# AN ANALYTICAL APPADACH TO <br> SOLUTION OF TWO POINT EDUNDARY CONDITION PRDELEME 

 IN DPTIMAL GEIDANCESUMMARY REPORT

headquarters,
hational meromatics and space anmimistantion
and
ELECTRONICS RESEARC: CEM CAMERIDGE, MASSACMHSETTS CFSTI PRICE(S) $\$$

Hard copy (HC) $\qquad$
Microfiche (MF) $\qquad$
f 653 Jiv5 5

PREPARED UNDER CONTRACT NASW-1165


## NORTHROP space laboratories

$$
\text { TELEPHONE } 337.0580
$$

AN ANALYTICAL APPROACH TO SOLUTION OF TWO-POINT BOUNDARY
CONDITION PROBLEMS IN OPTIMAL GUIDANCE

```
* * * * * * * *
```

Research \& Analysis Section Technical Memorandum No. 189
C. A. Gilchrist*
J. W. Newkirk*
W. J. Gray
P. L. Rhodes
S. S. Hu
F. W. Roberts
A. D. Merville
R. Silber
L. Morrow*
M. L. Thompson*

* Report Authors

June 1966

Prepared for:
HEADQUARTERS, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AND

NASA ELECTRONICS RESEARCH CENTER, CAMBRIDGE, MASS.

Under Contract NASW-1165


## TABLE OF CONTENTS

Section Title Page
SUMMARY ..... iv
ITHE PATH-ADAPTIVE GUIDANCE CONCEPT1-1
II AN ANALYTICAL APPROACH TO OPTIMAL GUIDANCE FUNCTIONS ..... 2-1
2.1 CALCULUS OF VARIATIONS AS THE OPTIMIZATION METHOD ..... 2-1
2.2 THE TWO-POINT BOUNDARY CONDITION PROBLEM ..... 2-1
2.3 AN ANALYTICAL APPROACH TO SOLUTION ..... 2-2
III AN ANALYTICAL APPROACH TO OPTIMAL ASCENT TO CIRCULAR ORBIT 3-1
3.1 PROBLEM FORMULATION ..... 3-1
3.2 APPROACH TO SOLUTION ..... 3-4
3.3 SOLUTION OF THE RESULTING ALGEBRAIC EQUATIONS ..... 3-9
SOLUTION FOR STEERING FUNCTION ..... 4-1
4.1 INTRODUCTION ..... 4-1
4.2 USE OF NOMINAL DATA ..... 4-2:
4.3 DEVELOPMENT OF THE ROTS EQUATIONS ..... 4-3
4.4 SOLUTION OF THE ROTS EQUATIONS ..... 4-5
4.5 ERROR ANALYSIS ..... 4-6
4.6 DISCUSSION OF RESULTS ..... 4-12
V SOLUTION FOR TIME-TO-CUTOFF FUNCTION ..... 5-1
5.1 INTRODUCTION ..... 5-1
5.2 CHOICE OF SERIES FOR $\triangle \mathrm{t}$ ..... 5-1
5.3 REVERSION OF VELOCITY SERIES ..... 5-2
5.4 ITERATED REVERSION FOR $\triangle t$ ..... 5-5
5.5 ERROR ANALYSIS ..... 5-7
NORTHROP
TABLE OF CONTENTS (concluded)
Section Title Page
IV TERM ELIMINATION AND SIMPLIFICATION ..... 6-1
6.1 SIMPLIFICATION OF THE ROTS EQUATIONS ..... 6-1
6.2 SIMPLIFICATION OF THE U AND V TIME DERIVATIVES ..... 6-3
6.3 SIMPLIFICATION OF THE $\triangle$ EXPRESSION ..... 6-4
6.4 SIMPLIFICATION OF THE SUCCESSIVE SUBSTITUTION METHOD ..... 6-5
VII COMBINATION OF STEERING ANGLE AND TIME-TO-CUTOFF EXPRESSIONS ..... 7-1
VIII DESCRIPTION OF THE TOPSY COMPUTER PROGRAM ..... 7-1
IX DISCUSSION OF THE FORMAC COMPUTER LANGUAGE FOR SYMBOLIC COMPUTATIONS ..... 8-1
X CONCLUSIONS AND RECOMMENDATIONS ..... 9-1
IX REFERENCES ..... 10-1

## SUMMARY

This report summarizes accomplishments under Contract NASW-1165, "Analytical Research in Guidance Theory", for the period of May 1965 to April 1966. It is intended to be a complete, self-standing document. Therefore, material is repeated here which can be found in a previous Northrop report, "Analytical and Mathematical Studies for Direct Solutions for Path-Adaptive Guidance Functions" (ref. 1). For those familiar with that report and nomenclature, or the guidance problem itself, the first three sections of this report may be ignored.

Subsequent sections of this report contain detailed discussions of findings and related conclusions and suggestions. Major conclusions derived from the study may be summarized as follows:

- This analytical approach to optimal guidance functions has been verified as mathematically feasible. Answers obtained from this approach agree with those from numerical methods.
- An analytical solution (quasi-closed form) of the nonlinear algebraic equations in the Lagrange multipliers is possible.
- The guidance functions which result from the analytical approach can be rapidly evaluated; with due consideration of their (present) complexity. Time required on the IBM 7094 computer is only a few seconds.
- The elimination of insignificant or non-essential terms in the analytical formulas is difficult and time consuming. What can be dropped from the formulas for one case cannot always be dropped for another. This study area will require much more effort to set down standards for the elimination of insignificant terms.
- The critical expression for time remaining to cutoff is best derived from the final velocity condition specified for the trajectory. A series of a relatively large number of terms is needed for flights of over 300 seconds or for large altitude changes. Increasing the number of terms in this series causes a large amplification of the complexity of the guidance function.
- The availability of fairly reliable and easy to use computer languages for algebraic manipulations and analytical differentiation contributes to the feasible undertaking of a large-scale analytical approach to problems such as this. On a long-term basis, human blunders are minimized, thus saving thousands of man-hours for worthwhile actitivies. However, there are still many shortcomings in the use of these languages.

During the period of performance reported, several presentations of progress and results were made to the NASA Electronics Research Center at Cambridge, Massachusetts, and Headquarters, NASA, at Washington, D. C. A paper was also presented at the Third Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics in New York in January 1966 (ref. 2).

Work currently in progress is primarily a continuation and refinement of what is reported herein. No major extensions of this approach to other cases are contemplated for the next few months.

## SECTION I

## PATH-ADAPTIVE GUIDANCE CONCEPT

For a rocket vehicle to be steered optimally from some initial point to some prescribed terminal condition requires that there be a means to determine the thrust direction (and possibly magnitude) such that the vehicle will reach the desired terminal condition by a path which makes some quantity an extremum. In cases of powered flight for transferring from some specified point to an orbit, it is desired to use a minimum of propellant.
"Path-Adaptive" guidance has been proposed as a general and versatile approach to optimal space flight guidance (refs. 4 and 5). The Path-Adaptive concept is quite simply stated: The local state of the vehicle is sensed at some instant during flight, and based on this information an optimal steering direction is computed. The vehicle is continually adapting according to the local "environment" by seeking the optimal path from its present conditions to the terminal conditions. The "environment" or local state can be described by the state variables of position, velocity, etc.

No attempt is made to return to any standard or reference trajectory. A new path is determined solely on the local state and required terminal conditions, which implies that the optimal guidance problems must be repeatedly solved during powered flight. Because these computations take place on-board the vehicle, it is desirable to have general solutions for the optimal guidance which are amenable to implementation with on-board computers.

If one is willing to trade precision and flexibility for "immediate" results, there are solutions available. One such solution comes from a purely empirical approach. For a given class of missions (trajectories and vehicles), a family of numerical solutions to the guidance problem is obtained. These solutions are then synthesized into a functional model which is supposed to characterize the usual behavior of that family of solutions. The model is based on "curve-fitting" procedures and results are valid only for cases near those from which the solution is constructed. This approach is discussed in references 6 and 7.

Another approach is to make assumptions about the physical aspects of the guidance problem such as "flat earth" and "small range angle". Under these restrictions, solutions to the guidance problem come about more easily, The approximations are then improved or upgraded by various schemes to yield approximate solutions.

However, it is implicit in the Path-Adaptive concept that a general approach be used, and solutions should be obtained which are free of approximations and restrictions.

This report summarizes the results obtained to date of an investigation of an analytical approach to Path-Adaptive guidance functions. The particular problem considered has been relatively simple, yet realistic. The mathematical approach is entirely analytical and without any gross approximations. The results shown are quite general and are a first step toward the solution of more complicated optimal guidance problems.

## NDRTHROP SPACE LABORATORIES <br> TM-292-6-038

## SECTION II

## an analytical approach to optimal guidance functions

### 2.1 CALCULUS OF VARIATIONS AS THE OPTIMIZATION METHOD

The optimal guidance problem to be considered can be stated as follows: "Given a single-stage vehicle at some initial position and velocity, find the path which transfers the vehicle to a specified terminal condition and which requires a minimum amount of propellant",

Use of the calculus of variations does not lead directly to a solution; instead, a set of necessary condfions to be satisfied by the solution is developed. Among these necessary conditions is a set of differential equations, known as the Euler-Lagrange equations, which are related to the equations of motion for the vehicle. The control variables are those which may be deliberately changed during flight to control the vehicle's performance and thrust direction. In addition to these conditions there are others which are related to the specified initial and terminal conditions on the flight and are known as transversality conditions. The sets of differential equations involve the state variables and control variables.

### 2.2 THE TWO-POINT BOUNDARY CONDITION PROBLEM

The guidance problem is now expressed as a set of necessary conditions to be satisfied by the unknown guidance function. The control variable (the angle associated with thrust direction, for example) will appear (implicitly) in the differential equations. The equations can be integrated, subject to the boundary
conditions, to obtain a value for the control variable. In such cases the differential equations are subject to boundary conditions at both the initial and final values of the independent variable. Usually some of the initial or final values of the control variables are not known and must be guessed. A trial integration of the differential equations is then carried out until the boundary conditions are approximately satisfied. The integration is then repeated, using adjusted guesses, until the boundary conditions are satisfied within some required tolerance. This procedure is, of course, numerical and is sometimes called "shooting" which probably best describes the process.

### 2.3 AN ANALYTICAL APPROACH TO SOLUTION

The approach described above is essentially a trial-and-error method designed to compute numerical solutions. Path-Adaptive guidance demands answers repeatedly during the flight. The time required to carry out the numerical solution to the two-point boundary value problem is too slow for purposes of guidance, even if there is assurance of convergence within a reasonable number of iterations. It is therefore desirable to have an analytical expression for the guidance function which can be evaluated at any time from measured values for the state variables.

The analytical approach used was to expand the terminal conditions of the flight in Taylor series about an interval of time, which is the flight time. The coefficients of these series may then be evaluated in terms of the known values of the state variables at the initial time. The differential equations are substituted into the coefficients of the Taylor series to form an algebraic
system of equations from which the control variable may be obtained. The solution of these algebraic equations for the control variable is in terms of the coefficients of the series expansions for the terminal conditions, and these coefficients are in terms of quantities which can be measured at the initial time.

The details of this analytical approach are more clearly described in Section III in which the approach is used to solve for the guidance function for optimal ascent to circular orbit.

## SECTION III

AN ANALYTICAL APPROACH TO OPTIMAL ASCENT

TO CIRCULAR ORBIT

### 3.1 PROBLEM FORMULATION

The problem may be stated as follows: "For a single-stage rocket vehicle at some initial position and velocity, what is the thrust direction required to transfer it from that point to a circular orbit, such that the propellant expended is a minimum?" The assumptions regarding the vehicle and its flight are itemized as follows:

- Out of atmosphere flight
- Non-rotating, spherical earth
- Thrust magnitude and mass flow rate are constant
- Trajectory and final circular orbit are coplanar.

The equations of motion for the vehicle are, in first-order form:

$$
\begin{align*}
& \dot{\mathrm{u}}=\frac{\mathrm{F}}{\mathrm{~m}} \sin \chi-\mathrm{V}_{\mathbf{x}}  \tag{1}\\
& \dot{\mathrm{v}}=\frac{\mathrm{F}}{\mathrm{~m}} \cos \chi-\mathrm{v}_{\mathrm{y}}  \tag{2}\\
& \dot{\mathbf{x}}=\mathrm{u}  \tag{3}\\
& \dot{\mathrm{y}}=\mathrm{v} \tag{4}
\end{align*}
$$

where the angle $X$ is the steering angle (control variable) and is measured from the launch vertical to the local thrust direction as shown schematically in Figure 3-1. The terms $V_{x}$ and $V_{y}$ are the $x$ and $y$ components of the gravitational acceleration.


Figure 3-1. DEFINITION OF STEERING ANGLE

The Euler-Lagrange equations for this problem are:

$$
\begin{align*}
& \dot{\lambda}_{1}=-\lambda_{3}  \tag{5}\\
& \dot{\lambda}_{2}=-\lambda_{4}  \tag{6}\\
& \dot{\lambda}_{3}=\lambda_{1} v_{x x}+\lambda_{2} v_{x y}  \tag{7}\\
& \dot{\lambda}_{4}=\lambda_{1} v_{x y}+\lambda_{2} v_{y y}  \tag{8}\\
& 0=\lambda_{1} \cos x-\lambda_{2} \sin x \tag{9}
\end{align*}
$$

Equation (9) yields

$$
\begin{equation*}
\operatorname{Tan} X=\frac{\lambda_{1}}{\lambda_{2}} \tag{10}
\end{equation*}
$$

Further requirements are that

$$
\begin{gather*}
\lambda_{1}^{2}+\lambda_{2}^{2}=1  \tag{11}\\
\lambda_{1} v-\lambda_{2} u+\lambda_{3} y-\lambda_{4} x=0 \tag{12}
\end{gather*}
$$

must hold at the initial point of the flight. These two equations will be called the "Scaling" and "Transversality" equations, respectively.

The terminal conditions on the flight are given as three functions which describe a circular orbit.

$$
\begin{array}{ll}
\mathrm{F}_{1}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{R}_{\mathrm{co}}^{2}\right)_{c o}=0 & \text { "Radius" } \\
\mathrm{F}_{2}=\left(\mathrm{u}^{2}+\mathrm{v}^{2}-\mathrm{v}_{\mathrm{co}}^{2}\right)_{c o}=0 & \text { "Velocity" } \\
\mathrm{F}_{3}=(\mathrm{xu}+\mathrm{yv})_{c o}=0 & \text { "Orthogonality" } \tag{15}
\end{array}
$$

where the subscript "co" indicates a value at cutoff time. These functions are given names because they are often referred to in the following parts of this report.

Equations (10) and (11) imply that

$$
\begin{align*}
& \sin x=\lambda_{1} / \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}  \tag{16}\\
& \cos x=\lambda_{2} / \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}} \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\lambda_{1}\right)_{0}=\sin x_{0} \text { or } x_{0}=\sin ^{-1}\left(\lambda_{1}\right)_{0}  \tag{18}\\
& \left(\lambda_{2}\right)_{0}=\cos x_{0} \text { or } x_{0}=\cos ^{-1}\left(\lambda_{2}\right)_{0} \tag{19}
\end{align*}
$$

where the subscript " 0 " indicates a value at the initial time, $t_{0}$.
Therefore a solution for one of the Lagrange multipliers ( $\lambda_{i}$ ) is a solution for $X_{0}$. The solution must satisfy equations (1) through (9) for any time. At the initial time, equations (11) and (12) must be satisfied, and equations (13) through (15) must be satisfied at the terminal time.

The terminal time with respect to the initial time is unknown. Denoting this unknown time as $t_{c o}$ and the initial time as $t_{0}$, define

$$
\Delta t=\left(t_{c o}-t_{0}\right)
$$

### 3.2 APPROACH TO SOLUTION

It can be seen that a solution for one of the multipliers as an expression explicitly in terms of the state variables (evaluated at initial time) and the
vehicle and mission parameters such as $\dot{m}, F, R_{c o}$, and $V_{c o}$ is the desired PathAdaptive guidance function.

$$
\lambda_{i}=F\left(x, y, u, v, m, F, \dot{m}, v_{c o}, R_{c o}\right)_{0}
$$

or

$$
\begin{equation*}
x=G\left(x, y, u, v, m, F, \dot{m}, v_{c o}, R_{c o}\right)_{o} \tag{20}
\end{equation*}
$$

To obtain this expression, four simultaneous algebraic equations in the four unknown Lagrange multipliers are developed. The multipliers occur explicitly and their coefficients are in terms of the variables shown in equation (20).

Two of the four equations needed are already available; they are the scaling and transversality equations, equations (11) and (12). The other two are obtained from equations (13) through (15) in the following manner:

Equations (13) through (15) are expanded in Taylor series about the interval $\Delta t=\left(t_{c o}-t_{0}\right)$. These three terminal conditions are then expressed in terms of initial conditions as

$$
\begin{align*}
& F_{1}=\sum_{n}^{0, p} \frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(x^{2}+y^{2}-R_{c o}^{2}\right)_{0}(\Delta t)^{n}=0  \tag{21}\\
& F_{2}=\sum_{n}^{0, p} \frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(u^{2}+v^{2}-v_{c o}^{2}\right)_{0}(\Delta t)^{n}=0  \tag{22}\\
& F_{3}=\sum_{n}^{0, p} \frac{1}{n!} \frac{d^{n}}{d t^{n}}(x u+y v)_{0}(\Delta t)^{n}=0 \tag{23}
\end{align*}
$$

The coefficients of $\Delta t$ in equations (21) through (23) are evaluated at $t_{0}$, but the value for $\Delta t$ is not known.

If equation (22), for example, is written as the finite series or polynomial,

$$
\sum_{n}^{0, p} A_{n}(\Delta t)^{n}=0
$$

the unknown $\Delta t$ may be solved for in terms of the known $A_{n}$. The technique for obtaining an analytical expression for $\Delta t$ is known as "series reversion" or "series inversion". The mechanics of this procedure are given in reference 8 and further discussed in Section $V$. Reversion of equation ( $22^{\prime}$ ) for $\Delta t$ yields

$$
\begin{equation*}
\Delta t=\sum_{n}^{0, q} \mathrm{~B}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}} \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
& z=\frac{v_{c o}^{2}-\left(u^{2}+v^{2}\right)_{o}}{2(u \dot{u}+v \dot{v})_{o}} \\
& A_{1}=1 \\
& A_{2}=\left(u \ddot{u}+v \ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right) / 2(u \dot{u}+v \dot{v}) \\
& A_{3}=\left(\frac{1}{3} u \dot{u}+\frac{1}{3} \dot{v} \ddot{v}+\dot{u} \ddot{u}+\dot{v} \dot{v}\right) / 2(u \dot{u}+v \dot{v}) \\
& B_{1}=1 \\
& B_{2}=-A_{2} \\
& B_{3}=2 A_{2}^{2}-A_{3} \\
& \dot{D} \\
& \cdot
\end{aligned}
$$

Tables 3-1 through 3-3 list the expansions of equations (21) through (23). An expression for $\Delta t$ in terms of variables which can be evaluated at the initial time has now been obtained and can be substituted into the two series given by equations (21) and (23). Now, $\Delta t$ no longer appears explicitly in the equations.

