z Re(ExF*). (3.7)

The power delivered by the antenna would then be

™ +r

Po=f/ P(req - f risinedede (3. 8)

o -T
where the Poynting vector has been integrated on a sphere of radius r.
The Poynting vector is independent of ¢, and is symmetric in 0 about

Q0 =

v 3

Equation (3. 8) can then be rewritten as

-
2
Po= ‘/Vf A8y risineds G-9)
(o]
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where P _(r, 8} is the radial component of the Poynting vector. However,
r
to form Pr(r, 0) it is necessary to conjugate E, and thus one must know

the value of K because r_, r., and r_ may be real, imaginary, or com-

0" 1 2
plex. For this reason, the problem will be approached differently de-
pending on whether K is real or complex.

3.1. Lossless Media

The medium parameter K is real if and only if the medium is loss-
less. There is no need to investigate the case where K is positive, be-
cause this was shown to be equivalent to vacuum. K will then be assum-

ed negative, and set equal to -1 for convenience. Equations (3. 4)

through (3. 6) then become

N=r/(ese-£Y—sin*s (3. 10)
fo=rJcosig-sin*6 " (3.11)
F=r/(cos 6+ )*-sin2p’ (3.12)

Equations (3. 10) through (3.12) show that Ty T and r_ may be

1’ 2
positive or imaginary depending on the value of r and 6. Figure 1 shows

the antenna, the sphere of integration, and the four regions where dif-

ferent ones of the variables r, r., and r, are imaginary, hence making

0 1 2

the Poynting vector acquire a different form. These regions are label-

led 1 through 4 in order of increasing 6. Using (3. 7) and noting which of
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ro, r19 and r2 are imagirary allows Pr(r, 8} to be computed in each re-

gion, resulting in the formulas:

Region 1:

2T2
P A Ia [(1_ —:.-'-cosa) jrcos(a,-q,) - 2 cos P cos(a,-4&,)

= }irwe.sne a,

Y+cosla-a,)-2tos R cos (a.-2a)

+(i+‘:.=C059)

Q,
Region 2:
— R."Imz {- L 6)(2605}507 Ay — Smaz)e-b'
Pr= ¥ rwe. smie Li‘ T oS b,

b - -—
+(1+Lcos 8) € "Cosa:+1-2cosd cos (A 2)

QA
-b,
+(—2¢:os)?) €~ %1cos @, + Ccos (@ - Qo) — 2Losh (3. 14)
Qo
Region 3:
- je.‘Inf L __e—b' Sind,
F= omirwe.sm (1-+cos 6) b,
_b - b0
L € % cosa, + 1-2wske ®cosa,
+(1+-,—_—cos 9) .
-é L°Sma. :
+(-2co3 ) x 3. 15)

bo
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Region 4:

P = O, (3. 16)

whereyzk I, a=kr, a, =k r
o o

1

2
bl:koszinZO—(cosG-%), and b

L|
=k r\/sinZO - cos2 e.
0 o

2P
—O, where I is

2
I

The '"'radiation resistance, " then, is given by R =

the current at the center of the antenna, or I = Im sin (kOL). Using
(3.9) and (3.13) through (3.16), an integral expression for the "radi-
ation resistance' can be derived. This formula, after simplification,

is

a /a

R 7 {f&[(i-{- cos )[1+ cos (2~ a)) ~2c05 € o5 (- a,)]
= Yfrsm*

[-]

1+ 4 cos o)1+ cos(a,-a,) — 2¢cosf cos (a.—az)]
Q
aa/a

2 cos,?[z cosf - cos(a,-a,) — cos(ay- a..,)] ‘[ de
ao/Q J 51”9

+f9°|:(1- a'go:os 6)(2cosfsmao- sma,) e~ b
5 b /a
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+ (14.-&2 cos 8) [14 e"" cosa,—2cosf cos (@ —aaﬂ
Qz /a.

2cosf[2cosf— e Bicosa, - cos(ar-a)] o
a./a Sin@

+‘/92.[_. (1—€£c059) ek Siha,
A b /a

+ 1+ ‘a,EC"S 6) [1+ e” L'COS‘L: - ZCOS‘VQ'I"’ cos a.z]

Qz/a
2¢cosf e Po sma, |Jde
+ h /o ]Sme . (3-17)

0 , and ©_ are those where

In (3.17) and in Figure 1, the angles 91, 0 >

r, and r

. . +§ -
1’ Yo 2 become zero, respectively.

r
it can be seen from close inspection of (3.17) that the integrand

approaches infinity at 915 8, and 02, (Throughout the following dis-

0
cussion, r is assumed to be fixed). In each region, the integrand is
composed of three terms, t each end point, one of these terms
becomes infinite because its denominator approaches zero as 0-0,
i

where 9i is the angle of the singularity. Thus, the integral exists, al-
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though its complexity defies attempts to integrate it directly. The in-
tegral as written cannot be performed numerically on a computer either
because the integrand is unbounded. However, a method can be devised
whereby a known integral is subtracted off and the remaining integral
evaluated numerically. To demonstrate this method, computation of the
first integral in (3. 17) will be explained.

