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The present report, although not intended for publication, will never-
theless present theoretical results which have been obtained regarding the
study of sensitization learning of human observers in acoustical tasks.

These results, in particular, show that it is possible to obtain performance
measures from human subjects which enable the experimenter to keep track, on
a trial by trial basis, of the level of learning achieved by the subject. Be-
fore turning to the details of these resulté, however, we shall discuss the
theory of statistical adaptation devices. Most of the basic results presented
here regarding these devices is known in a small but rapidly growing litera-
ture (consisting mostly of technical reports) written by engineers and com-
munication scientists., Their primary goal appears to be, ultim;tely, the con-
struction of adaptive receivers for specialized detection tasks, ath as
reception of radar signals or human voice patterns. Since our problem as
psychologists is to provide an adequate descriptive theory for human auditory
learning, our organization of the material is somewhat novel, and, we hope, a

contribution to our objective.

I1I. PRELIMINARIES

The nature of most psychoacoustical tasks permits the consideration of
the problem of aéaption from a slightly less general vantage point than might
be required for other tabks. Coincidentally, it is for tasks of a similar

nature thét the theory of adaptive detection devices is most highly developed
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for reasons of mathematical tractability.
A block diagram of a typical psychoacoustical detection experiment appears
in Figure 1. The experimenter, on trial j, chooses (possibly with the help of

a random device) one gignal alternative Si from a finfte cet {G;{ y 1=0,1,2,.464,

m,
The experimenter The observer The observer
presents one of processes the makes a set of
several possible input waveform. judgmental
1~ "ﬁ waveforms in a —> ™ responses regard- |7~
background of ing the waveform.
noise. )

Figure 1. The typical detection experiment.

of alternatives. The (voltage or acoustical) waveform realization si(t).

0 £taeT, of alterx:native Si superimposed on a sample of noise n(t) (usually
chosen from an infinite set of alternatives) is then presented to the ob-
server for processing. After processing the input (the kinds of processing
depend upon the observer's capability for various kinds of processing and
his objective in processing, i.e., his '"goal function"), the observer makes
a set Rj of judgmental responses. Usually éj is a subset of a well-defined
predetermined set of possible responses. The experimenter may also give the
observer feedback following his responses. The dotted arrow in Figure 1 in-
diactes that the selection of & signal alternative S1 on trial j may be at
least partially observer-controlled in the sense that it depends on the se-

quence of previous responses Rl' R2.....Rj_1.
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We suppose that the random function n=n(t) is finitely representable in
the interval 0<t «T and has a continucus dietribution density f(n)., Each
signal waveform ai(t). i=1,2,...,m, also has a density (or probability mass
function) denoted g;(s). The event Sy 18 taken to represent "no signal' so
that l°=l°(t)=0(t)=0 for all t. Thus, go(u) = $(S - 0) and Pr(s=0 l S°)=1.
where § 18 the impulse function*.

In a typical‘"Yes-No" experiment, the signal alternative set is {SO,S£§ ’
and the possible responses on any trial are R; = "No—signal was not present"
and R1 = "Yes -—— signal was present.'" The input waveform may be described by

a random function x defined by

n+ 8 if S

(1) n 1f Sy is selected
= is selected.

1

The distribution density h of x given S, is h(x Sp) = £(x), while given S

1.
the density of x is the convolution
h(xlSl) = f({x-8)g(s)ds
Jd
where g(s) = gl(s) and 3, 18 the space of possible signal functions s. 1f, on
any observation trial, the probability of selecting S1 is p and the proﬂability
of So is g=1-p, then the marginal density of x is the mixed density
(2) h(x) = ph(xlSl) + qh(x]so)
= ;1$f(x-s)g(s)ds + qf(x).
va
Birdsall (1963) has shown, under quite general conditions, that if a

correct response (R0 given S, or R, given Sl) is "preferable” to an incorrect

response (RO given Sl or Rl given SO), then the observer should base his de-

cision on the value of the likelihood ratio f(x) = h(xlsl)/h(x Sy) of the input

* Xot+ €

S(x-xo)-_- o it X o and S(!-Xo)= 1 for all €>0.
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waveform sample x. That is, given a constant KB which depends upon the ob-
server's goal function, his decision rule should be
1f A(x)z (6 ; make response R, ;

(B) 1f f(x) 416 ; make response Rj.
As will be shown later, there are problems associated with the empirical
implementation of this decision rule in a learning task for the observer
(human or otherwise).