The result of the substitution reduces equations (21) through (23) to two equations.

$$
\begin{align*}
& F_{1}=\sum_{n}^{0, p}\left[\frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(x^{2}+y^{2}-R_{c o}^{2}\right)\left(\sum_{n}^{0, q} B_{n} z^{n}\right)^{n}\right]_{0}=0  \tag{25}\\
& F_{2}=\sum_{n}^{0, p}\left[\frac{1}{n!} \frac{d^{n}}{d t^{n}}(x u+y v)\left(\sum_{n}^{0, q} B_{n} z^{n}\right)^{n}\right]_{0}=0 \tag{26}
\end{align*}
$$

These two equations can be put in explicit terms of the Lagrange multipliers by repeated substitutions of equations (1) through (8); and together with the scaling and transversality equation they form a system of four algebraic equations in the four multipliers.

$$
\begin{align*}
\sum R_{i j k \ell} \lambda_{1}^{i} \lambda_{2}^{j} \lambda_{3}^{k} \lambda_{4}^{\ell} & =0 \text { from equation (25) } \\
\sum Q_{i j k \ell} \lambda_{1}^{i} \lambda_{2}^{j} \lambda_{3}^{k} \lambda_{4}^{\ell} & =0 \text { from equation (26) }  \tag{28}\\
\left(\lambda_{1}^{2}+\lambda_{2}^{2}-1\right) & =0 \text { from equation (11) } \\
\lambda_{1} v-\lambda_{2} u+\lambda_{3} y-\lambda_{4} x & =0 \text { from equation (12) }
\end{align*}
$$

where $i+j+k+\ell=0,1,2, \ldots$ and $R_{i j k \ell}=f\left(x, y, u, v, m, F, \dot{m}, R_{c o}, V_{c o}\right)$ and similarly for $Q_{i j k \ell}{ }^{\circ}$

Equations (25) and (26) are put in the form shown in equations (28) by putting the Taylor Series coefficients in equations (21) through (23) in terms of the multipliers. This involves a large amount of algebra, and the end result is a polynomial-type expression (in the multipliers) for each time derivative
of $u$ and $v$ up through the nth order. As an example of this, consider the first three terms of the expansion of equation (21)

$$
F_{1}=\left(x^{2}+y^{2}-R_{c o}^{2}\right)_{0}+2(x u+y v)_{0}(\Delta t)+\left(x \dot{u}+y \dot{v}+u^{2}+v^{2}\right)_{0}(\Delta t)^{2}+\ldots
$$

From equations (1) and (2), the $\dot{\mathbf{u}}$ and $\dot{\mathbf{v}}$ terms are:

$$
\begin{aligned}
\dot{\mathrm{u}} & =\frac{\mathrm{F}}{\mathrm{~m}} \sin x-\mathrm{V}_{\mathrm{x}} \\
\dot{\mathrm{v}} & =\frac{\mathrm{F}}{\mathrm{~m}} \cos x-\mathrm{V}_{\mathrm{y}}
\end{aligned}
$$

With equations (16) and (17) these become

$$
\begin{align*}
& \dot{\mathrm{u}}=\frac{\mathrm{F}}{\mathrm{~m}} \frac{\lambda_{1}}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}}-\mathrm{v}_{\mathrm{x}}  \tag{29}\\
& \dot{\mathrm{v}}=\frac{\mathrm{F}}{\mathrm{~m}} \frac{\lambda_{2}}{\sqrt{\lambda_{2}^{2}+\lambda_{2}^{2}}}-\mathrm{v}_{\mathrm{y}} \tag{30}
\end{align*}
$$

at any time. For time $t_{0}$, equation (11) applies and the $\dot{u}$ and $\dot{v}$ become

$$
\begin{aligned}
& \dot{\mathrm{u}}_{0}=\frac{\mathrm{F}}{\mathrm{~m}} \quad \lambda_{1}-\mathrm{V}_{\mathrm{x}} \\
& \dot{\mathrm{v}}_{0}=\frac{\mathrm{F}}{\mathrm{~m}} \quad \lambda_{2}-\mathrm{V}_{\mathrm{y}} .
\end{aligned}
$$

Higher order derivatives of $u$ and $v$ are obtained by differentiating equations (29) and (30) and applying equation (11) after the differentiation to evaluate the formula at $t_{0}$. Equations (5) through (8) are applied to eliminate time derivatives of the multipliers. The $\lambda$ coefficients are in terms of $F$, $m$, 员, $x$,
$y, u$, and $v$. When all $n$ orders of these derivatives have been obtained they may be substituted into equations (24) through (26) and then brought to the form shown in equations (28). A considerable amount of labor is required to obtain these latter equations.

### 3.3 SOLUTION OF THE RESULTING ALGEBRAIC EQUATIONS

Equations (28) are nonlinear. It is desired to have an analytical expression for the unknown multipliers in terms of their coefficients, so that an expression of the form shown in equation (20) is obtained.

A method for the solution of these equations was developed which yields an analytical solution. It has been tested numerically and compares well with conventional numerical methods, and a proof of its validity has been given (ref. 9). For simplicity, the method is called "Successive Substitutions". It is best illustrated by an example.

Suppose it is required to solve the equations

$$
\begin{aligned}
& J_{1}=a_{10} x_{1}+a_{01} x_{2}+a_{20} x_{1}^{2}+a_{11} x_{1} x_{2}+a_{02} x_{2}^{2}+\ldots \\
& J_{2}=b_{10} x_{1}+b_{01} x_{2}+b_{20} x_{1}^{2}+b_{11} x_{1} x_{2}+b_{02} x_{2}^{2}+\ldots
\end{aligned}
$$

Let an approximate solution for $x_{1}$ and $x_{2}$ be given by

$$
\mathbf{x}_{1}^{(1)}=\frac{\left|\begin{array}{ll}
J_{1} & a_{01} \\
J_{2} & b_{01}
\end{array}\right|}{\left|\begin{array}{ll}
a_{10} & a_{01} \\
b_{10} & b_{01}
\end{array}\right|} \text { and } \mathbf{x}_{2}^{(1)}=\frac{\left|\begin{array}{ll}
a_{10} & J_{1} \\
b_{10} & J_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{10} & a_{01} \\
b_{10} & b_{01}
\end{array}\right|}
$$

This "first approximation" obtained from linear terms only is then substituted into the second-degree terms, and the higher degree terms are ignored. This gives

$$
\begin{aligned}
& J_{1}^{(1)}=J_{1}-\left[a_{20} x_{1}^{(1)^{2}}+a_{11} x_{1}^{(1)} x_{2}^{(1)}+a_{02} x_{2}^{(1)^{2}}\right]=a_{10} x_{1}+a_{01} x_{2} \\
& J_{2}^{(1)}=J_{2}-\left[b_{20} x_{1}^{(1)^{2}}+b_{11} x_{1}^{(1)} x_{2}^{(1)}+b_{02} x_{2}^{(1)^{2}}\right]=b_{10} x_{1}+b_{01} x_{2}
\end{aligned}
$$

and again the linear terms are solved to obtain a "second approximation".

$$
\mathbf{x}_{1}^{(2)}=\frac{\left|\begin{array}{cc}
J_{1}^{(1)} & a_{01} \\
J_{2}^{(1)} & b_{01}
\end{array}\right|}{\left|\begin{array}{ll}
a_{10} & a_{01} \\
b_{10} & b_{01}
\end{array}\right|} \text { and } x_{2}^{(2)}=\frac{\left|\begin{array}{ll}
a_{10} & J_{1}^{(1)} \\
b_{10} & J_{2}^{(1)}
\end{array}\right|}{\left|\begin{array}{ll}
a_{10} & a_{01} \\
b_{10} & b_{01}
\end{array}\right|}
$$

In general, the ( $k+1$ ) st approximation is obtained by treating the linear terms as unknowns and substituting the $\mathrm{k}^{\text {th }}$ approximation into all other terms up through the ( $k+1$ )st degree. Any order "approximation" can be displayed in an analytical form.

This technique was applied to equations (28), and good results were obtained. Before it could be applied, however, the determinant of linear terms in the multipliers had to be made non-zero. This was done by judicious substitutions of equation (11) to ensure that linear terms in all four multipliers would occur explicitly in the radius and orthogonality equations. The scaling equation was expanded in a binomial series to the sixth degree in $\lambda_{2}$,

$$
\begin{aligned}
& \text { NORTMREP SPACE LACORATORES } \\
& \qquad \lambda_{1}=\left(1-\lambda_{2}^{2}\right)^{\frac{3}{2}}=1-\frac{1}{2} \lambda_{2}^{2}-\frac{1}{8} \lambda_{2}^{4}-\frac{1}{16} \lambda_{2}^{6} .
\end{aligned}
$$

Because the angle $X$ usually runs from around $70^{\circ}$ to $140^{\circ}$, the series is quite accurate (for the number of terms taken) around $90^{\circ}$ because $\lambda_{2}$ is small.

This method for solving the algebraic equations is fairly simple. It is based on the fact that the multipliers are all much smaller than their coefficients, and these coefficients remain about the same magnitude while products of the multipliers become progressively smaller in magnitude as their degree increases.

Table 3-1. SERIES EXPANSION FOR RADIUS EQUATION

$$
0=F_{1}=\sum_{n}^{0,6} \frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(x^{2}+y^{2}-R_{c o}^{2}\right)_{o}(\Delta t)^{n}
$$

OR

$$
\begin{aligned}
& F_{1}=\sum_{n}^{0,6} \bar{A}_{n}(\Delta t)^{n} \\
& \bar{A}_{0}=\left(x^{2}+y^{2}-R_{c o}^{2}\right)_{0}
\end{aligned}
$$

$$
\bar{A}_{1}=2(x u+y v)_{o}
$$

$$
\bar{A}_{2}=\left(x \dot{u}+y \dot{v}+u^{2}+v^{2}\right)_{0}
$$

$$
\bar{A}_{3}=\left(\frac{1}{3} x \ddot{u}+\frac{1}{3} y \ddot{v}+u \dot{u}+v \dot{v}\right)_{0}
$$

$$
\bar{A}_{4}=\left(\frac{1}{12} x \ddot{u} \dot{u}+\frac{1}{12} y \ddot{v}+\frac{1}{3} \dot{u} u \dot{u}+\frac{1}{3} \dot{v} \dot{v}+\frac{1}{4} \dot{u}^{2}+\frac{1}{4} \dot{v}^{2}\right)_{0}
$$

$$
\bar{A}_{5}=\left(\frac{1}{60} \times \stackrel{I V}{u}+\frac{1}{60} y v^{\text {IV }}+\frac{1}{12} u \ddot{u}+\frac{1}{12} \ddot{v} \ddot{v}+\frac{1}{6} u u \ddot{u}+\frac{1}{6} \ddot{v} \ddot{v}\right)_{0}
$$

$$
\bar{A}_{6}=\left(\frac{1}{360} \times \stackrel{V}{u}+\frac{1}{360} y \stackrel{V}{v}+\frac{1}{60} \stackrel{\text { IV }}{u}+\frac{1}{60} \stackrel{\text { IV }}{v}+\frac{1}{24} \check{u} \stackrel{\ddot{u}}{0}\right.
$$

$$
\left.+\frac{1}{24} \ddot{v} \ddot{v}+\frac{1}{36} \ddot{u}^{2}+\frac{1}{36} \ddot{v}^{2}\right)_{0}
$$

Table 3-2. SERIES EXPANSION FOR VELOCITY EQUATION

$$
0=F_{1}=L_{n}^{0,6} \frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(x^{2}+y^{2}-R_{c o}^{2}\right)_{0}(\Delta t)^{n}
$$

OR

$$
\begin{aligned}
& F_{1}=\sum_{n}^{0,6} \bar{B}_{n}(\Delta t)^{n} \\
& \bar{B}_{0}=\left(u^{2}+v^{2}-R_{c o}^{2}\right)_{0} \\
& \bar{B}_{1}=2(u \dot{u}+v \dot{v})_{0} \\
& \bar{B}_{2}=\left(u \ddot{u}+v \ddot{v}+u^{2}+v^{2}\right)_{0}
\end{aligned}
$$

$$
\bar{B}_{3}=\left(\frac{1}{3} u \ddot{u}+\frac{1}{3} v \dddot{v}+\dot{u} \ddot{u}+\dot{v} \ddot{v}\right)_{0}
$$

$$
\bar{B}_{4}=\left(\frac{1}{12} u \stackrel{\text { IV }}{u}+\frac{1}{12} v{ }^{\text {IV }}+\frac{1}{3} \ddot{u} \ddot{u}+\frac{1}{3} \dot{v} \dddot{v}+\frac{1}{4} \ddot{u}^{2}+\frac{1}{4} \ddot{v}^{2}\right)_{0}
$$

$$
\overline{\mathrm{B}}_{6}=\left(\frac{1}{360} \stackrel{V I}{u}+\frac{1}{360} v{ }^{V I}+\frac{1}{60} \dot{u} \stackrel{V}{u}+\frac{1}{60} \dot{v} v v^{V}+\frac{1}{24} \ddot{u} \stackrel{I V}{u}\right.
$$

$$
\left.+\frac{1}{24} \ddot{v} \stackrel{I v}{v}+\frac{1}{36} \cdot \ddot{u}^{2}+\frac{1}{36} \cdot \ddot{v}^{2}\right)_{0}
$$

Table 3-3. SERIES EXPANSION FOR ORTHOGONALITY EQUATION

$$
\begin{aligned}
& 0=F_{1}=\sum_{n}^{0,6} \frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(x^{2}+y^{2}-R_{c o}^{2}\right)_{0}(\Delta t)^{n} \\
& \text { OR } \\
& F_{1}=\Gamma_{L_{n}}^{0,6} \bar{C}_{n}(\Delta t)^{n} \\
& \bar{C}_{0}=(x u+y v)_{0} \\
& \bar{c}_{1}=\left(x \dot{u}+y \dot{v}+u^{2}+v^{2}\right)_{0} \\
& \bar{C}_{2}=\left(\frac{1}{2} \times \ddot{u}+\frac{1}{2} y \ddot{v}+\frac{3}{2} u \dot{u}+\frac{3}{2} v \dot{v}\right)_{o} \\
& \bar{C}_{3}=\left(\frac{1}{6} \times \ddot{u}+\frac{1}{6} y \ddot{v}+\frac{2}{3} u \ddot{u}+\frac{2}{3} v \ddot{v}+\frac{1}{2} \dot{u}^{2}+\frac{1}{2} \dot{v}^{2}\right)_{0} \\
& \overline{\mathrm{C}}_{4}=\left(\frac{1}{24} \times \mathrm{u}^{\text {IV }}+\frac{1}{24} y \stackrel{I V}{v}+\frac{5}{24} u \ddot{u}+\frac{5}{24} v \stackrel{\sim}{v}+\frac{5}{12} \ddot{u} \ddot{u}+\frac{5}{12} \dot{v} \ddot{v}\right)_{0} \\
& \bar{C}_{5}=\left(\frac{1}{120} \times \stackrel{V}{u}+\frac{1}{120} y \stackrel{V}{v}+\frac{1}{20} u \stackrel{I V}{u}+\frac{1}{20} v \stackrel{I V}{v}+\frac{1}{8} \dot{u} \ddot{u}+\frac{1}{8} \dot{v} \ddot{v}\right. \\
& \left.+\frac{1}{12} u^{2}+\frac{1}{12} \ddot{v}^{2}\right)_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{7}{240} \dot{v} \stackrel{I v}{v}+\frac{7}{144} \ddot{u} \ddot{u} \cdot \frac{7}{144} \ddot{v} \ddot{v}\right)_{0}
\end{aligned}
$$

## SECTION IV

SOLUTION FOR STEERING FUNCTION

### 4.1 INTRODUCTION

So far, the basic analytical approach to the guidance problem has been given. In Section III, when the $\Delta t$ expression was obtained by reversion and. then substituted to get equations (25) and (26), a natural division of the study was possible. Instead of carrying through all the algebraic substitutions inmediately, the study was divided into two parts. One part was to investigate the $\Delta t$ expression with the use of true values for the multipliers. The other part was to study the solution for the multipliers with the use of true values for $\boldsymbol{\Delta t}$.

When satisfactory solutions for each sub-problem had been accomplished, the algebraic expressions for $\Delta t$ and those used for the multipliers would be combired. If the combination is done first, it is inconvenient to carry out any appreciable analysis. For this reason, the substitution of the $\Delta$ t expression was postponed until both problems could be analyzed independently, One series for $\Delta t$, valid for a certain class of trajectories, was chosen for substitution, However, this selection is not as accurate as would be desired for long flight times. These results are discussed in Section VI.

In this section the results of the study of the equations used to obtain the multipliers are summarized. The analysis shown here is based on equations where true $\Delta t$ values are assumed, The $\Delta t$ studies are reported in Section $V$.

### 4.2 USE OF NOMINAL DATA

Before proceeding further, it should be made clear how nominal data is used to test the guidance formulas. First, a nominal flight is computed numerically by the methods described in Section 2.2. An initial point is chosen, and the circular orbit radius is specified along with the vehicle's thrust, specific impulse, weight, etc. The differential equations are then integrated, and a print-out of the numerical results is obtained. Among the quantities of interest printed are the multipliers, steering angle, mass, position, velocity, acceleration, etc. These are printed at two-second intervals so that a time history of these quantities is available. This set of data is called a "nominal" trajectory.

Now, using the data for position, velocity, mass, and the cutoff and vehicle parameters at any point on this nominal, the analytically derived guidance formulas may be numerically evaluated and the analytically predicted values compared with those predicted by the nominal at the same point. From one nominal time history a number of cases can be obtained by testing the guidance formulas for a sequence of time points beginning at the start of the nominal trajectory and going up until near the cutoff time. The nominal data is used strictly for comparison, not for generation of any guidance formulas.

Generally the nominal data is regarded as exact, but in fact it is not. It is not known what errors might exist in the nominal values, but they should be very small. Thus, nominal values and those predicted by analytical formulas which disagree in the neighborhood of one percent or so may be essentially the same values.

A computer program named "TOPSY" was used to process this nominal data and make necessary comparisons between nominal and analytically predicted values.

Further details on this program are given in Section VIII.

### 4.3 DEVELOPMENT OF THE ROTS EQUATIONS

Equations (28) are known as the "ROTS" equations because they come from the Radius, $\underline{O}$ rthogonality, Transversality, and Scaling equations. The velocity equation was used to solve for $\Delta t$, Depending upon which series was used to obtain the $\Delta t$, there were two other systems of equations possible, "VOTS" and "RVTS"; both analogous to the ROTS equations. In the VOTS equations the radius equation was used to get the $\Delta t$ expression, and in the RVTS the orthogonality equation was used to get $\Delta t$.

Further investigation of the VOTS and RVTS equations confirmed what had been reported earlier in reference 1. These two systems of equations do not generally produce accurate solutions for the multipliers in comparison to the ROTS equations. In general, use of the velocity condition to get $\Delta t$ and the ROTS equations to obtain the multipliers was determined to be the best choice.

The orders of series used in equations (21) and (23) ranged from third through fifth. Corresponding to each order of series used, a different set of ROTS equations was derived. Table 4-1 shows the "R" and "Q" coefficients as derived from a fifth-order series for the radius condition and a fourthorder series for the orthogonality condition. The algebra through which these coefficients were derived was explained in Section 3.2. The notation "ROTS ( $\mathrm{I}, \mathrm{J}$ )" denotes the system of algebraic equations in the multipliers that is obtained from Taylor series of order "I" for the radius conditions and order "J" for the orthogonality condition. Note that $\Delta t$ appears explicitly in these formulas, and also that some of these coefficients are linear combinations of each other.


#### Abstract

Because the formulas involved in this study are so complicated, it is generally difficult to predict or even speculate accurately about the interrelationships of the above parameters. From the series expansions it would seem that the interval $\Delta t$ should be selected as a criterion for the orders of series required. However, $\Delta t$ is itself an unknown parameter in the problem and ultimately depends upon the initial and terminal flight conditions and vehicle parameters. An attempt was made to relate errors in the $X$ values with $\Delta t, \Delta R$, and the orders of series used. A corresponding analysis is made in Section $V$ for the $\Delta t$ expression. The groups of nominal cases used for the error analysis are displayed in Table 4-2.


A topic that needs clarification is that of the relative errors of solutions. The relative errors are determined in the conventional manner as:

$$
\text { Relative Error }=\frac{\text { True - Approximate }}{\text { True }}
$$

where "True" is the nominal value and "Approximate" is the value obtained from the analytical solution. Percent error is 100 times the relative error.

Percent errors are generally used in this report because they are immediately meaningful in the sense of "goodness" of results. Thus a one percent error indicates a good correlation between nominal values and analytical results, while a 30 percent error does not. It should be understood that the errors reported cannot be exact and have no genuine usefulness when considered individually. At most they should be regarded as a relative index to the correlation of nominal and analytical results. Suppose, for example, that one set of ROTS equations gives an error of five percent and another gives an error of one percent in its solution. The percentages are taken to mean

## MTHITMOP space LaNOATONAS <br> 4.4 SOLUTION OF THE ROTS EQUATIONS

that both solutions are fairly good and the latter is the better.

Two methods were used to obtain numerical solutions with the nominal values of the multipliers used as initial approximations. These solutions are considered to be the actual roots of the equations which were closest to the desired roots. No attempt was made to find other sets of roots. The method of Successive Substitutions, described in Section 3.3, was also used to solve for the multipliers. This method was programmed to produce numerical results, and the actual development of an explicit expression for the multipliers was not done. To do so is straightforward but laborious, and the same information could be obtained numerically without going through a mass of algebra. In most cases, both the Newton-Raphson and Successive Substitution methods yield values for the multipliers which are near the nominal values. For cases where the solutions are not close to nominal values both methods produce solutions which are near each other.

In some cases the Newton-Raphson method did not converge to any value, while the Successive Substitution method did. In some of these cases the results of the Successive Substitutions were quite close to nominal values. Time has not permitted a detailed investigation of this non-convergence, It was probably caused by too small a tolerance specified for the iterates in the convergence tests. Other cases of non-convergence are due to inaccurate ROTS equations. This is discussed in the following section.

ERROR ANALYSIS

In this section the behavior of the solutions of the ROTS equations are described and analyzed. In particular, the effects of $\Delta t$, series truncation error, and change in altitude, $\Delta R$, are investigated. There are several reasons for this interpretation. First, the nominal data is not exact and the maximum possible error in it is not known. Secondly, digital computers truncate numbers instead of rounding after an arithmetical operation, and an unfortunate sequence of truncations can degrade accuracy. The relative error, which is directly related to the number of significant digits compared, is also determined to some extent by the iteration tolerance specified by the Newton-Raphson algorithm.

Generally, good correlation was obtained between nominal values for the multipliers and those predicted by the analytical solution. Figures 4-1 through 4-4 are representative time histories of the percent errors in $\lambda_{1}$ and $\lambda_{2}$ as obtained by the Newton-Raphson and Successive Substitution methods. The independent variable is $\Delta t$, and it goes from a maximum at the origin to zero at cutoff. Actually, each of these figures represents a number of cases; each of which is different with respect to initial conditions and time-to-cutoff, but having the same terminal conditions and vehicle specifications.