The integral can be written as

£ (&) ,
R, / [?,(J +f(e~)] (3.18)

where fl {0) and f2 (0) are analytic in [0, 91] and g4 (0) approaches zero

at @l, {Note that the integrand approaches zero as § approaches zero

in spite of the term "'sin {9)" in the denominator). Explicitly,

£ (6)= % (1-Zcoso)[1+ costa-a,)-2cosfcos (ao-a)]

Y41rsinig sin 8 i
)‘_ (a, 3 4 (1+ écos G)(i+cos(a,—az)—2cos,(7 cos (a,- CZ,_))
YT ansinz st e dz/a
ZCOS,QLZCOSP— cos(a;-a,) — Cos (az—aa)J (3. 20)
Ao/
?/(9):“ a,/a (3. 21)

Equation (3. 18) can be rearranged as
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A Pl
C[([Fe e 'f (5) |

£0) £ (9))
(0) = 2. () N 91_91 and evaluating the second integral,

Or, letting f3 1(

9'
R,-——f [£(6)+ £ (&)Jola + 2/5‘75’ (8,) . (3. 23)

Analysis will reveal that f3 () approaches zero as 0 approaches 01, so
the integrand (f3 (0) + fZ (8)) is now bounded and continuous, and hence
can be evaluated numerically on a digital computer.

All of the difficulties of (3. 7) were handled in a manner like that
of the above example. The radius of the sphere on which the integral is
performed does not affect the result, as long as the sphere encloses the
antenna, so r was set equal to 4L in the computations. The results are
presented in Figure 2 as a plot of the ""radiation resistance' against the
length of the antenna, with (1.5), the equation obtained by Seshadri, al-
so plotted for comparison. As can be seen from the slightly erratic be-
havior of the computer results, some difficulty was encountered in the
numerical evaluation. This is thought to be because the integrand was
still very badly behaved even after subtracting off its singular behavior,
and because forming the integrand involved finding a small difference
between large numbers and hence stressed the accuracy of the computer

used. However, in spite of the erratic behavior, Figure 2 still demon-
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strates that this method yields results which are quite close to those ob-
tained by Seshadri.
3.2, Lossy Media

When K becomes complex, radiation resistance no longer has
meaning because power is lost to the medium. However, it is helpful to

definie "effective resistance'' as a useful extension of the term as

T+
=%ff R(re) risinede , (3. 24)
o -

where again the integral is performed on the surface of a sphere of
radius r centered at the antenna, I is the current at the center of the
antenna, and Pr (r, 8) =1/2 Re(EX_I:I_*)'?. R is then a function of the
antenna length and the distance from the antenna (radius of the sphere
of integration), and can be thought of as the power radiated by the an-
tenna through a sphere of radius r when it has N2 amperes of current

at its center.

Because Pr(rg 01 is continuous and bounded when K is not real and
negative, evaluation of (3. 24) is straightforward in this case. The com-
puter was programmed to evaluate E9 and H¢ from (3.2) and (3. 3),
compute Pr’ and then integrate it to form R from (3. 24).

Figure 3 is a plot of R as a function of the distance from the an-

tenna for an antenna with a total length of . 02 free space wavelengths

(kOL = .0l) and for K= -1-jp for several values of 3. It demonstrates
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that R approaches the ''radiation resistance' of the antenna (for K = -1}
for every fixed r as P approaches zero.

Figure 4 is a plot of R as a function of r for antennas of several
lengths, where K = -1-j.03. It demonstrates that although the effective
resistance near the antenna varies inversely with L as in the lossless
case, the curves cross at larger distances until eventually the longest
antenna has the largest effective resistance.

Figure 5 plots R as a function of antenna length for r = . 02 free
space wavelengths, and demonstrates that although R increases with de-
creasing length at first, it eventually decreases again as the length ap-
proaches zero. The straight line again represents the equation

?

R = R L’ the result obtained by Seshadri for a lossless medium with
o

K negative.

