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CARBON DIOXIDE CONCENTRATION SYSTEM
by
A. D. Babinsky, D. L. DeRespiris, and S. J. Derezinski

ABSTRACT

Under contract NAS 3-7638 an experimental program was conducted to determine
the feasibility of an electrochemical means of concentrating CO2 from cabin

air while obtaining engineering design data for future system prototype design.

Studies were made using both small laboratory type cells and large (12" x 12"
electrode area) test cells. The first two stages of the three stage system
used an electrolyte of potassium carbonate while the third stage utilized
sulfuric acid. The large carbonate cells had end plates fabricated of gold
and nickel plated magnesium, while PVDC plastic was used for the acid cell
end plates.

Short term parametric tests were conducted for current densities ranging from
15 to 45 ASF, and cell temperatures ranging from 90° to 140°F for Stage I,
122° to 176°F for Stage II and 172° to 195°F for Stage TIT.

Two cells of each stage were put on a extended duration life test. Due to
materials difficulties all cell testing was terminated short of the 250 hour
goal. The process functioned satisfactorily prior to the onset of the materials

difficulties.
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CARBON DIOXIDE CONCENTRATION SYSTEM
by
A. D. Babinsky, D. L. DeRespiris, and S. J. Derezinski

SUMMARY

The objective of contract NAS 3-7638 was to obtain engineering data for the
design of an electrochemical carbon dioxide concentration system suitable to
perform as a life support system in space. During the program only individual

cells were tested.

The system consists of three connected electrochemical cell stages which extract
CO2 from air processed through the system. From an air stream containing 0.5%
, and 43% 0, to the second

stage. The second stage transfers from this gas a mixture consisting of approx-

CO2 the first stage transfers a gas mixture of 57% (0]

imately Th% CO, and 26% 0,- The third stage cell rewoves O, from thismixture
leaving essentially pure CO2 as the end product. Potassium carbonate solution
is used as the electrolyte for Stage I and II, while aqueous sulfuric acid is

used for the Stage III cell electrolyte.

A preliminary system analysis was completed to permit the subsequent design
of the large experimental cells. To avoid scale up problems at a later date
the electrode area used was 12" x 12". First and second stage cell end plates
were fabricated of magnesium and plated with nickel and gold. The results of
studies conducted to determine suitable materials for the acid electrolyte
third stage cells indicated that 2-mil non-porous gold plated magnesium was a
suitable material for that purpose. However, its high cost was not compatible
with the program, hence a plastic (PVDC) cell with 2-mil gold plated copper

current collector inserts were used for this experimental program.

Two test rigs were designed and assembled. A test rig for small (3" x 3")
cell testing was used for testing of a small plastic acid stage cell and a
small non-porous gold plated magnesium cell. The test stand for the large

cells was designed to permit individual installation and test of each stage

while allowing the use of common gas analysis and recording instrumentation.
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Provisions were made for automatic cell temperature control and cell inlet

humidity control for each stage.

Small cell testing included plastic cell tests and four test series (M-1 thru
M-4) using a small gold plated acid test cell. The object of these tests was

to examine the acid stage polarization time dependence and materials compati-
bility. The common result of all tests was an initial voltage increase ranging
from 75 to 90 mv over the first seven hours of cell operation. It was concluded
that progressive oxidation of the tantalum screen appeared to be the cause of
this voltage increase with time. The gold plated end plates performed satis-
factorily as evidenced by the 185 hour run during test M-3. Nominal operating

voltage was 1.060 volts at a current density of 4O ASF.

Parametric testing of the large cells was conducted for a four hour period at

each operating point. These tests are summarized in the Table below.

Large Cell Parametric Testing

Stage T Cell Operating Potential, Volts

T ~ 90°F T~ 116°F T~ 140°F

2 x S Flow

I ~ 15 ASF 1.22 1.10 0.93

I ~ 30 ASF 1.53 1.30 1.13

I ~ L5 ASF -- 1,52 1.25

5 x S Flow

I ~ 30 ASF -- 1.40 -

1 x S Flow

I ~ 30 ASF -- 1.22 1.08

Stage II Cell Operating Potential, Volts
T _~ 122°F T, ~ 176°F

1l x S Flow

I ~ 15 ASF 0.982 0.715
I~ 22.5 ASF 1.171 -

I ~ 30 ASF 1.332 0.938

I ~ L5 ASF - 1.088
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Stage TII Cell Operating Potential, Volts

T~ 172°F T ~ 195°F
1.3 x S Flow
I ~ 17 ASF 1.021 0.970
I ~ 35 ASF 1.090 1.038
I ~ 52 ASF 1.194 1.07h4

System optimization and thermal balance studies were completed based on the
parametric test results. Results of these studies indicate that a system can
be made which has self-regulating temperature control by evaporative cooling

of water from liquid reservoirs in the cells. Optimum operating conditions are:

Stage I Stage IT Stage III
Cell Temperature 140°F 176°F 195°F
Cell Current Density 30 ASF 30 ASF 50 ASF

Two cells of each stage were put on life test with the objective of a minimum

run of 250 hours for at least one cell of each stage. All cells stopped short of
this goal as indicated below. Satisfactory operation ceases when the cell
polarization becomes excessive (greater than 1.5 volts cell potential) and or

the CO, or O, transfer rate decreases substantially (less than 80% of initial rate).

Maximum Satisfactory

Operating Time Cause of Failure
Cell #1 Cell ﬁg
Stage I 70 hours - Cell #2 Corrosion Corrosion
Stage IT 60 hours Corrosion Electrical
short; corrosion
Stage III 140 hours Electrical Electrical
short short

Corrosion of the nickel electrode screen and plating on end plates is the prime
difficulty in Stage I and II. In Stage III, lack of strength in the matrix led

to contact of anode and cathode screens.

The 002

developed with solution of the materials problems.

concentrating process functions properly and an attractive system could be
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1.0 INTRODUCTION

This is the Final Report covering the work carried out at TRW Equipment Labor-
atories under contract NAS 3-7638. Under this contract, individual cells of

a three-stage electrochemical carbon dioxide concentration system for space
applications are to be designed, fabricated and tested. The electrochemical
concept being used for carbon dioxide concentration was developed by TRW and

the cells used in the system are called "Carbonation Cells". This system,
y

using these cells, offers the following desirable features:

1. CO2 would be removed from the cabin air on a continuous, non-cyclic
basis.

2. The output CO, is free of diluent gas contamination (Ng)'

3. If required, the system is capable of concentrating carbon dioxide
from air at any partial pressure down to normal atmospheric concen-
tration of 0.03%.

The Carbonation Cell system is composed of a series of three cell stages, each
stage transferring a different gas composition. In the first stage air is sup-
plied to the cathode of the cell and carbon dioxide and oxygen are transferred
to the anode. The first stage anode gas is transferred to the second stage
cathode. Here, due to the high CO2 partial pressure, the ion species transfer-
red across the cell changes, and a higher CO2 percentage is obtained from the
second stage anode gas. This mixture is fed to a third stage which preferenti-

ally transfers oxygen, leaving essentially pure carbon dioxide.

The objective of this contract was to obtain parametric test data and life test
data on electrochemical carbon dioxide concentration cells used in the carbon
dioxide concentration system developed by TRW. To avoid problems of "scale-up"
in the design of a prototype system using the cell test data, large cells

(12" x 12") were used in the test program.

This process for electrochemically concentrating carbon dioxide was shown to be
feasible for multi-man capacity systems. With the large cell hardware, short
term test results obtained were better than had been predicted, based on the

results achieved with small plastic cells in past TRW programs.
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An area of major difficulty which did occur was materials compatibility. Long
term materials degradation appeared in all three stages during the life tests.

A thermal balance study was performed to demonstrate a feasible method of system
thermal control and to provide coolant flow requirements for use in system inte-

gration studies.
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2.0 CARBONATION CELL CONCEPT
2.1 General Principles

When various electredes amd electrolytes are combined to form electro-chemical
cells, two general classes of cells may result: (1) chemical cells in which the

voltage is due to a chemical reaction occurring within the cell (e.g., batteries);

and (2) concentration cells, in which the veltage is due to the free energy decrease

associated with the transfer of matter from one part of the cell to another. The
TRW "Carbonation Cell" is a specific cell which is typical of class (2) electro-
chemical cells. The voltage impressed upon the Carbonation Cell results in con-

centration gradients of carbon dioxide and oxygen gases at the electrodes.

Consider an oxygen-carbon diexide concentration cell shewn schematically below:

0, (aPOE), co, (aPcog), M|| cos (M, CO, (CPCOZ)’ 0, (cPoe)
electrolyte
where:

aP0 = anode partial pressure of oxygen
2

cPO = cathode partial pressure of oxygen
2
M = metallic porous electrode.

For the above cell the reactions are:

Cathode:  1/2 0, + HO + 2e” === 20H" (1)

Catholyte: CO, + 20H" == H,0 + CO3 (2)

Anode: 20H-===1/2 O, + HO + 2e (3)

Anolyte:  H,0 + CO3<P=CO, + 20H (&)
Net cell reaction:

1/2 0, (cPoe) + CO, (cPcoe)—>l/2 0, (apoz) + CO, (aPcoz) (5)

The theoretical electrical emergy, 2FE, for the spontaneous, isothermal transfer
of 1/2 mole of oxygen and one mole of carbon dioxide frem the cathede at pressure

cP. and cP to the anode is given by
0 co
2 2 1/2
(aP, ) 75(ap, )
2 2

(cPoa) 1[2(°Pc02) (6)

2FE = -RT In
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where:
E is the cell reversible potential
F is the Faraday constant. 7
In the above derivation the bicarbonate transfer mechanism was not considered

since it is important only when cP is high, as in the second stage cell,

CO2

2.2 Three Stage CO,. Concentration System

2

To separate carbon dioxide from air at one atmosphere and maintain a carbon diox-
ide concentration of 0.005 atm. according to reaction (5), it is seen from equa-
tion (6) that an external source of enerygy is required, since (.2)(.005)2 <
(.555)(.666)2; i.e., the reaction is not.spontancous. The three stage concentra-
tion system uses a series of three electrically powered cell stages, each stage
transferring a different gas composition., The electrolyte in the first two stages

is potassium carbonate, while sulfuric acid is used in the third stage.

