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PREFACE

This report covers work done on the calculation of the
Bremsstrahlung cross section (both mathematical analysis and computer
programming) under Contracts gASw-QQé_and NASw-1235.

For the sake of clarity of presentation, the report has been
split into two sections. Section A presents the theoretical development
incorporated into the current computer program, together with a discussion
of the program itself. Section B contains significant work on the prcblem
that is not utilized in the current form of the program, together with a
discussion of the reasons for its present exclusion and of the advisability
of its consideration for future refinements of the program. A number of
lesser results and transitional approaches, which were reported in the
quarterly reports, are not reproduced here. Similarly, discussions of
test programs and checkout problems have appeared in the quarterly reports
but are not given here.

The program is now operaticnal. The continuation of this work
will include some further refinements of the program, and an extensive

series of production runs for various elements and energies.
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SECTION A

THEORETICAL CAICULATIONS AND THE COMPUTER PROGRAM
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I. INTRODUCTION

It is well known that the Bethe-Heitler expression for the electron
Bremsstrahlung cross section(l), which was derived using the Born approximation,
yields inaccurate results in comparison with experiment.(e) In general at
energies below approximately 10 Mev the photon energy spectrum is under-
estimated over its complete range with the most serious discrepancy

occuring at the higher photon energies. As a result, it is estimated

that at 1 Mev incident electron energy the average energy release in a

radiative collision with Aluminum is underestimated by over 30% while

for Gold it is underestimated by as much as 55%.(2)

The reason for the discrepancy can be attributed almost entirely
to the use of plane waves for the electron wavefunction in the matrix
element as prescribed by the Born approximation. The theoretical estimate
can be improved in accuracy by using Coulomb wavefunctions in the matrix
element. In this way the influence of the nuclear electrostatic field can

be taken into account in the most accurate way. Jaeger and Hulme(B’u’s)

were the first to use the more accurate wavefunctions in the closely
allied process of electron-positron pair production by photons. Their
results were in good agreement with experiment.(5’6) Hence, very accurate
results for the theoretical estimate of the Bremsstrahlung cross section
can also be expected with the corresponding approach. The difficulty
with the improved method, and the reason it has not been used extensively
in the past, is that it does not yield a simple analytic formula, but
requires extensive numerical procedures to obtain results.

In the present study, the Bremsstrahlung cross section problem

is formulated with Dirac wavefunctions for the screened and unscreened

nuclear electrostatic field. The screened potential is obtained from



self-consistent-field calculations. This requires that the wavefunctions
be expanded in a series of angular momentum states. Hence, the formulation
is suitable for calculation only at relatively low incident energies.

The cross section for unpolarized incident electrons is obtained
for various polarization states of the photon, differential in the polar
angle and energy of the photon. With a simple change in input for the
incident particle's charge and/or mass, the program is equally applicable
to the calculation of Bremsstrahlung from positrons and positive and negative
muons .

The derivation starts in ChapterII with the presentation of the
eigenfunctions of the energy and angular momentum operator of the Dirac
equation. The eigenfunctions are used in the matrix element for the
production of Bremsstrahlung as described in Chapter III. The final
derivation of the cross section is given in Chapter IV. In Chapter V,

Racah algebra is used to perform the magnetic quantum number sums
explicitly, leading to some computational as well as formal simplifications.

For the computation of matrix elements, the procedure, as described
in Chapter VI, is to terminate the numerical integration at some moderate
radius, and to continue the integration out to infinity analytically by
means of an asymptotic evaluation. This involves using asymptotic
wavefunctions to perform the integral from the cut-off radius onward,
and carrying out the integral itself asymptotically.

Chapter VII clears up an ambiguity in the phase of the Coulomb
wavefunctions found in the literature (this was needed to establish the
sign of each partial wave in the starting conditions for integration).

In Chapter VITII, the analytic limit of the Coulomb wavefunctions as the
kinetic energy goes to zero is derived. These are the scattered-electron

wavefunctions in the end-point case (electron giving up its entire kinetic

energy to the photon).
-3 -




Initial values and equations for the radial integrals are covered
in Chapter IX Phase chift determination by wave-matching at the cut-off
radius is described i1 Chapter X.

Chapter XI explains the procedure used for the computation of
normalization factors by matching to the W.K.B. approximation solution.

Chapter XII discusses the self-consistent-field calculations
and their application to the computation of the screened potential.

The calculation of the angular distributions at the end
of the program is detailed in Chapter XIII.

The structure of the computer program is outlined in Chapter
X1V, together with specification of the input and a description of the
~utput.

Lhapter XV describes full-scale sample runs of the computer
program, used to establish that the results from the program compare with

the Born approximation in the expected way.



II. EIGENFUNCTIONS OF THE ENERGY AND ANGULAR
MOMENTUM OPERATORS

The continuum eigenfunctions of the positive energy operator of the

Dirac equation for an electron in a central electrostatic field have the

(7)

form

. -1
-ir GnQu,u

= 1
®K }H- —l ( )

r " FQ
PRIt

where ¢ is a bispinor, Q " is a spinor and G and ¥ are radial functions.
"o, My n %

The eigenfunctions ¢ 0 are also eigenfunctions of the operators, J, L, S,
My ™

and JZ which are the total, orbital and spin angular momentum operators and

the z component of the total angular momentum operator, respectively. The

eigenvalues belonging to these operators are j, 4, %‘, and yu, respectively. .
The non-zero parameter y, which can take on all positive and negative integral
values, is related to J and ¢ by(T)
w o= -(j+3) = -(2+1), for n < O,
1 (2)
“ :j—{-?:z, fOl"M,>O.

The parameter mu is sufficient to designate both j and 4 simultaneously since
J = Inl —%>and 4 = j+én/!nl. To indicate the dependence of j and 4 on %, the
eigenvalue j will be replaced with j% and £ will be replaced with z%.

*
The eigenfunctions ¢u are normalized on the energy scale so that
J

x* + *
The notation # indicates the complex conjugate transpose of ¢ while ¢
indicates only the complex conjugate of 3.




+ t 3 , :
f@u‘,u (E) ¢n1’u| (E ) d’x = 5}1,”, 6”-,}1' 5(E-E ). \5)

The angular functions Q, " that appear in (1 ) are given by

2

= L ., o
Qo = EEC(Znean,u mm) % un(F) "1n (&)

. .1 . . . . X
where n;,n is the spin-5 spinor with z-axis projection quantum number n,
2

(%) is a spherical harmonic, and C(Ln%jn; p-n,n) is a Clebsch-Gordan

(8)

coefficient. These angular functions are arthonormal on the unit sphere so

Yz,u—n

that

+
Q al = § 8
fQK)u H’)I-l’ wean' p,u’ (5)

where d{ is a differential element of solid angle.

The electron function ¢n " satisfies the equation
J

ES ,* (-iQ V+B+V) By (6)

Consequently the radial functions satisfy

F'- ’-lﬁ-F + (BE-v-1) G =0

(7)
G'+ ’% G - (E-V#1) F =0
and have the asymptotic forms
fEri L
G ~ :;% sin (kr- 2+ 5 )
J =
Tk .- (8)
FVEL cos (kr- —%7 + 65 )
Jrk "
2 1
where k = (E"-1)2 and & is the phase shift.
2 2
In the case of a pure Coulomb field with V= - Z%— , the radial

functions have the form



¥*
G =VE+1 (H +H )
Y n n (9)
*
F,o=1VE-1 (£, - H))
where
+ 1 1 1
- p o-iEm(y+3) -3 kr 10
H =Ae (2kr) M-%aiv,y (2ikr) (10)
with
1 .
. STV lh(n) .
A IC(y+iv)l e 1e (y+iv) (11)
2(mk)Z I(2y+1)
In the above M_i . v (2ikr) is a Whittaker function,(9)
274V

2.2 (3 2 R -1
v = n"-2% )3| , v = EZe“/k, and exp [21 N(x)] = (-w+rivE )(y+iv) .
In the subsequent development it is not advantageous to use the
complex conjugate form of H shown in (10). Instead, the following
"

relation for the Whittaker function can be used:(9)

MK (z) = eien(%+u) M (-2)

)p‘ -K,u
where e=1 if Im(z)>0 and e=-1 if Im(z)<O, to obtain the alternative and more

useful expression:

% *x _sl1 1 1
g ¥ o p% oiam(v+d) (2kr)"2 My . (2ikr). (12)
" N 2-1v,Y

In the case of the Coulomb field, the asymptotic forms of (8 ) are replaced

with
VE+1 £, m
G~ —— sin (kr+v fn (2kr)- —— + 5 )
,HE‘ 2 ke
(13)
o £ m
F ~ "= cos (kr+v gn (2kr)- —%— + 8 )
nk "
where
— - + - - -
én =n(n) - arg I'ly +iv) 5 (Y.Z% 1) (14)




III. THE MATRIX ELEMENT

10

The matrix element for the production of Bremsstrahlung is

M= cefa, (4 (B) g (@) o (1)

where X is the Dirac matrix operator. Since we will not be interested in
angular or polarization details about the electron leaving the interaction,

the final state electron function Yf(E') can be normalized on

the energy scale according to the form given in Chapter II, Eq. 1:

Yf (E') = ®K',u' = (2)
-1
ro Fo
» ',u!
The initial state electron function ﬁn(E) is normalized on the momentum scale

and has the asymptotic form

Ym(E) ~:u(m)ei§'£ +or LT (3)

where u(m) and G are bispinors. The z component of the spin associated with
the plane wave in (3 ) is designated by m. It can be shown that if the axis

of quantization is taken along the direction of propagation of the incident

(N, ,

electron, then Ym\E) is given by

1
y (E) =§2n(2Ek)-2 ¢, m %, ,m (%)

with

Ay 1 2 g
Cn,m = 10T (24, 41)° C(zx%én5°m) ' % (5)

and ®, n ¢ defined in (1) of Chapter II.



The electromagnetic wave in (1) can be represented as a linear
bination of waves which are circularly pnlarized perpendicular tc the

‘ro~tiion of propagation. If the wave was propagating along the z axis it

w~1ld have the forn
A (0) =3 ah (6"

~q
Ao ad

with
1

2 2~ -1qz 2 2= 2 [y 5 Ay
= -p7 — = -7t — - +1
Ap =07y V= i\ ; (-0)* [em(2g+1)] LANCORACEY (7)
A
where ¢ and g are the photon energy and momentum, resvectively, ?p are the
cpherical bﬁsi£82 jz(qr) are the spherical Bessel functions, and ap are
~omstante (+o be discussed below). The wave é*l is 1.h. cireularly ~olerized

and A . is r.h. circularly polarized. Rotation of the coordinate system co

that the photon is propagated in an arbitrary direction with respect to the new .

system yields the required expression
- o _+ ) 5 . . a
dp=2 XXX (-1)7(2e+1)= 5 (ar)c(e Basop) Dy (@ 58,0)T 4 (8)

g N m'=-)

where ¢ and ©  are the azimuthal and polar angle, respectively, of the

(8)

propagation vector, D;,p is a rotation matri§8)and Ehﬁmf is given by

L) = (%)

m =v V)

b3

=3 C(& 1h; m'-v,v) ¥
L,

\¥

\f/m'

The zcnstantc a, in (6) can be shown to have the forms:

for a l.h. circularly polarized pheton, ap:&p +1
2
for a r.h. circularly polarized photon, ap:a L (10)
by -
1 .

for a linearly polarirned photon, a =2 g PC




‘ In the case of linear polarization the angleé of interest are indicated in Fig. 1.
In the subsequent development it is appropriate to consider the matrix
element with éq replaced withlép. The new matrix element M(p) shows p as an

argument. Hence

M=5 a M) (11)
=t1

The matrix element M(p) is obtained with the use of (1) through (11)

M(pmt'p ) = 5_‘, Z p C(L1n Op)z D", (9,8 ,0) FOly'n'm') (12)

mp'qaq

JeEk

m ="
1
where F(uzu'u'mm')=(-i)’z (2+1)2 3. c(elazm'-v,v)Y, C
v %

[ 500 1, 0 () 6F0 0, (13)

VTR

un,M

A
and o =F ‘O,

The integral over the angles in (13) 1is readily found with the

result that (13) becomes
Tt 1 _ 3 [
Fugu'n'mm') = 5, ‘m,m’ ‘/;ﬂ A(Xfx "p'm) (1h)
and, as a result, (12) becomes

27 J}ne
r__

[ R T 1!
M{pmx'u') = }:z {41 ;0p) D m,p (wq,eq,O)A(uu.u m). (15)
If we set u'-m= in (15) and eliminate u' we have

At 'n'm) = A(Mgu'em) (1€)

where

A px'em) =Z [Hl (1'um) B, (%',-uem) - H, (#'wm) B, (—n'uem)] , (17)

"




'2 INCIDENT

X
ELECTRON

GEOMETRY OF BREMSSTRAHLUNG INTERACTION INDICATING
THE CASE OF A LINEARLY POLARIZED PHOTON.