Tables 4-3 through 4-162 are tabulations representative of the actual numerical values obtained for the four multipliers and the steering angle. The solutions are shown to several digits and should give an indication of accuracy in terms of significant digits instead of relative errors. These tables are for sample cases taken from those shown in Table 4-2. (In Table 4-11,
an unintentional "perturbation" was introduced through a key punch error. At $t_{0}=130 \mathrm{sec}$. the nominal value for the x -coordinate is $0.26303181 \times 10^{7}$, and the value used was $0.29303181 \times 10^{7}$. This caused a large error in the $\lambda$ solutions, but had a comparatively small effect on the $x$ value.)

A characteristic of the solutions is the oscillation of their errors as shown in Figures 4-1 through 4-4. The magnitude of the errors appears to be a sinusoidal function of time. The apparent discontinuity in the $\lambda_{2}$ error is a large relative error of several hundred percent. This behavior was noted for all cases. The cause of the errors in the solutions is the accuracy of the scaling equation when expanded in the binomial series. The expansion of
$\lambda_{1}$ into terms of $\lambda_{2}$ is accurate for $\lambda_{1}$ in the neighborhood of 90 degrees. Recall that $\lambda_{1}=\sin X$ and $\left.\lambda_{2}=\cos \right)_{3}$ yet, while $\lambda_{1}$ is well represented, for the number of terms taken, $\lambda_{2}$ is less accurately represented near $90^{\circ}$ degrees. The result is a sudden and large error in the solution for $\lambda_{2}$ as the steering angle, $X$, goes through 90 degrees.

In Figure 4-5 a plot of $\lambda_{1}$, as calculated from the expanded scaling equation, is shown as a function of $X$. In Figure $4-6$ a plot of $\lambda_{2}$ as a function of $X$ is shown.

There are additional sources of error in computing the nominal values of the multipliers from the nominal values for $X!s$. The FORTRAN routines for sine and cosine lose accuracy when these functions are close to zero. The nominal $X$ values are also in error by some small amount. Errors are also introduced because of the inability to compute precisely the coefficients $Q_{0000}$ and $R_{0000}$ for values of $\Delta t$ near zero. In these coefficients the term, xutyv, occurs and should be zero at $\Delta t=0$. Because of computer truncation error, it


#### Abstract

never quite becomes zero and the error in these coefficients affects the solution of the ROTS equations. Its effect is evident when the error increases near cutoff instead of becoming zero.


Three of the equations used in the ROTS equations are truncated series. The remainder terms for the radius and orthogonality series, as evaluated from nominal data, are shown in Figures 4-7 and 4-8. Nominal data for these figures corresponds with that for Figures 4-1 through 4-4. Remainder terms for the radius series are well behaved and drop to comparatively small values as $\Delta t$ decreases. The wild variations in the remainder terms for the orthogonality series have been traced to the miscalculation of the term $x u+y v$ described above. There seems to be only a slight effect of this error in the solution for the multipliers.

We assert that the "approximate" error in $\lambda_{1}$ for the condition of maximum $\Delta t$ is, in fact, the largest error. As $\Delta t$ and $\Delta R$ decrease, the errors in the solutions of the ROTS equations also decrease.

In order to determine the relationships between the accuracy of the solutions of the ROTS equations and the parameters of $\Delta R, \Delta t$, and orders of series used, a number of solutions were obtained and compared with each other. The nominal cases used for numerical tests were those shown in Table 4-2. The assertion that the maximum error in the solution of the ROTS equations occurs for maximum $\Delta t$ on any nominal case is essential in the subsequent analysis. However, this assumption could be replaced with the use of an average error for a nominal flight or use of the maximum error, should the initial error not be the apparent maximum. In either case the behavior of the relationships leads to the same conclusions. The Newton-Raphson solution for $\lambda_{1}$, at the time
of maximum $\Delta t$ on a nominal flight, was chosen for comparison when changes were made in $\Delta R, \Delta t$, and orders of series used.

Figure 4-9 shows the improvement in accuracy as higher order series are used in the ROTS equations. In these cases the changes in altitude (radius at ignition to radius at cutoff) range from slightly over ten kilometers to almost 20 kilometers, and the corresponding flight times are from 170.34 seconds to 178.71 seconds. There is a significant improvement in accuracy from the ROTS $(3,3)$ to ROTS $(4,3)$ equations. For this range of $\Delta R$, not much improvement is obtained from the ROTS (4, 4) to ROTS (5, 4) equations. The contribution of the extra term in the radius series is still not apparent when larger $\Delta R$ values are considered, as shown in Figure 4-10. But when $\Delta R$ increases over 50 kilometers, the effect of the extra term is noticeable. Usually the NewtonRaphson method fails to converge to any root when applied to the ROTS (4, 3) and ROTS (4, 4) equations for $\Delta R$ over 50 kilometers. For the ROTS (5, 4) equations, solutions can still be obtained, although their errors begin to increase rapidly.

To show the effect of $\Delta t$ on the errors of the solutions, nominal cases were obtained which have a constant $\Delta R$ but varying thrust levels to cause different flight times. Table $4-163$ shows the increase in error in $\lambda_{1}$ as flight time is increased.

Figure 4-11 is a plot of the initial percent error of the Newton-Raphson solution versus $\Delta R$. The equations solved were the ROTS (4, 3) equations for cases where varying thrust levels were used to obtain varying flight times. Similar results were obtained for other orders of ROTS equations. The points at $R=19.78 \mathrm{Km}$ correspond with those shown in Table 4-163. As the figure indicates, very little increase in error is incurred until the thrust drops to 100,000 pounds. For that case the error increases a relatively large amount.

A final test of the accuracy of the steering angle was the simulation of a flight, using the solutions of the ROTS equations computed on the basis of nominal $\Delta t$ values. This was accomplished by integrating the equations of motion from nominal ignition conditions to the specified terminal conditions. The steering angle values were obtained from the ROTS equations at each time step. Coefficients of the multipliers in these equations were evaluated from current values for the state variables as predicted by the numerical integration from the previous time point. The integration method used was the conventional fourth-order Runge-Kutta method. Integration time steps were 0.1 seconds. Difficulties were encountered in computing solutions near the terminal conditions because of the truncation errors mentioned previously. Instead of flying all the way to orbit, a "target point" was selected which was a position and velocity a few seconds prior to injection. At this point comparisons were made between nominal values and those achieved by flying according to the analytical solution. As a check on the accuracy of the simulation, nominal data (including the steering engle) was used to integrate the equations of motion for a test case with the aim of reproducing the nominal case. The nominal was not exactly reproduced, it was in error at the target point by about ten to fifteen meters in $x$ and $y$ and less than one meter per second in $u$ and $v$. It was determined that this error was caused by the integration step size and an attempt was made to reduce the error by altering the step size. However, step sizes smaller or larger than one-tenth second caused an increase in error. More accuracy
could have been obtained by use of extended precision arithmetic in the integration subroutine but storage limitations precluded this being done conveniently.

Because of this situation, the errors in the simulation results should not be taken as absolutely accurate. In most cases they are probably more accurate than indicated.

Some sample results of the simulation of a flight according to the analytical solution are shown in Table 4-164. The ROTS equations of different orders were used to obtain the chi values for substitution into the equations of motion. In addition, solutions of the ROTS equations obtained from various substitution steps were used. Table 4-164 shows results for the solutions of the ROTS ( 4,3 ) equations for four nominal cases: AA-1, AA-24, AA-1C, and AA-24C.

The solution of a differential equation is dependent upon the initial conditions specified. It can be seen that the steering angle computed from the third substitution of the Successive Substitution method leads to somewhat better accuracy at the target point than do the higher order substitution steps. A comparison of the relative errors of the substitution steps in Figures 4-1 through 4-4 shows that the third substitution has a small error initially and thus does not propagate as large an integration error to the target point as do the higher order steps. As expected, accuracy was degraded as $\Delta R$ and $\Delta t$ increased and improved as the order of the ROTS equations increased. The effect of $\Delta_{t}$ was probably to allow for more propagated integration errors, rather than being an intrinsic cause of inaccurate steering angles computed from the ROTS equations.

### 4.6 DISCUSSION OF RESULTS

The ultimate success of this formal analytical approach depends upon the convergence of the series used to develop a solution for the initial Lagrange multipliers. At the beginning there is no definite standard for "convergence". A qualitative requirement is that the series have sufficient terms to permit the multipliers to be accurately calculated from them. What orders of series are necessary is determined by using numerically integrated, or nominal, trajectories as guidelines.

For a high-thrust, chemical rocket, series of order four or five provide. good accuracy for altitude changes of up to 50 kilometers. The series also become progressively more accurate as $\Delta t$ (and $\Delta R$ ) decrease during a flight. As a convenient index to the orders of series required, the parameter $\Delta R$ presently seems to be a good choice. This quantity should be predictable in advance of a flight and determine orders of series needed. Further investigation of these topics would be desirable, particularly for cases where low thrust is involved. For certain ranges of thrust values, $\Delta t$ probably becomes a primary influence on the choice of series, rather than $\Delta R$ (c.f., Figure 4-11).

Accurate values for $X$ can be obtained either numerically or through an explicit formula in terms of the initial conditions and specified terminal conditions. The calculations for $\lambda_{2}$ are inaccurate for $X$ values around 90 degrees. However, this inaccuracy shows little influence on $\lambda_{1}$. When $X$ values begin to approach 180 degrees an alternate set of formulas could be used where $\lambda_{2}$ is expanded in terms of $\lambda_{1}$.

In Tables 4-3 through 4-162 the Successive Substitution method applied to the ROTS $(5,3)$ and ROTS $(5,4)$ equations does not always yield values as accurate as those for the $\operatorname{ROTS}(4,3)$ or ROTS $(3,3)$ equations. This method depends upon the degree of the terms in the multipliers; and intuitively, one expects better convergence if the lower degree terms are the largest in magnitude. Ideally, one would like to have the linear terms to account for most of the sum of the terms in the equations:

$$
\begin{aligned}
& \sum R_{i j k \ell} \lambda_{1}^{\lambda_{1}} \lambda_{2}^{j} \quad \lambda_{3}^{k} \lambda_{4}^{\ell}=0 \\
& \sum Q_{i j k \ell} \lambda_{1} \lambda_{2}^{i}
\end{aligned} \lambda_{3}^{j} \lambda_{4}^{\ell}=0 .
$$

To some extent the terms of these equations can be rearranged by substituting the scaling equation "in a judicious manner". For example, the term $\mathrm{R}_{2001}$ can be replaced by two terms when the scaling equation is substituted. Let $\lambda_{1}^{2}=1-\lambda_{2}^{2}$ and $R_{2001} \lambda_{1}^{2} \quad \lambda_{4}=R_{2001}\left(1-\lambda_{2}^{2}\right) \lambda_{4}=R_{2001} \lambda_{4}-R_{2001} \lambda_{2}^{2} \lambda_{4}$. The result is two terms; one of them a linear term, and the other one smaller than the original term for values of chi around 90 degrees. This substitution can also be used to simplify the ROTS equations by combination of terms after the substitution. The ROTS $(4,3)$ equations were developed with this termrearrangement used to assure dominant linear and quadratic terms. The method is based on trial-and-error and thus takes time. Because of the time required, the extensions of the series to the ROTS (5, 3) and ROTS (5, 4) have not been adjusted to assure the desired dominant terms. Thus the Successive Substitution method is not being used on the best arrangement of terms.



I $!$ $-\infty$

$1 \cdot$
I

Figure 4-5. BINOMIAL EXPANSION OF SCALING EQUATION COMPARED TO SIN $X$

10



Table 4-1. R AND $Q$ COEFFICIENTS IN TERMS OF STATE VARIABLES AND $\triangle T$, FOR FIFTH-ORDER RADIUS SERIES AND FOURTH-ORDER ORTHOGONALITY SERIES