In the first stage, air is supplied to the cathode of the cell cnd carbon dioxide
cid uxygen are transferred to the anode. These jases are transferred throuch the
electrolyte solution as carbonate, bicarbonate, and hydroxyl ions. At the anode
hydroxyl ions are discharged and oxygen is evolved. This in turn drives the dis-
charge of 002 from carbonate ions to replace the diminished hydroxyl ion pool.
Figure 2-1 schematically represents this transfer nechanisn. The ratio of the
voricus ionic species depends on the carbon dioxide partial pressure at the catn-
ode. The pas composition at the anode, which depends on the ratio of ionic species,
ulso depends on the cathoaoe carbon dioxide partial precsure. Tiis relationchip is
shiown in Figure 2-2, which is based on experimental data. 4 cathode .as with 0.5

mole percent CO_. at one atmosphere has a partial pressure oi CO. egual to 5.0 mm

2
and 43 mole percent O

2

Hg and yields an anode mixture of 57 mole percent CO

2 2"

This mixture is transferred to the cathode of the second stage cells. Here, due

to a higher CO, partial pressure, a greater proportion of bicarbonate ions are

2
formed. With the example above, the anode _as cavity of the second stage cells

evolves a mixture of 79% co,, and 21% 0 This nixture is fed to a third stage

2'
which preferentially transfers oxygen, leaving essentially pure carbon dioxide.
The third stage cell is shown schematically in Figure 2-3. A blower is required
to provide air to the first stage only, since the cells produce sufficient gas

pressure to transfer gas for subsequent processing.
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% O, IN ANODE GAS
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FIGURE 2-2 ANODE GAS MIXTURE AS FUNCTION OF CATHODE
GAS MIXTURE FOR CARBONATION CELL
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The system summarized above is capable of concentrating carbon dioxide from air

at any partial pressure down to the normal atmospheric concentration of 0.03%.

Figure 2-4 presents a schematic of the three-stage Carbonation Cell carbon diox-

ide concentration system.

11
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3.0 DESIGN DISCUSSION
3.1 Preliminary Analysis of Four-Man Prototype

To determine the design characteristics of the large experimental cells, an anal-
ysis of a four-man prototype system was performed. The major objective of this
preliminary analysis was to evolve a control method which would allow for both
the thermal and humidity balance to be accomplished within the cell. A further
consideration was to exercise this control without the aid of external cooling

or humidification, thereby minimizing system complexity and weight.

A schematic of the design model used in this analysis is shown in Figure 3-1l.
Since the process gas entering the cathode chamber is at a lower dew point temp-
erature than the cell electrolyte, water is evaporated from the membrane surface
to the gas stream. Thus the heat of vaporization of water is used to remove the
heat generated within the cell. The equilibrium partial pressure of water vapor
that results in the gas cavity will determine the mean cell electrolyte concen-

tration and temperature.

The equilibrium partial pressure of watcr vapor will be a function of the process
gas flow rate, dew point, and the cell terminal voltage. Preliminary analysis
indicates that the above method of control is applicable to the second and third
stage units but is a marginal control scheme when applied to the first stage unit.
For example, a lst stage unit operating at relatively high process gas flow rates
(5 x stoichiometric 002) and low dew point temperatures (30% R. H.) would approach
an equilibrium temperature near or below ambient and electrolyte concentrations

not far removed from saturation.

An alternate approach for the thermal control of the lst stage unit would be in
the use of the process gas to remove cell heat. The humidity control would have
to be accomplished by external means. In this mode of operation the process gas
will experience a temperature increase at a constant dew point temperature which
in turn will cause a gradient in the electrolyte concentration. The magnitude
of this gradient is a strong function of the process gas flow rate. Calculations
indicate that allowable concentration gradients are realized only at flow rates

approaching 10 x stoichiometric CO Sample calculations are shown in Appendix A.

o

13
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INLET PROCESS GAS 1 ANODE GAS OUTLET

CATHODE CAVITY

ELECTROLYTE
COMPARTMENT
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FIGURE 3-1 CELL DESIGN MODEL FOR PRELIMINARY ANALYSIS
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The preliminary analysis summary presented in Table 3-1 was based upon several
simplifying assumptions:
a) No external heat transfer to or from the cell.
b) Iinear thermal and concentration gradients within the cell, if any.
c) 1st stage ion transfer 100% CO,; 2nd stage ion transfer 100% HCO

3 3
d) Negligible heat transfer from cell to process gas in 2nd and 3rd stage.
e) Instantaneous mixing of process gas and of evaporation water in 2nd and

3rd stage.

Vapor pressure data for the Stage I and 1II K2003 electrolyte and Stage III HQSOM

electrolyte used in the analysis are presented in Table 3-2.

A thermal balance study is presented in Section 8.0 which was performed in Task IV
based on the results of the experimental data for all three stages operating with

variable parameters.
3.2 Experimental Test Cells

For use in the experimental program, 12" x 12" active area cells were designed.
These cells used American Cyanamid fuel cell electrodes measuring 12" x 12". (Types
AAl and ABAX were evaluated.) The logic behind using large cells was to prevent
any scale-up problems in going from experimental cells to a flight configuration.
Consistent with the desire to build experimental cells which correspond with flight
cells, materials were also selected with this in mind. The cells for Stage I

and Stage II therefore used gold-plated magnesium to yield a low weight system.

The gold plated magnesium eventually proved to be unsatisfactory during life test-

ing. The Stage III acid cell materials problems are discussed in Section 4.0.

Although experimental cells were all single cell units, 211 porting and flow pat-
terns were designed so that bipolar plate designs could be substantially copied
from the experimental cell designs. Experimental cell components were also
designed to reduce the number of drawings required and to permit interchangeabil-
ity of components as much as possible. To accomplish this, three basic end plate
designs were necessary - an anode plate for use on all three stages; a first stage
cathode plate to accommodate the high flow of the first stage; and a cathode plate
for the Stage II and III cells which incorporates a wicking system for water addi-
tion and was designed for lower gas flow than the first stage cathode.

The cell end plate, fabricated of a single piece of magnesium, combined a number

of functions into the single piece:

15
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a) Cell end sealing plate

b) Pressure clamping plate

c) Gas distribution (manifolding and pin structure)
d) Current collector

e) Integral structure for attachment of flow line fittings.

Uniform compression of the cell matrix and good electrical contact with the elec-
trode was provided by the pin strucutre (0.06" square pins). The cells were sealed
with a large diameter O-ring and assembled with 28 bolts to assure uniform com-

pression.

No baffling for flow pattern control was incorporated in the cells. For Stages II
and IIT baffling was added during assembly by inserting pieces of epoxy fiber
board between adjacent rows of pins, thereby providing a means for establishing

desired flow patterns.

Variation in cathode gas flow pattern for Stage I consisted of air flowing from
bottom to top of cell or from top to bottom. Gas flow from top to bottom of cell
will carry out any condensed liquid which tends to pool in cell bottom if too
much moisture is added to cell. Cathode gas flowing from bottom to top of cell

will not carry out pooled ligquid.

Upon referring to Figures 3«2 aﬁd 3-3, Cell Assembly Drawings, the configuration
of the cells may be seen. The active portion of the cell, composed of two elec-
trodes (one on each side of an asbestos electrolyte matrix), is compressed between
two cell end plates. The current leads are attached directly to the end plates,
with electrical contact to the electrodes being through the pin structure. Elec-
trically insulating washers are used on the compression bolts to insulate one end
plate from the other. The Teflon tape shown on the assembly drawings, intended

to establish the desired end plate spacing and electrolyte matrix compression, was

not required.

A variable height electrolyte pool was provided for by an asbestos wick used to
separate a water cavity from the cathode gas compartment. The wick was held

firmly in place by tantalum screening on either side of the asbestos. The asbestos-
tantalum screen wick assembly was clamped between the pins of the end plate water
cavity and the pins of the gas diffusion plate. The gas diffusion plate, shown

in Figure 3-4, provided an even flow distribution of cathode gases between the wick

18
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and electrode surfaces. Electrical continuity to the electrode was from the
end plate to the rim of the gas diffusion plate and then to the pins on the
diffusion plate touching the electrode.

Control of the Stage II and III cell electrolyte concentrations was aided by
the use of the variable height electrolyte pool. The anode gas pressure was
maintained higher than the cathode pressure and the cathode pressure greater
than the electrolyte pool cavity pressure. Thus any free electrolyte pooling
in the cell bottom was forced in the electrolyte pool cavity. At the start of
a test, with proper electrolyte charge concentration, the electrolyte pool
height was noted. If operating conditions were such that an excess of moisture
was being introduced into the cell by condensation causing the electrolyte to
be diluted, the pool height in the sight glass tube would rise. Conversely if
the cathode gas is deficient in moisture, water evaporates from the pool wick
causing the level to drop. Cell operating conditions were controlled by ad-
Jjustment of cell temperature or humidifier temperature to maintain the electro-
lyte pool height at the proper level thus maintained the desired electrolyte

concentration.

The gas distributiorn system was designed so that each cell can handle five times
stoichiometric flow at 50 amperes per square foot with a maximum pressure drop
of 0.2 psi. To control the flow pattern the major drop is across the distribu-
tion holes connecting the flow channels with the cell field. The field drop is
very low and therefore non controlling. Drops of water or irregularities in the
cell will therefore not materially effect the flow patterns. Inlet ports and
manifolding on the cell end plates are seen on the photographs of the represen-

tative experimental cell components, Figures 3-5, 3-6, and 3-7.

The small recession provided in each manifold slot is for insertion of a plastic
seal plate to complete each manifold chamber. Clearly shown on the back of the
end plates are provisions for:

a) Attachment of power lugs

b) Mounting of thermocouples

c) Connection of pressure gauges

d) Attachment of inlet/outlet flow line fittings

e) 1Installation of liquid level sight glass for the Stage II and III water

cavities.
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fhe large two-inch diameter holes on the back side of the plates are merely
holes to decrease the weight of the structures. Design of the holes was such

as to minimize machining requirements and to insure that cell deflection at
center of cell would not exceed 0.001 inch when all 28 bolts are properly tight-
ened. This lightening structure is by no means optimum. For a flight unit a
much more intricate cast type pressure clamping plate would be used. The first
Stage I cathode end plate was machined with rectangular shaped, undercut, light-
ening holes. This configuration provides a 20% lighter weight piece, but the
machining time associated with the process was too high. Thus, the design was
changed to the round holes. Figure 3-8 is a photograph of the gold plated cathode
end plate and a gold plated gas diffusion plate.

Figures 3-9 and 3-10 are photographs of a partially assembled Stage II cell.
These can be compared to Figure 3-11 which shows the components of the Stage ITI
acid cell. A more detailed discussion of the acid cell configuration is given

in Section 4.0 on materials selection.
3.3 Test Stands

3.3.1 Small Cell Test Rig - Small test cells were used to check out problem

areas expected on the large experimental cells and to examine in detail unexpec-
ted or strange performance in the large cells. Figure 3-12 presents a schematic
of the set-up used for this testing. Provisions were made for precise control
of cell temperature and feed gas humidity. Inlet gas composition was known
(analyzed cylinder gas) and the outlet gas composition was monitored by an oxy-
gen analyzer., Provision was made for inlet and outlet flow rate measurement.
Figure 3-13 presents a sthematic of the electrical measuring circuits used to
analyze cell electrical performance. Figure 3-1l4 presents a photographic view

showing the major components of the test rig.