Using the previous definitions of the densities involved, we may write
the likelihood ratio in the form

h(x ‘Sl) gf(x-a)g(s)ds

- Y2 .
(3 L) = h(x [S,) - £(x)

The denominator is independent of the variable of integration so that

(3") Lx) = | 0(x] 8rg(s)ds
2

where ,Q(x‘ s), the conditional likelihood ratio given s, has been introduced

by letting

.

f(x - 8)

(4) ,ﬂ(x's) = 00

In the case where there is only one waveform s(t) = s(t) = a (possibly
different) constant for each value of t, 0 < t £ T, the distribution density g

is the impulse function, i.e., g(s) S(Sét)-glé)) which has unit mass con-

s(t). From (3') and (4) the likelihood

Jz(‘xls) S(s - 3) ds

= _e(xls)

f(x - 8)
f(x)

centrated at the single function s

ratio becomes

£(x)

(5)




~a=Ga-
In (5) § represents the constant function s(t), whereas x is a random function
with values x(t) in the observation interval, 0<t<T,

A device may compute £(x) from (3') when the signal is known statistically
(SKS) or from (5) when the signal is known exactly (SKE). The performance will
be optimal on a wide selection of goal functions using decision rule B, Such
a (non-empirically realfzable) device is called the '*ideal observer" (Tanner
and Birdsall, 1958). Any device which computes a function,[*(x), strictly
monotone with #(x), can also perform optimally by using decision rule B.
Therefore, we shall also call a device which computes {*(x) an ideal observer.
The one-dimensional set of numbers constituting the range «f an @*(x) will be

called an ideal decision axis.

Any device which uses a decision rule of the same form as B will also
have 4 one-dimensional decision axis defined by the range of the decision
function /' (x) computed by the device. Notice that a decision axis will still
be defined 1f f' is a random function, andtg', the cutoff value on the ¢' de-
cision axis, is a random variable. Thus the range of any (sub-optimum and
possibly random) decision function in the sense of decision rule B will be

called an observer's decision axis. Later we shall be concerned with the

statistical relation between an ideal and the observer's decision axes for
particular sub-optimum devices.

We turn now to a discussion of degradations in the prior knowledge
available to the observer. In order to limit the present discussion some-
what, we assume throughout the remainder of the report that the noise density
f(x) is known to all observers under consideration. The distribution density

for signal g(s) used in the derivation of (3') may be called the environmental

density of the signal in order to distinguish it from some density g' (s) which

characterizes an observer's prior opinion regarding the distribution of the
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signal. The likelihood ratio §'(x) obtained with the prior density g'(s),

using (3'), is

(6) K (x) = SZE(XIQ)%'(S)dS

Z
where it is clear that_ﬂ(x‘ 8) 1s unchanged from its definition in (4) be-
cause we have assumed that f'(x) = f(x) for all observers.

The interpretation of g'(s) as the prior density for signal {s not the
only possible interpretation. Birdsall (1960), under the conditions that the
environmental density g(s) = $(s-%), and that the mean of g'(s) is §, assumed
that g'(s) arose as a result of a faulty memory on the part of the observer.
With the further assumption that the observer knows his memory distribution,
Birdsall arrived at (6) for the observer's likelihood ratio. We note that’
if that observer did not know his memory distribution, but rather believed a

sample 8' from his memory to be the true signal function s, then his likeli-

hood ratio function would be described as in (5):

f(x-5')
f(x)

(7) Hix})s') =

Now if s' has a distribution g'(s'), as might be the case for an observer

~ with faulty memory of which he is unaware, the expected likelihood ratio

computed by the observer would be

8) £ alsn)] = jmlmg-(,-)d.-.
2
By using decision rule B with the random decision function,ﬁ(x]s'), it is the

range of the expected likelihood ratio in (8) rather than that of (7) which

T



new observation trial. More precisely, given a sample waveform x
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defines the observer's decision axis.
The preceding discussion may be summarized by giving two definitions:
Regardless of the environmental signal density g(s), (i), 1{f an observer computes
the likelihood ratio,f'(x) according to (6) by using a prior distribution g'(s),

we say that the gignal is gpecified statistically (SSS), and (ii), {f an ob-

server computes the conditional likelihood ratio of (7) by using a prior density

g'(s8) = §(s - s8'), then we say the gsignal is specified exactly (SSE). (The

terminology used herein is an expansion of the terminology used by Tanner and
Birdsall, 1958). The ideal observer has g'(s) = g(s), so that for it, SSS is
equivalent to SKS and SSE is equivalent to SKE. Descriptive models of the human
observer in detection tasks have been constructed by using the assumption of SSS

or SSE.