$$
\begin{aligned}
& R_{0000}=\left(R_{o}^{2}-R_{c o}^{2}\right)+2(x u+y v)(\Delta t)+\left(v_{0}^{2}-x V_{x}\right. \\
& \left.-y V_{y}\right)(\Delta t)^{2}+\left(-\frac{1}{3} x u V_{x x}-\frac{1}{3} x v V_{x y}-\frac{1}{3} y r V_{x y}\right. \\
& \left.-\frac{1}{3} y v V_{y y}-u V_{x}-v V_{y}\right)(\Delta t)^{3}+\left(\frac{1}{12} x V_{x} v_{x x}\right. \\
& +\frac{1}{12} x v_{y} v_{x y}-\frac{1}{12} x u^{2} v_{x x x}-\frac{1}{6} x u v v_{x x y}-\frac{1}{12} x v^{2} v_{x y y} \\
& +\frac{1}{12} y v_{x} v_{x y}+\frac{1}{12} y V_{y} v_{y y}-\frac{1}{12} y u^{2} v_{x x y}-\frac{1}{6} y u v_{x y y} \\
& -\frac{1}{12} y v^{2} v_{y y y}-\frac{1}{3} u^{2} v_{x x}-\frac{1}{3} u v V_{x y}-\frac{1}{3} u v V_{x y} \\
& \left.-\frac{1}{3} v^{2} v_{y y}+\frac{1}{4} v_{x}^{2}+\frac{1}{4} v_{y}^{2}\right)(\Delta t)^{4}+\left(\frac{1}{60} x u v_{x x}^{2}\right. \\
& +\frac{1}{60} x v V_{x x} V_{x y}+\frac{1}{60} x v V_{x y}^{2}+\frac{1}{60} x v V_{x y} V_{y y}+\frac{1}{20} x_{x u} V_{x} V_{x x x} \\
& +\frac{1}{20} x v V_{x} V_{x x y}+\frac{1}{20} x u V_{y} V_{x x y}+\frac{1}{20} x v V_{y} V_{x y y} \\
& -\frac{1}{60} x u^{3} v_{x x x x}-\frac{1}{20} x u^{2} v V_{x x x y}-\frac{1}{20} x u v^{2} v_{x x y y} \\
& -\frac{1}{60} x v^{3} v_{x y y y}+\frac{1}{60} \text { yuV }_{x x x_{x y}}+\frac{1}{60} y v v_{x y}^{2}+\frac{1}{60} y u V_{x y} V_{y y} \\
& +\frac{1}{60} \mathrm{yv}_{\mathrm{yy}}^{2}+\frac{1}{20} \mathrm{yu}_{\mathrm{x}} \mathrm{v}_{\mathrm{xxy}}+\frac{1}{20} \mathrm{yvv}_{x} \mathrm{v}_{\mathrm{xyy}}+\frac{1}{20} \mathrm{yuv}_{\mathrm{y}} \mathrm{v}_{\mathrm{xyy}} \\
& +\frac{1}{20} y v V_{y} v_{y y y}-\frac{1}{60} y u^{3} v_{x x x y}-\frac{1}{20} y u^{2} v V_{x x y y}-\frac{1}{20} y u v^{2} v_{x y y y} \\
& -\frac{1}{60} y v^{3} v_{y y y y}+\frac{1}{4} u V_{x} V_{x x}+\frac{1}{4} v V_{x} v_{x y}+\frac{1}{4} v V_{y} v_{y y} \\
& +\frac{1}{4} u v_{y} v_{x y}-\frac{1}{4} v u^{2} v_{x x y}-\frac{1}{4} u v^{2} v_{x y y}-\frac{1}{12} u^{3} v_{x x x} \\
& \left.=\frac{1}{12} v^{3} v_{y y y}\right)(\Delta t)^{5}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
& R_{1000}=\left(\times \frac{F}{M}\right)(\Delta t)^{2}+\left(-\frac{1}{3} \times \frac{F}{M} \frac{\dot{M}}{M}+u \frac{F}{M}\right)(\Delta t)^{3}+\left(\frac{1}{6} \times \frac{F}{M} \dot{M}_{M}^{2}\right. \\
& \left.-\frac{1}{12} \times \frac{F}{M} v_{x x}-\frac{1}{12} y \frac{F}{M} V_{x y}-\frac{1}{3} u \frac{F}{M} \frac{M}{M}-\frac{1}{2} \frac{F}{M} v_{x}\right)(\Delta t)^{4} \\
& +\left(-\frac{1}{20} \times \frac{F}{M} u V_{x x x}-\frac{1}{20} \times \frac{F}{M} v v_{x x y}+\frac{1}{60} \times \frac{F}{M} v_{x x} \frac{\dot{M}}{M}\right. \\
& -\frac{1}{10} \times \frac{F}{M} \frac{\dot{M}_{M}^{3}}{M^{3}}-\frac{1}{20} \text { y } \frac{F}{M} u V_{x x y}-\frac{1}{20} \text { y } \frac{F}{M} v V_{x y y}+\frac{1}{60} \text { y } V_{x y} \frac{\dot{M}}{M} \frac{F}{M} \\
& +\frac{1}{6} u \frac{F}{M} \frac{M^{2}}{M^{2}}-\frac{1}{12} u \frac{F}{M} v_{x x}-\frac{1}{12} v \frac{F}{M} v_{x y}-\frac{1}{6} \frac{F}{M} u V_{x x} \\
& \left.-\frac{1}{6} v v_{x y} \frac{F}{M}+\frac{1}{6} v_{x} \frac{F}{M} \frac{M}{M}\right)(\Delta t)^{5} \\
& R_{0100}=\left(y \frac{F}{M}\right)(\Delta t)^{2}+\left(-\frac{1}{3} y \frac{F}{M} \frac{\dot{M}}{M}+v \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{1}{12} \times \frac{F}{M} v_{x y}\right. \\
& \left.+\frac{1}{6} \text { y } \frac{F}{M} \frac{\dot{M}_{M}^{2}}{M^{2}}-\frac{1}{12} \text { y } \frac{F}{M} V_{y y}-\frac{1}{3} v \frac{F}{M} \frac{\dot{M}}{M}-\frac{1}{2} \frac{F}{M} V_{y}\right)(\Delta t)^{4} \\
& +\left(-\frac{1}{20} \times \frac{F}{M} u^{x} V_{x y}-\frac{1}{20} \times \frac{F}{M} v v_{x y y}+\frac{1}{60} \times \frac{F}{M} v_{x y} \frac{M}{M}\right. \\
& -\frac{1}{20} \text { y } \frac{F}{M} \text { u } V_{x y y}-\frac{1}{20} \text { y } \frac{F}{M} v V_{y y y}+\frac{1}{60} \text { y } \frac{F}{M} v_{y y} \frac{\dot{M}}{M}-\frac{1}{10} \text { y } \frac{F}{M} \frac{\dot{m}_{3}^{3}}{M^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{1}{6} \frac{F}{M} u v_{x y}-\frac{1}{6} \frac{F}{M} v V_{y y}\right)(\Delta t)^{5} \\
& R_{2010}=\left(\frac{1}{3} \times \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{1}{30} y \frac{F}{M} v_{x y}\right)(\Delta t)^{5}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
& R_{1101}=\left(\frac{1}{3} \times \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{1}{6} \times \frac{F}{M} \frac{\dot{M}}{M}+\frac{1}{3} u \frac{F}{M}\right)(\Delta t)^{4}+\left(-\frac{1}{15} \times \frac{F}{M} v_{x x}\right. \\
&\left.-\frac{1}{15} \times \frac{F}{M} v_{y y}+\frac{1}{10} \times \frac{F}{M} \frac{\dot{M}_{2}^{2}}{M}-\frac{1}{12} y \frac{F}{M} v_{x y}-\frac{1}{6} u \frac{F}{M} \frac{\dot{M}}{M}-\frac{1}{6} \frac{F}{M} v_{x}\right)(\Delta t)^{5} \\
& R_{0010}=\left(-\frac{1}{3} \times \frac{F}{M}\right)(\Delta t)^{3} \\
& R_{1110}=\left(\frac{1}{3} y \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{1}{6} y \frac{F}{M} \frac{M}{M}+\frac{1}{3} v \frac{F}{M}\right)(\Delta t)^{4} \\
&+\left(-\frac{1}{12} \times \frac{F}{M} v_{x y}-\frac{1}{15} y \frac{F}{M} v_{x x}-\frac{1}{15} y \frac{F}{M} v_{y y}+\frac{1}{10} y \frac{F}{M} \frac{\dot{M}_{2}^{2}}{M}\right. \\
&\left.-\frac{1}{6} v \frac{F}{M} \frac{M}{M}-\frac{1}{6} \frac{F}{M} v_{y}\right)(\Delta t)^{5} \\
& R_{0201}=\left(\frac{1}{3} y \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{1}{30} \times \frac{F}{M} v_{x y}\right)(\Delta t)^{5} \\
& R_{0001}=\left(-\frac{1}{3} y \frac{F}{M}\right)(\Delta t)^{3} \\
& R_{2100}=\left(\frac{1}{12} \times \frac{F}{M} v_{x y}+\frac{1}{12} y \frac{F}{M} v_{x x}-\frac{1}{12} y \frac{F}{M} v_{y y}\right)(\Delta t)^{4}+\left(\frac{1}{60} \times \frac{F}{M} u v_{x x y}\right. \\
&+\frac{1}{60} \times \frac{F}{M} v v_{x y y}-\frac{1}{20} \times \frac{F}{M} v_{x y} \frac{\dot{M}}{M}+\frac{1}{60} y \frac{F}{M} u v_{x x x}+\frac{1}{60} y \frac{F}{M} v v_{x x y} \\
&-\frac{1}{60} y \frac{F}{M} u v_{x y y}-\frac{1}{60} y \frac{F}{M} v v_{y y y}-\frac{1}{20} y \frac{F}{M} v_{x x} \frac{M}{M}+\frac{1}{20} y \frac{F}{M} v_{y y} \frac{M}{M} \\
&\left.+\frac{1}{12} u \frac{F}{M} v_{x y}+\frac{1}{12} v \frac{F}{M} v_{x x}-\frac{1}{12} v \frac{F}{M} v_{y y}\right)(\Delta t)^{5} \\
& r^{5}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
& R_{2111}=\left(\frac{1}{2} \times \frac{F}{M}\right)(\Delta t)^{4}+\left(-\frac{3}{10} \times \frac{F}{M} \frac{\dot{M}}{M}+\frac{1}{2} u \frac{F}{M}\right)(\Delta t)^{5} \\
& R_{1200}=\left(-\frac{1}{12} \times \frac{F}{M} v_{x x}+\frac{1}{12} \times \frac{F}{M} v_{y y}+\frac{1}{12} y \frac{F}{M} v_{x y}\right)(\Delta t)^{4}+\left(-\frac{1}{60} \times \frac{F}{M} u v_{x x x}\right. \\
& -\frac{1}{60} \times \frac{F}{M} v v_{x x y}+\frac{1}{60} \times \frac{F}{M} u v_{x y y}+\frac{1}{60} \times \frac{F}{M} v v_{y y y}+\frac{1}{20} \times \frac{F}{M} v_{x x} \frac{\dot{M}}{M} \\
& =\frac{1}{20} \times \frac{F}{M} v_{y y} \frac{\dot{M}}{M}+\frac{1}{60} y \frac{F}{M} u v_{x x y}-\frac{1}{60} y \frac{F}{M} v v_{x y y}-\frac{1}{20} y \frac{F}{M} v_{x y} \frac{\dot{M}}{M} \\
& \left.-\frac{1}{12} u \frac{F}{M} v_{x x}+\frac{1}{12} u \frac{F}{M} v_{y y}+\frac{1}{12} v \frac{F}{M} v_{x y}\right)(\Delta t)^{5} \\
& R_{1220}=\left(-\frac{1}{4} \times \frac{F}{M}\right)(\Delta t)^{4}+\left(\frac{3}{20} \times \frac{F}{M} \frac{\dot{M}}{M}-\frac{1}{4} u \frac{F}{M}\right)(\Delta t)^{5} \\
& \mathrm{R}_{1202}=-\mathrm{R}_{1220} \\
& \mathrm{R}_{1002}=\frac{1}{3} \mathrm{R}_{1220} \\
& R_{0300}=\left(-\frac{1}{12} \times \frac{F}{M} v_{x y}\right)(\Delta t)^{4}+\left(-\frac{1}{60} \times \frac{F}{M} u v_{x x y}-\frac{1}{60} \times \frac{F}{M} v v_{x y y}\right. \\
& \left.+\frac{1}{20} \times v_{x y} \frac{\dot{M}}{M} \frac{F}{M}-\frac{1}{12} u \frac{F}{M} v_{x y}\right)(\Delta t)^{5} \\
& R_{0111}=\left(-\frac{1}{6} \times \frac{F}{M}\right)(\Delta t)^{4}+\left(\frac{1}{10} \times \frac{F}{M} \frac{\dot{M}}{M}-\frac{1}{6} u \frac{F}{M}\right)(\Delta t)^{5}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
R_{0210}= & \left(\frac{1}{6} \times \frac{F}{M} \frac{\dot{M}}{M}-\frac{1}{3} u \frac{F}{M}\right)(\Delta t)^{4}+\left(\frac{1}{30} \times \frac{F}{M} v_{x x}-\frac{1}{20} \times \frac{F}{M} v_{y y}\right. \\
& \left.-\frac{1}{10} \times \frac{F}{M} \frac{\dot{M}^{2}}{M^{2}}-\frac{1}{30} y \frac{F}{M} v_{x y}+\frac{1}{6} u \frac{F}{M} \frac{\dot{M}}{M}+\frac{1}{6} \frac{F}{M} v_{x}\right)(\Delta t)^{5} \\
R_{3000}= & \left(-\frac{1}{12} y \frac{F}{M} v_{x y}\right)(\Delta t)^{4}+\left(-\frac{1}{60} y \frac{F}{M} u v_{x x y}-\frac{1}{60} y \frac{F}{M} v v_{x y y}\right. \\
& \left.+\frac{1}{20} y \frac{F}{M} v_{x y} \frac{M}{M}-\frac{1}{12} v \frac{F}{M} v_{x y}\right)(\Delta t)^{5} \\
R_{2120}= & \left(\frac{1}{4} y \frac{F}{M}\right)(\Delta t)^{4}+\left(-\frac{3}{20} y \frac{F}{M} \frac{M}{M}+\frac{1}{4} v \frac{F}{M}\right)(\Delta t)^{5} \\
R_{2102}= & -R_{2120} \\
R_{2001}= & \left(\frac{1}{6} y \frac{F}{M} \frac{\dot{M}}{M}-\frac{1}{3} v \frac{F}{M}\right)(\Delta t)^{4}+\left(-\frac{1}{30} \times \frac{F}{M} v_{x y}+\frac{1}{30} y \frac{F}{M} v_{y y}\right. \\
& \left.-\frac{1}{20} y \frac{F}{M} v_{x x}-\frac{1}{10} y \frac{F}{M} \frac{\dot{M}_{2}^{2}}{M}+\frac{1}{6} v \frac{F}{M} \frac{M_{M}^{M}}{M}+\frac{1}{6} \frac{F}{M} v_{y}\right)(\Delta t)^{5} \\
R_{1211}= & \left(\frac{1}{2} y \frac{F}{M}\right)(\Delta t)^{4}+\left(-\frac{3}{10} y \frac{F}{M} \frac{M}{M}+\frac{1}{2} v \frac{F}{M}\right)(\Delta t)^{5} \\
R_{1011}= & \left(-\frac{1}{6} y \frac{F}{M}\right)(\Delta t)^{4}+\left(\frac{1}{10} y \frac{F}{M} \frac{M}{M}-\frac{1}{6} v \frac{F}{M}\right)(\Delta t)^{5}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
& R_{0120}=\frac{1}{2} R_{1011} \\
& R_{2000}=\left(\frac{1}{4} \frac{F_{M}^{2}}{2}\right)(\Delta t)^{4}+\left(-\frac{1}{6} \frac{F}{M} \frac{F}{M} \frac{\dot{M}}{M}\right)(\Delta t)^{5} \\
& \mathrm{R}_{0200} \doteq \mathrm{R}_{2000} \\
& R_{4030}=-\frac{3}{4} R_{0010} \\
& R_{3 i 10}=\left(\frac{3}{20} \times \frac{F}{M} v_{x y}+\frac{3}{20} y \frac{F}{M} v_{x x}\right)(\Delta t)^{5} \\
& R_{3121}=3 R_{4030}=-\frac{9}{4} R_{0010} \\
& R_{3101}=\left(\frac{3}{20} \times \frac{F}{M} v_{x x}-\frac{3}{20} \text { y } \frac{F}{M} v_{x y}\right)(\Delta t)^{5} \\
& R_{2210}=\left(-\frac{3}{20} \times \frac{F}{M} V_{x x}+\frac{3}{20} \times \frac{F}{M} V_{y y}+\frac{3}{10} y \frac{F}{M} V_{x y}\right)(\Delta t)^{5} \\
& R_{2212}=3 R_{4030}=-\frac{9}{4} R_{0010} \\
& R_{2201}=\left(\frac{3}{10} x \frac{F}{M} V_{x y}+\frac{3}{20} \text { y } \frac{F}{M} V_{x x}-\frac{3}{20} \text { y } \frac{F}{M} V_{y y}\right)(\Delta t)^{5} \\
& R_{2030}=-\frac{12}{10} R_{4030}=\frac{36}{40} R_{0010}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
& R_{1121}=-\frac{9}{5} R_{4030}=\frac{27}{20} R_{0010} \\
& R_{1103}=-\frac{3}{5} R_{4030}=\frac{9}{20} R_{0010} \\
& R_{1310}=\left(-\frac{3}{20} x \frac{F}{M} v_{x y}+\frac{3}{20} y \frac{F}{M} v_{y y}\right)(\Delta t)^{5} \\
& R_{1301}=\left(\frac{3}{20} \times \frac{F}{M} V_{y y}+\frac{3}{20} \text { y } \frac{F}{M} V_{x y}\right)(\Delta t)^{5} \\
& R_{1303}=R_{4030}=-\frac{3}{4} R_{0010} \\
& R_{0030}=\frac{1}{5} R_{4030}=-\frac{3}{20} R_{0010} \\
& R_{0012}=-\frac{4}{10} R_{4030}=\frac{12}{40} R_{0010} \\
& R_{3130}=-\frac{3}{4} R_{0001} \\
& R_{2221}=3 R_{3130}=-\frac{9}{4} R_{0001} \\
& R_{1112}=-\frac{9}{5} R_{3130}=\frac{27}{20} R_{0001} \\
& R_{1130}=-\frac{3}{5} R_{3130}=\frac{9}{20} R_{0001}
\end{aligned}
$$

Table 4-1. (Continued)
$R_{1312}=3 R_{3130}=-\frac{9}{4} R_{0001}$
$R_{0403}=R_{3130}=-\frac{3}{4} R_{0001}$
$R_{0203}=-\frac{12}{10} R_{3130}=\frac{36}{40} R_{0001}$
$R_{0021}=-\frac{4}{10} R_{3130}=\frac{12}{40} R_{0001}$
$R_{0003}=\frac{1}{5} R_{0403}=\frac{1}{5} R_{3130}=-\frac{3}{20} R_{0001}$

Table 4-1. (Continued)

$$
\begin{aligned}
& Q_{0000}=(x u+y v)+\left(-x v_{x}-y v_{y}+v_{0}^{2}\right)(\Delta t)+\left(-\frac{1}{2} x u v_{x x}\right. \\
& \left.-\frac{1}{2} x v v_{x y}-\frac{1}{2} y v v_{x y}-\frac{1}{2} y v v_{y y}-\frac{3}{2} v v_{y}-\frac{3}{2} u v_{x}\right)(\Delta t)^{2} \\
& +\left(\frac{1}{6} \times v_{x} v_{x x}+\frac{1}{6} \times v_{y} v_{x y}-\frac{1}{6} x u^{2} v_{x x x}-\frac{1}{3} x u v v_{x x y}\right. \\
& -\frac{1}{6} x v^{2} v_{x y y}+\frac{1}{6} y v_{x} v_{x y}+\frac{1}{6} y v_{y} v_{y y}-\frac{1}{6} y u^{2} v_{x x y}-\frac{1}{3} y u v v_{x y y} \\
& -\frac{1}{6} \mathrm{yv}^{2} v_{y y y}-\frac{2}{3} u_{1}^{2} v_{x x}-\frac{2}{3} u v v_{x y}-\frac{2}{3} v u v_{x y}-\frac{2}{3} v^{2} v_{y y}+\frac{1}{2} \frac{\mathrm{~F}_{2}^{2}}{M^{2}} \\
& \left.+\frac{1}{2} v_{x}^{2}+\frac{1}{2} v_{y}^{2}\right)(\Delta t)^{3}+\left(\frac{1}{24} x u v_{x x}^{2}+\frac{1}{24} x v v_{x x} v_{x y}+\frac{1}{24} x u v_{x y}^{2}\right. \\
& +\frac{1}{24} \mathrm{xv} v_{x y} v_{y y}+\frac{1}{8} x u v_{x} v_{x y x}+\frac{1}{8} x v v_{x} v_{x x y}+\frac{1}{8} x u v_{y} v_{x x y}+\frac{1}{8} x v v_{y} v_{x y y} \\
& -\frac{1}{24} x y^{3} v_{x x x x}-\frac{1}{8} x u^{2} v v_{x x x y}-\frac{1}{8} x u v^{2} v_{x x y y}-\frac{1}{24} x v^{3} v_{x y y y}+\frac{1}{24} y u v_{x x} v_{x y} \\
& +\frac{1}{24} \mathrm{yv}_{\mathrm{xy}}^{2}+\frac{1}{24} \mathrm{yuv}_{\mathrm{xy}} \mathrm{v}_{\mathrm{yy}}+\frac{1}{24} \mathrm{yv} \mathrm{v}_{\mathrm{yy}}^{2}+\frac{1}{8} \mathrm{yuv}_{\mathrm{x}} \mathrm{v}_{\mathrm{xxy}}+\frac{1}{8} \mathrm{yv} \mathrm{v}_{\mathrm{x}} \mathrm{v}_{\mathrm{xyy}} \\
& +\frac{1}{8} y v_{y} v_{x y y}+\frac{1}{8} y v_{y} v_{y y y}-\frac{1}{24} y u^{3} v_{x x x y}-\frac{1}{8} y u^{2} v v_{x x y y}-\frac{1}{8} y u v^{2} v_{x y y y} \\
& -\frac{1}{24} y v^{3} v_{y y y y}+\frac{5}{12} u v_{x} v_{x x}+\frac{5}{12} u v_{y} v_{x y}-\frac{5}{12} u^{3} \cdot v_{x x x}-\frac{5}{6} u^{2} v v_{x x y} \\
& -\frac{5}{12} u v^{2} v_{x y y}+\frac{5}{24} v v_{x} v_{x y}+\frac{5}{24} v v_{y} v_{y y}-\frac{5}{24} v u^{2} v_{x x y}-\frac{5}{12} u v^{2} v_{x y y} \\
& -\frac{5}{24} v^{3} \cdot v_{y y y}+\frac{5}{12} v_{x} u v_{x x}+\frac{5}{12} v_{x} v v_{x y}+\frac{5}{12} v_{y} u v_{x y} \\
& \left.+\frac{5}{12} v_{y} u v_{y y}\right)(\Delta t)^{4}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
& Q_{1000}=\left(x \frac{F}{M}\right)(\Delta t)+\left(-\frac{1}{2} \times \frac{F}{M} \frac{M}{M}+\frac{3}{2} u \frac{F}{M}\right)(\Delta t)^{2}+\left(\frac{1}{3} \times \frac{F}{M} \frac{Y^{2}}{M}\right. \\
& \left.-\frac{1}{6} \times \frac{F}{M} v_{x x}-\frac{1}{3} y \frac{F}{M} v_{x y}-\frac{2}{3} u \frac{F}{M} \frac{M}{M}-\frac{F}{M} v_{x}\right)(\Delta t)^{3} \\
& +\left(-\frac{1}{8} \times \frac{F}{M} u v_{x x x}-\frac{1}{8} \times \frac{F}{M} v v_{x x y}+\frac{1}{24} \times \frac{F}{M} v_{x x} \frac{\dot{M}}{M}-\frac{1}{4} \times \frac{F}{M} \frac{\dot{M}^{3}}{M}\right. \\
& +\frac{5}{12} u \frac{F}{M} \frac{\dot{M}_{2}^{2}}{M}-\frac{5}{24} u \frac{F}{M} v_{x x}-\frac{5}{24} v \frac{F}{M} v_{x y}-\frac{5}{12} \frac{F}{M} u v_{x x} \\
& -\frac{5}{12} \frac{F}{M} v v_{x y}+\frac{5}{12} v_{x} \frac{F}{M} \frac{M}{M}-\frac{1}{8} y \frac{F}{M} u v_{x x y}-\frac{1}{8} y \frac{F}{M} v v_{x y y} \\
& \left.+\frac{1}{24} y v_{x y} \frac{\dot{M}}{M} \frac{F}{M}\right)(\Delta t)^{4} \\
& Q_{0100}=\left(y \frac{F}{M}\right)(\Delta t)+\left(-\frac{1}{2} y \frac{F}{M} \frac{\dot{M}}{M}+\frac{3}{2} v \frac{F}{M}\right)(\Delta t)^{2}+\left(-\frac{1}{3} \times \frac{F}{M} v_{x y}\right. \\
& \left.+\frac{1}{3} y \frac{F}{M} \frac{\dot{M}_{M}^{2}}{M^{2}}-\frac{1}{6} y \frac{F}{M} v_{y y}-\frac{2}{3} v \frac{F}{M} \frac{\dot{M}}{M}-\frac{F}{M} v_{y}\right)(\Delta t)^{3} \\
& +\left(-\frac{1}{8} \times \frac{F}{M} u v_{x x y}-\frac{1}{8} \times \frac{F}{M} v v_{x y y}+\frac{1}{24} \times \frac{F}{M} v_{x y} \frac{\dot{M}}{M}-\frac{1}{8} y \frac{F}{M} u v_{x y y}\right. \\
& -\frac{1}{8} \text { y } \frac{F}{M} v^{v} v_{y y y}+\frac{1}{24} \text { y } \frac{F}{M} v_{y y} \frac{\dot{M}}{M}-\frac{1}{4} \text { y } \frac{\dot{F}_{M}}{\dot{M}_{M}^{3}}-\frac{5}{24} u \frac{F}{M} v_{x y} \\
& +\frac{5}{12} \vee \frac{F}{M} \frac{\dot{M}_{2}^{2}}{M}-\frac{5}{24} v \frac{F}{M} v_{y y}+\frac{5}{12} v_{y} \frac{F}{M} \frac{\dot{M}}{M}-\frac{5}{12} \frac{F}{M} u v_{x y} \\
& \left.-\frac{5}{12} \frac{\mathrm{~F}}{\mathrm{M}} \vee \mathrm{v}_{\mathrm{yy}}\right)(\Delta \mathrm{t})^{4} \\
& Q_{0010}=\left(-\frac{1}{2} \times \frac{F}{M}\right)(\Delta t)^{2}+\left(\frac{1}{3} \times \frac{F}{M} \frac{\dot{M}}{M}-\frac{2}{3} u \frac{F}{M}\right)(\Delta t)^{3} \\
& Q_{0001}=\left(-\frac{1}{2} y \frac{F}{M}\right)(\Delta t)^{2}+\left(\frac{1}{3} y \frac{F}{M} \frac{\dot{M}}{M}-\frac{2}{3} \frac{\mathrm{~F}}{\mathrm{M}}\right)(\Delta t)^{3}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
Q_{1110}= & \left(\frac{1}{2} y \frac{F}{M}\right)(\Delta t)^{2}+\left(-\frac{1}{3} y \frac{F}{M} \frac{\dot{M}}{M}+\frac{2}{3} v \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{5}{24} \times \frac{F}{M} v_{x y}\right. \\
& \left.-\frac{1}{6} y \frac{F}{M} v_{x x}-\frac{1}{6} y \frac{F}{M} v_{y y}+\frac{1}{4} y \frac{F}{M} \frac{\dot{M}^{2}}{M}-\frac{5}{12} v \frac{F}{M} \frac{M^{M}}{M}-\frac{5}{12} \frac{F}{M} v_{y}\right)(\Delta t)^{4} \\
Q_{0201}= & \left(\frac{1}{2} y \frac{F}{M}\right)(\Delta t)^{2}+\left(-\frac{1}{3} y \frac{F}{M} \frac{\dot{M}}{M}+\frac{2}{3} v \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{1}{12} \times \frac{F}{M} v_{x y}\right)(\Delta t)^{4} \\
Q_{1101}= & \left(\frac{1}{2} \times \frac{F}{M}\right)(\Delta t)^{2}+\left(-\frac{1}{3} \times \frac{F}{M} \frac{\dot{M}}{M}+\frac{2}{3} u \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{1}{6} \times \frac{F}{M} v_{x x}\right. \\
& -\frac{1}{6} \times \frac{F}{M} v_{y y}+\frac{1}{4} \times \frac{F}{M} \frac{\dot{M}_{2}^{2}}{M^{2}}-\frac{5}{24} y \frac{F}{M} v_{x y}-\frac{5}{12} u \frac{F}{M} \frac{\dot{M}}{M} \\
& \left.-\frac{5}{12} \frac{F}{M} v_{x}\right)(\Delta t)^{4} \\
Q_{2010}= & \left(\frac{1}{2} \times \frac{F}{M}\right)(\Delta t)^{2}+\left(-\frac{1}{3} \times \frac{F}{M} \frac{\dot{M}}{M}+\frac{2}{3} u \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{1}{12} y \frac{F}{M} v_{x y}\right)(\Delta t)^{4} \\
Q_{2212}= & 15 Q_{0030} \\
Q_{2201}= & \left(\frac{3}{4} \times \frac{F}{M} v_{x y}\right)(\Delta t)^{4}+\left(\frac{3}{8} y \frac{F}{M} v_{x x}-\frac{3}{8} y \frac{F}{M} v_{y y}\right)(\Delta t)^{4} \\
Q_{2030}= & -6 Q_{0030}
\end{aligned}
$$