FIGURE 1
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with

6

el +1 i
) )2 s 1.

Hy(n'wm) =1 " (-l)m+l/ (24+1)(23,+1) /2 e n 3y 5 b3 mom)
C(84y 2, 500) Ky(#'x)

and

HE(K‘nm) =1 (‘l) (2 JM. n 2 %

C(88, 2y300) K, (0n")

The BI‘ functions in (17) can be determined from

B, (x',-uem) = Z: C(2, 33,5 €m=5,8) § (-1)8P c(dadss,-548)x

The K, functions in (18)

and

L

c( o1 se-6+8,6-8)C(8_, 33, sm-B,BIC(LL_ L, o 5e-5+8,m-B) .

Kz(u n) =
0

and (19) can be determined from

~

o

Ig

{gr) G, (E',r) F, (B,r)ar

Kbt = 3,0 6, (B2) B, (B'0)ar

0

- 12 =
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(19)

(20)

(21)



IV. DERIVATION OF THE CROSS SECTION

The cross section for production of Bremsstrahlung by unpolarized

ineident electrons and without regard for the direction or polarization of the

scattered electron or the azimuthal angle of the photon is given by(lo)
2n 2
dq dp_do
- 2 q
do = %E m}; ,I% M (meernt)] ———-———9—3 4 (1)
. (ex)
=0
cpq

where the polarization states of the incident electron (designated by m) have been
averaged over, v is the incident velocity of the electron and pq = cos O .
Using the matrix elements defined by (11) and (13) of Chapter 1II,
2 *
do = A I do__ + A A do
p:izl:gl pl “pp " Spp T -p,p (2)

~here Ap is defined in (8) of Chapter III and

27
q dq du do
T + a9
dogp =5 2 M (R'maut) M (pmetut) == . (3)
P my ' (2rn)
=0
Wq_
Hence, it follows that
do = dcll for 1.h. circularly polarized photons
do = dc_l_l for r.h. circularly polarized photons (4)
do = = (do + e—glp@ do ) for linearly polarized
2 PP -P,DP
P""l '3
photons
do = do for unpeolarized photons.

’y
. ! A
T = D (o 6 0)D 6 0) do
fo tom,pt @80 u‘_m’p(wq . ) q (5)

Aetually the ibegrand of this integral is independent of ¢ and it is

Ten Tl
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easily shown that

' em-7' . . ,
I=2my (-F TP C(AAds-pem,p'-m)c(A 235 -p',p)
J

[(j-lp’-m)f]l/2

J+1p'-pi

(eq) (6)

P.
J)'p"P|

In (6), Pj n 8re the associated legendre polynomials:

b4

(6 ) = —— (1-cos®® )m/2

d J+m 2 J
Pl = o5 [ereter] ™ (eoson? (0
where m is positive definite. The fact tlat
'—
(-1)P P - (8)
in all cases has been used.

With the use of (15) of Chapter III and of (6), the cross section

(3) becomes

. 1/2
J (J-'p'—pl):]
do = do = .
P'D Z p'p [laﬂp'-pl)! PJ,lp'-Pl(eq) (9)
dJ
R . 2 2
where, upon setting v = k/E and using k- = E -1,
j _ (E—l) 1
dUp'p = 3 e 1) Bj(P p) ydydgq (10)
with y = q(E-l)‘l. Also

B;(p'p) = Bg(pp') = B;(-p',-p) = 3~ A (p'pey0), (11)
28
1
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where

Aj(pvp 2,4) = p p' Zc(zl 1 A, 50p")c(£1r;0p)c (A A gs-p',p)x
X1}

Vj(xl}zzl). (12)

The function Vj in (12) is independent of p and p' and is given by

V00 > (-)*t C(hAris-e,e)p(h M de) (13)

where, in turn, the ¢ function is

@(xlleze) = }E::z: A% (Klzln'em) A(Adn'em). (1k)

K'

The A functions in (14) are given in (17) of Chapter III.

Since Bj(p’p) is symmetric with respect to the pairs (Z,X)
and (Zl,Xl), both having been summed over in the same way, only the real
part of ¢ contributes.

The computer program calculates

Aj<l>(zlz> = (-1)? 6(2s41) ™ (2tr1) ™t A.(1 1 4.4), (152)
2 Py = ()f ) (2e) A(1, -1 4.4), (150)
and then
Bj(i) - %: (24+1) zZz <e-a£l£><ezl+1>Aj(i)<zlfz>. (16)
E

- 15 -




V. ANGULAR MOMENTUM SUMS

The expressions given for the Bremsstrahlung cross section
contain several sums over angular momentum guantum numbers, the
summands consisting of products of Clebsch-Gordan coefficients.
These sums can be carried out formally, yielding Racah and X coefficients.
Going up the hierarchy of magnetic quantum number sums, there

is first

, 1. §-p_,1 1
Bm(n ,=HEM) =z C(I,K, 3 Jyy,;e+m-6,6)2(-l) BC(E 1 -2—;6,-6+B)
0 B8

C(8L1 5e-5+8,8-B)C(4,, 5 3, 51-8,B)C(4L_ 4, ,36-6+8,m-B).

After two recouplings (yielding two Racah coefficients) and an orthogonality

relation, the B sum reduces to

z-ju-e-m%w 1/2 1/2
> - =(-1) [(2w1)(2e, ,+1)(23,41)] DO (af+1)
= T
1. PUN I | . 1
w(eL, . 5 3,30, DW(GE;e5)C(e, 3, f5-e-mb ,m)C(Af55€ ,-€+6).

Similarly, the remaining 6-sum yields
6+:‘2L' 1 1
E (-1) 2 c(4,d,75-e-m+6,m)COM55¢,-6+8)C (L, 5 3, rse4m=5,8)
§

-16 .

(1)

(2)



\+F+5 -%+e+m 1/2

c Lo g
=(-1) [2(2f+1)1  W(g, 3, 305T,0C(505, sme).

On splitting off the magnetic quantum number dependence by

BI,)\(K‘ s =UE m)EBM(" ! ,‘K)C()\jujn 13€ m))

there remains

P 1/2 £-5
By (') = (-1)7 [2(aa+1)(2g #1)(25,+1)] 3~ (-1) © (2f+1)
t

1 1,1 1
/! p— . P S 3 a— . 3
w(eg, 53, 50, DIW(IASEs45W (2, 13, 5 A3 3, 0).

The f sum is an X-coefficient (after rearrangement), so that

1/2

b=y 1 . s s 11
B, (', )=-[2(20+1) (28, +1)(25,+1)1  X(13,3, 15808, 151

272"

This X-coefficient can be expressed in a more elementary form.

Together with the matching parity Clebsch-Gordan coefficient, the result
(11,12)

reduces to

gm_(u',-n) = C(ZZK,I/_K;OO)ﬁz\(n',-%)

= -5'1/20(

. s 1
13,08, 30, ) Gy Gty
where the dependence on the signs of #u and »' is contained in

-1/2

sz(u',n)=(n’-u)[z(a+l)]_1/26X,2+(n'+K+Z)[£(2z+l)] 5 ,0-1

-1/2

+ (' -0-1)[(g+1)(24+1) ] 5x,g+l

Equation 8 does not hold for A=0, but this value is eliminated
by the occurrence of a factor C(I1A;0,%1l) further upstream.

Separating the magnetic quantum number dependence of A(A g 'em),

- 17 -

()

(7)




A(Apitem) = (-1)™1/2 ) Bhe'n)C(NS, 3, 1 36m)C(35, 34, 5-m,m) (9)
M

where, in turn,

L +4+1

i8
HAgnm)=1 " (2z+1)(2,j%+1)1/2e

M[ﬁm(n',-z«.)Kz(m'n)-ﬁﬁ)\(-n',M)Kf'(nn')]. (10)
In the next round of summations now,

cp()\lk Zlf,e)= Z Z A*(kl‘zl%'em)A(km ‘em)
“' m

= 1y, \T Z . s .1
= E H*()‘lllln nl)H()\M'K) C()"lJKlJn1;€m)C(Jnl§£’%l;'me)
uiun m
1
c(hj 3 -em)c(-'iz ;-m,m) (11)
JPLJ%" J, 5%, > T,/ .

Recoupling to separate the ¢ and m dependence,

;3em)C(A3, 3, +sem)

c(h l‘]nl‘]n

A=j. ,+m
! . -1/2 1/2 . . s
= (1) (e @) 2 P eV W03, 13,33,19)

S

O3, 3,85m,m)C (1131 520). (12)

The next step is
e+l .
VO 2) = 3 (5 cuprs-e,e)p(h il e ).
€

The ¢ sum reduces to

> e pds-e )0 e0)=(-1E M (an1) /(251 M2 5. (13)

€

§J

leaving

- 18 -



j+1
Vj(ll)\l,lz)=(-l)J Z 23, +1)2H* 1ot OB W (N3, )\J 3,43)
n'
!

J, T 1 1
2 (1) C(juljnj5m)'m)C(JKl§Eul§-m;m)C(jKEZK;—m,m). (14)
m

The m sum consists of the two terms m=i:% which differ only in the sign

of the magnetic quantum numbers of the Clebsch-Gordan coefficients, hence by

a phase factor of (-1) to the power

N | S :
1+ (3, +3,-0-0, +5 -4, )-(3,+ 5 -2, )=4+8, -

"
1 1 1 1
(15)
= (zn+z_%.+z)+(z%l+z_n,+;z,l)-2(z_n.+z+zl)+(z+zl-a)-
This yields the selection rule that Vj(kl}zlz) vanishes unless
4+4,-§ = even integer. (16)

Subject to this condition, the m sum is twice the m=-% term. On substituting

the explicit value

o330 53, = 22, (17)
j j%v‘l/2 .

V(e 0)=(-1) Z (-1) (23, 1+1)
n'nul

(18)

B0 40w BB WO A3, 33 03)C(5. 3. 33-5,%)
117 "1 w1l ul’ n' nomy 2Tl
Equation (18) requires the computation of general Racah coefficients.

This can be avoided at the cost of performing one magnetic guantum number

sum explicitly. Re-expanding,

R N
W(KJKXlJKl,JK,J)C(JKJKIJ,-E 5)
(19)
35 +1/2+¢
n . } :
=(_l) (EJK'+1) C |:€} Q)C()\J J vJ€’ 2) ()\ )\-J’ €}€))

so that

- 19 -




e+l ..
Vihray o) = 37 (-1 clips-e €)
¢ (20)
Z'ﬁ*(x 2 JEM RIS 3 e, -2)C(hd 3 se,-E
117 "1 luln"’E nUn 220

n'nnl
The second line agrees with (11) upon using (17) and setting the m=%— ternm
equal to the mz-%-term.