I1I. ON THE THEORY OF ADAPTIVE DEVICES FOR DETECTION OF UNCERTAIN WAVEFORM
P ATTERNS IN NOISE.
A discrepancy in performance between a sub-optimum observer and the jdeal

observer may depend upon the difference in the prior signal densities g'(s)

and g(s). A Bayesian learning device with prior density gj(s) on trial j

would attempt to improve its knowledge of the environmental density after each

on trial )

3
the posterior density gj+1(s) is given by

h(xj\s)gj(s)

gj+1(s) =
j~h(xj|s)gj(s)ds
x

(9)

where the density h(x|s) is to be identified. From (1) and the comments there-

after, we infer that h(xll.So) = f(x) and that h(xls.sl) = f(x-s). Therefore,



we may write

(10) h(x|a) = ph(xls.Sl) + qh(xls.So)

pf(x-8) 4+ qf(x).

Further, we see that the unconditional density of x on trial j must be

(11) h,(x) jh(x\s)g (s)ds
] 5 J

J- (pf(x-8) « qf(x)]g, (s)ds
bM ]

p J‘ f(x-a)gj(s)da + qf(x)
2

{ .
where the final line is obtained from the fact that f£(x) is independent of

s and the assumption that j; gj(s)da = 1.
p A

Corresponding to (6) we define

(12) _lj(x) = Slﬁ(xls)gj(s)ds.
' pA

Now, by using (10), (11), and (12), the posterior distribution density of

(9) may be written as

h(les)gj(s)

h,(x,)
_ 17
pf(xj -8) + qf(xj)

(13) = 9;(s)
A 3
L? J;;(xj - s)gj(s)ds + qf(xj)

- r’e(les)+ A ‘[

LIJ(XJ)* ot

.3“'(555

where o = q/p. Equation (13) was obtained by Fralick (1965) and generalized

ey - —g W« T gew wr = ww WA m = =
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to the case of M signal alternatives by Hancock and Patrick (1965). The
importance of (13) lies in the fact that {f the signal space :2 "is finite,
then the posterior distribution over 2: may be updated by this iterative
procedure, trial by trial, with a constant finjte numher of operations per-
formed on the input waveform.

Another approach to finding a finite solution to (9) {8 to approximate
the density h(x}|s) given in (10) by a density h*(x]s) which admits sufficieﬁt
statistics. An approximating density h*(x|s) for which sufficient statistics exist,
usually will also have a "natural" conjugate distribution de;sity which may be used
as the prior density g'(s) (cf. Raiffa and Schlaifer, 1961). When the prior
distribution is the natural conjugate of h*(x|s), the parameters of the prior
may be combined with the sufficient statistics of h*(x{s) to yield the parameters
of the posterior density g"(s). In this case, g'"(s) belongs to the family of
densities to which g'(s) belongs. If the sufficient statistics of h*(x|s) are
of fixed dimensionality and g'(s) has a finite number of parameters, then the

application of Bayea' rule in giving

h*(x[s)g' (8)

jhh*(x]s)g'(s)ds
Z

(14) g"(s) =

will require a fixed finite set of operations on an input vector x for any trial j.
To {llustrate these ideas, let us suppose that f(x) is normal with mean

vector/ﬁlf and covarjiance matrix ;ff. i.e., f(x) = fN(xl/uI‘ ;{f). Then it

is easy to ahow that f(x-s8) = fN(xIIU%-s. :éf). Further h(x,s) has mean

/u‘h :/.lf 4+ ps and covariance matrix ih = if + pqsst’ where s® i{g the trans--

pose of the vector s. Here we could let the density h*(x|s) = fN(xL,uh. ih) be

the approximation to the density h(x|s). It appears difficult to find the natural
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conjugate densify to h*(x\s) because of the occurrence of the ss® term in 7éh'
However, 1f only the mean of h*(xls) depended upon the unknown s, & natural
conjugate would be the normal distribution g'(s) = fN(s‘ztg" ;ﬁg,). If we
modify h*(x\s) to use the expectation of ss" under the prior g'(s) instead of
sst itself, then g'(s) could serve as the natural conjugate of the modified

h*(x|s). Implementing this idea, we find

Eig,(sat) Jn(sst)fN(sl’;g,. ?fg,)da

= t
Zo * A M

so that h*(x|s) modified becomes fN(xL/ﬁf ;fh*)’ where

ih*: if* ?"Lgv"/gvﬂ;n

upon substitution for sst by its expectation. Thus (14) becomes

. fN(x,/u‘h . ih* )fN(BI/(g'. is')