NORTHRDP SPACE LABORATORES

Table 4-1. (Continued)

$$
\begin{aligned}
& Q_{2001}=\left(-\frac{1}{12} \times \frac{F}{M} v_{x y}+\frac{1}{12} y \frac{F}{M} v_{y y}-\frac{1}{8} y \frac{F}{M} V_{x x}-\frac{1}{4} \text { y } \frac{F}{M} \frac{\dot{M}_{2}^{2}}{M^{2}}\right. \\
& \left.+\frac{5}{12} v \frac{F}{M} \frac{\dot{M}}{M}+\frac{5}{12} \frac{F}{M} V_{y}\right)(\Delta t)^{4} \\
& Q_{1121}=-9 Q_{0030} \\
& Q_{1103}=-3 Q_{0030} \\
& Q_{1310}=\left(-\frac{3}{8} x \frac{F}{M} V_{x y}+\frac{3}{8} y \frac{F}{M} V_{x y}\right)(\Delta t)^{4} \\
& Q_{1301}=\left(\frac{3}{8} \times \frac{F}{M} V_{y y}+\frac{3}{8} y \frac{F}{M} V_{x y}\right)(\Delta t)^{4} \\
& Q_{1303}=5 Q_{0030} \\
& Q_{0300}=\left(-\frac{1}{24} \times \frac{F}{M} u v_{x x y}-\frac{1}{24} \times \frac{F}{M} v v_{x y y}+\frac{1}{8} \times \frac{F}{M} v_{x y} \frac{M}{M}\right. \\
& \left.-\frac{5}{24} u \frac{F}{M} v_{x y}\right)(\Delta t)^{4} \\
& Q_{0030}=\left(\frac{1}{8} \times \frac{F}{M}\right)(\Delta t)^{4}
\end{aligned}
$$

NORTHRDP SPACE LABORATORES

Table 4-1. (Continued)

$$
\begin{aligned}
& Q_{0210}=\left(\frac{1}{12} \times \frac{F}{M} v_{x x}-\frac{1}{8} \times \frac{F}{M} v_{y y}-\frac{1}{4} \times \frac{F}{M} \frac{\dot{M}}{M}_{2}^{2}-\frac{1}{12} y \frac{F}{M} v_{x y}\right. \\
& \left.+\frac{5}{12} \mathrm{u} \frac{\mathrm{~F}}{\mathrm{M}} \frac{\dot{\mathrm{M}}}{\mathrm{M}}+\frac{5}{12} \mathrm{v}_{\mathrm{x}}\right)(\Delta \mathrm{t})^{4} \\
& Q_{0012}=-\frac{1}{2} Q_{0030} \\
& Q_{3000}=\left(-\frac{1}{24} y \frac{F}{M} u v_{x x y}-\frac{1}{24} y \frac{F}{M} v v_{x y y}+\frac{1}{8} y \frac{F}{M} v_{x y} \frac{\dot{M}}{M}\right. \\
& \left.-\frac{5}{24} v \frac{F}{M} V_{x y}\right)(\Delta t)^{4} \\
& Q_{3130}=5 Q_{0003} \\
& Q_{2221}=15 Q_{0003} \\
& Q_{1112}=-9 Q_{0003} \\
& Q_{2111}=\left(x \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{3}{4} \times \frac{F}{M} \frac{\dot{M}}{M}+\frac{5}{4} u \frac{F}{M}\right)(\Delta t)^{4} \\
& Q_{1202}=-Q_{1220}
\end{aligned}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
Q_{2100}= & \left(\frac{1}{3} \times \frac{F}{M} v_{x y}+\frac{1}{6} y \frac{F}{M} v_{x x}-\frac{1}{6} y \frac{F}{M} v_{y y}\right)(\Delta t)^{3}+\left(\frac{1}{24} \times \frac{F}{M} u v_{x x y}\right. \\
& +\frac{1}{24} \times \frac{F}{M} v v_{x y y}-\frac{1}{8} \times \frac{F}{M} v_{x y} \frac{\dot{M}}{M}+\frac{1}{24} y \frac{F}{M} u v_{x x x}+\frac{1}{24} y \frac{F}{M} v v_{x x y} \\
& -\frac{1}{24} y \frac{F}{M} u v_{x y y}-\frac{1}{24} y \frac{F}{M} v v_{y y y}-\frac{1}{8} y \frac{F}{M} v_{x x} \frac{\dot{M}}{M}+\frac{1}{8} y \frac{F}{M} v_{y y} \frac{\dot{M}}{M} \\
& \left.+\frac{5}{24} u \frac{F}{M} v_{x y}+\frac{5}{24} v \frac{F}{M} v_{x x}-\frac{5}{24} v \frac{F}{M} v_{y y}\right)(\Delta t)^{4}
\end{aligned}
$$

$$
\begin{aligned}
Q_{1200}= & \left(-\frac{1}{6} \times \frac{F}{M} v_{x x}+\frac{1}{6} \times \frac{F}{M} v_{y y}+\frac{1}{3} y \frac{F}{M} v_{x y}\right)(\Delta t)^{3}+\left(-\frac{1}{24} \times \frac{F}{M} u v_{x x x}\right. \\
& -\frac{1}{24} \times \frac{F}{M} v_{x x y}+\frac{1}{24} \times \frac{F}{M} u v_{x y y}+\frac{1}{24} \times \frac{F}{M} v v_{y y y}+\frac{1}{8} \times \frac{F}{M} v_{x x} \frac{M}{M} \\
& -\frac{1}{8} \times v_{y y} \frac{M}{M} \frac{F}{M}+\frac{1}{24} y \frac{F}{M} u v_{x x y}+\frac{1}{24} y \frac{F}{M} v v_{x y y}-\frac{1}{8} y \frac{F}{M} v_{x y} \frac{M}{M} \\
& \left.-\frac{5}{24} u \frac{F}{M} v_{x x}+\frac{5}{24} u \frac{F}{M} v_{y y}+\frac{5}{24} v \frac{F}{M} v_{x y}\right)(\Delta t)^{4}
\end{aligned}
$$

$$
Q_{1220}=\left(-\frac{1}{2} \times \frac{F}{M}\right)(\Delta t)^{3}+\left(\frac{3}{8} \times \frac{F}{M} \frac{\dot{M}}{M}-\frac{5}{8} u \frac{F}{M}\right)(\Delta t)^{4}
$$

$$
Q_{1002}=3 Q_{1220}
$$

$Q_{0111}=\frac{2}{3} Q_{1220}$

$$
Q_{2120}=\left(\frac{1}{2} y \frac{F}{M}\right)(\Delta t)^{3}+\left(-\frac{3}{8} y \frac{F}{M} \frac{\dot{M}}{M}+\frac{5}{8} v \frac{F}{M}\right)(\Delta t)^{4}
$$

Table 4-1. (Continued)

$$
\begin{aligned}
& Q_{1202}=-Q_{2120} \\
& Q_{1211}=2 Q_{2120} \\
& Q_{1011}=\frac{2}{3} Q_{2120} \\
& Q_{0120}=-\frac{1}{3} Q_{2120} \\
& Q_{4030}=5 Q_{0030} \\
& Q_{3110}=\left(\frac{3}{8} \times \frac{F}{M} v_{x y}+\frac{3}{8} y \frac{F}{M} v_{x x}\right)(\Delta t)^{4} \\
& Q_{3121}=15 Q_{0030} \\
& Q_{3101}=\left(\frac{3}{8} \times \frac{F}{M} v_{x x}-\frac{3}{8} y \frac{F}{M} v_{x y}\right)(\Delta t)^{4} \\
& Q_{2210}=\left(-\frac{3}{8} \times \frac{F}{M} v_{x x}+\frac{3}{8} x \frac{F}{M} v_{y y}+\frac{3}{4} y \frac{F}{M} v_{x y}\right)(\Delta t)^{4} \\
& Q_{1130}=-3 Q_{0003} \\
& Q_{1312}=15 Q_{0003}
\end{aligned}
$$

Table 4-1. (Concluded)

$$
\begin{aligned}
& Q_{0403}=5 Q_{0003} \\
& Q_{0203}=-6 Q_{0003} \\
& Q_{0021}=-2 Q_{0003} \\
& Q_{0003}=\left(\frac{1}{8} y \frac{F}{M}\right)(\Delta t)^{4} \\
& Q_{2000}=Q_{0200} \\
& Q_{0200}=\left(-\frac{5}{12} \frac{F}{M} \frac{F}{M} \frac{\dot{M}}{M}\right)(\Delta t)^{4}
\end{aligned}
$$

Table 4-2. DESCRIPTION OF NOMINAL CASES USED IN ERROR ANALYSES

| $\begin{gathered} \text { NOMINAL } \\ \text { CASE } \end{gathered}$ | $\begin{aligned} & \text { THRUST } \\ & (\mathrm{K} 1 \mathrm{~b}) \end{aligned}$ | $\begin{gathered} \Delta \mathrm{R} \\ (\mathrm{KM}) \end{gathered}$ | $\begin{aligned} & \text { FLIGHT TIME } \\ & \text { (SEC). } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| NUMBER |  |  |  |
| $\begin{aligned} & \text { STD. AA-1 } \\ & \text { to } \\ & \text { STD. AA- } 24 \\ & \text { (9 cases) } \end{aligned}$ | 200 | 9.78 | 170.34 |
|  |  | (MIN) | (MIN) |
|  |  | to |  |
|  |  | $\frac{18.78}{(\mathrm{MAX})}$ | $\frac{178.71}{(\mathrm{MAX})}$ |
| $\begin{aligned} & \text { STD. AA-1A } \\ & \text { to } \\ & \text { STD. AA-24A } \\ & (9 \text { cases) } \end{aligned}$ | 175 | 9.78 | 195.26 |
|  |  | (MIN) | (MIN) |
|  |  | to | to |
|  |  | 18.78 | 203.60 |
|  |  | (MAX) | (MAX) |
| $\begin{aligned} & \text { STD. AA-1B } \\ & \text { to } \\ & \text { STD AA-24B } \\ & \text { (9 cases) } \end{aligned}$ | 150 | 9.78 | 229.41 |
|  |  | (MIN) | (MIN) |
|  |  | ${ }^{\text {to }}$ |  |
|  |  | $\frac{18.78}{(M A X)}$ | $\frac{237.98}{\text { (MAX) }}$ |
| ```STD.AA-1C to STD. AA-24C (9 cases)``` | 100 | 9.78 | 362.05 |
|  |  | (MTN) | (MIN) |
|  |  | to | to |
|  |  | $\frac{18.78}{(M A X)}$ | $\frac{373.74}{(\mathrm{MAX})}$ |
| $\begin{aligned} & \text { STD. AA- } 27 \\ & \text { to } \\ & \text { STD. AA-151 } \\ & (29 \text { cases }) \end{aligned}$ | 200 | 19.77 | 179.81 |
|  |  | (MIN) | (MIN) |
|  |  | to |  |
|  |  | 121.77 | 301.53 |
|  |  | (MAX) | (MAX) |
| All cases begin flight at same position and velocity coordinates, |  |  |  |
| $\mathrm{R}_{\text {ignition }}=6555931.8 \mathrm{~m}$ |  |  |  |
| $\mathrm{v}_{\text {ignition }}=6780.6832 \mathrm{~m} / \mathrm{sec}$ |  |  |  |
| $\mathrm{I}_{\text {sp }}=420 \mathrm{se}$ |  |  |  |

The following tables display solutions of the ROTS equations for $\lambda_{1}, \lambda_{2}$, $\lambda_{3}$, and $\lambda_{4}$ as obtained by the method of Successive Substitutions and by the NewtonRaphson method, denoted by the subscript "n-r". Values for Chi are shown as computed from $\sin ^{-1} \lambda_{1}$ where $\lambda_{1}$ is calculated by the Newton-Raphson method. True, or nominal, values are shown for $\lambda$ 's and Chi for comparison.

Results are shown for tests against eight nominal trajectories: AA-1, AA-24, $A A-1 A, A A-24 A, A A-1 B, A A-24 B, A A-1 C$, and $A A-24 C$. These are the same nominal cases described in Table 4-2.




TABLE 4-3
LAMBDA 1 ROTS $(3,3) \quad$ STD. AA1

TRUE



$$
\begin{gathered}
\text { TABLE } 4-4 \\
\text { LAMBDA } 2 \operatorname{ROTS}(3,3) \text { STD. AA1 }
\end{gathered}
$$

\[

\]

$$
\begin{aligned}
& \text { FIFTH } \\
& .141058 \\
& .069622 \\
& -.009569 \\
& -.095097 \\
& -.186495 \\
& -.223625 \\
& -.385152 \\
& -.487784 \\
& -.587641
\end{aligned}
$$

$$
\begin{array}{r}
\text { SIXTH } \\
.152949 \\
.073862 \\
-.009769 \\
-.098310 \\
-.191266 \\
-.287880 \\
-.387564 \\
-.488224 \\
-.584838
\end{array}
$$

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.148475 \\
.072393 \\
-.009560 \\
-.097156 \\
-.189867 \\
-.286900 \\
-.387958 \\
-.487998 \\
-.585289
\end{array}
$$

| FIFTH | SIXTH | NEW-RAPH |
| :--- | :--- | :--- |
| .14814 | .15313 | .15151 |
| .15774 | .15969 | .15907 |
| .16792 | .16754 | .16769 |
| .17955 | .17704 | .17778 |
| .19282 | .18879 | .18977 |
| .20660 | .20306 | .20368 |
| .21874 | .21804 | .21827 |
| .22711 | .22896 | .22948 |
| .22276 | .22347 | .22428 |


|  | TABLE 4-5 |
| :--- | :--- |
| LAMBDA 3 | ROTS (3, 3) STD. AA1 |

SUCCESS IVE SUBSTITUTIONS FOURTH .5576

.16139 | $n$ |
| :--- |
|  |
| $\vdots$ |
| $\cdots$ | $\stackrel{\infty}{\infty} \underset{\sim}{\sim}$ .17927

.18392 .18917 $\begin{array}{ll}\infty & 0 \\ 0 & 1 \\ \infty & \infty \\ \cdots & \end{array}$
$\infty$
$\infty$
$\cdots$
$\cdots$ TH IRD .16564

.16382 $\begin{array}{r}n \\ 0 \\ 6 \\ \hdashline\end{array}$ | $\curvearrowleft$ |
| :--- |
| $\infty$ |
|  |
| $?$ | .15971 .16556 .17774

 | 0 |
| :--- |
| $\underset{\sim}{-}$ |
| $\cdots$ |

 .16773
.17940 .19083
.120136 0
$\stackrel{N}{-}$
$\underset{\sim}{-}$

$\underset{-}{-}$ | $\underset{\sim}{0}$ |
| :--- |
| $\stackrel{-1}{\sim}$ |
|  | .21650

 .16956
.18016
.19090
.120158
.21200 .21200
22199 .22199
.23143 .24023 n
N
フ
N $\stackrel{\text { 嵒 }}{\stackrel{y}{9}}$ .17809 .18963 a
-
-
$\underset{\sim}{n}$
$\underset{\sim}{-}$

$\stackrel{\rightharpoonup}{0}$ .22042 .22736 .23167 . 23309 | $\infty$ |
| :--- |
| $\stackrel{\infty}{0}$ |
| $\stackrel{1}{n}$ |

 0 앙 옥 88 100 옥 억 $\stackrel{\circ}{-}$

[^0]\[

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .38878 \\
& .40090 \\
& .41636 \\
& .43580 \\
& .45960 \\
& .48703 \\
& .51444 \\
& .53254 \\
& .51488
\end{aligned}
$$
\]

$$
\begin{gathered}
\text { TABLE } 4-6 \\
\text { LAMBDA } 4 \text { ROTS }(3,3) \text { STD. AA }
\end{gathered}
$$

$\mathrm{CHI}_{\mathrm{nr}}$
73.40
76.01
78.78
81.71
84.80
88.08
91.53
95.16
98.97
102.95
107.08
111.36
115.81
120.45
125.32
130.45
135.64
140.57


|  |  <br>  <br>  <br>  |
| :---: | :---: |
| $\begin{gathered} \text { 号 } \\ \stackrel{y}{6} \\ \hline \end{gathered}$ |  <br>  <br>  <br>  |






\[

\]

SUCCESSIVE SUBSTITUTIONS THIRD FOURTH

\[
$$
\begin{array}{r}
\text { FIFTH } \\
.283674 \\
.193450 \\
.078291 \\
-.044818 \\
-.164232 \\
-.289044 \\
-.431814 \\
-.582745 \\
-.724935
\end{array}
$$

\] | O |
| :--- | :--- |
| O |
|  |
|  |



-
0
0
0
0


$\infty$
$\stackrel{\infty}{\infty}$
$\stackrel{0}{7}$
$\stackrel{1}{2}$






00
ㅇ
$\circ$ -
8
윽
9
$\stackrel{\circ}{-}$
FIFTH
.19630
.20936
.21655
.22658
.25286
.29424
.32896
.34303 ..... 33329
LAMBDA 3 ROTS (3,3) STD. AA24
SUCCESS IVE SUBSTITUTIONS $\begin{array}{cc}\text { THIRD } & \text { FOURTH } \\ .23690 & .19626 \\ .22924 & .21052 \\ .21369 & .23058 \\ .19479 & .25073 \\ .18225 & .26333 \\ .18704 & .26419 \\ .21242 & .25811 \\ .24892 & .26063 \\ .27731 & .28141\end{array}$

FIRST
.24254
.26253
.28230
.30035
.31476
.32374
.32647
.32365
.31276

| $\begin{aligned} & \text { 똘 } \\ & \underset{H}{\prime} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\Psi} \end{aligned}$ | $\xrightarrow{\sim}$ | 0 $N$ $\sim$ $\sim$ | $\infty$ $\underset{\sim}{\infty}$ $\sim$ | $\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \underset{\sim}{+} \end{aligned}$ | $\infty$ $\cdots$ 0 0 0 | $\begin{aligned} & \text { N } \\ & \underset{\sim}{*} \\ & N \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { n } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$$
\begin{aligned}
& \text { TIME } \\
& \text { - 아 } \underset{\boldsymbol{N}}{ } 0 \\
& \therefore \text { 응 } \\
& \text { 윽 } \\
& \stackrel{8}{-} \\
& 160
\end{aligned}
$$

 .51623
.53160
.55409
.58721
.63593
.70633
.80141 $\begin{array}{ll}\infty & n \\ 0 & 0 \\ 0 & 0 \\ \infty & 0 \\ 0 & 0\end{array}$FIFTH
.50125
.52837
.54108
.56242
.62418
.71947
.79479
.81951
.79004
TABLE $4-10$
LAMBDA 4 ROTS $(3,3) \quad$ STD. AA24
SUCCESS IVE SUBSTITUTIONS TABLE 4-10
LAMBDA 4 ROTS (3,3) STD. AA24
SECOND THIRD FOURTH 5135853316

.61742 .64593 0
$\infty$
$\infty$
$\$_{0}$
0

0 .63733 | $n$ |
| :--- |
|  |
|  |
|  |
| $\vdots$ | $\infty$

0
$\infty$
0
0

FIRST .60766 65352 .69845.73891 .77045 78887 .79179 .78032 | 8 |
| :--- |
|  |
|  |
|  | 펄

급 .61036 $\hat{0}$
0
0
0
0 .73178 .79540 .85181 .88895 .89763 .87469 0
0
0
0
0

0
오
8
$\infty$
8
억
억
0
-1

SIXTH NEW-RAPH

VIVF •ULS


$$
\begin{aligned}
& \text { TABLE 4-11. } \\
& \text { LAMBDA } 1 \text { ROTS }(3,3)
\end{aligned}
$$

$\begin{array}{ccc}\text { SUCCESS IVE } & \text { SUBSTITUTIONS } \\ \text { SECOND } & \text { THIRD FOURTH }\end{array}$
98565

98150



FIRST


TIME


$$
\begin{array}{r}
\text { NEW-RAPH } \\
.169258 \\
.103116 \\
.032329 \\
-.043045 \\
-.122817 \\
-.206585 \\
-.293748 \\
-.383409 \\
-.474041 \\
-.562728
\end{array}
$$

$$
\begin{gathered}
\text { TABLE 4-12 } \\
\text { LAMBDA } 2 \operatorname{ROTS}(3,3) \quad \text { STD. AAlA }
\end{gathered}
$$

\[

\]

$$
\begin{aligned}
& \begin{array}{c}
\text { TABLE 4-13 } \\
\text { LAMBDA } 3 \text { ROTS (3,3) STD. AA1A }
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { LABLE } 4-14 \\
\text { LAMBDA } 4 \text { ROTS }(3,3) \text { STD. AA1A }
\end{gathered}
$$

SUCCESS IVE SUBSTITUTIONS SECOND THIRD FOURTH .36039 .36070 | $\pm$ |
| :--- |
| $\infty$ |
|  |
|  |
| $!$ | .37154

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .34622 \\
& .35440 \\
& .36463 \\
& .37732 \\
& .39281 \\
& .41119 \\
& .43182 \\
& .45223 \\
& .46602 \\
& .45425
\end{aligned}
$$ $n$