On splitting the ¢ sum into positive and negative values,

1 e+l r ..

€=0 (21)

H (A dses-edo(h iy 2,-¢) ]

Going back to (11), a change of size of e (when accompanied by a change in
the name of the dummy variable from m to -m), simply introduces a Phase

factor of (-1) to the power
g+, =3, V(3 + 2 -4 )-0rd -3 (i + % -4 )R A+e, -2 (22)
1 ny #' 2 2 "y n “nt U 2 um 1 My m

for ¢ and of K+Xl-j for the Clebsch-Gordan coefficient. In view of (15)
and (16), the two terms in the bracket of (21) are equal and
_ e+l —
ViOiphai0)= 3 (-1) (2-5_o)COhhds-ce)o(hh g 2e) (23)
€_>.O
On defining
1
1 s 3. t_ t Y ! '
"o )=C (03, 13, 505) (G, 075 WK, ()G (n MK ()1, (24)

there results

AL
Relo(hph g 2e)1=(-1) 1 (1/3)(24+1) (20+1)50 2 26) (25)
where
_ Evn'ﬂnl“l"ﬂ,-f/l
oA A gq2e) =Z (23, +L)HO oo 'w JH( )1 cos(sn—snl)
n'nnl
(26)

s Lorr o 1
c(ryd, ' 36 ~e+5)C(N 5, 13, 56, -e45)
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making use of the fact that
£“-£“1+£-El = (zn+z+g_n)-(znl+zl+z_%,) = even integer (27)

whence i to this power is real.
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VI. ASYMPTOTIC EVALUATICN OF MATRIX ELEMENT TAILS

If the potential can be neglected beyond r = a (i.e. if the
error in the phase shift from truncating the potential at r = a

is small), the wavefunctions for r > a are given analytically by
F. 500 (E-1) /1Y 2kl cos &, 3, \(kr)-sin b (r) ] (1)
PAAPERE - w o Jgen) ~Sin Oy yz(_n) s
6 < (B+1) /K12 [cos 6 3,, \(kr)-sin 6 (k)] (2)
A - w 94(n) w Ya(n) :
The tail of the matrix element (the integral from r = a to infinity) then
reduces to an integral over a product of spherical Bessel and Neumann
functions which, in principle, can be carried out analytically.

The spherical Bessel or Neumann functions can be written as

sines and cosines times polynomials in inverse powers of r (the order of

the Bessel function determining the order of the polynomial). The resultant

integrals can be reduced to sums of sine and cosine integrals of various
orders. Formally, this leads to a closed solution. In practical terms,

however, it is unsatisfactory because a large number of terms occur which

are of comparable magnitude and varying sign, casting doubt on the ultimate

precision.

It is simpler and safer to invoke from the start the fact that
the matrix element tail calculation is intended for large r and use
asymptotic values for the wavefunctions and asymptotic evaluation of the

integrals. Explicitly, keeping the two leading terms in the asymptotic

expansion,cuﬂ
34(2) = 270 sin (2-47/2)+4(4+1) (227) T cos(z-4m/2), (3)
v(2) = 2L cos(z-ﬂﬂ/2)+2(£+l)(222)‘l sin{z-47/2). (%)

The wavefunctions take the form (apart from a numerical factor)

Ve



- - 3 . 5 kr ~
kr[cos 5, Jz(kr) sin ¢, yz( )1

sin(kr+6z—zn/2)+z(¢+l)(ekr)_l cos(kr+§z-zn/2). (5)

Consistently, when the integrand is formed by a product of such expressions

the terms of order higher than the second in 1/r are discarded. Elementary

trigonometric manipulation then allows the integrand to be expressed

: . . -1 -2 .
as a sum of single sines or cosines times r or r -, The integrals are

then carried out by integration-by-parts in the direction of increasing

inverse powers of r, again stopping after two terms. The basic integral
is
w

f sin(krsp) . _ cos(katg)  n sin(ka+d) (6)
n

3
. r Kk an kEan+l

with neglect of terms of order a—n-2, where n = 1 or 2.
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VII. PHASE OF COULOMB WAVEFUNCTIONS

The continuum solution of the Dirac equation for a Coulomb field
contains an ambiguity of =n in the phase shift. In computing matrix elements
for electromagnetic interactions, it is necessary to adhere to a consistent
convention for the phase. Since there is an established sign convention for
the free particle solution, it provides a suitable calibration.

The relative phase of the two radial functions is well-defined, so
it is sufficient to examine only the "large" component. The Coulomb function,

normalized on the energy scale, is

D) e 2 me1) 2 (o) Y

% oF (2y+1) (k) 1/ [e—ikr+in(y+iv)1F1(Y+l+iv’
2y+1;2ikr) + c.c.] (1)
with exp (2in) = - (n-1v/E)/(y+iv) (2)
and v = (BE/x)(az), v = (K2_O?Z2)1/2. (3)

The corresponding free particle function is

/

i/z

Gj = (E+1) (nk)-l “kr jz(n)(kr). )

It is desired to fix the choice of the square root of Eq. 2 to be used for
exp (i7) by requiring that Eg. 1 reduce to Eq. 4 in the limit as Z goes to
zero (causing the potential to vanish).

As 2 —> 0, v —=> 0, and y —>|#| . With these, Eq. 2 reduces
(9)

to -»/{»] . By Kummer's transformation,

11 ({»l+1,2}x|+1;-2ikr) = exp(-2ikr) 1F1 (Y] 2| +1;2ikr).  (5)

Factoring exp (-i7) out of Eq. 1 and letting exp (2in) = -n/|%|

- oh -



1/2 |} —5M-i
. m&}g'l)” E 7 (o) IR

[-‘ﬁl 171 (Il +1,2(x] +1;21kr)

+ 9F; (fn] 2fx|+1;5 2ikr)]. (6)
(9)

For « < 0, the expression in brackets is

1F1 (bd +1,2 )] +1521kr) + JFy () ,2|n] +152ikr) = 2 1F1 (hds2bd 52ikr)  (7)

while g(x) = |nf-1 and

o 1/2 e, P
v j;%|— ey 2 ) 1Fallnls2 ) s21kr). (8)
Using the doubling formula(9)
r(eld) = 22P 52 p e 1/2), (9)

the limit reduces to

1/2 (ﬂk>-1/2

G kr j

"%l_l(kr). (10)

_'%l—-—> exp(-in) (E+1)

Comparing with Eq. 4, the correct limit is exp(in) —> 1.
For » > O, the expression in brackets is(9)

1F1(3+1,2u+1;21kr) - l(u,2n+l;21kr) = 2ikr,F (V+1 +2;2ikr)/(2v+1) (11)

while £(x) =x. The limit then reduces to

6, —> -1 exp(-1n)(8+1) 2 (n1) L2 ) (12)

The equivalence now yields exp (in) —> -i.

Splitting exp (2i™) into real and imaginary parts,

cos 2m

i

(-Ky+v2/E)(y2+v2) =2 coszﬂ—l, (13)

sin 27

i

V(%+y/E)/(y2+V2) =2 gin T cos T, (1k)

Thus, with ¢ = +1 or -1,

1/2
cos T = e[(l+cos 2n)/2] , (15)

]

sin M = sin 27/(2 cos T). (16)
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If Egs. 15 and 16 are used to compute exp(in), the phase convention is given
by specifying ¢. This choice is determined by the Z —=> 0 1limits obtained
above.

For » < 0, the limit is cos | —> 1, so ¢ = 1. For u > O, the
limit yields cos } —> 0 (which leaves the sign undetermined) and sin N —> -1.
Since |«] > || /E > y/E, the sign of sin 27 is unaffected by E; for electronms,
it is the same as that of . For x > 0, then, sin 20 > O while sin N1 < O,
so cos N< 0, and € = ~1. Positron wave functions are obtained by taking Z
negative, hence v negative. The sign of sin 27 then reverses, and € = 1
for » > O. Combining the results, the prescription for using Egs. 15 and 16 is:

«/1ul,

electrons: €

positrons: e = 1.

The relation between positron and electron phases is
in __ -in
(e )pOS - ‘74.' (e )el' (17)
In the limit of small kinetic energy (k —> 0), v becomes infinite
and exp (2in) —> 1. For an electron, then, exp(imn) = -u/lul. The limit is

meaningless for a positron, as its wavefunction then tends to a delta function

at infinity.
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VIII. ZERO KINETIC ENERGY LIMIT OF COULOMB WAVEFUNCTION ‘

The "small" component Coulomb wavefunction is

_ iIr(y+iv)IeV”/E(E-l)l/E(ekr)Y re-ikrHIT

" 2r(2y+1)(nk)l/2

F y+iv)lFl(y+l+iv;2y+l;eikr)—c.c.]. (1)

Tn the limit of vanishing kinetic energy (k —> 0), v = EoZ/k goes to infinity

(through positive values for an electron, negative for a positron). Going

to the limit on the various factors:(]j)
-1/2 . vimn/2 1/2-
lim  (2m) / |1‘(\(+1V)Iel I/ | vi /2=y = 1. (2)
'VI—> ©
lim _F.(a,b;-z/a)/T(b) :z(l/2>(l—b>J (2 21/2) (3)
g — 11 b-1
yields, with
a = y+l+iv, b = 2y+1,
z = -2ikr (y+l+iv) ~ 2 d Z2r, .
lim lFl(y+l+iv,2y+l;Eikr) = r(ey+1)(2 a zr)7Y J2Y [2(2 a Zr)l/EW. (L)
V —> o

Inasmuch as the source reference did not establish the validity of this result
when a increases through imaginary rather than real values, it was verified
by writing out the confluent hypergeocmetric series and going to the limit

term by term.

2112 < 0212 | [ (1ad/e) 12 < oA (5)
(y+iv) - c.c. = 2iv o 2i(a Z2/k) (%)
exp (-ikr+i") ~ -n/|u|for an electron. (7

Combining these results, the electron wavefunction (v > 0) is

1/2
JEY r2(e azr)™" 7. (8)

Fo= (/) (a2)Y2

For G , the analogous procedure becomes more complicated because ‘
#,

there occurs
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(y+iv) + c.c. = 2y, (9)
so that a term involving v times the second term in the limiting expression
for the confluent hypergeometric function must be included. It is simpler
to resort to the differential equation:
F! - (w/r)F, = -(E-V-1)6 ~ -(@2Z/r)G - (10)

1/2

R = (/1) (@ )2 (a/ar) 3, (202 @ 20)Y/R)

(11)

1/2 -1/2

= G/t e YRz M 3, re(e amn) Py azn) Mo, 22 @ a2}

G = '(%/M Y(a z)’l/2 {(2 o’ Zr)l/any_l[E(E o Zr)l/zj-(yM)JzY[Q(Z o Zr)l/ET } . (12)

In the positron case (v < 0), the exponentials no longer cancel,
but lead instead to a factor exp (-|v|m) which tends to zero. Thus, the
positron wavefunction vanishes. Actually, the limits were attained while
holding r fixed and finite, and the wave function behaves as a delta function
at infinity. The physical explanation is that the positron is repelled by
the (positive charge) Coulomb center of force, and can only approach it to the
extent that its momentum can overcome the repulsion; as the kinetic energy
goes to zero, so does the probability of the positron being within a finite
distance of the center of force.

The matrix elements for Bremsstrahlung involve in the integrand a
product of initial and final Coulomb wave functions. For a positron, the
overlap vanishes as the kinetic energy of the positron after interaction goes
to zero. Thus, while an electron can give up essentially all its kinetic
energy to the photon in Bremsstrahlung, a positron camnot. On the other hand,
the positron can lose all of its energy (including rest energy) through annihilation

to photons.
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IX., STARTING CONDITIONS FOR INTEGRATION

Near the origin the screened nuclear potential has the form
V@C+Ze2/r, where C is a constant contributed by the potential of the
electrons. If this relation is substituted into (Chapter II, Eq. T)

the coupled equations become

2
F' -;F+Z%G+(EO—1)G=O
(1)
“n Ze2
G +;G—TF+(EO+1)F=O B

where Eo =E + C. These equations, which are essentially radial equations
with a pure Coulomb potential, provide a means of obtaining the form of the
wavefunction and its derivative near the origin.