3.3.2 Large Cell Test Stand - The large cell test stand was designed such that

cells could be tested individually during the parametric short term testing and
also used for life testing of six cells concurrently. Figure 3-15 presents a
schematic of the full test stand. As-indicated, gas feed to the first stage is
o Stage IT and III gas feed is

from premixed bottles. A large vacuum pump is connected to a common manifold

by a mixture of laboratory air and bottled CO

connecting the gas outlets of all three stages to maintain cell operating pres-

sures in the necessary sub-ambient range. Common manifolding enables the use of

26
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a single 02 analyzer and CO2 detector, to measure the composition of gases in

each stage. Individual humidity detectors are provided for each stage.

Figures 3-16 and 3-17 are photographs of the test stand. One end of the stand,
Figure 3-16, is the control panel, which is used to set gas flow rates, control
temperatures, and route gases to gas analysis instrumentation. In Figure 3-12

is seen the main portion of the stand. The bottom houses the plumbing, vacuum
pump, gas humidifiers, and cell power supply. The upper portion consists of
three lucite-enclosed sections which house the test cells. Each section encloses

two cells of one stage.

Individual cells are installed on modules for ease in installation in the test
stand. Each module consists of two cells, a small frame, instrumentation, and
all necessary fluid and electrical connections. The modules are installed in
the test enclosure by merely connecting four tube fittings, electrical intercon-
nections, and thermocouple jacks. Figure 3-18 is a photograph of a partially

assembled module.

3.3.2.1 Thermal Control - An independent ambient air temperature control, which
has a range up to 175°F, is provided for each stage. Heat is supplied in the

top of each enclosure by nine light bulbs (300 watts per bulb). Two of the bulbs
have their power level controlled by a variac while the remaining seven are
cycled on-off by a temperatufe controller to maintain desired enclosure temper-
ature level. The air heated by the bulbs is circulated by two externally mounted
blowers per stage. The hollow framework members of the test stand form the duct
work which carries the hot air from the top of the enclosure to the bottom of

the enclosure and onto the test cells.

3.3.2.2 Humidity Control ~ Precise control of inlet gas humidity is necessary
in order to study cell moisture balance. It is accomplished by passing inlet
gases through thermally-controlled water baths, measuring 30" tall and 10" in
diameter. The gas passes through spargers in the bottom of each tank. The gas
passes upward through the bath which are maintained at a controlled wmiform
temperature by a temperature controller, variac, heater, and mixing pump. At

the exit a baffle arrangement stops droplet carryover.

Figure 3-19 is a photograph of the test stand with the bottom panels removed to

expose some of the components used to control temperature and humidity.
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TEST STAND CONTROL PANEL

36 FIGURE 3-16
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3.3.2.3 Instrumentation -

a)

e)

Gas Analysis. A "Critical Orifice Carbon Dioxide Analyzer" (Harvard

Apparatus Co., Dover, Mass.) was used to monitor the carbon dioxide
content of the inlet and outlet 1lst stage process gas. The instrument

has a range of 0 - 10% €O, with a stated accuracy of +0.05% CO,-

The "Beckmsn E-2 Oxygen Analyzer" was also used. It is a continuous
sampling multirange instrument which determines oxygen partial pres-
sure by measuring the sample's magnetic susceptibility. This unit,
together with suitable manifolding, monitors the anode and cathode

gas streams of all stages. The carbon dioxide content of the gas stream
can then be determined by difference (in the absence of internal gas

leakage).

Dew Point Temperatures. The dew point temperature of any one of the

three gas streams associated with a given stage can be monitored by

a "Honeywell dew probe sensor" (SSP129-C). The sensor is rated at a

maximum dew point temperature of l6OOF.

Cell Temperature, Voltage, and Current were continuously recorded with a

multipoint potentiometric recorder. The use of suitable voltage divider
circuits and precision shunts determined the operation range of the

various channeils.

Gas Flow Measurement. All cathode flows were monitored by rotameters

of the variable area type. Anode gas flows and low cathode flows were

monitored with a Precision Scientific wet test meter.

Pressures. Cell operating pressures were measured by compound type
pressure gauges while differential pressure measurements were made by

"Dwyer Magnehelic Gauges'". These gauges were mounted on the individual

modules.
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4.0 MATERIALS
4.1 Stage I and II Cells

Material selection for the Stage I and Ii cells was based on experience at TRW

on similar cells. A compilation of these materials is given in Table L-1.
TABLE 4-1

STAGE I AND IT CELL MATERIALS

Component . Material Remarks
End Plates AZ31B Type 2 Gold Plates as follows:
Megnesium Plate a) Zinc immersion (molecular)

b) 0.1 to 0.3 mil copper
e¢) 1.5 mil electroless nickel
d) 0.03-0.05 mil gold.

Electrodes American Cyanamid Gold plated nickel screen with
Type - AB6 9 mgm/cm of platinum
_Electrolyte Asbestos Fuel cell board
Matrix (20 mils thick)
O-Ring Neoprene
Gas Diffusion Same as
Plate End Plates
Wick Assembly Tantalum Wire screen
(stage II) and asbestos
Seal Plates Epoxy Fiber Board

4,2 Stage III Acid Cell

The Stage III material selection is a difficult problem in view of the sulfuric

acid electrolyte and high cell operating potential (anode).

4.2.1 Materials Screening - A material screening and evaluation program was con-

ducted in an effort to select a cell material for the Stage III cell construction.

The material selected should meet the following requirements:

a) Resistant to sulfuric acid corrosion under electrochemical action.
b) Low cost raw material.
¢) BEasily machinable into intricate forms.

d) Sufficient mechanical strength.

4
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e) Electrical conductor.
f) Impervious to gas.

g) Available in proper form and within schedule framework.

Table 4-2 lists the materials which were considered for possible use on the pro-
gram. They were all eliminated from consideration for not meeting one or more
of the above listed requirements. This then forced the use of end plate assem-
blies which were composed of a number of different pieces fabricated of different
materials. Table L4-3 gives the materials used for Stage IIT cell. Some minor
design modifications were made to accommodate the use of these materials. The
end plate was divided into two pieces, a plastic pin structure and a metal clamp-
ing plate. A metal grid current collector is imbedded in the pin structure of
each end plate to provide electrical contact with the electrodes. The components

are seen in Figure 3-11.

TABLE 4-3

STAGE IIT CELL END PLATE MATERIALS

Part Material Remarks

Pin Structure and , Polyvinyldichloride Thick enough to accept all
End Plate (pvDC) fittings
Pressure Clamping Magnesium Plate Unplated
Plate
Current Collector Gold Plated Copper Embedded in pin structure-
Grid electroplated gold
2 mils thick
Gas Diffusion PVDC
Plate

4,2.2 Non Porous Gold Plated Magnesium Evaluation - Except for the high cost of

gold plating, magnesium with a 2-mil thick non-porous gold plating would be our
choice for the third stage end plates. As such, test samples have been put through

a number of corrosion tests.
Three 3" x 5" magnesium test plates containing a machined pin structure were plated
as follows:

a) Zinc immersion (molecular)

b) 0.1 to 0.3 mil copper

Lf‘ ) ho
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¢) 1.5 mil electroless nickel

d) 0.5 mil gold

All of the above plating was done by Furniture City Plating Co. except for the
gold plating (SEL-REX-CO.). The gold plate was applied by electrolytic deposition.
The results of several corrosion tests are summarized in Table 4-L, All tests
involved immersion of one half of the test plate in a 6 normal aqueous solution

of sulfuric acid. The test plate served as the anode of an electrolysis cell

couple, Figure L-1 is a photograph of the test samples as described below.

A post test (no. 1) microscopic examination of the unused portion of plate No. 1
revealed several pin holes which may have been the centers of attack. The brown-
ish deposit observed in tests no. 1 and no. 4 is an oxide of gold which readily
formed at the operating potential of 1.8 to 1.9 volts with respect to a standard
calomel electrode. This brown oxide is easily rubbed off leaving a smooth unpit-
ted surface (Figure 4-1, plate no. 2). The pinkish coloration imparted to the
test solution i1s probably due to the formation of a gold sol, formed by the reduc-

tion of gold oxide particles which migrate to the cathode by forced convection.

The results of tests 2 to 5 indicate that the base metal is well protected from
either chemical or electrochemical attack. 1In teét no. 5 a platinum electrode
was placed in intimate contact with the test plate simulating a typical cell
assembly. No formation of gold oxide was evident, indicating that the test plate
is functioning only as an electron exchange medium and is not involved in any
electrochemical reaction. The small black spots on the test sample used in test

no. 5 are the points at which the electrode was spot-welded to the gold plated
magnesium.

Further evaluation of the gold plated magnesium was conducted by the use of a

small test cell fabricated of this material.

4.2.3 Small Cell Tests - Small cell testing was conducted to examine those areas
posing problems in the large cell testing program. The small cell testing pro-
fram was also intended to examine in detail large cell test results which were

at variance with expected results. During this phase of the present program only

the materials problem of the third stage cell was studied by testing of three cell
types:

Ly
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a) Carbon end plates
b) Plastic end plates with tantalum current collector inserts

¢) Non-porous gold plated Magnesium end plates.

4,2.3.1 Carbon Cell - A set of carbon end plates was fabricated to study the
applicability of using readily available grades (ATJ) of carbon for the Stage III
end plates. No electrical performance tests were conducted as the permeability
of the carbon end plates allowed leakage of gases at operating pressures. The
low mechanical strength of the carbon is evident in Figure H-2, as the upper end
plate is cracked where the current lug had been attached to the back of the cell.

k.2.3.2 Plastic Cell with Metal Imserts - A total of 35 hours of testing was
accumulated on the plastic test cell (Figure 4-2). (Lucite end plates containing
an integral pin and baffle structure.) The current collector recessed in the end
plate consists of a vertically ribbed tantalum frame. All testing was conducted

in the test system described in Section 3.3.1. Test conditions were as follows:

Electrodes: AC No. AA-1 (Active area 127 CM2)

Electrolyte: 6N stoh/Whatman No. GF-B Glass Filter Paper

Cell Pressure: Ambient

Cell Temperature: 3500 + 0.1%¢

Current Density: 31.5 MA/CM2

Cathode Gas: 80% co, - 20% 0, - 276 cc STP/min - 4 x stoichiometric (02)

In all tests a polarization-time dependence was noted of the order of 0.5 MV/min.
Figure 4-3 is a plot of the cell "IR" free voltage as a function of time at load

for a typical run.

Difficulties were encountered in sealing the test cell (internal). As a result,
an accurate determination of the anode gas purity was not possible. Additional
difficulty was encountered in maintasining proper cell dew point owing to the fact
that the plastic cell acts as an insulator and prevents the internal temperature

of the cell from matching the water bath temperature.
Several possibilities exist as to the cause of the polarization-time dependence:

a) Progressive oxidation of the tantalum screen and current collector,

resulting in an increased overall cell resistance.

b7
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b) Reduction of the carbon dioxide at the cathede, with the resulting
formation of carbon monoxide -~ the carbon monoxide being irreversibly
adsorbed on the electrode.

c¢) Internal cell temperatures higher than the ambient would result in
a8 recession of the electrode-electrolyte interface since the enter-

ing gas dew point is based upon ambient cell temperature.