$\cdots$

$\cdots$ | $n$ |
| :--- |
|  |
|  | .39302

.40066 .41194 | $\infty$ |
| :--- |
| $\underset{\sim}{-}$ |
| $\underset{子}{+}$ | .39579

.38439 .37054 .35969 $n$
$\pi$
$n$
$?$ $G$
$\ddagger$
$n$
$n$ .36097 .38073 .40809 O
O
N
+
$\vdots$
FIRST
.36302
.38183
.40098
.42015
.43893
.45688
.47354
.48843
.50016
.49800

$\mathrm{CHI}_{\mathrm{nr}}$
72.96
75.19
77.53
79.99
82.57
85.27
88.11
91.08
94.19
97.44
100.81
104.32
107.96
111.73
115.64
119.69
123.92
128.32
132.78
137.17
141.79







$$
\left.\forall \nrightarrow Z \forall V \text { •aLS ( } \varepsilon^{\prime} \varepsilon\right) \text { SLO甘 } Z \text { ヲagKV'I }
$$ SECOND THIRD FOURTH 331092.261406

$\stackrel{n}{n}$ .132762
.051029

$-.174612$


$\sim$
$\sim$
$\sim$
$i$
$i$
$i$
$o$
$\stackrel{9}{0}$
$\vdots$
$\vdots$
$i$

FIRST
.422711
.343000
.247883
.135376
.004361
-.144517
-.308065
-.480425
-.654155
-.822137
-.990284
TABLE 4-16
SUCCESSIVE SUBSTITUTIONS

$$
\begin{array}{r}
\text { FIFTH } \\
.284533 \\
.216553 \\
.127606 \\
.024680 \\
-.082597 \\
-.190123 \\
-.303575 \\
-.428595 \\
-.559871 \\
-.687098 \\
-.811719
\end{array}
$$

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.293108 \\
.215897 \\
.129352 \\
.032970 \\
-.073086 \\
-.187632 \\
-.308400 \\
-.432637 \\
-.558076 \\
-.679225 \\
-.785735
\end{array}
$$




鼠
0 우 영 9 $\therefore 8$ 욱
묵 운 $\stackrel{\circ}{-}$ $\stackrel{\otimes}{-}$ $\stackrel{\circ}{\sim}$

\[

\]

$$
\begin{aligned}
& \text { FIFTH } \\
& .17636 \\
& .18895 \\
& .19993 \\
& .20819 \\
& .22066 \\
& .24339 \\
& .27399 \\
& .30074 \\
& .31471 \\
& .31380
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .18273 \\
& .19116 \\
& .20051 \\
& .21151 \\
& .22530 \\
& .24357 \\
& .26841 \\
& .30081 \\
& .33382 \\
& .33838
\end{aligned}
$$

$$
\begin{gathered}
\text { TABLE 4-18 } \\
\text { LAMBDA } 4 \text { ROTS }(3,3) \text { STD. AA24A }
\end{gathered}
$$

[^1]|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


S IXTH NEW-RAPH
.97073 . 97944

|  |  |
| :---: | :---: |
|  |  |
|  |  |0

0
0
0
0
0
0
0
0
0

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

$$
\begin{aligned}
& \text { SECOND } \\
& .13693 \\
& .14647 \\
& .5644 \\
& .16677 \\
& .17688 \\
& .18670 \\
& .19563 \\
& .20308 \\
& .20831 \\
& .21048 \\
& .20801
\end{aligned}
$$



\[

\]

$$
\begin{aligned}
& \text { FIFTH } \\
& .13116 \\
& .13887 \\
& .14651 \\
& .15420 \\
& .16225 \\
& .17102 \\
& .18069 \\
& .19102 \\
& .20120 \\
& .21006 \\
& .21568
\end{aligned}
$$

$$
\text { LAMBDA } 3
$$

$$
\begin{gathered}
\text { TABLE } 4-22 \\
\text { LAMBDA } 4 \text { ROTS }(3,3) \quad \text { STD. AA1B }
\end{gathered}
$$





 .99111 .97118 .95714
.94043 $n$
N
N
o 17
$\infty$
0
0
0

 | $\infty$ |
| :--- |
| 8 |
| $\circ$ |
| $\circ$ |
| $\infty$ | $\circ$

$\stackrel{-}{2}$

$\underset{\sim}{2}$ $\infty$ | $n$ |
| :---: |
|  |
|  |



$\qquad$ | 0 |
| :--- |
| 0 | 0

0
o
o
$\vdots$
$\vdots$ .99402 .97597

 | $\infty$ |
| :---: |
| N |
| す | $89168^{\circ}$ 888て8 9ES6 ${ }^{\circ}$

 00
88
08
$?$

## .93017

## 90001






$\underset{y}{\sum_{y}^{2}}$

| S IXTH | NEW-RAPH |
| ---: | ---: |
| .332407 | .312864 |
| .257731 | .248949 |
| .179139 | .178465 |
| .098928 | .100912 |
| .015679 | .016020 |
| . .074897 | -.076103 |
| . .174942 | . .174807 |
| . .281189 | -.278850 |
| . .3888908 | -.386538 |
| . .497496 | -.496143 |
| . .605281 | -.605161 |
| . .701617 | -.706770 | FIFTH

.296956
.247181
.182481
.10354
.014186
-.080284
-.176437
-.275625
-.381504
-.494148
-.608693
-.720652 TABLE 4-24
LAMBDA 2 ROTS (3,3) STD. AA24B
SUCCESS IVE SUBSTITUTIONS THIRD FOURTH 279607
N
N
N


| $\circ$ |
| :--- |
| $\stackrel{\circ}{\circ}$ |
| $\stackrel{\circ}{\circ}$ |




g
$\stackrel{0}{0}$
$\stackrel{1}{0}$
$i$
$i$
N
0
0
0
$i$
$i$
0
$\stackrel{0}{\circ}$
$\underset{i}{7}$
$i$

| 7 |
| :--- |
|  |
| 6 |
| $\mathbf{8}$ |
| $i$ |



FIRST
.421145
.360761
.289103
.205788
.109053
-.002001
-.127358
-.265677
-.414108
-.568168
-.723147
-.874856

鼠

- 잉
9
8
8
$\stackrel{8}{-}$
극
$\stackrel{9}{9}$
$\stackrel{-}{-1}$
$\stackrel{\circ}{-8}$
앙
은

\[

\]

TIME

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .16808 \\
& .17534 \\
& .18303 \\
& .19144 \\
& .20105 \\
& .21256 \\
& .22693 \\
& .24532 \\
& .26849 \\
& .29467 \\
& .31435 \\
& .30601
\end{aligned}
$$

$$
0 \text { 아 요 }
$$

Nㅜ

$$
\begin{array}{r}
\text { FIRST } \\
.39690 \\
.42411 \\
.45280 \\
.48247 \\
.51234 \\
.54132 \\
.56805 \\
.59104 \\
.60904 \\
.62106 \\
.62675 \\
.62031
\end{array}
$$

$$
\begin{aligned}
& \text { TABLE } 4-26 \\
& \text { LAMBDA } 4 \text { ROTS }(3,3) \text { STD. AA24B }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .39101 \\
& .39737 \\
& .40577 \\
& .41695 \\
& .43190 \\
& .45186 \\
& .47832 \\
& .51264 \\
& .55500 \\
& .60050 \\
& .63054 \\
& .60797
\end{aligned}
$$

TABLE 4-27
LAMBDA 1 ROTS $(3,3)$ STD. AAIC


SIXTH NEW-RAPH


SUCCESS IVE SUBSTITUTIONS
FIFTH



|  |  | NN心. |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |




$$
\begin{array}{r}
\text { NEW-RAPH } \\
.372523 \\
.294022 \\
.205988 \\
.106850 \\
-.004796 \\
-.129769 \\
-.267690 \\
-.416244 \\
-.570272 \\
-.740087
\end{array}
$$

$$
\begin{array}{lllllllll}
\text { Min } & 0 & \text { O } \\
\sim & \text { N } & \text { N } \\
\text { N }
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{r}
\text { FIFTH } \\
.13537 \\
.14637 \\
.15947 \\
.17408 \\
.18931 \\
.20550 \\
.22564 \\
.25152 \\
.27619 \\
-1.89651
\end{array} \\
& \begin{array}{c}
\text { TABLE 4-29 } \\
\text { LAMBDA } 3 \text { ROTS }(3,3) \text { STD. AA1C }
\end{array} \\
& \text { SUCCESS IVE SUBSTITUTIONS } \\
& \text { SECOND }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 䛼 } \\
& \text { 우 } \\
& \text { 우- } \\
& 8 \\
& \text { 옹 } \\
& \text { 옥 } \\
& \text { 우N } \\
& \text { 앙 }
\end{aligned}
$$

$$
\begin{gathered}
\text { TABLE } 4-30 \\
\text { LAMBDA } 4 \text { ROTS }(3,3) \quad \text { STD. AAIC }
\end{gathered}
$$

SUCCESS IVE SUBSTITUTIONS SECOND THIRD FOURTH $\begin{array}{ll}\vec{J} & \vec{y} \\ \text { N } \\ & 0\end{array}$

 |  |
| :---: |
| 0 |
| O |
|  |


 $\begin{array}{ll}\sim \\ \underset{\sim}{n} \\ \underset{\sim}{-} & 0 \\ 0\end{array}$ .33091
.34568

 .37052


 FIRST .18135
.20165
.22598
.25477
.28820 .32589

$$
\begin{array}{r}
\text { FIFTH } \\
.25747 \\
.25890 \\
.26631 \\
.27793 \\
.29146 \\
.30604 \\
.32822 \\
.35731 \\
.38294 \\
-2.36877
\end{array}
$$

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.26843 \\
.27074 \\
.27439 \\
.28013 \\
.28915 \\
.30314 \\
.32409 \\
.35273 \\
.38948 \\
-2.40451
\end{array}
$$ $n$

$n$
0
0
0 1
$\infty$
0
$\vdots$
$\vdots$ .44591


 | $\sum_{i=1}^{M}$ | 0 | O | 0 | O | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{CHI}_{\mathrm{nr}}$
64.05
66.46
68.98
71.65
74.47
77.46
80.66
84.08
87.74
91.68
95.90
100.44
105.31
110.52
116.07
121.98
128.29
134.96
141.79



SUCCESS IVE SUBSTITUTIONS


思
SUCCESSIVE SUBSTITUTIONS

FIRST
.469364
.418425
.351873
.263124
.143664
-.016327
-.224713
-.482602
-.777288
-.010871

$$
\begin{gathered}
\text { TABLE 4-32 } \\
\text { LAMBDA } 2 \text { ROTS }(3,3) \quad \text { STD. AA24C }
\end{gathered}
$$

$$
\begin{gathered}
\text { NEW-RAPH } \\
.437581 \\
.358671 \\
.267807 \\
.162308 \\
.039410 \\
-.102862 \\
-.264055 \\
-.439401 \\
-.619645 \\
\hline-.785744
\end{gathered}
$$

TIME

- 여
$\infty$
극 $\stackrel{8}{-1}$ 음 운 잉 $\stackrel{\mathrm{N}}{\mathrm{N}}$ 융

SUCCESS IVE SUBSTITUTIONS
THIRD FOURTH
.14868
15674
.16562 .17845
.19880 N
$\stackrel{\infty}{N}$
$\underset{\sim}{N}$ . 25124 .26708 $\stackrel{N}{N}$
 16514 18301 $\circ$
8
8 .21346 .23001 .22002 .22387 .24958 .39808 .32584 SECOND .12492
.14365 .14365

\[
$$
\begin{aligned}
& \text { FIFTH } \\
& .15086 \\
& .16300 \\
& .17915 \\
& .19837 \\
& .21753 \\
& .23483 \\
& .25820 \\
& .29703 \\
& .33242 \\
& .32225
\end{aligned}
$$

\] | 10 |
| :--- |
| $\infty$ |
| 0 |
| 0 |
|  | | $\stackrel{J}{N}$ |
| :--- |
|  |
| $\square$ | .22874 .26527 .29875 .31735 .30492 $\vec{~}$

N
N FIRST
 .19975 .23037 .26529 .30352 .34223 .37809


晃 0 9 \& $\stackrel{-}{-}$ $\stackrel{8}{-1}$ 200 우N | 우N |
| :--- | 320 O

$$
\begin{gathered}
\text { TABLE } 4-34 \\
\text { LAMBDA } 4 \text { ROTS }(3,3) \quad \text { STD. AA24C }
\end{gathered}
$$

$$
\begin{array}{rccccc} 
& & & \text { SUCCESSIVE SUESTITUTIONS } \\
\text { TIME } & \text { TRUE } & \text { FIRST } & \text { SECOND } & \text { TH IRD } & \text { FOURTH } \\
0 & .27059 & .20540 & .17220 & .31155 & .29858 \\
40 & .29268 & .23168 & .20492 & .33300 & .29315 \\
80 & .31945 & .26373 & .24456 & .35048 & .28887 \\
120 & .35151 & .30229 & .29144 & .35910 & .29211 \\
160 & .38883 & .34757 & .34439 & .35440 & .30984 \\
200 & .42952 & .39851 & .39847 & .34015 & .34110 \\
240 & .46809 & .45186 & .44361 & .33593 & .37248 \\
280 & .49457 & .50172 & .46296 & .36835 & .39125 \\
320 & .49834 & .54097 & .43801 & .43127 & .40800
\end{array}
$$

$$
\begin{aligned}
& \text { FIFTH } \\
& .28996 \\
& .29016 \\
& .30101 \\
& .31992 \\
& .34034 \\
& .35835 \\
& .38578 \\
& .43506 \\
& .47652 \\
& .45451
\end{aligned}
$$

TABLE 4.35

| 80 |
| :---: |







$$
\text { LAMBDA } 2 \text { ROTS }(4,3) \text { STD. AA1 }
$$SIXTH

.229180
.140484
.044723
-.057298
-.164117
-.273567
-.382687
-.487693
-.584889FIFTH
.230272
.141156
.044945
. .057502
-.164608
-.274082
-.383045
-.488385
-.587924
SUCCESS TVE SUBSTITUTIONS




TABLE 4-37
LAMBDA 3 ROTS (4,3) STD. AA1
FIRST
.16917
.17054
.18117
.19194
.20274
.21351
.22426
.23512
.23996

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .18218 \\
& .18833 \\
& .19493 \\
& .20215 \\
& .21008 \\
& .21834 \\
& .22574 \\
& .23018 \\
& .22293
\end{aligned}
$$



$\begin{array}{rrrrrr} & & & \text { SUCCESSIVE SUBSTITUTIONS } \\ \text { TIME } & \text { TRUE } & \text { FIRST } & \text { SECOND } & \text { THIRD } & \text { FOURTH } \\ 0 & .45610 & .40324 & .38536 & .48620 & .49905 \\ 20 & .47714 & .42567 & .41172 & .48615 & .49395 \\ 40 & .49872 & .44820 & .43677 & .48349 & .48913 \\ 60 & .51715 & .47035 & .45920 & .47992 & .48520 \\ 100 & .53176 & .49162 & .47752 & .47781 & .48289 \\ 120 & .54408 & .52982 & .49566 & .48664 & .48673 \\ 140 & .54026 & .54621 & .49268 & .49875 & .49505 \\ 160 & .52998 & .54778 & .46705 & .50064 & .49538\end{array}$

$$
\begin{aligned}
& \text { FIFTH } \\
& .46587 \\
& .47205 \\
& .48157 \\
& .49366 \\
& .50689 \\
& .51915 \\
& .52796 \\
& .53068 \\
& .51067
\end{aligned}
$$



$$
\begin{gathered}
\text { TABLE 4-40 } \\
\text { LAMBDA } 2 \text { ROTS }(4,3) \text { STD. AA24 }
\end{gathered}
$$

SUCCESS IVE SUBS TITUTIONS



SUCCESS IVE SUBSTITUTIONS
SECOND

.30560
.29936


| 9 |
| :--- |
|  |
|  |
|  |

FIRST

.31443
.31805
.31695

$$
\begin{gathered}
\text { TABLE 4-4.1 } \\
\text { LAMBDA } 3 \text { ROTS }(4,3) \quad \text { STD. AA24 }
\end{gathered}
$$

$\infty$
$\infty$
$\infty$
0
0
n
n
몹 $9 Z 56 Z^{*}$
SIL9て＊
$8 Z I 力 て *$ $\infty$
$\underset{\infty}{\infty}$
$\underset{\sim}{2}$
$\underset{\sim}{n}$ .34975 .36818 .37482 .36822 $n$
$\infty$

$n$
TIME
0
아 어 ㅇ
8
$\stackrel{\text { 윽 }}{-}$
0
ㅇ
-1
NEW-RAPH
.73792
.71790
.70681
.71108
.73214
.77058
.81788
.84508
.80672
SIXTH
.74033
.72025
.71128
.71328
.73119
.77039
.81656
.83489
.79398
FIFTH
.73461
.70533
.69404
.70462
.73608
.77599
.80475
.81012
.77668
TABLE 4-42
LAMBDA 4 ROTS (4,3) STD. AA24
SUCCESSIVE SUBSTITUTIONS
SECOND
.55175
.60654
.65967
.70570
.73728
.74681
.72939
.68538
.61082
FIRS T
.58718
.63227
.67661
.71684
.74873
.76832
.77375
.76636
.74110



| $\underset{\sim}{\underset{\Sigma}{[1}}$ |  <br>  <br>  ヘN |  |
| :---: | :---: | :---: |
|  |  <br>  <br>  |  |
|  |  <br>  ○ <br>  | 웅NNN N <br>  NO요 N N N |
|  |  <br>  <br>  <br>  ．․․․․․․․․․․․․ | mo fivinc ก 7 O ${ }^{\circ}$ N N <br>  $0 \sigma \infty \infty$ |
|  |  <br>  <br>  <br>  |  <br>  Nomimo $0 \infty \infty \infty$ |
|  |  サ人 <br>  | $\infty \times \infty \times \infty$ NNかなNㅜㅇ NふN以N $\circ \sigma_{0} \infty_{0} \times$ |
|  |  <br>  $\infty \infty$ かの <br>  |  かo… <br>  $\circ 0 \infty \infty \infty$ |
|  | 人n №． <br>  <br>  | 욱우№ <br>  <br> $\stackrel{-\infty}{\infty} \cos _{\infty}^{\infty} \infty \underset{\sim}{\infty}$ |
| H H H H |  | 8888888 |
| $$ |  <br>  <br>  | すが品ベッ OONへN NO O N N N N |
|  | 윽엉앙ㅇㅇㅇㅇㅇㅇㅇㅇ으ㄱㅓㅓㄱ |  |

$$
\begin{gathered}
\text { TABLE 4-44 } \\
\text { LAMBDA } 2 \text { ROTS }(4,3) \quad \text { STD. AA1A }
\end{gathered}
$$

SUCCESS IVE SUBSTITUTIONS
THIRD FOURTH




TABLE 4-45
LAMBDA 3 ROTS (4,3) STD. AAIA


|  |  |  |  |  |  |  |  |  |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



SUCCESS IVE SUBSTITUTIONS THIRD FOURTH
.17521
.17961
$\stackrel{+}{N}$
. 18650
.18923
$\circ$
$\stackrel{\infty}{\infty}$
$\cdots$
. 19460
. 19818
. 20279
$-\stackrel{\rightharpoonup}{0}$
.17976
. 17666
.18132 .18484 .18756 . 19014
 .19826 . 20468 . 20721 SEGOND .13805 .14811 .15846 .16883 .18795
.19558
. 20099
. 20292

| $\circ$ |
| :--- |
|  |
|  |

FIRST
.14470
.15390
. 16350
17347
18375 .19429 .20510
.21621



䛼
0
오
8
$\infty$
8
$\stackrel{\circ}{-1}$
$\underset{\sim}{9} \quad 0$
옥

$$
\begin{array}{r}
\text { FIRST } \\
.34237 \\
.36091 \\
.37996 \\
.39930 \\
.41863 \\
.43767 \\
.45613 \\
.47372 \\
.48936 \\
.49260
\end{array}
$$

$$
\begin{aligned}
& \text { FIFTH } \\
& .41151 \\
& .41550 \\
& .42157 \\
& .42958 \\
& .43905 \\
& .44908 \\
& .45841 \\
& .46541 \\
& .46738 \\
& .45152
\end{aligned}
$$

$$
\begin{array}{lllllllll}
\sum_{\mathrm{N}}^{\mathrm{M}} \quad 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$



FOURTH FIFTH


aKIL

$$
\begin{gathered}
\text { TABLE 4-48 } \\
\text { LAMBDA } 2 \text { ROTS }(4,3) \text { STD. AA24A }
\end{gathered}
$$