In (1) use will be made of the operator notation

nd—nn = 8(6-1) +++ (6-n+l). (2)

I'dr

This is done for convenience since it can be shown that

£(8)r" = f(n)r". (3)
Thus, when (1) is multiplied through by r and the operator notation is

used, the coupled equations become

8F - MF + 767G + (Eo—l)rG =0
(&)

8G + nG@ - 7e°F - (E+1)rF = O

Now substitute

¢ =20 et
2=0
o)
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into (4) and use (3) to get

o]

7 - Y r _ _ Y _
L@+n)ao ZeebO]r + :E: L(L+Y)az+naz Zeebz (Eo+l)bz-1]r =0
4=1
o (6)
2 Y - 2 - by _
r(y—n)bo + Ze aolr ~+:E: [(g+y)bz an+Ze az+(EO 1)a2_l]r = 0.

2=1
When the coefficient of each power of r is set equal to zero in (6), then
the relationship between the coefficients of (5) is established. The
relationship between the first few coefficients is given by the following

equations:

2
zZe
% = Y o’ (7)
2
Ze
b, = woy oo’ (8)
with
2
v = |62zt (9)
and
2 = b [(u—v-:L)(Eo—?:gin—v)(*ﬂoﬂ)] (10)
_ (u+y+1) (Eg-1) + (u+y)(Eg+l)
b1 =% [ 1+ Oy < . (11)

The positive square root in (9) is taken so the wavefunctions will be
finite at the origin.

For Z close to zero,the denominator in (7) is small for <O
while the denominator of (8) is small for x>0. Thus, in general, to make
the program applicable for all 7Z, the procedure adopted for selecting the
coefficients was to choose bO and use (7) to obtain a, when >0, and to

choose a_ and use (8)to obtain b_ when »<0.
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Since the wavefunction and its first derivative are both zero
at the origin, as can be seen from (5) through (11), there is difficulty
with starting the numerical integration. This trouble can be circumvented

by making a transformation to the functions

G, =G
(12)
F =1 'F
o]
which satisfy the equations
cy ) Ve }
Fl o+ 5 FO+(EV1)GO—O
(i) (13)
1
Aytn) - (E- -
G, + G (B-v+1)F_, =0 | .
Thus, at the origin,
Gy =8y » Ty =Py
, r =0 (1h)

Gé = a , F =Db..

The procedure is to integrate (13) out to some convenient radius (e.g. r = 1)

and then transform to (Chapter II, Eq. 7).
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‘ X. PHASE SHIFTS (NON-COULOMB)

The free particle solution to (Chapter II, Eq. 7) is required to
determine the normalization and phase shift for the numerical solution of

the radial equation. These are obtained from (Chapter II, Eq. 7) with V=0 as

— z T
E+1 . +1 . n
Op = \m KTy ()~ [ e G - )

(1)
L4 m
_ [E-1 u . E-1 "
Fe = VAR a9y ()~ e eos (e - ),

where iz is a spherical Bessel function. Also required are the two new

(9]

functions S(r) and C(r) which are defined by the equations

s L m
B+l E+1 - . . R A . Mo\A
G = (g7 S Fp +0G; JFE— sin & cos (kr - —E-)+cos 8, sin(kr - —E_)'
, (2)
ki f, 7
E-1 E-1 . n . X n
‘ F=CF,- [&7 S6p~ L-T-k- [cos & cos(lr - —5-)-sin &, sin(kr - —-)1.

From the asymptotic forms given in Chapter III, Fgs.1l3 and 14 one can deduce

cl{r) ~ cos &
(3)

S(r) ~ Sin524 s

Cg(r) + 52(1‘) ~ 1. (1)

If GN and FN are the numerical solutions to the radial wave
equations, they will not be properly normalized because of the arbitrary
selection of one constant in the starting conditions. (The procedure

is to start with the normalization appropriate to a pure Coulomb potential.)
Thus they will differ from the correct solution by a normalization

constant N such that F=NFN and G=NGN. Substitution of these equations

into (2) yields
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Upon completion of the numerical integration, Egs. 4 and 5 are used

to determine the phase shifts.

_55_




‘ XI. W.K.B. APPROXIMATION AND NORMALIZATION

The radial equations can be combined into the second order equation
" - ] o _
G+ (E-Vv+1) lV'GM: +{ (E-V) -L-Tufu+1) /v T+ (/1) (B-V4+1) lv*}cﬂ:o. (1)

To get a form appropriate for a W.K.B. treatment, the first derivative term

must be eliminated. This is achieved by the change of dependent variable
R () = (2v+1) Y2 ¢ (x) (2)

which results in

2
L] 1 v
P 5 ¥ v

2 n (u+1)
w T LT BEVHL) Tk (Evei)e T ’% s (BE-v)~-1- ——";g—] R =O. (3)

This can now be assumed of the form

R" + pe(r) R =0 (%)
u "
. for r sufficiently large that the quantity in brackets is positive. The

formal analogy with the non-relativistic solution can be extended by writing
2 2 2
p(r) = K"-ulr)-g (g +1)/7%, (5)

so that the known W.K.B. approximation of the more familiar case can be
taken over. using the "equivalent potential" U(r). For this purpose,
note that

u(n+l) = zk(z;l), (6)

(E-V)°-1 = k°-2BV4+V°, (7)
50 that
U(r) = (1/2)V"(B-v+1) "5 (3/5)v 2 (B-v+1) - (o0 /) V" (B-v41) "Seomy . (8)

The W.K.B. solution is

R = (rrp)—l/2 sin (f p dr + Gn)’ (9)

with the normalization set by comparison with the asymptotic value of the

exact solution for Gh'
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The numerical solution of the exact radial equations yields
unnormalized wavefunctions. The normalization is obtained by proceeding
out to an r sufficiently large that the asymptotic form of the wavefunction
is attained, and setting the normalization by comparison with the known
normalized asymptotic wavefunction. This usually means that, for the
sake of ascertaining the normalization, the numerical integration has to
be carried well past the values of r necessary for the evaluation of the
matrix element integrals.

Tor a well-behaved potential, the W.K.B. solution will
satisfactorily approximate the exact wavefunction Ilong before the asymptotic
region is reached. This suggests the alternative approach of obtaining the
normalization by comparing the numerical unnormalized wavefunction with
the W.K.B. solution. The procedure then becomes that of carrying out the
numerical solution as far as it is needed for the evaluation of the matrix
elements. At the cut-off radius, the wave matching is then carried out
as described below. Note that the normalization must precede correction
of the matrix elements for the tail contribution (Chapter VI).

Denoting by ﬁ% the unnormalized numerical solution of the exact
equations for Rn and by A the associated normalization constant, matching

ﬁu to the W.K.B. solution yields
ﬁ% = A(ﬂp)-l/2 sin (.}r p dr + 6%). (10)

If the W.K.B. solution is a reasonable approximation at the value of r

being considered, the derivatives can also be matched:
—; = ~-{p'/2p) ﬁ; + A(np)_l/2 p cos (Jf p dr + SK), (11)

or more conveniently,
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‘ !’&(rrp)'l/2 cos (f pdr+s ) = p~t ﬁ}: + (p'/2p°) K - (12)

Squaring and summning Egs. 10 and 12,

2
2% -np { R+ [0OR 4 (/209 P} . (13)

For an r below the validity limit for the W.K.B. approximation,
the above expression for ﬁn can still be used provided that A and 6:1
are considered functions of r instead of constants. When both are allowed
to vary, the description is underdetermined. The resultant freedom permits
an arbitrary choice of a supplementary relation. A legitimate choice is
to require that —R;: retain the form given above, i.e. that the additional

terms obtained on differentiating the expression for §% cancel:

A'sin(f pdr+5n)+A5:l cos(fpd_r-e-sn):o. (%)

. The expression given for A2 is then still valid, but the value obtained
may vary with r. The normalization constant hss been attained, then, if
|aa/a(xr)I<<IAf for all r above the value in gquestion. To obtain A,

differentiate Eq. 12:

A'cos(fpdr+6y)-Apsin('/pdr+6n)—A{s'sin(fpdr+5)
{ " "

- ﬂl/e 1/2

D ﬁ)’{’ + (nl/g/e) R [p"p"B/e-(i/E)p'ep-s/Q]- (15)
Substituting Egs. 4 and 10,

ﬂl/ep-l/eﬁ: BV R (N 6 ). (16)
A
Using also Eq. 14,
A' cos (f padr + 8§ ) -A 5' sin ( pdr+5n) = A'/cos (‘/-pdr+5 )
A I M

= A sin (f pdr+ ¢ )[(1/2) p"p 2 (3/4)p 2p 7. (17)




To eliminate the masking effect of oscillations of the sinuscidal factor,

note that

sin {/f p dr + 6K) cos {)/.p ar + 5“)IS 1/2. (18)

The relation 7t |A'f << A then reduces to

(8kp’) "t 2p"p-3p'° | << 1. (19)

It should be noted that the procedure outlined results in the

evaluation of the normalization factor while leaving the phase shift undetermined.
In principle, the W.K.B. approximation can also be used to compute the phase
shift. This requires, however, the evaluation of J/‘p dr out to infinity
(or at least to the asymptotic region) and this has to be done numerically
because of the complicated expression for p.

The W.K.B. approximation as applied to the normalization of the

wavefunctions requires an expression involving the potential and its first

three derivatives. For a screened potential, which is known only numerically,

computation of these derivatives by differencing would be unreliable.

Instead, use is made of the fact that the screening factor (ratio of

screened to unscreened potential) is nearly exponential. The exponent

appropriate to the radius at which the numerical integration stops is obtained

by taking the logarithm of the ratio of the screening factor at that radius

to the screening factor at a slightly larger radius. The analytical form

of the screening factor thus arrived at is then used to calculate the

derivatives, This procedure has been used to obtain the normalization

of the wavefunctions in the screened case.
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XIT. ELECTROSTATIC POTENTIAL AND
SELF-CONSISTENT FIELD CAICULATIONS

The electrostatic potential of a spherically symmetric charge

distribution of an atom is given by:
r o
v(r) - £ f p(r') r'© dr'+hﬂf%1;-'—)r‘2 ar’ (1)
o o)

where o(r) is the volume charge density, r is the distance from the
center of the charge distribution and V(r) is the electrostatic
potential. The units used here are those for which h=e=m=1. Note
that these atomic units differ from the natural units used in the
cross section calculation. Different units have been chosen in
this context to be consistent with the results of self-consistent field

(SCF) calculations which will be used to obtain p(r).

In terms of single electron orbitals, wnﬂ’ p(r) is given

by:
p(r) = 3 2(28+1) ¥, (2)
nd

where n is the principal guantum number and £ is the orbital angular
momentum quantum number. The cross terms in (2) have been eliminated
by the angular intergrations in (1) which have already been made and
are not shown. The "occupation" function 2(24+1) shown in equation
(2) is correct only for filled electron shells., For partially

filled shells this must be reduced appropriately.
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In performing SCF calculations, it is most convenient to solve
for Py =T Ynl rather than Ynﬂ' In terms of Pnﬁ, the expression for V
becones:

T ® 2 .
v(r) = 4 [ T et e s 3 w-ri—f‘—(i—) ar' (3)
o nd r nf
where the symbol ® has been introduced to represent the occupation
function.

The E%ﬁ functions are obtained from Hartree-Fock type of
calculationélh)- These are essentially iterative solutions of the multi-
electron wave equation obtained by first assuming a net potential,
solving for the wavefunctions and then recalculating the potential.