J‘ fN(xl/L{h,iw‘) fN(sl/u—g'. ig‘ Yds
2

It is shown in Raiffa and Schlaifer (1961), with suitable normalization of the

(15)

g"(s) =

parameters of g'(s), that g"(s) = fN(a[/ag,,. ig,,) is also normal with mean

vector

(16) /(%n = ( z;‘t + i-h'*)—| (t;'/‘g' + #k‘l—*" /‘h)

and covariance matrix

an o= (i;‘, « 2707

P
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so that g"(s) and g'(s) are in the same family as asserted.

It is not claimed that the particular approximation of h(x|s) given by h*(x|s)

above is a good one, However, in the apec{al case where the environmental den-
sity g(s) = §(s-8) and the distance “,L% -'EI) is small, & suboptimum device

using the adaptation procedure given by (15) may converge to the ideal observer

with SKE.
A more detailed analysis of approximations to h(x|s) and an evaluation of
the performance of the resgulting suboptimum Bayesian adaptation devices are

contemplated for investigation as a part of our remaining research grant period.

IV. PERFORMANCE MEASURES FOR LEARNING DEVICES

We have been considering optimum and suboptimum detection devices with a
fixed conception of the environmental signal density which is represented by the
prior density g'(s). A performance discrepancy between a suboptimum observer
and the ideal observer can be measured basically in two ways. The first is in
terms of the expected loss for not performing optimally; this loss is determined

By the payoffs prescribed by a goal function and the operating characteristics

L

of the device. A special case in which higher than minimum-risk is achieved

by a detection device is that in which the device knows g(s), so _{(x) is com-
puted as for the ideal observer, but the cutoff value p in using decision rule B
is not chosen optimally. A non-optimal 6 could result from either incorrect
assessment of the goal function or from not knowing the énvironmental value p

of the probability of signal occurrence. Shuford (1964) derived the optimal
Bayesian learning device for estimating p when f(x) is the binomial probability
mass function and the observer has a Beta prior distribution on p. We have
shown that when the experimenter tells the observer after each observation

trial whether noise alone or signal-plus-noise occurred, the sample value x

]

P e ————— B -r -
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observed during trial j is irrelevant to the improvement of knowledge about p.
This result was implicit in Shuford's work. Fralick (1965) has considered the

optimal adaptive device for estimating p when f(x) is normal and p has one of a

finite number of possible values.

Although a measure of departure from minimum risk may be obtained for any
suboptimum device, it may not be a particularly sensitive measure for compara-
tive purposes (cf. Green, 1960). A departure from minimum risk may be caused

either by using a suboptimal likelihood ratio {'(x) or a suboptimal cutoff value,

or both.

The second class of ways in which a performance discrepancy may be measured
is cutoff-free in the sense that the index of performance does not depend upon

the particular leaed in decision rule B.

We define Pr(C) to be the probability that a sample .?S of likelihood ratio
1
when S1 occurs, drawn independently of a sample,[s of likelihood ratio when S0
0
occurs, will be the greater of the two; i.e.,

Pr(C) = Prz,es :max(,es.fs)z.
1 1 0

This probability is a measure of sensitivity of the detection device because

Pr(C) measures the effectiveness of the decision variable.,((x) in discriminat-

ing between the two hypotheases S1 and SO. To compute Pr(C), we let L(x) =

ix l.,e(x) ﬁ,ﬂg so that the density k(. | Si) of _{ given S1 may be found

by putting

(18) k(2 \Si’a = dK( 2| 5,) = dy h(x lSi)dx.
Lx)

- — e et Tmom =

—— e - "
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The distribution K( ¢ ISi) is the integral

A
(19) COX(R) s = S‘k(plsl)dﬂ .