SUCCESSIVE SUBSTITUTIONS



NEW-RAPH
.24814
.25262
.25725
.26272
.27002
.28031
.29432
.31052
.32228
.31875
.05703

FIFTH
.24798
.25082
.25457
.26042
.26950
.28196
.29573
.30701
.31244
.30845
.04848
TABLE 4-49
LAMBDA 3 ROTS $(4,3) \quad$ STD. AA24A
SUCCESS IVE SUBSTITUTIONS
$\begin{array}{lcc}\text { SECOND } & \text { TH IRD } & \text { FOURTH } \\ .19331 & .25174 & .25616 \\ .21096 & .26238 & .26277 \\ .22934 & .26873 & .26761 \\ .24751 & .27014 & .27069 \\ .26391 & .26733 & .27178 \\ .27647 & .26300 & .27076 \\ .28287 & .26111 & .26837 \\ .28107 & .26453 & .26716 \\ .36978 & .27258 & .27094 \\ .24767 & .28019 & .28120 \\ .08278 & .03791 & .06063\end{array}$
FIRST
.20410
.22010
.23659
.25299
.26846
.28202
.29282
.30047
.30516
.30660
.00998



$$
\begin{aligned}
& \begin{array}{c}
\text { NEW-RAPH } \\
.62971 \\
.61681 \\
.60968 \\
.60979 \\
.61878 \\
.63793 \\
.66657 \\
.69856 \\
.71781 \\
.70284 \\
. .00615
\end{array} \\
& \begin{array}{r}
\text { SIXTH } \\
.63177 \\
.61883 \\
.61221 \\
.61189 \\
.61919 \\
.63709 \\
.66643 \\
.69799 \\
.71300 \\
.69521
\end{array} \\
& \begin{array}{r}
\text { FIFTH } \\
.62933 \\
.61128 \\
.60185 \\
.60339 \\
.61740 \\
.64212 \\
.67025 \\
.69142 \\
.69779 \\
.68269 \\
.00980
\end{array} \\
& \text { SUCCESS aVE SUBSTITUTIONS } \\
& \text { SECOND THIRD FOURTH } \\
& 65636 \\
& \begin{array}{r}
.64838 \\
.63974 \\
.63144
\end{array} \\
& \begin{array}{r}
.63144 \\
.62343 \\
.61528
\end{array} \\
& \begin{array}{r}
.60791 \\
.60520
\end{array} \\
& .60520 \\
& \begin{array}{r}
.61250 \\
.62945
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\infty \\
\infty \\
\sim \\
\sim \\
\hline- \\
i
\end{array}
\end{aligned}
$$

> 0 ㅇ 앙 8 $\infty$ 100 120 140 $\underset{-1}{8}$ $\stackrel{8}{-\infty}$ 아N

NEW-RAPH

. 9$\circ$
0
0
0
0.97685an
No
No
No~~~N
N
N
$\infty$
$\infty$
SECOND





TABLE 4-52
LAMBDA 2 ROTS (4,3) STD. AA1B
SUCCESS IVE SUBSTITUTIONS
THIRD FOURTH

$$
\begin{gathered}
\text { FIFTH } \\
.281381 \\
.217501 \\
.148890 \\
.075603 \\
-.002115 \\
-.083791 \\
-.168686 \\
-.255718 \\
-.343588 \\
-.430790 \\
\hline-.515991
\end{gathered}
$$



$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .280508 \\
& .216909 \\
& .148547 \\
& .075446 \\
& -.002117 \\
& -.083690 \\
& -.168543 \\
& -.2555603 \\
& -.343505 \\
& -.430503 \\
& -.514639
\end{aligned}
$$



n
$\infty$
$\infty$
$\infty$
$\infty$
$\mathbf{o}$
i



 aNOOAS

.040855
-.031004
-.107205
$-.186633$
$\pm$
0
0
$\stackrel{0}{0}$
$i$

-. 426468
N
N
I
I
$i$
dATA FIRST
.234676
.179955
.119310
.052336
-.021256
-.101604
-.188639
-.281995
-.381099
-.485110
-.593187云 TRUE
.270017
.211729
.147697
.077774
.002083
-.078883
-.164177
-.252353
-.341515
-.429457
-.513909 N
N
N
? MKIL 0 i 앙 8 $\infty$ 8 윽 악 $\stackrel{\circ}{-}$ $\stackrel{8}{\infty}$ $\stackrel{\circ}{\circ}$ 220

|  |  |  | LAMBDA | TABLE <br> 3 ROTS | $\begin{aligned} & 4-53 \\ & (4,3) \quad \text { STD. AAIB } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | TRUE | FIRST | SECOND | SUCCESS IVE TH IRD | SUBSTITUTIONS FOURTH |
| 0 | .15020 | . 13237 | . 13519 | . 15910 | . 16419 |
| 20 | . 15898 | .14067 | . 13422 | . 16584 | . 16938 |
| 40 | . 16796 | . 14942 | . 14374 | . 17177 | . 17411 |
| 60 | .17698 | .15863 | .15361 | . 17679 | . 17839 |
| 80 | .18586 | .16830 | . 16362 | .18093 | . 18226 |
| 100 | .190434 | . 17844 | .17349 | . 18440 | .18580 |
| 120 | . 20212 | . 18901 | . 18282 | .18762 | . 18912 |
| 140 | . 20888 | . 20007 | . 19112 | .19119 | .19243 |
| 160 | .21433 | . 21160 | .19779 | . 19573 | .19600 |
| 180 | .21822 | . 22362 | . 20207 | . 20171 | . 20022 |
| 200 | . 22040 | . 23553 | . 20245 | . 20866 | . 20483 |
| 220 | . 22085 | ERROR | TA |  |  |

 $\mathrm{CHI}_{\text {nom }}$








\[

\]





FIRST
.17704
.19016
.20405
.21852
.23238
.24794
.26198
.27490
.28636
.29623
.30471
.30880



$$
\begin{aligned}
& \begin{array}{l}
\text { NEW-RAPH } \\
.53825 \\
.53044 \\
.52508 \\
.52296 \\
.52503 \\
.53227 \\
.54540 \\
.56425 \\
.58649 \\
.60561 \\
.61124 \\
.58912
\end{array}
\end{aligned}
$$

TABLE 4-59







\[

\]

$$
\text { SECOND } \quad \text { THIRD } \quad \text { FOURTH }
$$

$$
\begin{aligned}
& \underset{y}{0} \\
& \underset{\sim}{\infty} \\
& \underset{0}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{0}{\lambda} \\
& \underset{\sim}{n} \\
& \underset{i}{2}
\end{aligned}
$$

$$
\begin{aligned}
& n \\
& \infty \\
& n \\
& n \\
& n \\
& i
\end{aligned}
$$

$$
\begin{aligned}
& \text { n } \\
& \underset{N}{\hat{N}} \\
& \mathbf{i}
\end{aligned}
$$


.034233 -. 100011 TRUE .417679
SUCCESSIVE SUBSTITUTIONS $\stackrel{n}{n} \underset{i}{\underset{\sim}{4}}$ TIME

$$
.436594
$$

$$
.369419
$$

$$
.062832
$$

$$
\text { .. } 078992
$$



$$
.560012
$$

$$
.383533
$$

$$
.292814
$$

$$
.186029
$$

$$
.061624
$$

$$
-405471
$$

$$
\begin{array}{r}
\text { FIFTH } \\
.470491 \\
.390984 \\
.297569 \\
.188399 \\
.062199 \\
-.080926 \\
-.238513 \\
-.405278 \\
. .576937 \\
. .810302
\end{array}
$$

$$
\begin{aligned}
& \stackrel{N}{N} \\
& 0 \\
& \stackrel{\sim}{0} \\
& \hline
\end{aligned}
$$


.240489
.147901
 +
0
0
0
0
$i$ 7
J
N
$i$ $n$
$n$
0
0
0
0
$i$


 .174357 $\circ$
$\underset{0}{0}$
0
0 . . 077688
 -. 403285

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.471805 \\
.391485 \\
.297527 \\
.188234 \\
.062137 \\
-.080926 \\
-.238702 \\
-.405064 \\
-.569177 \\
-.740457
\end{array}
$$ N

N
N
$i$
$i$
9 8 극 $\stackrel{8}{-}$ 움 $\stackrel{9}{3}$ 몸 $\stackrel{\circ}{\circ}$


$$
\begin{array}{r}
\text { NEW-RAPH } \\
.16638 \\
.18004 \\
.19323 \\
.20603 \\
.21881 \\
.23232 \\
.24750 \\
.26435 \\
.27818 \\
-1.95808
\end{array}
$$

SUCCESS IVE SUBSTITUTIONS
SECOND THIRD FOURTH 30338


.32921

.36191
.36440
LAMBDA 4 ROTS (4,3) STD. AAIC $\begin{array}{ll}\text { SECOND } & \text { THIRD } \\ .14908 & .27505 \\ .17457 & .29552 \\ .20409 & .21489 \\ .23738 & .33114 \\ .27330 & .34263 \\ .30920 & .34926 \\ .34008 & .35566 \\ .35834 & .36729 \\ .35355 & \end{array}$ . TRUNCATION ERROR
 TRUE .25000
.26603 .28454 .30552 .32839 .35171 .37269 $\begin{array}{ll}N & n \\ & n \\ \infty & n \\ & n\end{array}$
 $\underset{\substack{\text { M } \\ \\ \hline \\ \hline}}{ }$ - 아 120
160 앙 우N 으N 360

$$
\begin{array}{r}
\text { FIFTH } \\
.33082 \\
.33379 \\
.33570 \\
.33745 \\
.34062 \\
.34749 \\
.35987 \\
.37588 \\
.38792
\end{array}
$$

$$
\begin{array}{r}
\text { SIXTH } \\
.33434 \\
.33477 \\
.33521 \\
.33665 \\
.34035 \\
.34764 \\
.35958 \\
.37506 \\
.38439
\end{array}
$$



NEW－RAPH


TABLE 4－63
LAMBDA 1 ROTS（4，3）STD．AA24C
SUCCESS IVE SUBSTITUTIONS
FIFIH

． 83694
 .89506 음 oi
 $n$
0
0
0 $\stackrel{\infty}{\sim}$ － N
 す。先 or
 9
0
0
0
0

 L0988＊ 그N 으N N～N． | $N$ |
| :--- | $\stackrel{\infty}{\sim}$ №




 No | t |
| :--- |
| O |
| © |




$$
\begin{array}{r}
\text { FIRST } \\
.468589 \\
.417941 \\
.348543 \\
.257003 \\
.134623 \\
-.027362 \\
-.236056 \\
-.491549 \\
-.781715 \\
-.010876
\end{array}
$$

$$
\begin{array}{r}
\text { SECOND } \\
.477337 \\
.424848 \\
.352497 \\
.254459 \\
.125201 \\
-.037356 \\
-.225725 \\
-.415266 \\
-.563136 \\
-.621859
\end{array}
$$

$$
\begin{array}{r}
\text { FIFTH } \\
.596155 \\
.516130 \\
.417693 \\
.297438 \\
.152171 \\
-.019242 \\
-.213009 \\
-.419973 \\
-.633446 \\
-.892140
\end{array}
$$

$$
\begin{array}{r}
\text { SIXTH } \\
.601529 \\
.517919 \\
.417171 \\
.296050 \\
.151236 \\
-.019266 \\
-.213342 \\
-.420118 \\
-.612265 \\
-.686173
\end{array}
$$

NEW-RAPH
.596946
.515259
.416082
.295902
.151354
-.019270
-.213285
-.420119
-.619656
SUCCESS IVE SUBSTITUTIONS THIRD

.30002
.32238
N
N
N
N
n
SECOND
.12051
.13889
.16141
.18869
.22063
.25534
.28731
.30584
.29618
.22046
FIRS T
.13379
.15187
.17305
.19794
.22698
.26013
.29642
.33389
.37056
.38329

$$
\begin{gathered}
\text { TABLE 4-65 } \\
\text { LAMBDA } 3 \text { ROTS }(4,3) \text { STD. AA24C }
\end{gathered}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .20711 \\
& .22316 \\
& .23762 \\
& .25059 \\
& .26273 \\
& .27565 \\
& .29214 \\
& .31456 \\
& .33641 \\
& .30901
\end{aligned}
$$



NEW－RAPH .44012
.43391
.42641
.41948
.41574
.41881

.43274 \begin{tabular}{l}
$n$ <br>
$\infty$ <br>
\multirow{2}{*}{} <br>
\multirow{2}{*}{}

 

0 \& $N$ <br>
0 \& 0 <br>
$\infty$ \& $N$ <br>
\multirow{1}{\infty}{} \& $\underset{\sim}{3}$ <br>
0 \& 0
\end{tabular}$\infty$

N
N゙
＋
FIFTH .42518 .42778 .42622 .42196  .41873
.43324 $\begin{array}{r}\infty \\ \mathbf{0} \\ 0 \\ + \\ \hline\end{array}$ ..... 48006
$N$
$\sim$
$\sim$
$\sim$
$\sim$

$$
\text { LAMBDA } 4 \text { ROTS }(4,3) \text { STD. AA24C }
$$

SECCESS TVE SUBSTITUTTONS

THIRD FOUR＇TH
.36686
.37884
.39074
， 40413

| 0 |
| :--- |
| $\stackrel{0}{\circ}$ |
| $\underset{\sim}{7}$ |

.42994

.43444 | 1 |
| :--- |
| 0 |
| 0 |
| $\underset{\sim}{1}$ |

N
O
N
긍 THIRD .31805

.34832 | $\infty$ |
| :--- |
| $\infty$ |
| $\infty$ |
|  | .40326 .41912 $\infty$

$\underset{\sim}{\infty}$
$\underset{\sim}{+}$
$\underset{\sim}{*}$ .42476 .43680 $\stackrel{\rightharpoonup}{-}$
O

O | N |
| :--- |
| N |
|  | SECOND

.16533
.19759
.23633
.28170
.33239
.38409
.42740
.44718
.42652
.32515 FIRST FIRST

LISOZ
23123 $97 て 9 て$
.29955
，34270
4
0
$\vdots$

| $\infty$ |
| :--- |
| $\infty$ |
| + |
| + | .49042 .53114

N
N
N
ñ
.27059
 $S 76 I \varepsilon^{\circ}$ .35151 $\infty$
$\infty$
$\infty$
$\infty$
$\infty$ Ñ
$\underset{\sim}{N}$
$\underset{\sim}{7}$ 9
0
0
0
0 .49457 .49834 0
0
0
0 $\underset{\text { E }}{\underset{\sim}{2}}$ 0 웅 － $\underset{\sim}{\text { O}}$ 0
-1 앙 우N $\stackrel{0}{\infty}$ 으N 웅

$$
\text { LAMBDA } 1 \text { ROTS }(5,3) \text { STD. AA1 }
$$

$$
\begin{array}{r}
\mathrm{CHI}_{\mathrm{nr}} \\
76.82 \\
81.69 \\
87.05 \\
92.87 \\
99.11 \\
105.67 \\
112.41 \\
119.16 \\
125.77
\end{array}
$$

$$
\begin{array}{ccc}
\text { SUCCESS IVE } & \text { SUBSTITUTIONS } \\
\text { FOURTH } & \text { FIFTH } & \text { SIXTH } \\
& & \\
.97328 & .97205 & .94794 \\
.98985 & .98930 & .98331 \\
.99893 & .99885 & .99832 \\
.99836 & .99836 & .99833 \\
.98618 & .98598 & .98566 \\
.96102 & .96072 & .96071 \\
.92222 & .92270 & .92304 \\
.86993 & .87349 & .87254 \\
.80413 & .81591 & .80964
\end{array}
$$

$$
\begin{array}{lllllllll}
\substack{\operatorname{man}} & 0 & \circ & 0 & 0 & 0 & 8 & 0 & 0 \\
\hline
\end{array}
$$

NEW-RAPH
.228071
.144523
.051518
. .050095
. .158348
-.270068
-.381163
-.487246
-.584555
SEVENTH
.391618
.182983
.054119
. .058953
-.168820
-.277536
-.384633
-.488291
-.585945

|  | n |  | $\uparrow$ | $\cdots$ | N | $\infty$ | $n$ | O <br>  <br> 0 <br> 0 <br> $\sim$ <br> + | 8 <br>  <br>  <br> + <br> $\infty$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 官 | $\bigcirc$ | O | - | 0 | $\bigcirc$ | N | -7 |  |  |  |
| \% | $\checkmark$ | \% | $\stackrel{8}{8}$ | $\bigcirc$ | $\infty$ | N | $\pm$ |  |  |  |
| $\infty$ | ㅇ | - | $\bigcirc$ | $\bigcirc$ | $\xrightarrow{-1}$ | N | $\stackrel{\sim}{\sim}$ |  | $\infty$ |  |
|  |  |  |  |  |  |  |  |  |  |  |


| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| TH IRD | FOURTH | FIFTH |
|  |  |  |
| .229645 | .234813 | .318438 |
| .142051 | .145842 | .181914 |
| .046042 | .047877 | .057838 |
| -.057198 | -.057242 | -.057735 |
| -.165628 | -.166819 | -.168699 |
| -.276579 | -.277598 | -.277555 |
| -.387203 | -.386048 | -.384736 |
| -.495086 | -.488630 | -.488084 |
| -.599519 | -.582567 | -.587939 |


FIRST
.188450
.108287
.018799
-.080055
-.187738
-.303090
-.424370
-.599441
-.676956



$$
\begin{aligned}
& \begin{array}{l}
\text { SEVENTH } \\
.25236 \\
.20698 \\
.19956 \\
.20118 \\
.20647 \\
.21405 \\
.22243 \\
.22861 \\
.22220
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TABLE 4-69 } \\
& \text { LAMBDA } 3 \text { ROTS }(5,3) \text { STD. AAI } \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { FIRST } \\
& .40177 \\
& .42426 \\
& .44692 \\
& .46924 \\
& .49073 \\
& .51091 \\
& .52943 \\
& .54604 \\
& .54775
\end{aligned}
$$

$$
\begin{gathered}
\text { TABLE 4-70 } \\
\text { LAMBDA } 4 \text { ROTS }(5,3) \quad \text { STD. AA1 }
\end{gathered}
$$

\[

\]

$$
\begin{aligned}
& \text { S IXTH } \\
& .65028 \\
& .54024 \\
& .50100 \\
& .49321 \\
& .49771 \\
& .51004 \\
& .52345 \\
& .53057 \\
& .51059
\end{aligned}
$$

$$
\begin{aligned}
& \text { SEVENTH } \\
& .66729 \\
& .52297 \\
& .49375 \\
& .49069 \\
& .49769 \\
& .51011 \\
& .52346 \\
& .53070 \\
& .51060
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .46896 \\
& .47922 \\
& .49068 \\
& .50326 \\
& .51635 \\
& .52831 \\
& .53641 \\
& .53766 \\
& .53094
\end{aligned}
$$

$$
\text { 思 } 0 \text { 웁 여 요 악 억 욱 윽 }
$$

| TABLE 4－71LAMBDA 1ROTS（5，3） |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | TRUE | SECOND | TH IRD | $\begin{aligned} & \text { SUCCESS IVE } \\ & \text { FOURTH } \end{aligned}$ | SUBSTITU <br> FIFTH | ONS <br> S IXTH | SEVENTH | NEW－RAPH | CH I <br> nom | $\mathrm{CHI}_{\mathrm{nr}}$ |
| 0 | ． 89650 | ． 91620 | ． 91225 | ． 88294 | ． 90467 | ． 05693 | ＊2ヶ＊＊が | ＊＊＊＊＊＊ | 63.70 | ＊＊＊＊＊ |
| 20 | ． 93512 | ． 95133 | ． 95072 | ． 93324 | ． 94095 | ． 68819 | \％＊＊＊2＊＊ | ． 93455 | 69.24 | 69.16 |
| 40 | .96999 | ．98132 | ． 98229 | ． 97368 | ． 97508 | ． 92077 | ． 62.566 | ， 96981 | 75.92 | 75.89 |
| 60 | .99436 | ． 99870 | ．99910 | ． 99710 | ． 99711 | c99342 | －99044 | .99436 | 83.31 | 83.91 |
| 80 | ． 99839 | ． 99340 | ． 99293 | ． 99571 | ．99572 | － 99492 | .99483 | ． 99836 | 93.25 | 93.28 |
| 100 | .97142 | ． 95510 | ，95924 | .96303 | .96279 | －96045 | ． 95998 | ． 97123 | 103.72 | 103.78 |
| 120 | ． 90767 | .87789 | ． 90150 | ． 89646 | ． 89759 | ． 89784 | ． 89711 | ． 90734 | 114.81 | 114.86 |
| 140 | ． 81163 | ． 76414 | ． 83150 | .79866 | ． 80924 | ． 80700 | ． 80857 | .81130 | 125.74 | 125.78 |
| 160 | .69691 | ． 62292 | ． 76368 | .67501 | ． 71469 | ． 69022 | ． 70225 | ． 69656 | 135.82 | 135.85 |

$$
\begin{array}{r}
\text { FIRS T } \\
.409369 \\
, 311978 \\
.193272 \\
.050922 \\
-.114876 \\
-.299643 \\
-.494173 \\
-.686792 \\
-.868417
\end{array}
$$

$$
\begin{array}{r}
\text { SECOND } \\
.4018917 \\
.313917 \\
.188153 \\
.042301 \\
-.118891 \\
-.285514 \\
-.443836 \\
-.580503 \\
-.687480
\end{array}
$$

$$
\begin{array}{r}
\text { S IXTH } \\
.001131 \\
.034199 \\
.788614 \\
.137913 \\
-.101490 \\
-.280041 \\
-.441936 \\
-.589427 \\
-.716143
\end{array}
$$