The process is repeated until self-consistency is achieved. The
usual measure of self-consistency is the energy of the atomic state
under consideration. This energy must be minimized.

The solutions are obtained either by numerical integration(lS)
Or by expansion in suitable orthogonalized functionsoé). A computer

(16)

code which performs these calculations has been obtained and

is now in production operation. This code calculates exponents and
coefficients appropriate to finite expansions of the PnZ functions

in terms of "Slater orbitals":

p [ '_% m£p+—2~ mZp -gzpr

= g
" z : (2m£p).] anp (25£p) r e . (%)
p

Here C and £ are the constants obtained from the code and m
nip 2o 4p
suitable integers. Methods for choosing mz and making initial estimates
(16

of C da £ i )-
ngp an 4D are given by Roothaan

4

are
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The integrals required in (3) are

r
1 2 1 '
Il=;/ z:an!, (r') ar (5)
o) nfg
o 2
w P (r")
_ ng 1
r ng
From (4),
1 1 1 1
o 7B -z L m, +3 (m£p+mzq)
= (2=, )1]  tomy)t] " cppp Cogglee, ) 7 (2g,) r
P,q
7yt ) T
. e Ip "ig . (7
Now (5) and (6) become:
1 1 1
-2 m, +7 m, +5
- 1 1 ip 29
I, = . :
1 2 : wnz} : [(em/&p) (zmzq):] anp anq(eglp) (2§£q)
ng p,q
r
(m, +m, )} (5 +F )r'
. -Il:fr' fp o ka” o "TAP 49 dr"' (8)
o
1 1 1
- m += m, +=
=Z Z ; s Lp ® L9’ ®
I2 ‘”nz [(gmzp)'(emzq)'] C'n!,p Can (egzp) (2§£q)
ng b,a
~ (m, +m, -1) -(F 47 )y
fr, 130 1 U ] Y L ar'. (9)
r
Two types of integrals appear in (8) and (9):
r
T(ma) = [ X" e (10)
o
1,(m,a) :/ x™ e ax (11)

T
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where m is always an integer and always = 1. These integrals can be

found in standard tablescjznd obey the recurrence relations:

e m

IA(m,a) = a + ry IA(m—l,a), (12)
I‘me-ar m

I(ma) = — + 5 Ig(m-l,8). (13)

For m = 1:

IA(l,a) = —% [:l - (1 + ar) e-ar] s (14)
a

1,(1,8) = _;- [(1 + ar) e'ar:] . (15)
a

Starting with (1k) and (15), values of I, and I, are obtained for any
m using (12) and (13). This completes the analytic evaluation of the

integrals.

As input, the code which has been written requires specification
of all of the constants associated with (4) and specification of a
radial grid on which the potential is to be calculated for use in the
main cross section code. Suitable transformations are made so that both
input and output of the potential code are in "natural units" although
the actual calculation is done in "atomic units". The output consists
of values of the screening factor (ratio of screened to Coulomb potential)
as a function of r far the particular element. These are written in
binary form on a library tape.

In the Bremsstrahlung program, the library tape is searched
for the appropriate element, and a table of screening factors and
radii is read in. The program interpolates on this table to obtain

the potential at the current point. The tabulation is done in terms
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of the screening factor because of its smooth behavior as a function of
r. In this procedure, the SCF calculation is done once for each
element, and can then serve for many Bremsstrahlung runs at different

energies.
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XIII. ANGULAR DISTRIBUTIONS

The full description of the cross sections requires reconstituting
the angular distributions from the Legendre coefficients, for unpolarized
and linearly polarized photons. In addition, values of uq and pqe averaged
over the angular distributions give a compact characterization of these
distributions (of value in some applications).

Tt has been decided to calculate the cross sections in units of

5 =0 ro z(z+1) (1)

where 7 is the nuclear charge, T is the classical electron radius and &
is the fine structure constant. These units have been chosen to make the
results directly comparable with data generated with the Bethe-Heitler
equation, in the form favored by Heitler(lo), with the change 22 —> 7.(z+1)
to correct it approximately for electron-electron Bremsstrahlung(E).

In terms of the unit 8 for the cross section, Eq. 10 of Chapter IV
becomes

J
e __3m (E-1)
dy d’uq s (z+1) (E+1)

y Bj(p'p)- (2)

In (2) energy variables have units of mce, momentum variables have units

of mc, length variables have units of A/mc, and y=z(E-l)-l. For convenience,

let Oy =071 (3a)
and
O'B = Ol,—l 5 (3b)
then
do doj
A A
—_— = —_— 4
& an Z ar ) (ha)
q 3 aq
and
do do? 1
B _:E: B NSO O
55555; = a§_EE; EJ+2)(J+1)J(J lﬂ Pj,2 (uq)- (4b)
J=2
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To find the average values of pq and pi it will be necessary

to derive an expression for

+1

I =/ X" Pj’e(x)dx. (5)

-1

This can be done using Rodrigues' expression

dEP.(x)
__._'2..2_ ) (6)

2
Pyo0) = (1)

Tnserting (6) into (5) and integrating by parts twice yields

+1 +1
- [? 1 (n+2)xn+;] Pj(x) +
-1 -1

de(x)
dx

1= (Xn _ Xn+2)

+1

+1
+ n(n-1) “/:1 X2 Pﬁ(x)dx - (n+2) (n+1) £ Pj(x)dx. (7)

-1
The first term on the r.h. side of (7) is zero and the second term

can be evaluated using

1

P,(1)
(8)

It

Pj(-l) (-1)j .

(18)

The remaining integrals in (9) can be found using the relation

+1

(n-j+l)
B(n, ) ;f_l < P (x)ax 5

1
n'Tﬁ fornz=j
23(n-j)ITZn+g+3), and n-j even or zero,

i

=0, otherwise. (9)

Thus (7) reduces to

—
[

bin(n-1)B(n-2,3) - (n+2)(n+1)B(n,j),for n-j even or zero,

=0 ’ otherwise. (10)

T



From (9) and (10) we have

1 4 3 even and = 2
f P, ,(x)ax = (11a)
J 0 j odd
-1
+1 ' L j odd and = 3
xP, (x)ax = (11b)
J,2 o 3
J even
-1
" bfs § =2
Jﬁ X Pj 2(x)dx ={L4 j even and 2 k4 (1lc)
b4
-1 0 j odd
+ (11d)
f P, (x)ax - 25, 4
-1
+1
f xP(x)ax = 2/38, (11e)
-1
r~ +1 o (ll )
- f
and j x“P, () ax - L4/5 P /3 55,0
-1

Since the cross section for circular polarization is one half that
for unpolarized photons it will only be necessary to obtain expressions for
one of these. In the following, the expression for unpolarized photons
is given along with expression for linearly polarization states. With
the use of (3), (4) and (1la) through (11f), the cross section which is
differential with respect to y becomes

0
dJA

_ G _ gy (A 12
U G i <dy duq , (12)

for unpolarized photons, and
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O .
do doy o )y dcgi) ( -3
P=uom =D e + Cos D [-+2 '+1"-l]
ay 3y an D z; (dydu (3+2)(3+1)3(5-1) | , (13)
@ =2 q
J even
for polarized photons. The average uq is given by

1

do

— -1k A
uq =U 3 (dy duq> s (1)

for unpolarized photons, and

1 J 1
do do -2
Ty =P g(gy_gﬁ;) +Cos 29 )k (ﬁ) [(5+2)(3+1)3(3-1)] fus)
323 ’

J odd

for polarized photons. The average value of ui is given by

2

0
- do, do
2 __-11L A 8 A )
W=l 3 \E duq) *3 (dy duq> (16)

for unpolarized photons, and

0 2
2 _ Ll a(’_j“_l. Lb (%
Hg = 5\ & 5\ d

.2 J -1
+ Cos 2o 52{5 (d;cgug + JZZE L (Edf%q [(j+2)(j+l)j(j-l)] ‘J (17)
J even

for polarized photons.

The computer output presents values of the differential
cross section at two-degree intervals of the polar angle. For the case
of linear polarization, the polar angular distribution is also given at
thirty degree intervals of ¢. The output also includes an evaluation

of (12) through (17).
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XIV. THE COMPUTER PROGRAM

The main routine (BREMS) sets up some numerical constants, reads
the input parameters and checks them, then calls subroutines to do the bulk
of the calculations, and finally computes the Legendre functions and puts
together the cross sections and writes them out. All ordinary input/output
is done in BREMS. Supplementary diagnostic and checkout ocutput is now
generated by some subroutines, but would not occur in production operation.

The structure of subroutine calls is schematized in Fig. 2.

The first subroutine called is SELECT. It starts from the input
specification of the maximum orbital angular momenta to be considered,
runs through the selection rules to determine what matrix elements will
occur, and indexes these matrix elements and the corresponding gquantum
numbers.

If screening is to be considered, SETAPE scans the tape bearing
the screening factors and finds the section of it containing the data for
the required element.

FINTEG is the control subroutine for the radial matrix elements.
It sets up the required arrays for the wavefunctions and matrix elements
and their derivatives, computes their initial values and the coefficients
of the differential equatiors, calls other subroutines to do the actual
integrating, computes the phase shifts, then calls subroutines to
normalize the matrix elements, asymptotically evaluate their tail, and form
reduced matrix elements including an X-coefficient.

From the origin to r=1, the indicial behavicr, ry, is factored
out of the wavefunctions. The Runge-Kutta integration is performed by
RKUITA, which calls DIRAC to supply the derivatives from the differential

equations. For larger r, the wavefunctions are used directly; the
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FIGURE 2 CALLING SEQUENCES

BREMS
(MAIN SELECT
ROUTINE) —» SETAPE
—™| FINTEG > LOGGAM
y / \\
BSUM M_HFuN BRKUT RKUTTA
Y ! y Y
ASUM XFUN BDIRAC DIRAC
Y Y / | Y
PHISUM ASYMP BESSEL BESLIT
Y
CCOEFs | CNORM RATERP

This flow-chart shows the communication among subroutines of the Bremsstrahlung program
through calls. The arrow goes from the subroutine in which the call occurs to the subroutine
being called (a retum is implied). In addition, there is transfer of information through Common

(labelled and unlabelled).
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corresponding subroutines are BRKUT and BDIRAC. TIf screening is taken into
account, the screening factor (ratio of screened potential to Coulomb
potential) is supplied by RATERP, which reads values from tape and
interpolates.

Upon completion of the integration, normalization factors
are computed in CNORM by matching the wavefunctions to their W.K.B.
approximation (see Chapter XI) and the matrix elements are then
normalized.

The asymptotic evaluation of the tail of the matrix elements
(see Chapter VI) is performed in ASYMP, and the correction is added on.

In HFUN, the calculation 1s carried forward to the reduced matrix
elements H(M 4%'®), incorporating an implicit sum over a couple of
magnetic guantum numbers (see Chapter V, Eq. 24).

The remaining angular momentum sums are performed through the
chain BSUM-ASUM-PHISUM. The sums over all ®'s are performed in PHISUM,
with appropriate phase shifts and Clebsch-Gordan coefficients, to yield
5(klxﬁlZ€) (see Chapter V, Eq. 26). Further sums over € and the \'s
are carried out in ASUM, again with Clebsch-Gordan coefficients, to
yield Aj(i)(zlﬂ) (see Chapter IV, Eq. 15). BSUM sums over the 4's
to yield Bj(i) (see Chapter IV, Eg. 16).