4.2.3.3 Gold Plated Magnesium Cell - Based on the materials screening program
results, a gold plated magnesium cell was selected for further evaluation in the
small cell test program.

Cell Description

The gold plated magnesium cell end plates are shown in Figure hoW, Slight dis-
colorations on the land areas are due to operation in the water bath during
tests M-1 and M-2. This cell contains in the end plates an integral pin and
baffle structure. Design characteristics of the pins are similar to the large

cell units. The active electrode area contained by these cells is 0.0775 ft2.

A compilation of the materials used in the cell is given in Table L4-5.

TABIE 4-5
GOLD PIATED MAGNESIUM ACID CELL MATERIALS

Component Material Remarks
End Plates AZ31B Type 2 Gold Plate as follows:
Magnesium Plate a) Zinc immersion (molecular)

b) 0.1 to 0.3 mil copper

¢) 1.5 mil nickel

d) 1.5 mil electrolytic gold
e) 0.5 mil electroless gold

Electrodes American Cyanamid Tantalum screen with 9
‘ Type - AAl : mgm/cm? of platinum
Electrolyte Matrix Matted Structure Whatman GFB glass fiber

filter paper - (20 mils thick)
Gasket Viton

50




TRW e£QuUIPMENT LABORATORIES

11v1d AN3 3AONYV

1 31v1d ON3 3QOHLVD

/1395VO ONITV3S

FIGURE 4-4

51



TRW EQuUIPMENT LABORATORIES .

a. Test No. M-1

Figure L4-5 shows the polarization time dependence obtained during the first exper-
imental run with the gold plated magnesium cell. The total time at load for the
test cell was approximately 58 hours. A break in performance, as indicated by
the discontinuity, occurred at the end of six hours when the constant current
power supply failed. The cell was returned to load with a new power supply and
continued operation for another 52 hours. The test was terminated due to an
internal gas leak caused by improper seating of an electrode resulting in matrix
damage. Over the last 27 hours of the test the average rate of voltage increase
was approximately 0.75 mv/hr, with the rate decreasing to 0.62 mv/hr over the
last eight hours. It can thus be seen that the rate of increase in voltage was
still decreasing with time. A post-test cell inspection revealed no corrosion
of the end plates. Cathode gas flow rate was 307.5 cc STP/min, while the anode

gas O2 content varied from 97.5 to 99 per cent by volume as measured by Beckman

O2 Oxygen Analyzer.

b. Test No. M-2

Using new electrodes, the cell was reassembled in preparation for a repeat of the
previous test for a longer time period. 1Initial operating conditions were identi-
cal to those of test run No. M=l. The polarization time dependence for the run

is plotted in Figure 4-6.

Initial cell voltage was 0.932 volts, rising to 1.100 volts after three hours of
operation. At the end of twenty-six (26) hours of operation, the cell terminal
voltage was 1.186 volts. Over the last four and one-half hours, the average

rate of voltage increase was 1.78 mv/hr. At this time, the CO2 was removed from
the cathode feed to see if the 002 actually was contributing to the cell degrada-
tion. Oxygen was used as the cathode feed for the balance of the test. Nominal

cathode gas flow rate was 365 cc STP/min.

After switching to O2 feed, the initial cell terminal voltage was 1.058 volts
increasing rapidly (30 minutes) to 1.085 volts, then following a rate of increase
close to the rate observed before the o, was removed from the cathode feed. 1In
addition to the periods of increasing cell voltage, periods of stable cell voltage
and decreasing cell voltage were noted. During the sixty-five hour period from
77 hours at load to 142 hours at load, the average rate of voltage increase was
0.15 mv/hr, while from that point to the end of the test the terminal voltage
decreased. The test was terminated when some type of intermittent short between

the cell plates occurred. This short was believed to be due to contamination

52




TRW EQUIPMENT LABORATORIES

CELL CURRENT - AMPS

e
<

Q
v

o
Us]

(NYAN/OW 3dAL 113D)

1-Wy 1531 - 111 3DVIS - IDNIANIIIC IWIL NOILLYZIIVIOd S NOld

SINOH - GvO1 1y WL

Sy ot St
0°0
§-49 NVYWLVHM - XISLywW %
IVVY 3dAL - S300¥1D313 -
80
(%0 %0Z - 20D %08) 05 * ¥
£V 09 - YOSZH N9 - DoSE
SNOILIONO)D 1531
~l\ -——— ——

53

FOVLII0A 1730 TYNIWEIL

'l

DN |




TRW EQUIPMENT LABORATORIES

o
-

e}
~

o

CELL CURRENT - AMPS
0

(NV/IN/OW 3dAL 113D)
Z-Wy 1531 - 111 3OVIS - IDNIANIHIA IWIL NOILVZIIVIOd 9-f 3N D4

SINOH ‘AvO1 LV IWIL

002 051 001 0s
00
84-O NVWLIVHM - XIdLVW 1
VY 3dAl - $3Q0¥L1D313 80
(20 %0Z - 20D %08) 05 * ¥
4SV 09 - POSCH N9 - DoSE
SNOILIGNOD 153t
60
1 P o
_ n\
01

JOVIIOA M3 TYNIWY3L

1t

A

AN

€1




TN U T T e

TRW £QuIPMENT LABORATORIES ‘

in the cell constant temperature water bath. The anode gas O2 content varied
from 97.5 to 100 per cent by volume while on 002 - O2 feed and 100 per cent while

on pure O2 feed.

Cell disassembly revealed a pinkish-red coloration on the cathode side of the
matrix corresponding to the pin area. The cathode had a pinkish-red coloration
on the pin contact side. With the exception of two small black pits no visible
corrosion of the end plates was noted. By spectrographic analyses, the impurities

on the electrodes and matrix were determined. The results of these analyses are

presented in Table L-6.

TABLE L4-6
SPECTOGRAPHIC ANALYSES OF ELECTRODES AND MATRIX
Samples Examined

Elements Matrix Matrix
Detected in % Cathode Side Anode Side Cathode Anode Unused Matrix
Au A0.10 ND 0.8 to 1.0 XD ND
Ni 0.01 0.01 0.01 to 0.10 0.0l to 0.10 ND
Cu <0.01 <0.01 0.01 to 0.10 0.01 to 0.10 0.01
Zn 1.0 to 3.0 1.0 to 4.0 ND ND 2.0 tc 5.0
Mg 0.2 to 0.6 0.10 to 1.0 0.10 to 1.0 0.10 to 1.0 0.005 to C.05
ND = Not Detected

A Approximate

Results of the analyses indicate that the gold source is the cathode end plate.
Gross corrosion products are not apparent. The magnesium detected may indicate
a small crack in the plating, possibly in one of the gas ports which was some-

what scratched in the removal of a damaged plastic fitting.

It has been established by the supplier that the Whatman GFB glass fiber paper used
as the matrix will disintegrate with time when immersed in 30% sulphuric acid.

The rate of disintegration however is not known by the supplier. Using a glass
fiber matrix material with 5N HESOH at 7OOC, a single cell 1life test on a fuel
cell was conducted by American Cyanamid Company. Stable operation over a per-

iod of 1100 hours was observed, indicating that the glass fiber matrix does not

cause cell performance degradation.
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It is felt that the voltage increase with time noted in the small acid cell test-
ing program is due to the use of the tantalum screen electrodes. Referring to
the plastic cell results presented in Figure 4-3 and tests M-1 and M-2, the volt-

age increase obtained between one and eight hours at load is as follows:

Test AE (for 7 hours)
Plastic Cell 90 mv
M-1 75 mv
M-2 82 mv (with 0, flow only)

It is seen that the same general increase is noted in each test, the common
feature of each test was the type of electrode used, and the matrix material.
Progressive oxidation of the tantalum screen appears to be a logical cause of

the cell voltage increase with time.

c. Test M-3

The two small black pin-holes, noted at the compl tion of test M-2, were covered
by a protective coating of epoxy. The cell was assembled in a manner identical
to the M-1 and M-2 configuration and a series of three tests were completed; life

test, polarization runs, and cathode gas flow rate effect determination.

Life Test - Operating conditions and results of the life test are shown in Figure
4-7. TInitial cell voltage was 0.775 volts, rising to 0.995 volts after three
hours of operation. At the end of forty-seven hours the voltage was 1.048 volts,
while the current density had decreased to 40 ASF. From this point on the current
density was maintained at 4O ASF. Total test duration was 185 hours. Voltage

at termination of test was 1.060 volts. Over the last 115 hours of the test the
rate of voltage increase was 0.043 mv/hr. The cell was completely operative upon
termination of the life test. Nominal cathode gas flow rate was 186 cc STP/min.

Anode gas oxygen content varied from 97.7 to 98.4 per cent at volume.

Polarization - Upon termination of the life test polarization runs were made using

the same set-up as used for the life. A polarization curve is presented in

Figure L4-8.

Cathode Gas Flow Rate - The effect of cathode gas flow rate was studied by vary-
ing the gas flow to the cathode while maintaining the current density of 103 ASF.
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It was found that the lower limit on the cathode gas flow at this current density
was 1.025 times stoichiometric flow. At this point a sharp rise in voltage was
noted, Figure 4-9, as the flow ratio was dropped below 1.025 times stoichiometric
flow.

Upon completion of these tests, the cell was disassembled and examined for corro-
sion. No corrosion was noted, as indicated by the photographs in Figures 4-10

and L-11.
d. Test M-k

As a means of checking the small cell test set-up and test equipment a short run
was made on a different test rig and cell. Cathode feed gas was 100% oxygen.

Test M-4 was run for 27 hours with the polarization time dependence curve (Figure
4-12) almost exactly parallel to thatobtained in Test M-3 but at a slightly higher
terminal voltage. The cell current was maintained at 3.87 amps (SOASF) with

cathode gas flow rate much greater than stoichiometric oxygen requirements. Anode

gas composition was not measured.
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5.0 TEST RIG CHECKOUT AND MODIFICATION

Upon completion of the test stand, a functional checkout was initiated. Control
of the three thermal enclosures was maintained to within less than 1°F of the
selected temperature (up to 160°F). The Stage II and III humidity control of
inlet gases was satisfactory, maintaining & preset humidifier tank temperature
to within 1°F of the set point temperature at rated gas flows. Testing of the
Stage I humidifier indicated a need for:

1. Additional vacuum pump capacity to give the desired air
flow rate at 10.0 psia. (A second vacuum pump was instal-
led in parallel with the original pump.)

2. A higher capacity heater in the humidifier tank. (The
original heater was converted to a 440 velt heater,
approximately doubling the power output.)