The fact that the curves cross 1n Figure 4 is quite interesting,
and its implications are discussed in section 4. It means that the at-
tenuation of the fields of a shorter antenna is more rapid, at least in
the range plotted in the figure. The reasons for this are not evident
from (3. 2) and (3.3), so further study was made of this phenomenon.
In particular, a computer program was written to compute the power

per unit solid angle radiating from the antenna, which is defined as

l?n_(r,g) = rZPr(r,Q) . (3.25)
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The results of this investigation are Figures 6, 7, 8, and 9, each of

which represents a different antenna length and is a plot of P, as a func-

tion of © at several radii. The medium parameter K was ~1-j.03 in
each case., These curves show that the power attenuates more rapidly
in all directions.for smaller antennas.

Discussion of these figures is deferred to section 4. However, it
should be pointed out here that some of the curves would behave very
erratically (particularly in Figure 5} if they were drawn through all of
the points where computations were made, so they were extended as
dotted lines in a reasonable manner. These points are assumed to be
erroneous output resulting from computer round-off error and the in-
ability of the integration routine used to handle the functions involved,

which Figure 6 shows are very badly behaved.
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4. DISCUSSION OF RESULTS AND CONCLUSIONS

The paradoxes of increasing radiation resistance with decreasing
antenna length and of the infinite power radiated from the unit dipole,
which occur in anisotropic media at frequencies below the plasma and
gyroresonant frequencies, have received a great deal of attention in the
literature. The two phenomena have been shown in section 1 to be re-
lated, and both also occur in uniaxial media.

Although on one hand there is not a great deal of application for
uniaxial medium theory, the study of dipole radiation in this medium
has been undertaken because this is the simplest of anisotropic media
and hence the theory can be developed more fully, adding insight to the
more complicated problems more closely related to the physical world.
Mittra [1965] also pointed out that when solving problems related to
short dipoles in the anisotropic media characterized by (1. 2}, the sim-
plifying quasi-static approximations employed because the antenna is
short give rise to fields which are independent of K''. One can thus
comment that these assumpiions are in many ways equivalent to the
assumption that the medium is uniaxial. Therefore, many of the re-~
sults obtained for the uniaxial medium carry over also to the more
general anisotropic medium.

Several unphysical results occur, however, when the radiation

resistance of a dipole with sinusoidal current distribution immersed in
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a uniaxial medium with K negative is investigated. First of all, the
fields obtained are singular on three cones which extend to infinity. As
pointed out, this casts serious doubt as to whether this solution is even
valid. Furthermore, Figure 2 shows that if the ''radiation resistance'
is calculated anyway, it exhibits a curious L_l behavior as L approaches
Zero.

To explain these results, one would then look for errors in the de-
velopment. One possible error is that the validity of the scaling proce-
dure has not been demonstrated for K real and negative. However, when
K is slightly complex the fields are continuous and bounded so the valid-
ity of the fields is certain, and the scaling procedure is fully justified.
But Figure 3 shows that the power radiating through a sphere of any
fixed radius approaches the "power' obtained when K = -1 as the loss-
less limit is approached, showing that this cannot be a cause. The
choice of a sinusoidal current distribution is not extremely critical
either because Balmain [1964] still found the L‘—1 behavior for a
""smoothed' current distribution for which the fields remained finite.

One must then conclude that the problem is not realistic in some
other aspect. Actually, the problem is unrealistic in many ways, as
brought out by several authors. Staras [1966] commented that the Apple-
ton-Hartree tensor of (1. 2) and (1. 4) may not be appropriate to the prob-

lem because the antenna has negligible radius, violating a condition for
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the development of the tensor. Mittra [1965] pointed out that the infinite
extent of the medium and the fact that plasma sheath effects have been
ignored also make the problem unrealistic. Another defect, the one
considered here, is that for any physical plasma there will be electron
collisions and hence some loss. To what extent does the paradox exist
when the medium is slightly lossy? The following paragraphs answer
this question by discussing the power delivered by antennas with differ-
ent lengths but the same driving point current for lossy media.