The remaining subroutines compute special functions. LOGGAM
is an WYU programoSD to compute the logarithm of the gamma function for
complex argument (converted to FORTRAN IV at UCC), used for the Coulomb
wavefunctions and phase shifts. BESSEL computes spherical Bessel functions,
using the explicit expressions in terms of trigonometric functions for
4=0 and 1, and recursion relations for larger 4. BRESLIT is the same as
BESSEL except that if the argument is less than 1 the power series are

used for £ > 0. CCOEFS computes Clebsch-Gordan coefficients, using
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explicit formulas if the smallest j is 2 or less, the general formula

(20

otherwise ). XFUN yields the factor denoted by sz(%',n) in the explicit
expression for the special X-coefficient arising from the magnetic quantum

number sums (see Chapter V, Eg. 8).

Input

The input consists of two data cards per problem. The program
recycles, picking up the next pair of data cards on completion of each
problem.

Card I, in FORMAT (615), contains KEY, JM, IM, IMl, IM2, NTAPE.
KEY = O indicates a pure Coulomb problem. XEY = 1 indicates that screening
is to be included. KEY = -1 triggers CALL EXIT (thus, the last card in
the input should be a Card I starting with -1; a matching Card II is not
required). The next four entries are cut-off maxima for angular momenta,
constrained by the dimensions in the program to lie between O and 10,
inclusive. JM refers to the Legendre coefficients in the angular
distribution, IM, 1M1, and IM2 to the orbital angular momentum of the
photon, the incident particle, and the scattered particle, respectively.
The program dimensions limit the number of wavefunctions and matrix elements
to 2000; this imposes a combined constraint on the IM's somewhat more
restrictive than the 10 1limit on each IM, and satisfaction of this
constraint is checked at the start. NTAPE is the FORTRAN number of the
tape unit on which is mounted the tape containing the screening data.

Card II, in FORMAT (6F10.0), contains RATIO, Z, EO, X0, ZEL, RCUT.
RATTIO is the ratio of the particle mass to the mass of an electron. 7 is
the atomic number. EO is the kinetic energy of the incident particle
in Mev; X0 is the fraction of this energy going to the photon (between O

and 1.0). ZEL is the ratio of the particle charge to the charge of an
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electron (1.0 for an electron, ~-1.0 for a positron, etc.). RCUT is the
cut-off radius for numerical integration (in the natural units A/me),

beyond which the tail of the matrix elements is evaluated asymptotically.
Output

The output consists of a restatement of the input data, followed
by cross section tabulations. Cross sections are expressed in units of
Qa ri 7(2+1) per unit interval of the ratio of the photon energy to the
kinetic energy of the incident particle, following Heitlerci» (@ is the
fine-structure constant, Te the classical electron radius). The differential
cross section is tabulated per unit interval of cos 9, where 9 is the angle
between the photon and the incident particle, for 6 values between O
degrees and 180 degrees in steps of 2 degrees. The cross section integrated
over all angles, and values of cos 6 and cos2 8 averaged over the differential
cross section are also listed. All these are given for unpolarized photons,
and also for linearly polarized photons at six values of the polarization

angle (¢ = 0,30,60,90,120, and 150 degrees).
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XV. DSAMPLE RUNS: COMPARISCN WITH BORN APPROXIMATION

In the course of the development of the program, a large number
of piecemeal numerical checks were carried out - comparisons of special
functions with tabulated values, artificial cases with analytic answers,
spot checks by hand computation, ete... Ultimately, however, the only
completely convincing check is to relate the output from a full-scale run
of the program with previously known results.

The only theoretical results available in the relevant energy
range are those obtained from the Born approximation: the Bethe-Heitler

(1) (21)

integral cross section and the Sauter differential cross section .
To facilitate comparisons, a computer program was written to compute
these cross sections.

The Born approximation is a perturbation calculation in
which the potential energy is treated as small compared with the kinetic
energy. The approach to this limit 1s, unfortunately, forbidding in the
present case. On the one hand, the kinetic energy cannot be raised
indefinitely because the number of partial waves required increases (pushing
storage capacity, running time, and numerical precision). On the other
hand, the potential cannot strictly be made small everywhere for aCoulomb
field (which is singular at the origin). The artifice of letting Z tend to
zero 1is not satisfactory: The matrix elements all vanish in that limit,
and the computed results are then dominated by the numerical integration
errors. The best that can be done is to settle for moderate values of the
parameters, and verify that the deviations from the Born approximation
are in the expected direction.

Fig. 3 presents the differential cross section for a 0.5 Mev

electron radiating a 0.25 Mev photon (unpolarized). The dotted curve is
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the Born approximation result. The solid curve comes from a computer
run with the present program for hydrogen (with the pure Coulomb
option). The dashed curve comes from a similar computer run with Z
set equal to 0.5. The theoretical expectation is that the Born
approximation should give reasonable results in the forward direction
and provide an underestimate for large angles. There is, indeed,
good agreement at small angles (better for Z = 0.5 than Z = 1). The
discrepancy at large angles is in the right direction, though larger
than expected.

Table I lists the cross sections integrated over angle
corresponding to Fig. 3. The agreement is fair.

The comparison thus indicates that the computer program
yields reasonable results. An appreciably more extensive series of
runs is obviously desirable to reinforce this conclusion.

The ultimate test of a theoretical calculation is, of course,
comparison with experiment. 1In the next phase of this project, a
considerable number of production runs of the computer program are
planned, and these will be correlated with the available experimental
data. The experiments usually yield the cross section integrated
over angle and, frequently, further integrated over the photon spectrum
for a given incident electron energy. Hence, an appreciable accumulation

of computer runs is required before undertaking a significant comparison

with experiment.
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Case Cross Section

Born approximation i7.2
Z = 0.5 25.8
Z =1 15.2

Table I. Cross section integrated over angle for a 0.5 MeV electron

radiating a 0.25 Mev photon (unpolarized).
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SECTION B

SUPPLEMENTARY RESULTS
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I. INTRODUCTION

This section reports results which are not directly utilized
in the current version of the Bremsstrahlung calculation, but which are
nonetheless considered of interest, and many of which have the potential
for implementation in future extensions of the work. Brief mention will
be made here of the considerations in the present absence of the particular
Teature from the program and in its possible value in refinements of the
program or supplementary calculations.

Chapter II derives an integral representation for the phase
shifts, which was used to good effect in the test program. This method
of obtaining the phase shifts is inherently more accurate than wave
matching. TIts use reguires, however, the performance of additional
integrals aé well as some program changes and rearrangements. Chapter
IIT presents a reformulation of the problem using a Green's function approach
and the Fredholm theory of integral equations. In this formulation, the
phase shifts occur in integral representation without additional integrals,
and the oscillations in the wavefunctions are reproduced with greater
precision in principle, at the cost of a somewhat more complicated
integral. Implementation of this approach should be investigated as
part of an effort to achieve an optimum program; it was not done because
it required appreciable programming changes and the existing version
worked satisfactorily.

Chapter IV describes a convergence factor technique for evaluat-

ing the matrix elements. The technique worked reasonably well, but 1t



required the choice of a pair of adjustable parameters whose optimum values
varied (albeit slowly) with the electron and photon energies. A better
alternative was subsequently found, namely the truncation of the integrals
followed by the asymptotic evaluation of the tail of the matrix elements.
The technique is presented here nevertheless because of its generality

and its possible usefulness in other contexts.

A great deal of effort has gone into the analysis of the end
point of the photon spectrum (i.e. the case in which the entire kinetic
energy of the incident electron goes to the photon). In this limiting
case, the Born approximation yields zero for the cross section but the
exact cross section is not expected to vanish. Apart from thus showing
a maximum discrepancy bebween the exact and approximate results, this case
is of great practical interest because it corresponds to the deepest
radiation penetration. The formally correct way to get to this limit is
to Tirst compute the matrix elements for a small but finite kinetic
energy of the scattered electron and then to go to the limit of vanishing
kinetic energy. The original plan was to carry out this case as a
separate program. The main program would then be checked against the Born
approximation in one 1limit and against the end-point result in another.
There was a hope (unfulfilled, as it turned out ) that some analytic simpli-
fications would occur in the limit. Chapter V presents the analysis for
the end point case. 1In Chapter VI the treatment of an anomalous case not
covered in Chapter V s sketched out. The computer programming to imple-
ment this enalysis has not been done because of time limitations. Instead,

the more limited plan was followed of interchanging the order of limits —
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i.e. going to the zero kinetic energy limit for the scattered electron
wavefunction first and then carrying out the matrix element integrals

in the usual way. This interchange is valid only if the matrix elements

and their derivatives with respect to the kinetic energy of the scattered
electron are continuous at the end point; preliminary results are consistent
with this being so. There is still theoretical interest in the original
plan for the end point calculation. TIts implementation at a later date

is feasible if there is a willingness to expend the sizable effort

required.
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IT. INTEGRALS FOR PHASE SHIFTS .

The free particle solutions to the Dirac radial equations are

E+l . Bl . 2,m
Ge = ¥ b §, (k) o Jof= sin (k- &) (1)
“
_ B-1 : E-1 AT
Fo= i kr JZ (kr) ~ X cos (kr - )s (2)

-
where jp is a spherical Bessel function. Introducing the functions S(r)

and C(r) which are defined by the equations

’E+l E+l . ol ) 2
G 5 S Fo + CGyp ~ = [sin 674 cos(kr - - Y+cos 5% sin(kr - - )7
, (3)

) E-1 !E—l s . % -
F=CF, 75 SG ~ = [cos 5% cos(kr - ——2—) -sin 6% sin(kr - =)0

From the asymptotic forms, by comparison,

c(r) ~ cos 8 ‘

S(r) ~ sin 8, - (L)

Solving for S(r) and C(r) in general,

( S S ii:__)
VE+1 vE-1 VE-1 E+l
5(r) = 2 2 ) (5)
T
E-1 F+l
“r e
o E-1

5 5
Fe . Cr
71 Bl

Noting that asymptotically
»
7 G
k ._f_ + i ~ 1
m E-1 Erl ’
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new functions S{r) and C(r) can be defined as

§(r) = TT(G Ff—F Gf)’ (8)
GG FF
o(r) = (g + o) (9)

Asymptotically, S and C also tend to the sine and cosine of the phase shift;
but they differ from S and C for smaller r. Differentiating and then
substituting fram the Dirac radial equations,

as/dr = n(G'F

1T - t
FHOF, ' -F'Go-FG, )

]

n M 8
F g [- S G+ (E+1)F-VF] + G [; Fo - (E-l)Gf;

[

G [5 F - (B-1)6+W67 - nF [-2 G + (B+1)F,]

]

- V(FF, + GG,). (10)

At the origin, S vanishes (in fact, dS/dr also) because the F's and G's

(r times the wave functions) all vanish. Integrating the last equation,

r
5(r) = -m f dr V(FFf + GGf). (11)
(o}

The corresponding procedure with C(r) yields

c FF, GG FG, GF
S(r) = 2 L.y yL._1% (12)
c(x) = ”kof iy Em-wr -V & e

The integral representation of §(r) suggests its interpretation
as the value that would be obtained for the sine of the phase shift upon
neglecting the tail of the potential beyond r. This is only strictly true
if F and G are the normalized wave functions obtained without truncation
(wvave functions for the truncated potential will differ in the value of
the normalization constant). Thus the integral representation can be
useful in estimating theerror msde in evaluating the phase shift if the
potential is truncated, and even in analytically approximating the contribution

of the tail.
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There is no simple interpretation of C(r) short of its asymptotic
value. Note that §Q(r) + EE(r) # 1 except asymptotically. Similarly,
there is no simple interpretation of either S(r) or C(r) short of
their asymptotic value. For smaller r, it should not be overlooked that

the barred and unbarred quantities vary with r in different ways.,
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ITTI. DRUKAREV TRANSFORMATION OF DIRAC EQUATION

Drukarev has transformed the Fredholm equation that is the
Green's function formulation of the solution of the Schrodinger equation

(22)

into a Volterra equation + The theoretical and computational advantages
of this approach have been discussed previously(EB). The present chapter
exhibits the corresponding result for the Dirac equation.