3. A condenser to remove water from the air stream before it
entered the vacuum pumps. (A gas-liquid heat exchanger with
provision for condensate drain in the air side was installed

between the cell and the vacuum pumps. )

The dew point temperature of gas out of the humidifier was checked with a Foxboro
Dew Point Analyzer, correlating to within 2°F of the tank temperature. A check
also was made on the amount of water removed from the condenser to check the

accuracy of the Foxboro data,

During the first test runs with the Stage I large cell, a number of difficulties
in operation of the test rig were encountered. The difficulties and corrective

measured taken were as follows:

1. The pressure drop across the sparger plate in the humidifier
gradually increased with operating time until it was impossible
to achieve significant flow of air through the humidifier and
cell. Due to the passage of carbon dioxide in the inlet air
through the hot tap water, a carbonate type of deposit was
forming in the sparger plate., The humidifier was removed

from the rig and cleaned with acid and water to remove the
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2.

deposit. After reimstallatiom of the humidifier tank a
distilled water feed system was installed to avoid further
formmtion of water inseluble deposits.

Setting air flow rate and cell operating pressure was
difficult and time consuming. Trim by-pass valves were
installed in parallel with the flow control valve and
back pressure regulator valve.

Additional capacity in condensate storage was required.
Two parallel storage bottles with shut-off valves were
installed.

Water was condensing in the anode gas sample outlet line
and the dew point sample outlet line. Condensers and
collector bottles were installed in these lines to re-
move unwanted condensation in test sample lines.

Varying water level in the humidifier tank was causing
the dew point temperature out of the humidifier tank to
vary. An automatic water level control was added to the
distilled water feed circuit.

Gas inlet lines to the cathode and gas sample lines to
the dew cell chamber were running at temperatures below
the cell operating temperature. Temperature controlled heater

tapes and insulation were added to lines where required.

Difficulties in sampling cathode and anode gases below atmos-
pheric pressure were encountered with the oxygen analyzer, wet

test meter, amd CO, analyzer. The anode was replumbed to operate

2
at ambient pressure and a vacuum pump was installed to draw gas

samples from the cathode chamber.

Erratic readings of dew point temperatures were obtained from
the "Dew Cell" sampling element. The element was removed
from the rig, and tested and calibrated over the expected
operating range.
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a

Numerous other minor changes and modifications were made to improve the perform-
ance of the test rig and recording instrumentation as testing proceeded.

For the life testing phase separate anode outlet lines were provided for all cells
to more adequately analyze performance of each cell.,
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6.0 LARGE CELL PARAMETRIC TESTING

6.1 Stage I

The Stage I cell had to be assembled twice before a satisfactory seal was achieved
both externally and internally. After all bolts are torqued in a set pattern,

the cell is checked for external leaks with the cell dry internally. If seal is
satisfactory, the electrolyte charging procedure is initiated. The entire cell
cavity is put under a vacuum and then electrolyte is allowed to completely fill
the void. Excess electrolyte is then drained from the cell, leaving only that
electrolyte which wets the matrix. Gas pressure is then applied to one gas cavity
with the other cavity being open to the atmosphere. The fully charged matrix,
after the second assembly, successfully withstood é 16 psi pressure differential

from anode to cathode cavity.

The fully charged cell was installed in the module rack and installed in the
test stand. A check of air flow through the system and the Stage I cathode
chamber was made. DPressure drops across the cathode cell field and across the
entire cathode chamber (including inlet and outlet ports) checked with the

calculated design values.

Figures 6-1 and 6-2 show a typical cell instrumented and installed in the test

rig.

Several early test runs were terminated due to difficulties with the test rig.

The difficulties and the corrective action were discussed in Section 5.0.
Normal test procedure followed during parametric testing was as follows:

l. With cell isolated from rest of system, heat the cell and

humidifier to desired operating temperature.

2. Establish gas flow through humidifier while bypassing cell
cathode chamber.

3. Establish proper gas composition.

L. Switch gas flow through the cathode chamber.
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10.

11.

Turn on cell power.

Periodically determine gas composition of cathode inlet gas,

cathode outlet gas, and anode outlet gas. Measure anode gas

flow rate.

Maintain operation for a four-hour period.
Cut off cell power.

Stop cathode gas flow.

Isolate cell cavity from rest of system to maintain proper

cell water balance.

Repeat procedure for each desired cell operating point.

The direct current power supply used was not a constant current device, therefore

some of the variations in cell performance were due to variations in the cell
power applied.

6.1.1 Current Density Effect

Figure 6-3 presents the effect of cell current density on cell performasnce for
three cell operating temperatures. The current, given in amperes, is the same
value as the current density in amps/ftz, since the cell active electrode area

is one square foot. At a cell temperature of 9OOF the 30 ampere point was main-
tained for only a short period (10 minutes) because of the high cell voltage. All
the data points used are for a cathode gas flow rate based on twice the stoichio-
metric CO2 requirement at a given cell operating current. It also should be

noted that the electrolyte concentration was not identical for all runs due to

the variations in make-up from batch to batch.

6.1.2 Cell Temperature Effect

cell temperature has on cell current density for a given voltage.

Figure 6-4 is a cross-plot obtained from Figure 6-3, showing the strong effect

Similar curves

for the voltage as a function of cell temperature at a constant current can be

drawn using the data from Figure 6-3.
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6.1.3 Cathode Gas Flow Rate Effects

The cathode gas flow was normally maintained at twice stoichiometric CO, with

2
one run at a 5 x S co flow. There were however two runs made at a cathode
flow of 1 x S co.’ mage when the cell current was increased from 15 amps to 30

amps prior to increasing the cathode gas flow to match the higher current. Using
the data obtained at these additional flow ratios, Figure 6-5 was plotted to show
the effect of the stoichiometric flow ratio on cell voltage and per cent of C02
in the anode gas output. At the very low ratios, cell electrical performance
improves at the expense of the per cent CO2 transferred across the cell. The
change in cell voltage at the low flow ratio may be due to a change in electrolyte

composition as the average CO, partial pressure in the cathode cavity falls below

2

a certain critical value as 002 is scrubbed from the air by the electrolyte.

6.1.4 Carbon Dioxide Transfer

The per cent of CO, in the anode gas and the CO, transfer rate as a function of

cell current densiiy are given in Figure 6-6 foi the three cell temperatures.

The apparent increase of the CO2 transfer rate with current density between

15 and 30 ASF at lhOoF is not statistically significant. The observed 002 transfer
rate at 30 ASF has a deviation from the arithmetic mean which was twice as great

as all other observations in this test series. However, it should be noted that
the effect of increasing the current density at all temperatures was to signi-

ficantly depress the 002 transfer rate.

6.1.5 Polarization Time Dependence

Figures 6-7 through 6-15 give the polarization time dependence for the required
test conditions. Comments concerning some of the runs are given below. Where
no comments for a run are given, no further data, other than that on the graph,
is readily available to explain odd shapes in the polarization curves. As
stated, the cell current in amperes is equivalent to the cell current density

in amps/fte.

1. Figure 6-7. This was the first operating condition after the
test rig modifications were completed. An overnight run was
completed to check the rig for proper operation, resulting in

a test run just short of 24 hours in duration.
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Figure 6-8. The cell current was decreased at t = 206 minutes
to bring the current closer to the 30 ampere nominal operating

point.

Figure 6-11. As indicated on the graph, adjustments in the
cathode gas flow were made early in the run after the power

to the cell had been turned on. The steady rise in cell
voltage is due to the steady increase in the cell current
density. At t = 200 minutes the power relay controlling the
humidifier heater stuck in the on position. A rapid increase
in the cell temperature and inlet gas dew point temperature
caused a rapid decrease in cell voltage and increase in cell
current. The high dew point of the incoming gas (200°F) then
rapidly flooded the cell causing complete deterioration in cell

performance.

Figure 6-12. The large voltage fluctuations are due primarily
to the wide cell temperature changes. Control of the cell
temperature became difficult at the high power input level
at this low operating temperature (115"F). Nearing the end
of the run, the cell stabilized as better temperature comtrol

of the cell was achieved.

Figure 6-1k. After twelve minutes of operation, cell current
was decreased from 30 amps to 21 amps without change in gas
flow. Fluctuating cell temperature and inlet gas dew point
temperature caused erratic operation. At t = 185 minutes,

the cathode gas flow was adjusted to 2 x S for the 20 amp

Cco
operating level. Stable performance was achieved as proper

humidifier and cell temperatures were established.

Figure 6-15. This run was at the 5 x S flow ratio. Again it

is seen that the cell temperature (136 - 143°F) and inlet gas

dew point temperature (131.5 - l3h.5oF) varied over a considerable
range contributing to variable cell performance. The cell

current was adjusted at t = 212 minutes and t = 237 minutes.
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6.2 Stage II

The assembly of the Stage II cell was more complex than the Stage I cell due

to the recessed liquid cavity and gas diffusion plate. A gas-tight seal was
established between the recessed cavity and the gas diffusion plate while
maintaining electrical continuity. To eliminate unnecessary errors in measwring
the cell potential, a wire was attached directly to the gas diffusion plate

and passed out of the cell through one of the gas menifold outlets. Use of this
wire by-passed the problems associated with connecting directly to the cathode
end plate. The other lead for potential measurement was attached to the anode
end plate since this end plate contacts the anode directly.

Electrolyte charging of the cell was the same as with Stage I. The cell was
checked for internal sealing from cathode chamber to anode chamber and from
cathode to liquid reservoir chamber. Upon establishment of a proper seal the
cell was installed in the module and the test rig.

Normal test procedure followed during parametric testing was the same procedure
outlined in Section 6.1 for Stage I.

6.2.1 Current Density Effect

Figure 6-16 presents the effect of cell current density on cell performance for

the two cell operating temperatures. The current, given in amperes, has the

same value as the cwrrent density in amps/ftg, since the cell active electrode

area is one square foot. At a cell temperature of 122°F the highest current was

30 amperes since higher currents caused operating voltages in the region of possible
electrolysis. All the data points were obtained using a cathode gas flow rate

based on one times stoichiometric CO2 requirement at & given cell operating current.

6.2.2 Carbon Dioxide Transfer

The per cent 002 in the anode gas and the CO2 transfer rate as a function of cell
current are given in Figure 6-17 for the two cell operating temperatures. Both

the percentage and transfer rate decrease with increasing cell current density. The
point at 22.5 amperes for the 122°F cell temperature in low probably due to
variations in experimental conditions or the actual decay with time of the transfer

rate which was noted in the life testing. The 22.5 ampere point was the last
data point taken on the Stage II short term tests. -
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6.2.3 Polarization Time Dependence

Figures 6-18 through 6-23 give the Polarization time dependence for each of the

six test conditions. Operating conditions and cell operating current are also given

for each run.
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6.3 Stage III

Assembly of the Stage III cells was more difficult than either the Stage I or II cells
due to cell complexity, lack of strength in the glass fiber matrix material and diffi-
culty in installation of the tantalum wire screens used to enclose the water cavity
matrix. It was required that the tantalum screen be anchored to thin strips of tan-
talum along the screen edge for installation in the cell since the screen could not

be directly attached to the PVDC end plates.

After the assembly and charging procedures were completed, the seals between the anode
and cathode cavities and cathode and water cavities were unsatisfactory. The cell was
disassembled and reassembled with & sturdier matrix material, NORAMITE (crocidolite
mineral fiber paper). Satisfactory sealing was obtained, Table 6-1 summarizes the

short run made with this cell. The operation was not satisfactory due to the high
cell operating voltage.