Figure 4 demonstrates that when there is some loss, as the length
of the antenna decreases the power near the antenna exhibits the L be-
havior of the lossless case. However, the power radiated through large
spheres decreases as the antenna becomes shorter. In fact; scrutiny of
Figure 4 would reveal that the shortest antenna is the first of the group
to be radiating less power than the longest! It is also important to note
that even when the loss tangent is as small as . 03, as in Figure 4, this
reversal in the amount of power obtained occurs in what must be con-
sidered the '"near field.' It was observed in computations not presented
here that halving the loss tangent approximately doubled the distance
where the power curves of two antennas crossed, so with any reasonable
amount of loss this reversal in antenna effectiveness would occur at
distances much less than those normally used between the transmitter

and receiver of a communications system.
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Even the L"1 behavior of the power travelling near the antenna is
not completely unfamiliar, for consider the case of a short dipole of fi-
nite radius immersed in a lossy isotropic medium. Deschamps [1962]
presented a method whereby the driving point impedance of an antenna
immersed in a lossy medium could be obtained from its impedance (both
resistance and reactance) in a lossless medium. The input resistance
of a short dipole in an isotropic lossless medium has an wZL behavior,
As for the reactance, a quasi-static approach reveals that if the radius
remains proportional to the length, the short antenna behaves as a ca-
pacitor whose size is proportional to L. The impedance, then, as a
function of length and frequency for a lossless medium is approximately

2 KZ

‘ . 2 .
Z(w,L)ZKlw L-Jw—L', (4.1)

where Kl and K2 are positive constants.
Application of Deschamps' procedure to (4. 1) shows that in a me-

dium with €= €4(1-§) and 4=4,, the input resistance is approximately
2 2
R, (v, L) =K o L+ ———"—, (4. 2)

This equation shows that the input resistance, and hence the power

: -1 : . . .
flowing near the antenna, has an 1. = behavior even in an isotropic lossy
dielectric. Unfortunately. the similarity ends when the lossless limit is

2
approached, because the isotropic case shows L behavior for the radi-

! B 1}
AR M I = a2 6 A O A A & WE s
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ation resistance whereas Figures 3 and 4 show that this is not the case
for uniaxial media.

Returning again to the lossy uniaxial medium, Figure 4 shows that
the power attenuates more rapidly for a short dipole than for a long one.
The reason for this is not apparent from the field expressions (3. 2) and
(3.3), so computations of the power per unif solid angle were carried out
and presented in Figures 6, 7. 8, and 9. These figures show that the
power aftenuates more rapidly for a shorter antenna in all directions,
and that the power for shorter antennas tends to be concentrated near the
characteristic cone emanating from the center of the antenna. The side-
lobes apparent in Figure 9 result from power traveling along the other
two characteristic cones from the top and bottom of the antenna, but this
power decays (or redistributes) rapidly causing the sidelobes to disap-
pear in the curves representing larger distances.

Therefore, it is apparent that when the medium is considered to
be lossy, the unphysical results which occur when the medium is loss-
less largely disappear. This is not to say that the results obtained for
K = -1 are valid, but rather that the simple model used is not appropri-
ate for the lossless case. A similar situation exists in circuit theory

when the circuit below is considered.

S R
- C T e
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C, and CZ are capacitors of equal value. C

) is initially charged to a

1
potential V, and C2 is uncharged. When the switch is closed, current
flows until ultimately the potential across each capacitor is V/2. How-
ever, if R=0 (lossless case) the above solution contradicts the law of
conservation of energy, and analagously a paradox results. The usual
explanation for this is that the model neglects the effects of radiation.

The conclusions for this study, then, are:

(1) The radiation resistance of a filamentary dipole immersed in
a uniaxial medium with K positive is equal to its radiation re-
sistance in vacuum.

(2) If the dipole is assumed to have a sinusoidal current distri-
bution, the fields obtained for K negative are infinite along
three characteristic cones, causing serious doubt as to the
acceptability of these solutions. Similar remarks hold for
other current distributions for which the fields are singular
outside the source region.

(3) If the "radiation resistance' is computed for this case anyway,
it is seen to be proportional to L_l for short dipoles, creating
the unphysical result that the '""radiation resistance' increases
with decreasing antenna length.

(4) One of the ways this dilemma may be resolved is to introduce

a slight loss to the medium, in which case the behavior of the
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power transmitted bears striking similarity to the case where
the medium is isotropic and lossy; that is, increasing with de-
creasing length near the antenna but decreasing at large dis-
tances.

The paradox of increasing ''radiation resistance' with de-
creasing length for the lossless case can thus be viewed as a
lossy medium input resistance phenomenon that has been car-
ried over to the lossless limit because the model is inaccu-
rate.

Hence, the input resistance of a dipole antenna in a lossless
anisotropic medium must not be used as a measure of its ef-
fectiveness in a communications system when the frequency of
operation is to be below the plasma and gyroresonant fre-
quencies, This is because the actual environment will have
some loss, and although a shorter antenna will have a high in-
put resistance, a longer antenna will actually transmit more

power at large distances.
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