“
By using (18) and (19), Pr(C) is given by

oo
(20) Pr(C) = S KCL| s k([ s)dL .
) -
It is shown by Swets and Green (1966) that Pr(C) is the area under the Receiver
Operating Characteristic (ROC) curve for a device which computes A (x).
When both densities k(.ﬁ\SL), i=0, 1, are Gaussian (20) may be simplified
to the expression
i
C#GQ
(21 Pr(c) = £ (L6l = 2.

— Qo

where d' i{s the (normalized) mean of ’€S « Thus, we;may interpret d' as a
,measure of sensitivity, independent of t;e decision éutoff F,, of an optimum
detection device when SKE and the noise density is Gaussian. Since d' may be
found for any device for which Pr(C) is known (or can be estimated), it is a
conanical measure of sensitivity through which detection may be compared re-
‘gandlesa of the distributions of x given SO and Sl'

It has been customary in the psychological literature to define the ef-
ficiency fl of a device ®{with respect to the ideal observer as

(22) - ' d’ e
22 Yl (d'e / op )

t.

(See Tanner and Birdsall, 1958). We now give an interpretation of ’2 :
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Theorem, 1If f(x) is Gaussian and both a detection device o and the ideal
observer have SSE, then the efficiency of © is the square of the correlation

coefficient between its decision axis and that of the ideal observer.

The development leading to the proof of the theorem will be made somewhat

more general by considering two arbitrary devices <« and (3 » and then special-

izing one of them to be the ideal observer. When both signal and noise functions

are Fourier series band limited in the same way over the interval [0,T] the

sample functions x and s may be represented as the vectors x = (xi, XopesepX )

and 8 = (81. 32.....su). respectively, where u = 2WT equally spaced components,

and W is the bandwidth of the series (Peterson, Birdsall, and Fox, 1954). Since
the noise is Gaussian (and let us assume white, without loss of generality) and

SSE, {i.e., 8ot (s) = S(s - sd)‘ 8(5(8) = 3 (s - up ), we may write

v !

(2
(23) h(x |sy) = 7

(1TTN —Hxp (3% % 7‘?]
B B0

Wy a
) = - 1% ,
hy (x lsl ;LUN> )

where N = noise power = Jﬁ‘w 8 Z n; > and & = o ,p . The observers'
el

decision axes may be taken as the logarithm of likelihood ratios “4}(X)

The decision variables may be written by using (7) and (23) as

' hy (X1S)) | : [ *
(24) e* = lnf, = In AR Sl LA be Sav.——-—— ZS .
y 4 WIEN) N ¢ aN I

e B

o

e e e —— . . w— —— e - am ey yewe WS
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T uw
where EV = J’ Ls ¥ (©))3de = (1/72w) = sa-r { 18 the effective energy of
o

L'zl

the specified signal sy, and No = N/W i8 the noise power per unit bandwidth.

When noise alone is present, x, = n, and the mean of _j; is

.
(25) Ay, = ESO Ly = 5 2 Elnds,, — _EN{
¢ o

= -—_— EZ’

No

and the variance of ﬂ;_ 1s given by

a \]*
(26) o = &, Loy ] - LESO(ZJBJ
= 2 Ey/NO.

When signal plus noise is pregent x, = n, 4+ s,, and the mean of j; is

i i i
L g(ni+5)s,,- Ex
, ¥\ = N 4+ s:'2s8,. - 14
(27 = = ¢ .
i (27) /"‘71 és|(¢£3> N o a0 No
L
= ~L <. - ET
N (.ZM_ 'scSXL Ne
- 2Ry _ By
NO Np
where
. T | wo_ <
(28) - - - 4 Z_ S '
Ry= j‘a(c)gt)dt_ aw & [
o

has been introduced. The variance giveﬁ S1 may be shown by similar calcu-
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lation to be the same as the variance given SO:

2 -8
(29) Ty, =0;‘= REy /N_.

Intuitively, we expect (29) because of SKE; therefore 8 contributes no var-

iability to x.

The sensitivity of a device ¥ when SKE is defined by

dl

Ay, - Ay,

%o

so that for SSE

a
(30) (d'y )

o :
LRy _ Ey _E > (;».Ear
]O N°—< Nbl; No

2
2R b/ /E ?NO.