Table 6-1
Stage III Cell Operation - NORAMITE Matrix

Current Voltage Anode Gas Cathode Gas T T . .
Flow 92% __§;%—6§f_— —cell humidifier—
15 amps  1.51 volts 552%?%22 97 0.5 149.5 143

A second cell was assembled again using the Whatman glass fiber matrix material. Also
all the epoxy-glass fiber board gas manifold covers were replaced with teflon sheet man-
ifold covers to prevent further problems of acid attack noted in the previous assembly,

The cell was charged and installed in the test stand after satisfactory sealing was
noted,

6.3.1 Current Density Effect

Figure 6-24 presents the effect of cell current density on cell performance for the
two cell operating temperatures. The current, given in amperes, is somewhat less than
the corresponding current density since the active electrode area for this stage is
approximately 0.83 fte. In normal operation one would maintain the cathode gas flow
rate such that close to stoichiometric oxygen flow would be obtained. However, for
the experimental program manual control of this low flow ratio would be difficult to

maintain. Therefore, the flow was maintained such that a minimum of 1.2 times stoichi-
ometric oxygen was obtained.
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6.3.2 Oxygen Transfer

The oxygen transfer rate for Stage III is presented in Table 6-2. As one would

expect the rate is not effected to a great extent by either the cell temperature
or current density in the normal cell operating range.

Table 6-2
Stage IIT - Oxygen Transfer Rate - %ﬁFEM%§E
Theoretical O2 Transfer Rate - 3.479
Cell Current Cell Operating Temperature
Amps 176°F 195°F
15 3.26 3.46
30 3.25 3.55
L5 LR 3.46

6.3.3 Polarization Time Dependence

Figures 6-25 through 6-30 give the polarization time dependence for each of

the six test conditions. Operating conditions and cell operating current are

also given for each run. Relatively smooth operation is shown in Figures
6-25 and 6-26. Explanation of results of other runs are as follows.

Figure 6-27 - Variations in current are due to drift in power supply and

changing load as cell conditions changed. When the current change became

significant, it was manually adjusted to the nominal operating point. Near

end of run both current and cell voltage were relatively stable as the cell
temperature and inlet gas dew point temperature were stabilized.

Figure 6-28 - During first 150 minutes of run, an attempt was made to control

the cathode gas flow rate at too low a level causing wide fluctuations in both

the cell current and voltage. At 150 minutes the cathode gas flow momentarily

decreased to close to stoichiometric oxygen requirement. For a few minutes the

current decreased to 9 amps while the voltage increased to approximately 1.6 volts.

At this time the gas flow was set at 1.3 times stoichiometric O2 flow to allow

for a margin of error as the flow rates fluctuates due to slight changes in
pressure drops in gas flow lines.

operation is noted.

After this change in gas flow rate stable
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Figure 6-29 - Variations in cell current and voltage were due entirely to slight
changes in cell operating conditions of temperature, inlet gas dew point and gas
flow rate.

Figure 6-30 - Performance variation for first 320 minutes are due to fluctuations
in cathode gas flow rate. BStable performance was achieved after switching to a
bottled gas mixture of 20% 0, and 80% CO, at 1.3 times stoichiometric O,.

6.4  Stage II - Stage III Coupled Test

Short duration tests were conducted with the Stage II and III cells coupled,

i.e., the anode-out gas of Stage II was used as the cathode-in gas for Stage III.
With the output of Stage IT held constant the current density in Stage III was
varied to determine the maximum purity of carbon dioxide which could be obtained
while still maintaining stable Stage III electrical performance. A rapid increase
in Stage IIT cell voltage was obtained at a cathode gas flow ratio of 1.013

times stoichiometric 02. Relatively stable performance is obtained at ratios
approximating 1.04k. Within the accuracy of the gas analysis equipment (+0.5%),
all the oxygen was scrubbed out of the cathode stream leaving essentially 100§
002 in the cathode outlet stream. Table 6.3 lists operating conditions obtained

during operation of the coupled cells.
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Table 63
Stage II - Stage III Coupled Test
Stage II Cell Stage ITI Cell
Current - 20 amps Current - 19.50 amps
Voltage - 0.833 volts Voltage - 0.980 volts
Cathode Gas In - L42% 0, Cathode Gas In - 25.7% 0,
58% co, 4. 3% co,
Cathode Gas Out - 68.5% 0, @ pgo cc STP/MIN
31.5% co, Cathode Gas Out - 100% CO, (+ 0.5%)
Anode Gas Out - 25.7% O, @ 212 cc STP/MIN
Th.3% €O, Anode Gas Out - 98.1% 0, (% 0.5%)
@ 280 cc STP @ 68.7 cc STP/MIN
MIN
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7.0 LIFE TESTING

Prior to initiation of life tests, the Stage I cell which was used in parametric
testing was disassembled in order to check for possible corrosion. Considerable
corrosion was evident, in the form of black and green deposits on the anode end
plate, on the anode, and in the matrix on the anode side. The cathode was in
excellent condition. Same damage to the cathode end plate was in evidence in the
form of breaks in the plating in the region where the matrix was compressed
between the end plates. The cathode end plate is shown in Figure T7-1.

The anode end plate, with the severe corrosion, is shown in Figure 7-2. Note

the sharp demarcation line at bottam of cell between a solid black area and

a partially blackened area. This is attributed to electrolyte standing in the
lower portion of the cell during cell operation. This pooling was avoided during
the life test by allowing the cathode gas to flow through the cell from top to
bottom, carrying out of the cell any free liquids formed by condensation.

Figure 7-3 shows the condition of the cathode after the parametric testing phase.

Due to the fact that most of the corrosion was on the anode and anode end plate,
it was felt that the higher potential in this cell region contributed greatly
to the corrosion. It was thus decided that the life tests were to be run at
those operating conditions which would be reasonable from the system standpoint
vhile maintaining minimm cell potentials. Thus all cells were to be run at

15 amperes and at the maximum temperature at which each cell had been operated
in parametric tests.

Life testing for each stage was initiated with two cells operating. The same
procedures of start-up, operation and shut-down as used during parametric testing
were followed during the life testing program.

7.1 Stage I

Stage I testing was started using one cell assembled with unused end plates
and one cell assembled with the corroded end plates which were used in the
parametric tests.

T.1.1 Cell Operation

The cell using the 0ld end plates performed poorly from the beginning of the
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test period and could not be kept on test. The performence of cell number two

is shown in Figure T.4t. Performance was erratic. The cell operation was stopped
and restarted once due to failure of the vacuum pump and once due to extreme
difficulty in dew point control of the inlet gas. The test was terminated after
152 hours of operation when the cell voltage reached 1.70 volts and could not be
decreased by dew point temperature adjustment. Figure T-5 gives a comparison of the
cell operating temperature and the cathode gas humidifier temperature.

In addition to the electrical characteristics of the cell, the transfer of 002
across the cell is important in establighing cell performance. Figure 7-6 presents
the 002 transfer rate as a function of cell operating time. Relatively stable

and high transfer rates are obtained for approximately seventy hours and then a
sharp decay in the transfer rate sets in. Satisfactory cell operation therefore
existed only out to seventy hours. Note the sharp rise in cell voltage at seventy
hours in Figure T7-4. Figure T7-T7 presents the anode gas composition and flow rate
as & function of running time.

T.1.2 Discussion of Results

In order to intelligently discuss the test results one must exsmine the cells
internally for the effects of corrosion on cell operation. The sharp breek in
cell performance at seventy hours cannot be attributed to anything other than
corrosion. It was initially believed that the erratic Stage I performance was

due to difficulties with the dew point temperature control. However, it may be
that dew point control difficulties were in fact caused by the effects of corrosionm.
If the electrolyte compositiom or concentration were markedly changed then one
would have no way of knowing what the proper dew point temperature should be in
order to maintain proper cell moisture balance. As cell operation became erratic,
it was not possible to maintain a gas seal across the cell matrix and still main-
tain a suitable cell operating voltage. This mode of operation could occur if the
electrolyte had (1) been washed out of the matrix or (2) the electrolyte had been
consumed forming an insoluable compound with the cell materials and/or feed gases.
A description of the used cell components follows.

The cathode end plate from cell number two is shown in Figure 7-8, indicating
little or no corrosion except in the area where the compressed matrix was in
contact with the plate. All gas ports and channels remained open and unrestricted.
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Both cell one and cell two anode end plates are shown in Figure 7-9. Cell
number one, on right, is badly corroded over the entire cell area. The

products of corrosion are light green in color except around the edge of the
cell and on the pins where the substance is black. The bottom half of the

cell had gn extremely large amount of the green substance. Cell number two on
the left, the newer piece, exhibits mostly a black product at cell bottom, on
pins, and around edge of cell. Some green substance is alsoc seen at very bottom
of the cell. The heavy band of corrosion at the cell bottoms is probably due to

high moisture content of cells at the bottom.

An enlarged section of cell number one is shown in Figure 7-10, The light colored
residue is light green. The black residue is seen around the edge and on the

pins. Corrosion is also seen near the O-ring groove edge.

The electrode-matrix pack from cell number one is shown in Figure T7-11, with the
electrode peeled back, anode side up. On the electrode matrix side, and in the
matrix a heavy black deposit is found, which causes the electrode to adhere to
the matrix. This black deposit is not found on the cathode or cathode side of
the matrix, The light areas on the electrode are caused by the green corrosion
product. Where the screen is pulled back, corrosion of the electrode screen

is evidenced by the large holes in the electrode screen base material. A

discussion of the identity of the corrosion product is given in Section T.2.2.
T.2 Stage II

Life testing of Stage II was initiated with a newly assembled cell and the cell
used in the parametric testing phase. After 24 hours of operation cell two
(new hardware) failed due to an internal electrical short. Probable cause for
the short is discussed in Section 7.2.2. Testing was continued using cell

number one.

T.2.1 Cell Operation

Cell voltage as a function of running time is given by Figure 7-12. During the
first twenty hours of operation the cell was inadvertently run at 7.5 amperes
rather than 15 amperes due to the installation of a new shunt prior to life

test initiation. The change to 15 ampere is accompanied by the expected increase
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in cell voltage. At 24 hours, operation was ceased in order to remove the shorted
number two cell from the module. A significant increase in the voltage of cell
number one was noted upon restart. Fram that point on the cell voltage constantly
decreased. Cause of this decrease is not known. Total running time for cell
number one was 120 hours. Cell operation was ceased due to the low 002 transfer
rate obtained at this time. The CO2 transfer rate is shown in Figure 7-13. Note
again satisfactory performance for approximately 60 hours and then a sherp con-
tinuous decreasc with operating time. Figure T7-1l4 shows anode gas composition and
flow rate as a function of operating time. Cell and humidifier temperature are
T-1

given in Figure 5.

T.2.2 Discussion of Results

The probable cause of the electrical short in cell number two can be seen in
Figure 7-16. A close-up photograph reveals a layer of plating material adhering
to the O-ring. Sufficient materiasl (plating metal) had adhered to the O-ring to
bridge the gap between metal end plates. Defective plating was the most probable
cause of this effect since it was not observed in any of the other cells. Some

corrosion products are also seen on the O-ring.