The Green's function formulation of the Dirac equation for
a central potential was given by Rose(eh)- Denoting as usual by F and G
the radial functions multiplied by r, by FO and GO the free-space

functions (regular solution), and by Fo and 50 the corresponding

irregular solution
b

-]

r
F=F, [1+j‘r (FF, + GG )Var'] + F_ _j'o (FF +GG )var', (1a)

© r
- ™ ~ 1 ~ '
=F, [1+'(‘r (FF, + GG )var'] + G j‘o (FF +6G )Var', (1v)
where, explicitly,

FO

S(x) [(E-1)/k12 1 3y(o () (2a)

GO

i}

(@) K2 e 5, (), (2b)

and the irregular solutions are obtained by replacing the Bessel functions

by Neumann functions (i.e. j

. > yz). More generally (as Rose
points out), FO and Go could be wave functions of a potential VO
(typically, a Coulomb potential), in which case V in Egs. 1 would
be replaced by V-VO.

Following Drukarev's approach, Egs. 1 are rewritten as

© r T
— p 7y ~ - = ~ I
F = Fo[l+lo (FF j+GG_)vdr' 1-F [‘o (FF +GG ) Var '+F J‘o (FF_+cG_)var', (3a)

G =

[ ) r
Fo[1+fo (FF +GG )var' 1-6_ for(Ffo+G§O)Vdr'+§O jo (FF +GG_)var'.  (3b)
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The change of variable
o = CF » ' =CG (%)

is then introduced, where
-] -1 -1 -] _ 1
C = [1+fo (FF 4GB )var'1 ~ = [14C fo (oF +IG_)var'] (5)

or, on inverting,

c=1-"1 (gF G )var". (6)
0

Egs. 3 then reduce to a coupled pair of Volterra equations. With the

convenient notation,

r — —
1 - fo (mFO+PGO)V ar', (7a)

c(r)

r

- jo (oF GV dr', (Tp)

s(r)

I

the Volterra equations are

o(r) = c(r) F(r) - s(r) F (), (8a)

r(r) = ¢(r) Go(r) - 3(r) Eo(r). (8b)
Asymptotically,

r ~»[(E+l)/k11/2 [c sin(kr-g(x)n/2)-8 cos(kr-g(w)n/2)7, (9)

G=ctra~ [(E+1)/k]l/2 [sin(kr-g(n)m/2)-(8/C) cos{kr-p(n)n/2)7, (10)

leading to the identification

” (oF +IG_) V ar'
tan § = %%g% = - [o (oFcHTC i (11)

R, = —
1-fo(wFo+rGo) vV ar'

For the alternative normalization convention

G ~ [(E+l)/k]l/2 sin [kr—z(n)(n/2)+6K1
= ((E+1)/kjl/2 [cos 5 sin(kr-g(x)m/2)+sin 5, cos(kr-g(x)n/2) 1,
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there results
cos 8, = o(=)/Tc3(=1s%(=) 12, ain 5, = 5(=)/Ic2 (=1 (=) 2 (13)

The formal properties of this approach have been fully
discussed previously(EB).

Some remarks pertinent to numerical solution are presented
here:

(1) There is no normalization problem, as the solutions
start out with the free-space functions.

(2) The direct numerical solution of the radial equations
requires numerical integration for the wavefunctions which (away from
the origin) are oscillatory - a delicate procedure. Here, the numerical
integration is for the slowly varying functions C(r) and S(r), the
oscillatory behavior appearing in terms of analytic functions (the
spherical Bessel and Neumann functions, expressible as sines and
cosines times polynomials in 1/r).

(3) The integration procedure directly yields S(r) and
C(r), integrals whose limits are sin & and cos 6. This integral
representation of the phase shift converges faster and more dependably
than does the determination of the phase shift by matching the wave
to its asymptotic form.

(4) If the potential cuts off at r=a, then for r > a

Egs. 8 become

1

o(r) = c(a) F (r) - 8(a) F (r), (1ha)

I'(r)

i

c(a) ¢ (r) - s(a) 6 (r), (1hp)

yielding directly the appropriate analytical form for the wave functions,

not only their numerical value at the cut-off.
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(5) The last observation leads into a simple iterative

device for improving on a foreshortened solution: From Egs. T,

[e=]

c(») =¢(a) - f (mfo+F60) var', (15a)
s(=) = 8(a) - | (oF #4TG ) var'. (150)

Suppose now that the numerical integration has been stopped at r=a,
but the potential extends beyond. The contribution from the tail

to the phase shift can be evaluated approximately by carrying out the
integral in BEg. 15 with ¢ and I' represented by Egs. 14. If the
potential is given analytically (or is fitted to an analytic
expression for r > a), the integral may be carried out analytically.
TIf the error in the phase shift upon truncation at r=a is of order €,

after this approximate evaluation of the tail contribution there will

be an error of order 62 only.
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IV. CONVERGENCE FACTOR TECHNIQUE

For purposes of this discussion a function F(x) will be defined

as
X
F(x) =-/- f(r)dr. (1)
o]
In the limit x —> = this function will be assumed to be equal to one of

the required radial matrix elements. Hence f(r) represents the product

of the three radial wave functions. The function F(x) starts at zero at

x = 0 and increases monotonically as x increases until it starts fluctuating
about its asymptotic value with a gradually decreasing amplitude. The
problem is how tc deduce the asymptotic value from the integral at inter-

mediate values of x.

This problem has been partially solved previously(gggd will be
reviewed here along with current developments. In analytic work it is
customary to introduce an exponential convergence factor in the integrand

and take the limit as the exponent goes to zero. Thus

F(x) = Lim F(x,b) = Lim fxe‘br £(r)dr. (2)
b—>0 b-%>oo

In numerical work the same procedure can be used, only F(x,b) would have

to be calculated for various values of b and extrapolated to b = o.

Note that this numerical procedure effectively changes the
problem of approximating the asymptotic value of F(x), which is an
oscillating function, to one of estimating the zero point value of a well

behaved function. As an example consider the integral where

f(r) = r L sin r.

- 67 -




Then

X

F(x) =f E}rﬂl ar

0

which oscillates about the asymptotic value F = TT/2. However, for x large

©

- sin -
F(x,0)=F(=,b) =f e PT = L 4r = tan"t

o}

ol

This is a monotonic function of b which is relatively easy to extrapolate
to b = 0. A convenient method of performing the required extrapolation

is with Lagrange's interpolation formula:

n n b-ar
Flx,b) = D Flx,a ) TT (a — ) (3)

ool r=1 s r
r#s
where the values of a_ are selected values of b. For a, = ta, where a is

some convenient interval or spacing, and b = o, Lagrange's formula

becomes
n n
F(x,00x3" Flx,sa) (L)
o }g; X,S l:g ——
. rs
n
=:z: F(x,sa) ('1)S+l St Eis T (L)
s=1
Thus
% i . -ar.s
= [ (1Y sreem (-e™)7 f£(r)ar
X n —ar)s

2,/.. {l_sé 57(%55_' (e } f(r)ar =

0

Y

f "1-(1-7*M r(r)ar (5)

o)
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Equation (5) is similar to (2) except that a different convergence

factor appears which should give a better approximation to the funetion

F = Lim F(x).
X —> o (6)

The reason for this is that the parameters a and n can be chosen so the
integrand becomes negligible for r > X. Since there are two parameters,

this allows for the possibility of an optimum convergence factor.
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V. SPECTRUM END-POINT (PURE COULOMB CASE)

In the case of the pure Coulomb field, the radial matrix elements

can be found under restricted conditions. To find the integral write the spherical

(9) .

Bessel function

)2 s 2+1-n ) ' igr
jl(qr)==}: ( ;? %Ltgg! ?2qr)n+l + c.c. (1)
n=o

where c.c. stands for complex conjugate of the first term. Inserting this

expression and the Coulomb wavefunctions into the radial integrals yields

—_— 4 I+ —ida(y-y)
- 4+n) ! 2 / ,
K“(n' w) = ﬁEﬂ+l)(E-l)§: ( ;3 ngigz € [Rn(n m) + S, (w'u)] + c.c. (2a)
n=0 .1 '
g ()M (gan)r e 1FOYRY)
Kz(nit')== WE+1)(E'-1) 3" "n! (£-n)! [Rn(n',n)-sn(n;n)] + c.c. (2p)
n=o
where
*
R G pn) = A A T (-3iv,310) - A A T (3-1v',-3+10) (32)
s, (') = -A, A: In(-%-iv',-%uv) + A:,AK I, (3-1v', 3+iv) (3b)
and
D > igr _-n-2 ey , Py
In(K"K> = (_1)n+i 1 / ) i NIK"Y'(glk r>l\IK,Y( 2ikr) qr )
(20)™ 2(k'k)?
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In (4) a convergence factor e % can be inserted in the

integrand to make the integral properly convergent and the limit taken as

5 ——> 0. 1Integrals of this type have been found by Erdelyi(262n the form
-(s-igq)r _-n-2 o
fe r Mgr s (2ik'r) M K,y (-21kr) gr =

1,1 1 s
(2ik")Y *2(-2ix)Y*2 (5-ig+ik’-ik)™Y YR p(yray-n) X

-2k’ 2k )

' - ,+L_ 4 1 w. v H
Fy (¥'#Y-n,v'+5-K',v+5-K;2y " +1,2y+1; istq-k'+k’ is+tq-k +k

(5)

which holds for Re (vy'+y-n) > and Re (s-iqg tik' +ik) > 0. The function F,
in (5 ) is an Appell function, or hypergeometric function of two variables
A convergent series representation for F2 will be discussed belaw.

In the limit as s

> o0 the function given in (%) is

I, (KK = (D™ (29)h (0¥ ¥ 2 r(y'ey-n) X

Fo(y'+v-n, Y'+3-K', v+3-K; 2y'+1, 2y+1; x,¥) (6)
where

x = -2k’ (q—k'+k)_l

2k (g-k'+k) (7)

e
I

2q (q—k'+k)-l

N
1]

The four Appell functions required in (3%a) and (3b) can be
represented by

Kl(oc)

F, (38" 5 8 5 6,8 x,y)

i

K,(@) = Fy (387425 8 5 87,85 x,y)
(8)

K (@) = Fy (38" 5 B+1; 6',8;5 x,¥)

4:?‘1
£
i1

= P, (o;0'+1; B+1; 8',8; x,¥)

(9)



vhere B! = y'+iv', B = y-iv, &' = 2y'+l, & = 2v+l, and y'+r-f <a < y'+y. The

parameter a indexes by unity in the sum over n in (2a) and (2b) and it is

useful to use the recursion relations derived by Jaeger and Hulme to minimize the
(27)

work required:

oK, (1) =(a--B') K (@) + BK,(@) + B Ky()

(1-x)ok,(aw1) = (8'-1-B') K (@) + (B'+1-8"+a-B) Ky(@) + B K ()
(1-y)oK,(o#1) = (8-1-B) K (@) + (B+l-6+-B") Ky(@) + f'x (@) (9)
(1-x-y)a Ku(O%l) =(5-1-8) Ke(a) + (8'-1-8") KB(Q) + (CHB+B'-5-6"+2) Kh(a)

Returning now to the representation of the Appell function, it should

be noted that the usual series representation

(@) . (8" (B) xy"
Fe(a;B',B;é',égx,y) = 2 ol rrlll-i‘-m (6«jz (6): (10)

n,m=o

[oe]

is convergent only for Ix)1 +ty 1< 1. This inequality does not obtain in the

case of Bremsstrahlung since k > k'+q, because of momentum transfer to the

nucleus, and hence 2k >k'+k+q > -k'+k+q > o which implies Iyt = {2k (q-k’+k)_11 >1

The Appell function can be analytically continued to find a series repre-

28
sentation that can be used in the case of Bremsstrahlung. Erdelyi( ghowed
vthat the hypergeometric function of two variables HE’ which appears in Horn's

(9)

list,”’can be continued according to

) o D(=OT(6-y) -y 5 v - 4y 4 D(1-T(y-8)
Ha(0sB,Y,8,6520,Y) = FEyTanyy ¥ Fol®ViBivie, 10v-85%,- §) + Igyr(Tans)

- 1
y 5 FE (a+536>65€)l+6'Y)X:" y)-

He also indicated that F2 could not be made a linear combination of the H2

functions, but in fact
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Fo(x,- 3) = CHy(x,y) + DECx,Y)

where E(x,y) is a hypergeometric function of two variables which does not

*
appear in Horn's list. By analytic continuation it is possible to prove that

6-a)l'(6-B

I‘(cx+B-5)l"(6)(l )O‘ ( y

Pt H (OC+B §; B',8-B,1-B; 8&'; . l‘Y) (ll)
FrEere \v ) \I¥ p(04B-63 B',8-8,1-B;5 6'5 7

N
where

-0-p)I -0 -1
FE(Q;B',S,:&':&;X’)") = ;‘{'éjr‘%—)_'(_gi y E(aiﬁ':a"’l'é;&' > O+B+1-6; zy{.') L)

m

(o) 8), (V) m <"y

n+m n
E(a; B,y; 6,63 X,¥) = — for Ix1+ 1y1 < 1 (12)
Y PAE] nz’m n! m? T@n (e)n+m
and
n m
(@) (B)_ (y)_ (&) x ¥y
H,(Q; B,Y,85¢; x,¥) =3, e for i < 1
o\Hs PrY 0585 W) = n!mlje)n
n,m
1
and 1yt < T— (13)

The function E of (12) corresponds to Erdelyi's function E.