For ¥ the ideal observer By = s so that (30) becomes

(31) (d' )% = 2E3/EN = 2E/N
opt o o

where the known signal energy
. T | w o
— a <
(32) E = [ B(t)] dt = W Z SL .
o

By using (22), (30) and (31), we find that when SKE and a device

has SSE the efficiency of ol is

ot
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/ * 2
(33) N = (-——C—J,fi—> - 2R« /g E - R«
o opt EwNo /NS CwE

To complete the proof of the theorem, we compute the covariance betwmen 0*
and ,,?A’ (which will be the same for S and Sl’ congidering the reasoning

following (29)). We have

0:((3 = gso (,,Q; 1;> —‘/L('o(o/bl'ﬂo

(34)  w
= ) _
2 o S<i S Elning) + E_L‘Ngél- Ew Eg
o o
i uw
= N & S
= 2 Ru
No
where
" 2 sus
(35) Ro((j, = fsu(t)s/c(t)dc = -Rv- Z- w; Sa¢ .

(o]

Then by using (26) and (34) the square of the correlation r between the

“p

decision axes of ¢ and g is

(36) (xug ) = ?;‘}%;_ = (%ﬁ)%éNidB(lsz

E Ep

When p is the ideal observer RvF'—' Ry and Eﬂ = E , s
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&
# = _Ru
Eu E

(37)

(r« opt

aqd

by referring to (36) and (33).

V. SUMMARY OF COMPLETED AND PROPOSED RESE ARCH OBJECTIVES.
1. Adaptation Using Bayes' Rule.

The form of h(x|s) given in (13) enables an observer to adapt sequentially
to a signal of a fixed, but unspecified, waveform, when approximations to h(xls)
are given. As indicated above, we shall continue to investigate approximating

densities to h(xls) and evaluate their applicability to the problem of human

pattern discrimination.

2. Trial-by-trial Estimates of Efficiency.

The definition of Pr(C) given in IV allows direct estimates of an observer's
efficiency via equations (21) and (22). 1If trial-by-trial estimates of the like-
ilihood are given by the observer, Pr(C) = Pr( VQS‘= max (,és‘ 3 ,ggso )) can
be estimated directly and used to estimate the observer's efficiency by a trend
analysis. Further, when the observer can be considered as performing a linear
operation on the input waveform, a rank order correlation coefficient can be
computed between the observer's likelihood ratio judgments and the output of
an electronic device designed to compute a close approximation of the true
likelihood ratio (the device is nearly an ideal observer). As shown by the
theorem in IV, this correlation may be used to estimate the observer's effi-

ciency.

By using both of these efficiency estimution procedures, it is possible to

e e e et S ¢

— v ——— ——— —

— s —-
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make deductions regarding the linearity of the observer's operations on the
input.
3. Supervised Learning VS Non-Supervised Learning.

The discussion in the present report has emphasized non-supervised learning
of the signal waveform pattern. If supervised learning is considered, a great
simplification in the form of the ideal adapting observer is obtained. For some
types of experimental situations, it may be realistic to apply the theory of
adaptive devices in supervised learning tasks. In tasks for human observers
where it is not clear whether or not the experimenter's supervision is effective,
it is possible to compare the two kinds of models of adaptive devices to attempt
to ascertain the effectiveness of the supervision. We expect to review the ex-
isting literature concerned with experiments comparing supervised and non-super-
vised learning in psychoacoustical detection tasks.

4. Correlation Between Observers.

We have worked out a procedure under the aegis of this grant, but not report-
ed here, for estimating the correlation between observers (ideal or otherwise)
which uses only the contingency tables obtained from o;servers serving in the same
experimental task. The degree of linear agreement between two observers, which
does not depend upon their individual agreement with the ideal observer, may be
found by computing a partial correlation between observers' decision axes. The
partial correlation may be used to measure interobserver agreement at various
stages of learning. We intend to pursue this line of reasoning with the objective
of providing a way of ascertaining whether or not different observers use the same
type of processing on the input to achieve similar levels of adaptation.

5. Experimental Designs.

In addition to the theoretical efforts being made under this grant, we have
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been exploring the feasibility of constructing an electronic device to
egstimate the ideal observer's likelihood ratio on a trial-by-trial basis.
Such a device appears possible at moderate cost, and we are proceeding
with 1ts design. The output of this device may be compared with observ-
ers' estimates of their own deci{sion variable to obtain measures of ef-
ficiency as outlined in paragraph 2.

Finally, we are invesgtigating the feasibility of various particular
experimental degigns which incorporate the preceding ideas and may be used

in the further study of psychoacoustic learning{
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