Figure 7-17 is a close-up of the gas diffusion plate from the same cell showing

the corrosion which exposes the base metal of the component.

End plates from cell number one (used in both the parametric testing and life
testing) are seen in Figures 7-18 and 7-19. As expected the cathode end plate,
Figure T7-19, is relatively free of corrosion. However, the anode end plate was not
corroded as expected. Only minor corrosion is in evidence and this is mostly in
the form of green crystals, which had not been seen in any of the other cells.

The corrosion which was seen in cell number two (operating for only 2k hours )

was much more severe and was of the black and light green type noted in all other

cells.

A close-up of the gas diffusion plate from cell number one shows the green crystalline

type of corrosion product, Figure 7-20.

The electrode-matrix pack, cathode side up, is seen in Figure 7-21. The cathode
screen has been pulled back to show the asbestos matrix. Black areas seen on
the matrix appeared to have pulled away from the cathode and are not of the

type seen on the anode side. The electrode screen retains its structural integrity.
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No explanation is offered for the continually decreasing cell voltage observed
in the life test. The decay of the COé transfer rate is attributed to formation
of corrosion products.

An attempt was made to identify the products of corrosion. Both x-ray diffraction
and spectrographic analyses were performed. In all samples the major constituents
were potassium and nickel. Appreciable amounts of calcium and magnesium were
present. The x-ray diffraction studies, yielded 50 or more discernible peaks

on the diffraction chart. The most intense lines are not readily identifiable.

Ni (0H)2 was identified as correlating with some lines but not major lines.

& -NiOOH was also possible for some minor lines. Further studies will be
required to definitely identify the compounds present. It is presently assumed
that the major corrosion product is some form of nickel carbonate or oxidized
nickel.

T3 Stage III

Life testing of Stage III was conducted with a newly assembled cell and the cell
which was used for parametric testing.

T.3.1 Cell Operation

Figure 7-22 presents the cell terminal voltage as a function of operating time

for both cell number one and two. Both cells exhibited stable performance prior
to developing an internal electrical short, as evidenced by the sharply decreasing
cell voltage and anode gas output. Cell number two, the newly assembled cell
operated for approximately 60 hours prior to indication of a short while cell
number one operated properly for approximately 170 hours. Cell number one was
stopped and restarted once due to a leak in the test rig plumbing. The oxygen
transfer rate for each cell is given as a function of running time in Figure T-23.
Anode gas composition and flow are shown in Figure 7-24. Cell and humidifier
temperature are shown in Figure 7-25.

T.3.2 Discussion of Results

The general condition of the acid cell hardware is shown in Figure 7-26. Cause
of the electrical short is evident. Each cell exhibited a charred aresa in the
PVDC material near the edge of the matrix. The matrix, Whatman GFB glass-fiber
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paper, is not physically strong, thus enabling the rough edges of the electrode
screens to penetrate the matrix and cause the electrical shorts. High currents
in the region of electrode contact caused localized heating and charring of the
PVDC plastic end plates. Note also the stain (pink-purple in color) where the
current collector tabs contact the end plates. This indicates that some gold
did come off the gold plated current collectors in localized areas.

Figures T7-27 and 7-28 show close-up views of the charred areas of cell one and
two respectively. The charring in cell number one was much more severe. Cell
number one did drop off in voltage at a sharper rate than did cell number two

indicating a much more severe short.

Post test condition of the matrix and electrodes from cell number one is seen
in the photographs, Figures 7-29 and T7-30. Figure T7-30 shows the cathode side
of the matrix and the cathode electrode, matrix side up. The anode side of
the matrix and the anode electrode, matrix side up are seen in Figure T-30.
The stain which outlines the current collector shape on the cathode side is
yellow-orange in color. This stain does not show on the anode side. Note
also the difference in appearance between the cathode and anode electrodes.

A significant amount of platinum has been lost from the cathode but not from
the anode.

Figure 7-31 shows the matrix and electrode, cathode side up, from cell number two,
exhibiting the same general characteristics noted in cell number one.
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&

| CHARRED AREAS
 ON MATING END PLATES

&

FIGURE 7-28 STAGE Ill - CELL #2, CHARRED AREAS IN SHORTED CELL

140




TRW EQUIPMENT LABORATORIES

301S IAOHLYD XIN1IYW 3a0¥1D313 “1y 113D - 111 3DOVIS 62-£ 3NOH

XIILVW ¥33dVd ¥3914
SSVTO NVWIVHM

SNIVIS
FJONVYIO MOT13IA JAOHILVD

=t

e
e
M

WNNILVTd 40 INNOWV
JOYVT V 40 AIOA 3DVAINS 3a0¥1D313




TRW EQuUIPMENT LABORATORIES

30d1S IAONV JDVd XI41¥YW 3a0¥LD313 Ly 113D - 111 3OVIS 0€-£ 3INOId

341S JAONY NO H¥va A¥IA LON
SNIVLS d3¥010D

3Q0¥103713 Ol
AONLS XILVW

V¥V A3LYOHS

142

11370




TRW/ EQuIPMENT LABORATORIES

3Q1S JAOHLVD - YDOVd XI¥1VYW 3A0¥LDITI ‘Z¢ 113D - 111 IOVIS L€ -£ 3¥INDIA

NIV1S

Ly 773D NI SV 3¥3IA3S SV LON
JONVIO MOTI3A

WNNILV1d 4O 3ON3SsEV




TRW EQUIPMENT LABORATORIES

8.0 THERMAL BALANCE STUDY

A thermal balance study was conducted to determine operating characteristics
which will yield a system having minimum weight while operating at temperatures
and electrolyte concentrations required to achieve self-regulated temperature
control. Preliminary system coolant requirements were also determined. A
final detailed thermal balance would require actual vehicle system interface

parameters,

8.1 System Description

The system used for this study is shown schematically in Figure 8-1. For the
purposes of this analysis a three stage system was used even though a two stage

system is recommended for future develorment.

Cabin air, before enetering the Stage I cathode, passes through the water vapor
exchanger where it picks up both heat and water vapor from the Stage I cathode-
out gas. In the Stage I cells the air is partially stripped of CO2 and 02,
while picking up heat primarily by water evaporation. Before exhausting the air
back to the cabin, it is cooled and dried in a condenser-separator. The recovered
water is fed to a water feed reservoir. Flow of water from the reservoir to the
Stage I water cavity is controlled by maintaining the water pressure just below
the cathode gas cavity pressure through the use of a reference gas line to the
cathode gas cavity and a spring connected to the feed diaphragm. Cooling of the
cells is accomplished by evaporative cooling in the cell, while cooling of the
cathode-out gas stream is accomplished by 1) the incoming cabin air and 2) the

condenser-separator. Vehicle coolant flows through the condenser-separator.

The Stage I anode gas is fed to the Stage II cathode. Again cell cooling is
accomplished by evaporation of water into the flowing cathode gas stream (and
anode gas stream). The cathode-out gas flows through a condenser-separator
before exhausting to the cabin. Water from the condenser-separator 1s fed to a

water reservoir which serves as a common feed to both Stage II and Stage III.

A similar flow of Stage II anode gas into the Stage III cell is used. Cooling
is again by evaporation. Water is removed from the cathode-out and the anode-
out streams in condenser-separators., All condensed water is fed to the Stage II-

III common water reservoir. Make-up water is added to the reservoirs as required.
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8.2 Selection of Operating Conditions

In order to determine system cooling requirements we must first fix the cell
operating temperatures and cell heat rejection requirements. Using the data
obtained in the parametric testing phase, we optimize the weight of each stage
as a function of current density for each stage with the cell temperature as a

parameter.

The expressions used in calculating the current required for each stage are
given below:

First Stage: [’ NIa-];}, 553 ( ) 0—?%-1\—01-; [ Q% AEE]

o, % A 1
. ~ OII
Second Stage: [NIa],. 276 ( 002(

OII-
Third Stage: NI_|&276 OII
: a CO%A
0II
where:
W = removal rate of CO, in lbs/hr.
CO2 : 2
02% Ay = percent 0, in Stage I anode out.
coe% Aot = percent CO, in Stage I anode out.
O —3 *
2% AOII percent O2 ‘in Stage II anode out
002% AOII = percent 002'1n Stage II anole out.
So = stoichiometric O2 flow ratio = 1.03.
2
The calculations are based on a 002 removal rate of 9.34 pounds per day, suf-
ficient capacity for four men., The percentages of CO, and O, out of each

2 2
stage vary with the cell current density and temperature. This data is ob-

tained from the parametric tests reported in Section 6.0. The current required
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is calculated as a function of cell current density for each stage at various
operating temperatures. Knowing the required current, the cell stack weight
and power are calculated. Table 8-1 summerizes the calculations for each stage.

TABLE 8-1

WEIGHT OPTIMIZATION OF STAGE I, II, AND ITI

Cell Cell Current Cell Cell Total

Temp °F Current Density Required, Voltage, Power, Weight,
ASF Amps Volts " Watts 1bs

90 15 5k2 - -l.220 - 660 31k

90 20 592 1.320 780 332

116 15 Loo 1.100 Lho 220

STAGE 146 30 432 1.300 560 220
1 116 40 828 1.h25 1180 421
140 15 512 0.935 476 254

140 30 h32 1.135 488 199*

140 45 532 1.250 664 242
122 15.5 154 0.996 154 83
sTacE 22 22.2'5 166 1.170 94 87
II 122 30.25 162 1.340 - 217 88
176 16.25 5k 0.770 118 69

176 29.00 15k 0.962 148 6%
176 45.00 ‘ 158 1.110 176 70

172 - 16.5 213 1.018 217 111

STAGE 172 33.5 213 1.082 232 96
111 172 52 213 1.195 255 96
195 17 213 0.968 206 107

195 35 213 1.034 221 91

195 51 213 1 1.070 228 88%
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Those operating conditions which yield the minimum weight for each stage are
indicated by an asterisk. The effect of thermal requirements were not consid-
ered in these calculations since specific temperatures and types of coolant
fluids with resultant weight penalties are not known. For the above calculations
a power penalty of 300 pounds per kilowatt was assumed.

8.3 Thermal Analysis

Based on the table above, the net heat inputs for the three stages of the CQ2
concentration system are 488, 148 and 228 watts for the first, second and third
stages respectively. Removal of heat by evaporation of water into the process
gases is feasible. The vapor transfer device used in conjunction with Stage I
will work in principle, but data is not now available on transfer rates at given
concentration gradients; therefore sizing of the device is not now possible.