The representation (11) for F2 yields convergent series provided

§\+ P’_}"l‘ <1, i'i)-{’ﬂ <1 and ‘%ll < (1+ ‘T%‘ Y™ . 1f we restrict the

calculation to the case k'<q, then all the inequalities are satisfied.

Erdelyi does not give a representation for his function.
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Of interest in the Bremsstrahlung calculation is the end point

value when k' —> 0 (all incident kinetic energy is given to the
photon). To find the cross section at this point we should reduce
(2a) and (2b). A relation that is helpful in the reduction is:

(8"), = (r+iv')y

[t

(r4n-1+iv' ) (r4n-2+iv' ). (r#iv')-1

)" + An_l(iv')n°l Feves + Al(iv’) + Ay (1)

n-1 ( l)
. n-1)n
where A, = :E: (r+#3) =mn 7+ S (15)
J=0
E'Ze2
Thus in the limit as k' —> O (and remembering that v'= —T—) we have
n —EiZe2 n n
Lim (B')n X = (—EIE—_) = (-ig) (16a)
k —> O
X\ N —iZe2 n n
Lim - (8') (§) = (=) = (-ir) (16b)
k —> 0
and
X \n 2i7 2 n n
Li ! m—— = = (is . ]_6
5 if> O(B I (l_y) ( o ) (is) (16¢)

With the use of (16a), (16b) and (16c), (11) reduces to

Lim  Fy (0387,858',8;%,y) = ¥; (%B3Y',Y;5-18,Y,)

k' — O
_T(-0BI(8) = Lgun s s ai1p,p" smir l-yo)
= T-nI(6-8) Yo B-8,8-B31-F,8 758, —
] -
Dlasp-5)r(e) (1 " Yo P 5B 1m0 (1
N () () P (4BeessoRl-esetiis ) (1)
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where

2k
Yo = k+q
(@) . (8) xy™
n-+m n+m
T(o,Bsv,85%,y) = — for|y] <1
E feme ﬁ)n(s)mm
n,m
(@, (B)_ (v)  xy"
n-m m m
Hyp (058,v385%,5) =3~ —mm ON for |y| < 1
n,m

As a result of the limiting process we have that

#
1

K (@) = k(@) = vy (238;6",65-18,)
and ' for k' —> 0
K5(a) = K,(a)

il

¥y (0584158 ",85-1g,7 )
Also, the recursion relations (9) reduce to

oK, (o#1) = (7-8)K, ()+8K, (@)
1 7 1 * 3 for k'— > 0

(1 Ry (1) = (6-1-8)K () +(B+1-5+a)K, (@)

To proceed with the reduction of (2a) and (2b) we will

require the following

T
o1 Bv' 1
Lim F(y'+iv') = Lim y¥' 2 2 (2r)2,
k' —> 0 k' —> 0
s 1
Lim (y'+iv'") eln(n ) = Lim LXLé&Ll + iv',
k' —> 0 k' —> 0

1ot anfot
IT(y'+iv')] 2" eln(n )(y'+iv')

Lim AK, = Lim -
k' — 0 k' —> 0 2(vk")? T(2y'+1)
' L _1
= Lim vt Tiv' 4 —(LE“—) ] (226°)7Z,

k' —> 0

(18a)

(18p)

(18¢c)

(19)

(20)

(212)

(21b)

(21c)



Lim E'-1 = Lim ze )
k't —> 0 k' —> 0 J2 V' (21d)
Lim . _ (21e)
N g1 = 2,
1 2 -
Lim A (-X)Y = Lim gY (2ze )2 riv' + LXE—ﬂl ]
' —>0 k' —> 0 (21f)
t ' 1
Lim A, (x)Y = Lim gY (2282)2 [-iv' + (y - '-"—)—1
X' —> 0 k' —> 0 7 - (2lg)
Now, if we let
j 2\3 +y ' +1 -1 -n
H) = oY (eze)? (-1)" YT (29) YOY Zg T(v'+v-n)Kj(a), (22)
where y = 2k (k+q)—:L and z_ = 29 (k+q)_l, then (3a) and (3b) reduce to
L * A\l
Lim R (n',w) = Lim 3Ak Hi fiv' + ij%?lﬁl] - An Hz M-iv' + Lxgjil]g (232)
k' —>0 k' —> 0
and
Lim Sn(%"”) = Lim A% D riv o+ [CAL AL R BE [-iv' o+ (yion) '-M)'l (23b)
k' —> O X' —> O ¥ o n 2 - w n 2 -

Hence the desired result is

[}

i K w'n) =(B 1)% é ('i)ﬁl (g4m) ¢ e'i%(Y'-Y) T + c.C (2ha)
m G e T T () n* et
- n=0

and

: : 3 - () (gen) 15y =)
kI'Jlm_—> OKZ (w ') = (E+1) nz—:o = TEME e vV, +ceCey (2kb)
where
T, = k'Lil_; . JE'+1 [Rn(n'm) + Sn(n'm)] =
> (258)

i

— 1 ¥
U (y'-n) TA Hy - A T
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and

(25v)

>
n] ‘

*
+ A H
"

E'-1 ar(M';K) - Sn(K"%)] =
n

2|'A Hl
"

Lim
i J2 Ze
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VI. SPECTRUM END-POINT (PURE COULOMB CASE) - SUPPLEMENT

The Appell function result is subject to the condition s+vy'-g > O,
in order for the radial integral in question to have an integrand less singular
than 1/r at the origin. On the other hand, the selection rules allow terms
for which y+y'-£ < 0 < y+y'-4+1. To verify this, note that the selection rules im-
pose the restriction zzz_u+gn, for one set of terms and EZRK+Z_K' for the other
(with the additional constraint that the sum of the three £'s be even). 1In turn,
giKS|nl(equal if the subscript is positive, one less if negative). Since

(Ke_azzz)l/e

v = < || , the most singular case, £ = |u| + b 'l, has

viy'=4 < |x| + |x'| -£ = O. On the other hand, v > ) - 1/2;(n2-0222 > n2-|u|+-l/h
or QfEZ2 < |zl - 1/4 is always satisfied; at worst, for ju] =1, it implies
7 < 118. Hence, y+y'—£ > |u| + |%'| -4-1 = -1. When the singular integral
occurs for n = g, this does not imply an intrinsic divergence in the problem.
The difficulty arises from the split in terms of imaginary exponentials.
The integral with exp(iqr) diverges, and so does its complex conjugate, but,
if the two terms are combined in the integrand to yield sin gqr, the
combination (sin qr)/qr goes to unity at the origin and the integrand
(effectively one power of r less at the origin) is well behaved.
Considering the scattered electron wavefunction as a function

of k' and expanding it about its k'=0 value, the most critical r-behavior

is exhibited by the leading term and so the solution is here demonstrated

for it. The calculation is carried out for the matrix element Kz(n n')
in which F,r is the zero-energy wavefunction; the treatment of Kﬂ(n’ ")

differs in very minor respects.
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When y+y'-g > 0, jz(qr) is expanded in terms of imaginary

exponentials as above, while

v
Ge/ ) ) z)l/ngy,p(z a Zr)l/2]=(u/|%' ) 2)/2 (—%2—3‘-%%— oF1(By'+15-20 zr)

F o=
- /)@ 2)Y? 2 a Zr)Y'Z (-2 a z2r)%/s! T(2y'+1+s), (1)
S=yu
Ir(y+iv) | <a"”/2(E+1)l/2 o vamy=1/2 im -1/2 :
G = I 173 (y+iv)i™Y e (2kr) M-1/2—iv,y(21kr)+c’c' (2)

After insertion of an integration factor exp(-er) (where € will subsequently

be set equal to zero), the basic integral that is reguired 15(29)

-1/2  -y-1/2 / s-nty'-3/2 -(e-iq) (
ok Y q)r s 5>
(ex)” ar r M-l/e-iv,y (2ikr)

— Y 1] . . "( '+5-n . . 2ik

= (2k) F(y-(-‘y +s-n)(e-ig+ik) YHy ) 2Fl(y+y +S-n,y+l+1v;2y+l;5:.l-;~—_ﬁ—i).

(omparing this procedure with the Appell function approach, there
is the same finite sum over n from the expansion of the spherical Bessel
function in both cases, and the same ultimate necessity for analytic
continuation at the end. Previously, the Appell function constituted a
double infinite sum in two variables. ©Now, there is an infinite sum
(over s) containing as a factor a hypergeometric function which represents
another infinite sum. The computational effort can be reduced by expressing
all the hypergeometric functions as derivatives of one basic one: Iet

= g+s-n (so that m is positive definite for all s and n). Let

z = 2ik (e-ig+ik)™T (4)
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m

'— - .
= T(Y+y'-g) é_m [ZY‘“{ £-1+m EFl(Y"’Y'"ZW+1+1V32Y+1;Z)]’ (5)
dz

For y+y'-4 < 0, the n=g terms must be kept together:

term = (281 (pqp)7t Singr (6)
IR r
. . .. (9)
An expansion for sin qr/qr is
sin gr/ar = exp(-igr) lFl(l,2;2iqr). (7)

Combining the two series,

o1 (2y'+1;-2 @ zr) lFl(l,E;Eiqr)

x

)> F(ey'+1) (-2 o 77)S Z C(t+1)r(2) (igr)?

b - T{2vy +1+8) st C(Or(t2) o
S=
~ r(2y'+1) (2 22r)° <\ (21qr)"
- Z I eyy+1+§7 s! : Z (ti%? ) ()
£=0

Let n = s+t. Then

[(-n-1+s) 1 r 1
(- >S F(-n-?)l’?fﬂrg T Tor1)] (-l)s ((I_ln -],_;Sy_ ()

1
Zt+15' Tn- s+17* " Tln-s+2) =

Fl (2y'+1;~-2 o 7r) lFl(l,Q;Eiqr)

) (OL Z) ®
i (2i
- Z s'q (ay™+I) Z n+§1r? (-n-1)
s=0 n

(10)

=
—~
-] Q
N
~

v () e (o),
2 (nt 1] (2y'+1), st

n=0 s=0

The s sum does not depend on r. The integration is now the same as above.
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