Calculations for three condensers to lower dew points of various exit gases to

4L5°F show that the total coolant flow required is 1286. 1b/hr. The temperature

rise of the coolant (FC-75) is taken as 10°F and the specific heat as 0.23 BTU/lb °F.
The flow could be lowered by changing to a fluld of greater specific heat, i.e.
ethylene glycol and HQO. Such a solution might have a specific heat of O. 75 which
would require the coolant flow to be 595,lb/hr. With FC-T75, the individual flows
would be T11 1b/hr for condenser 1, 215 1lb/hr for condenser 2, and 360. 1b/hr for
condenser 3. Use of an alternate fluid could change these to 218 1b/hr, 66 1b/yr,
and 1101b/hr,

The thermal characteristics and operating conditions for the three stages, the
three condenser-separators and the vapor transfer device are summarized in
Tables 8-2 through 8-8. Assumptions used in making these thermal calculations
were:

1. Cooling is accomplished by only evaporation of water in cells.

2. Perfect gases.

3. No heat transfer with surroundings.

h, All gases saturated with vapor except inlet to condenser number 2.

5. All vapor exits via the cathode out-gas in Stage I.

Preliminary system optimization indicates that Stage I should be operated at
140°F, but the thermal balance study indicates a self-controlling system with
the first stage operating at 131°F. A change in the thermal balance is not
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warranted here since all factors of vehicle integration were not considered in
the initial weight optimization. When all factors are consideréd, such as
integration with vehicle heating and cooling loops, then & much more precise
calculation can be made, The indications at the io-ent are that a system can
be operated at conditioms, such that a reasonable mode of temperature control
is possible. The weight and power requirements of the systems are attractive
enough for further development.

A sample calculation is shown in Appendix A for Stage II and condenser 2,
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TABIE 8-2
STAGE I - THERMAL CHARACTERISTICS
CATHODE CATHODE ANCDE
IN OUT
0, 1b/hr 6.92 1b/day
co, 1b/hr 12.56 1b/day
0
N, 1b/hr
TOTAL 1b/br 1.6 140.8 19.48 1bv/day
HUMIDITY
RATIO 1b/1b 0. 0652 0.0760 0.0426
DEW POINT °F 100°F 105°F 105°F
TOTAL PSIA 10 10 13
BTU REMOVED 1665 BTU/hr
H,0 EVAP 1.52 1b/hr
CELL TEMP. 131°F
ELEC. CONC.
~ 50 WI% 1(,‘,co3
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TABIE 8-3

STAGE II - THERMAL CHARACTERISTICS

CATECDE CATHCDE ANCDE
IN ouT
0, 1b/day 6.92 4,52 2.40
co, 1v/day 12.56 3.20 Y. 36
TOTAL 1bv/day 16.48 7.72 11.76
HUMIDITY
RATIO 0.0426 0.646 0.572
DEW POINT °F 99°F 172°F 172°F
TOTAL PSIA 11 11 1
BTU REMOVED 504 BTU/hr
H,O EVAP. 10.9 1b/day
CELL TEMP. 176°F
ELEC. CONC. ~ 20 WI% lcaco3
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TABLE 8-k
STAGE III - THERMAL CHARACTERISTICS
CATHODE CATHODE ANCDE
IV oUT
0, 1b/day 2..40 0.08 2.32
co, 1bv/day 9.36 9.36 -
TOTAL 1b/day 11.76 9.4k 2.32
HUMIDITY
RATIO 0.572 1. 88 2.58
DEW POINT °F 169°F 166°F 186°F
TOTAL PSIA 10.5 10.5 10.5
BTU REMOVED 18,600 BTU/day
H,0 EVAP. 16.42 1b/day
CELL TEMP. 195°F
ELEC. CONC. ~32,5 W% stou
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COMPOSITION

HOMIDITY
RATTO

DEW POINT °F

TOTAL PSIA

TABLE 8-5

VAPOR. TRANSFER DEVICE - THERMAL CHARACTERISTICS

GAS FROM
CABIN

AIR

141.6

0. 00934

hs5°p

10

GAS TO
STAGE I

AIR

141.6

(o]
L]
5)
N
\
n

100°F

10

153

GAS FROM
STAGE I

AIR

140.8

105°F

10

GAS TO

CONDENSER 1
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TABLE 8-6

CONDENSER 1 - THERMAL CHARACTERISTICS

GAS IN GAS OUT COOLANT IN COOLANT OUT
FLOW LB/HR 140.6 140.6 711 711 (FC-T5)
DEW POINT °F 66F 45°F _ _
°F DIFF.
OUT-IN 21 10
PRESSURE 10 PSIA
COMPOSITION ~ AIR ~AIR
HUMIDITY RATIO 0.0201h4 0. 0093k
Q, BTU/BR 1635
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FLOW LB/DAY

HUMIDITY RATIO

DEW POINT

' PRESSURE

%

co, 1LB/DAY
TEMP. DIFF. °F

Q, BTU/DAY

TABLE 8-7
CONDENSER 2 THERMAL CHARACTERISTICS

GAS IN GAS IN GAS OUT
CATHCDE ANCDE
STAGE II STAGE III
7.22 2.32 9.5k
0.646 2.58 0.00768
172°F 186°F L5°F
11 PSIA 10.5 PSIA 10 PSIA
h.52 S 2.3%2 6.84
3.2 3.2
11,911

155

COQLANT

215 1b/hr
(FC-75)

10



TRW EQUIPMENT LABORATORIES -

FLOW LB/DAY

(co,)

%
HUMIDITY RATIO
- DEW POINT °F
PRESSURE
TEMP. DIFF. °F

Q, BTU/DAY

TABLE 8-8
CONDENSER 3 - THERMAL CHARACTERISTICS

GAS TN GAS our
9.4k 9.4k

9.36 9.36

0.08 0.08

1.88 0.00610
186°F 45°F

10 PSIA

19,909

156
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360 1b/br (FC-T5)
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9.0 CONCLUSIONS

Based on the experimental results obtained, the following conclusions are

believed to be justified:

1.

9.

10.

The actual process used for concentrating carbon dioxide studied
under this contract is feasible.

Performance of all three stages meets or exceeds performance
predictions based on past tests with TRW plastic laboratory cells.

Wide variations in cell operating conditions, for all three stages,
can be tolerated without irreversible cell performance degradation.

Gas flow rate to the cathode of each stage need not exceed the
following values for satisfactory performance:

a. Stage I - 2 x SCO
2
b. Stage II - 1x SCO
2
c. Stage III - 1.03 x S0
2

Operation of the process is feasible at elevated cell temperatures.

Operation of all three cell stages is feasible at current densities
exceeding 45 ASF. The upper limit at elevated cell temperatures
has not been determined.

Thermal analysis indicates cooling of each stage by water evaporation
from a liquid reservoir is possible.

The present materials used for Stage I and IT are not suitable for
long term operation. This includes the end plates and the electrodes
(nickel base screen).

Non-parous gold plated components appear to be satisfactory for long
term Stage III cell operation.

A better matrix material for long term Stage III cell operation is
required.

Loss of platinum from the Stage III cell cathode appears to be a
long term operating problem.
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12, A detailed materials study program is required to:
a., Establish the mechanisms for the corrosion processes
observed,

b. Provide materials for suitable long term operation.
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APPENDIX A

THERMAL BATALCE CALCULATION

The following sample calculation is presented to illustrate the technique used in
determining the thermal operating characteristics of the various components of a
three stage (302
resentative system components. Operating conditions are to be determined which

concentration system. Stage 1II and condenser 2 were chosen as rep-

allow the cells to operate at a temperature and electrolyte concentration such that
cell cooling and electrolyte concentration control are accomplished within the cell
by water addition and evaporation. The same general procedure of these calculations
apply to the analysis performed in Section 3.1.

Stage 11 - Cell Stack

Figure A-l presents a flow schematic for the Stage II cells,

$ (.20 1v/aey co, 9
2 SAT. 7.72 1b/day
4,52 1b/day 0,
Stage IT 9.36 1b COz/day

: SAT.
o Q= 148 ——+—°- 2,40 1b 0,/dey
2 P, = 11 psia

12.56 1b COz/day

1 6.92 1b oz/day
1b 5.0
@y =, = 0.0426 Tops

Fp

F
B
)

FIGURE A-1 STAGE II FLOW SCHEMATIC
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"where

P

T total pressure

humidity ratio
Amount of heat removed:
Q = 148 = 504 BTU/hr = 12,100 BIU/day

Heat Removed _ 12 , 100
Change in Enthelpy — Ahp - (1122)y)40p-15

12,100

Watér Evaporated =

Water evaporated is equal to sum of water removed or added by each gas stream.

Therefore

10.9 1bv/day = wpg, + whﬁgh - @) Mg,

where Mg = mass flow rate of gas.
Humidity ratio of gas flows are given by
Mol Wt H20 Vapor Pressure of water
= x -
Mol Wt gas Total Pressure - Vapor Pressure

N R

2

Mg, 11-Pv
1
where Mg, = = 36,1
3.2 . 4,52
T2 x My T 772 x 32
w B B s B
2% 3.1 II-Pv ~ 498 11-Pv
and
w_l8,Pv)__18 BV _ o BV
= Mgh‘ll-PV -~ 40,8 11-pv ~ ° 11-Pv
where Mg, = : 1 = 40.8
L = 9,36 2.40 *

11.76 x &%t 11.76 x 32

Water removed
lo . 9

- 0.0426 x 19.L8

0.498 x (7.72), 1oy + 0.4b2 x (1176) 1
fromﬁage I

160
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11.72 = 11 o (3.8% + 5.19)
1.5 ='111>fpv

Pv = 14,29 - 1.3 PV

Pv = 6.21

From steam tables
Dew Point = 172°F

An electrolyte concentration of approximately 20 wt. percent 1(2003 will have a dew
point of 172°F at a temperature of 176°F.

Since Pv = 6.21, we find

6.21 ib 5.0
“2 = 0.2#98 X m = 0.6)4-6 -fb—g-gg

and

6.21 0
wh = 0.4k42 x E—— = 0.572 Tﬁ—gg—

Condenser 2

Condenser 2 removes water from both the cathode ocutlet gas of Stage II and the anode
outlet gas of Stage III. The flow schematic for condenser 2 is shown in Figure A-2.

10 psia Cond. —l

10.5 psia  2.32 1b/day

{IIL 1—— 2 3 186°F D.P. = 2.58
' 1

H0 11 psia 7T.22 1b/day
-5 44 172°F = 0.646

'

Coolant
AT = 10°F

FIGURE A-2. CONDENRSER 2 FLOW SCHEMATIC
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I:1L = WASS flow of lf.Lquid . .
Q = whgh, - WMgh) - @Whg.h, + Mhy
w, = ia; 5 - s GRS - 0.0
vhere Mg, = 755 - 3.32 = 349
9.5k X 36.1 * 9.5k x 32
Q = 0.00768(9;5u)1081 - 0.646(7.22)1135.~ 2.58(2.32)1140.5 + ﬁthL
ML = -0.00768(9.54) + 0.646(7.29 + 2.58(2.32) = 10.733

fl

M b 10.733(13)

Q =79 - 5290 - 6840 + 140 = -11,911 BIU/day
11,911 _
Coolant Flow (FC-75) = -5 %10 x 28 - 215 1b/hr
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