NEW-RAPH
$* * * * * * * *$
.355812
.243838
.106004
. .057244
. .238122
-.420379
-.584626
-.717493
NEW-RAPH
$* * * * * * * *$
.35581
.29586
.30855
.32211
.33750
.35310
.35999
.34886
SEVENTH
$* * * * * * *$
$* * * * * * * *$
.78516
.31533
.29254
.30149
.32258
.34365
.33388
SIXTH
$* * * * * * *$
$* * * * * * *$
.57443
.32669
.29340
.30060
.32232
.34260
.33456
LAMBDA 3 ROTS (5,3) STD. AA24

| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| THIRD | FOURTH | FIFTH |
|  |  |  |
| .28813 | .27562 | .49450 |
| .29681 | .28747 | .42687 |
| .29841 | .29518 | .36020 |
| .29313 | .29772 | .31198 |
| .28456 | .29504 | .29474 |
| .27910 | .28904 | .30415 |
| .28145 | .28465 | .32243 |
| .28989 | .28883 | .33408 |
| .29311 | .30016 | .32618 |

 FIRST
.23382
.25326
.27257
.29032
.30470
.31407
.31780
.31682
.30883



$$
\begin{gathered}
\text { TABLE } 4-74 \\
\text { LAMBDA } 4 \text { ROTS }(5,3) \quad \text { STD. AA24 }
\end{gathered}
$$

\[

\]

$$
\begin{gathered}
\text { SIXTH } \\
\star * * * * * * \\
4.27578 \\
1.41754 \\
.79365 \\
.71397 \\
.73237 \\
.78093 \\
.81979 \\
.79311
\end{gathered}
$$

$$
\begin{aligned}
& \text { SEVENTH } \\
& * * * * * * * \\
& * * * * * * * \\
& 2.14136 \\
& .76694 \\
& .71213 \\
& .73445 \\
& .78153 \\
& .82212 \\
& .79172
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& * * * * * * * \\
& .72121 \\
& .73342 \\
& .75140 \\
& .77756 \\
& .81214 \\
& .84667 \\
& .85660 \\
& .82253
\end{aligned}
$$





$\begin{array}{ccc}\text { SUCCESS IVE } & \text { SUBSTITUTIONS } \\ \text { FOURTH } & \text { FIFTH } & \text { SIXTH } \\ .96941 & .96710 & .93662 \\ .98520 & .98401 & .97370 \\ .99589 & .99551 & .99336 \\ .99999 & .99998 & .99995 \\ .99599 & .99597 & .99587 \\ .98356 & .98233 & .98206 \\ .95872 & .95847 & .95847 \\ .92391 & .92447 & .92469 \\ .87787 & .88128 & .88939\end{array}$

SECOND
.97924
.99067
.99808
.99979
.99391
.97845
.95149
.91143
.85709
.78757
TRUE
.97061
.98541
.99572
.99997
.99646
.98363
.96031
.92604
.88128
.82743

. 350361 .114972 $-.188545$ .004857
S IXTH

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.040975 \\
.170383 \\
.092433 \\
.007348 \\
-.084062 \\
. .180274 \\
. .279032 \\
-.377514 \\
-.472668 \\
. .561717
\end{array}
$$

$$
\begin{aligned}
& n \\
& \text { n } \\
& 0 \\
& 8 \\
& \text { O } \\
& 0 \\
& i
\end{aligned}
$$

$$
\begin{array}{ll}
0 & N \\
\infty & N \\
\infty & N \\
N & 0 \\
\vdots & ? \\
i & i
\end{array}
$$

SUCCESS IVE SUBSTITUTIONS TH IRD FOURTH FIFTH

| $\pm$ |
| :--- |
| $\underset{\sim}{N}$ |
|  |

.009695 $-.090705$

$$
\begin{array}{r}
.466857 \\
.260960 \\
.121867 \\
.010486
\end{array}
$$

$$
\begin{array}{r}
\text { SEVENTH } \\
.457911 \\
.238955 \\
.110522 \\
.006615 \\
-.091610 \\
-.188630 \\
-.285152 \\
-.380664 \\
-.473981 \\
-.563319
\end{array}
$$

$$
\begin{aligned}
\forall L \forall V \cdot \alpha I S & \left(\varepsilon^{\prime} \varsigma\right) \text { SLOY } \zeta \text { vagwvT } \\
& 9 L-\dagger \text { aTgVI }
\end{aligned}
$$ $\infty$

$\underset{\sim}{i}$
$\underset{\sim}{\infty}$
$i$

 \begin{tabular}{l}
$\substack{n \\
\multirow{2}{*}{\multirow{2}{*}{\vdots \\
i \\
i}}\\
\multirow {2} { * } \\
\vdots \\
i \\
i}$

 

- <br>
<br>
\multirow{2}{n}{} <br>
0 <br>
$i$ <br>
$i$
\end{tabular} $\begin{array}{ll}.245491 & .254437 \\ .171412 & .178070\end{array}$ $n$

$i$
0
0

0 | $n$ |
| :--- |
|  |
| 0 |
| 0 |
| $\infty$ |
| 0 |
| $i$ | $a$

$\underset{\sim}{\infty}$
$\underset{\sim}{\infty}$
$\underset{i}{-}$ $-.285291$ . .381765
 SECOND
.191814
.123958
.049681
-.030512
-.115653
-.204158
-.293925
-.382346
-.466613
-.543985






TABLE 4-77
LAMBDA 3 ROTS (5,3) STD. AALA

| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| THIRD | FOUR'TH | FIFTH |
| .17195 | .17670 | .20085 |
| .17786 | .18144 | .19445 |
| .18254 | .18525 | .19080 |
| .18602 | .18825 | .19033 |
| .18865 | .19067 | .19296 |
| .19016 | .19285 | .19806 |
| .19412 | .19528 | .20463 |
| .19868 | .19857 | .20132 |
| .20485 | .20296 | .21260 |
| .20724 | .20365 | .21199 |






$$
\begin{array}{r}
\text { FIRS T } \\
.34170 \\
.36015 \\
.37917 \\
.39852 \\
.41792 \\
.43706 \\
.45566 \\
.47342 \\
.48921 \\
.49257
\end{array}
$$

$$
\begin{aligned}
& \text { SECOND } \\
& .32163 \\
& .34394 \\
& .36594 \\
& .38688 \\
& .40582 \\
& .42170 \\
& .43335 \\
& .43956 \\
& .42823 \\
& .41779
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .41029 \\
& .41821 \\
& .42684 \\
& .43621 \\
& .44621 \\
& .45632 \\
& .46545 \\
& .47193 \\
& .47380 \\
& .46863
\end{aligned}
$$

|  |  |  |  |  | TABLE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAMBDA 1 | ROTS (5 | STD. | A24A |  |  |  |
| TIME | TRUE | SECOND | TH IRD | SUCCESS IVE FOURTH | SUBSTITU FIFTH | ONS <br> S IXTH | SEVENTH | NEW-RAPH | $\mathrm{CHI}_{\text {nom }}$ | $\mathrm{CHI}_{\mathrm{nr}}$ |
| 0 | . 90226 | . 92003 | . 91747 | . 88357 | . 89664 | ****** | ****** | . 90143 | 64.45 | 64.35 |
| 20 | . 93402 | . 94844 | . 94817 | .92599 | .93134 | . 61286 | ****** | . 93353 | 69.07 | 68.99 |
| 40 | .96347 | . 97416 | . 97524 | . 96251 | . 96387 | . 87089 | -. 38346 | . 96325 | 74.46 | 74.42 |
| 60 | . 98702 | . 99320 | . 99420 | . 98881 | . 98891 | . 97211 | . 94039 | . 98697 | 80.76 | 80.74 |
| 80 | . 99940 | . 99992 | . 99977 | . 99991 | .99991 | . 99965 | . 99952 | . 99941 | 88.02 | 88.03 |
| 100 | . 99407 | . 98746 | . 98725 | . 99092 | . 99077 | . 98951 | .98941 | .99402 | 96.24 | 96.27 |
| 120 | . 96484 | ,94920 | . 95472 | . 95805 | . 95769 | . 95574 | . 95540 | . 96468 | 105.23 | 105.27 |
| 140 | . 90875 | . 88107 | . 90506 | . 89975 | . 90093 | . 90082 | . 90034 | . 90851 | 114.66 | 114.70 |
| 160 | . 82842 | . 78341 | .84600 | . 81690 | . 82629 | . 82406 | . 82530 | . 82813 | 124.06 | 124.09 |
| 180 | .73169 | . 66092 | .78767 | . 71171 | . 74509 | . 72611 | . 73530 | . 73145 | 132.97 | 132.99 |
| 200 | .62838 | . 50963 | .73549 | . 57523 | . 66700 | . 59836 | . 64111 | .62039 | 141.06 | 141.66 |

TABLE 4-80
LAMBDA 2 ROTS (5,3) STD. AA24A
SECOND
.406267
.321945
.222522
.107690
-.021071
-.159634
-.300913
-.435739
-.554961
.-
FIRST
.399903
.321106
.227292
.116538
-.012227
-.158359
-.318738
-.487699
-.658153
-.823496
-.990321



$$
\begin{aligned}
& \begin{array}{l}
\text { NEW-RAPH } \\
.23761 \\
.24965 \\
.26127 \\
.27263 \\
.28408 \\
.29614 \\
.30906 \\
.32131 \\
.32781 \\
.32305 \\
.01092
\end{array} \\
& \begin{array}{c}
\text { SEVENTH } \\
* * * * * * * \\
* * * * * * * \\
1.13128 \\
.37685 \\
.27576 \\
.27182 \\
.28093 \\
.29724 \\
.31343 \\
.31331 \\
. .05305
\end{array} \\
& \begin{array}{r}
\text { SIXTH } \\
4.00438 \\
1.82541 \\
.71215 \\
.36211 \\
.28228 \\
.27205 \\
.28030 \\
.29710 \\
.31307 \\
.31355 \\
\hline .05907
\end{array} \\
& \\
& \begin{array}{l}
\text { SECOND } \\
.19230 \\
.20995 \\
.22836 \\
.24658 \\
.26307 \\
.27577 \\
.28232 \\
.28070 \\
.26958 \\
.24760 \\
. .08279
\end{array} \\
& \begin{array}{l}
\text { FIRST } \\
.20390 \\
.21982 \\
.23626 \\
.25264 \\
.26811 \\
.28170 \\
.29255 \\
.30027 \\
.30504 \\
.30656 \\
.00998
\end{array}
\end{aligned}
$$

NEW-RAPH
.60048
.60929
.61948
.63230
.64910
.67082
.69651
.72015
.72868
.71108
 SIXTH
9.92221
4.48829
1.69137
.83539
.64533
.62070
.63800
.67162
.69950
.69287 TABLE 4-82
LAMBDA 4 ROTS $(5,3)$ STD. AA24A
TRUE




| $\sim$ |
| :---: |
| $\underset{N}{\infty}$ |
|  |

.72456
응
.75655 .74453 .71569 .67542
TIME

- ~ 9 8 8 8 120 140 을 음

$$
\text { gIVF }{ }^{\circ} \text { aLS }\left(\varepsilon^{6} \varsigma\right) S J O \& ~ I ~ \forall O G K V T
$$

TH IRD FOURTH FIFTH S IXTH

$$
\begin{aligned}
& n \\
& \infty \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { „97881 } \\
& \text { " } 99457 \\
& \text { " } 999995 \\
& .
\end{aligned}
$$

$$
.98529
$$

$$
\begin{aligned}
& 8 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{8}{7} \\
& \infty \\
&
\end{aligned}
$$

$$
.90206
$$

\[

\]

COMPUTER TRUNCATION ERROR

$$
\text { TABLE } 4-83
$$

SUCCESS IVE SUBSTITUTIONS


 SEVENTH
.612180
.383600
.211022
.098614
.004997
. .083607
. .171165
. .258531
. .345543
. .431441 SIXIH
.675293
.407367
.235474
.111739
.010246
. .081955
. .170776
. .258471
.0445530
. .431354
. .514506 TABLE $4-84$
LAMBDA 2 ROTS $(5,3)$ SID. AAIB
 TRUE
.270017
.211729
.147697
.077774
.002083
. .078883
. .164177
. .252353
. .341515
. .429457
. .513909
.592814


$$
\begin{aligned}
& \text { SEVENTH } \\
& .32371 \\
& .23225 \\
& .19621 \\
& .18666 \\
& .18596 \\
& .18874 \\
& .19340 \\
& .19937 \\
& .20607 \\
& .21245 \\
& .21616
\end{aligned}
$$

s8-カ aTgVI
TIME

- 우 요 음 억 억 응 잉
220
COMPUTER TRUNCATION ERROR

$$
\text { LAMBDA } 3 \text { ROTS }(5,3) \text { STD. AA1B }
$$

\[

\]

FIRS T

$$
\begin{gathered}
\text { TABLE } 4-86 \\
\text { LAMBDA } 4 \text { ROTS }(5,3) \quad \text { STD. AAIB }
\end{gathered}
$$

\[

\]

$$
\begin{array}{ll}
\vec{さ} & n \\
\underset{N}{\infty} & \underset{\sim}{N} \\
\underset{\sim}{n} & \cdots
\end{array}
$$

$$
\begin{aligned}
& \text { O} \\
& \neq 0 \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{~} \\
& \underset{\sim}{4} \\
&
\end{aligned}
$$

$$
.35202
$$

$$
.36949
$$

$$
\begin{aligned}
& \pm \\
& \underset{\sim}{+} \\
& \underset{\sim}{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& -1 \\
& +0 \\
& 0 \\
& \vdots
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N} \\
& \mathbf{N} \\
& \mathbf{J}
\end{aligned}
$$

TRUE  .41349 .42088 .42549 7
0
0
$\mathbf{N}$
7 .42504 $n$
$\infty$
$\underset{\sim}{\infty}$
$\stackrel{-}{1}$
TIME 100
120
140
160
180
200 ..... 어N

$$
.43911
$$

$$
.45409
$$

ERROR

$$
\begin{aligned}
& \text { SEVENTH } \\
& .85867 \\
& .54419 \\
& .43556 \\
& .40200 \\
& .39204 \\
& .39113 \\
& .39485 \\
& .40144 \\
& .40929 \\
& .41607 \\
& .41737
\end{aligned}
$$


NEW-RAPH
.432214
.372733
.303063
.221624
.127145
.019190
. .101118
. .230393
-.262795
. .490875
. .607402
. .707311



| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| TH IRD | FOURTH | FIFTH |
|  |  |  |
| .481554 | .476807 | 1.271769 |
| .409062 | .408170 | .950624 |
| .325813 | .327489 | .661484 |
| .231085 | .233647 | .410477 |
| .124812 | .126699 | .199205 |
| .007919 | .008193 | .023599 |
| -.117391 | -.118732 | -.125071 |
| -.247745 | -.2495 .52 | -.257182 |
| -.379173 | -.378638 | -.380875 |
| -.508216 | -.499764 | -.499798 |
| -.632688 | -.606476 | -.613770 |
| .752675 | $\ldots .6928 .59$ | -.722470 |

SECOND
.406693
.341960
.266500
.179591
.081186
-.027683
-.14448
-.264777
-.382754
-.491769
-.585538
-.659502

NEW-RAPH
.21049
.22143
.23212
.24257
.25285
.26315
.27373
.28472
.29558
.30414
.30695
.30150

 TABLE 4-89
LAMBDA 3 ROTS (5,3) STD. AA24B


| TIME | TRUE | FIRST |
| ---: | :---: | :---: |
| 0 | .18868 | .17734 |
| 20 | .20371 | .19035 |
| 40 | .21996 | .20412 |
| 60 | .23722 | .21850 |
| 80 | .25504 | .23319 |
| 100 | .27261 | .24779 |
| 120 | .28872 | .26181 |
| 140 | .30187 | .27472 |
| 160 | .31054 | .28621 |
| 180 | .31365 | .29612 |
| 200 | .31099 | .30464 |
| 220 | .30331 | .30879 |





|  | TABLE 4-90 |  |  |
| :---: | :---: | :---: | :---: |
|  | LAMBDA 4 | $(5,3)$ | STD. AA24B |
|  | SUCCESS IVE SUBSTITUTIONS |  |  |
| SECOND | TH IRD | FOURTH | FIFTH |
| . 35007 | . 53800 | .55806 | 1.02670 |
| . 38254 | . 54879 | . 55824 | . 90183 |
| . 41642 | . 55385 | . 55667 | . 78290 |
| . 45075 | . 55250 | . 55354 | .67987 |
| . 48405 | . 54523 | . 54915 | . 60234 |
| . 51419 | . 53424 | . 54380 | . 55635 |
| . 53850 | . 52360 | .53797 | . 54152 |
| . 55400 | . 51818 | . 5325 2 | . 55017 |
| . 55796 | . 52141 | .52926 | . 56974 |
| . 54837 | . 53267 | . 53093 | .58746 |
| .52450 | . 54713 | . 54005 | . 59430 |
| . 48066 | . 55232 | . 55017 | . 57815 |

FIRST
.38579
.41177
.43919
.46761
.49632
.53436
.55052
.57353
.59239
.60637
.61543
.61405

| $\stackrel{\text { 号 }}{\underset{\sim}{\sim}}$ | $\begin{aligned} & \text { o } \\ & \sim \\ & \sim \\ & \text { ? } \end{aligned}$ | + <br> 0 <br> $N$ <br>  | $\begin{aligned} & \infty \\ & \infty \\ & \substack{1 \\ \hline} \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \text { o } \\ & \text { in } \end{aligned}$ | a $n$ $\sim$ $\sim$ | 0 $i n$ $i n$ $i n$ | $\begin{aligned} & 0 \\ & ? \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hat{} \\ & \underset{\sim}{n} \\ & \stackrel{y}{n} \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \text { ñ } \\ & \underset{\sim}{0} \end{aligned}$ | $\begin{aligned} & \text { 응 } \\ & 0 \\ & \end{aligned}$ | $\begin{aligned} & 1 \\ & \substack{\infty \\ \underset{N}{1} \\ \mathbf{N} \\ \hline} \end{aligned}$ | N N O- ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



$$
\begin{aligned}
& \mathrm{CHI}_{\mathrm{nr}} \\
& 65.27 \\
& 69.44 \\
& 74.27 \\
& 79.94 \\
& 86.61 \\
& 94.45 \\
& 103.53 \\
& 113.73 \\
& 124.64 \\
& 137.71
\end{aligned}
$$

\[

\]

$$
\begin{array}{r}
\text { FIRST } \\
.388197 \\
.328020 \\
.254098 \\
.162469 \\
.048545 \\
. .092434 \\
. .264257 \\
-.467841 \\
-.700008 \\
.
\end{array}
$$

\[

\]

$$
\begin{aligned}
& \begin{array}{r}
\text { SIXTH } \\
* * * * * * * \\
6.336871 \\
2.672134 \\
.906718 \\
.030982 \\
-.052733 \\
-.238615 \\
-.407319 \\
-.566087 \\
-.683543
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { TABLE 4-93 } \\
\text { LAMBDA } 3 \text { ROTS }(5,3) \text { STD. AA1C }
\end{gathered}
$$

$$
\begin{aligned}
& \text { IONS } \\
& \text { FIFTH } \\
& .32580 \\
& .31421 \\
& .29668 \\
& .27577 \\
& .25672 \\
& .24597 \\
& .24804 \\
& .26175 \\
& .27844
\end{aligned}
$$

$$
\begin{aligned}
& \text { 믕 } \\
& \underset{\sim}{u} \\
& \underset{y}{\mid}
\end{aligned}
$$

$$
\begin{aligned}
& \text { FIRS T } \\
& .11892 \\
& .13294 \\
& .14913 \\
& .16796 \\
& .18996 \\
& .21554 \\
& .24502 \\
& .27856 \\
& .31587 \\
& \text { COMPUTER }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SECOND } \\
& .10711 \\
& .12198 \\
& 13971 \\
& .16056 \\
& .18434 \\
& .21001 \\
& .23456 \\
& .25258 \\
& .25495
\end{aligned}
$$

NEW-RAPH
.29890
.30820
.31758
.32736
.33811
.35061
.36 .517
.38001
.38876

 TABLE 4-94
LAMBDA 4 ROTS $(5,3) \quad$ STD. AA1C
SUCCESS IVE SUBSTITUTIONS TH TRD FOURTH FIFTH $\begin{array}{ll}.33225 & .61274 \\ .33951 . & .56466 \\ .34600 & .50827 \\ .35152 & .44988 \\ .35611 & .39968 \\ .3598 .5 & .36815 \\ .36269 & .36042 \\ .36469 & .37145 \\ .3651 .5 & .38594\end{array}$

| TABLE 4-95LAMBDA 1 ROTS (5,3) STD. AA24C |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | TRUE | SECOND | TH IRD | SUCCESS IVE FOURTH | SUBSTITUT FIFTH | ONS S IXTH | SEVENTH | NEW-RAPH | $\mathrm{CHI}_{\text {nom }}$ | $\mathrm{CHI}_{\mathrm{nr}}$ |
| 0 | . 86585 | . 88347 | . 88112 | . 80190 | . 72446 | ******* | ****** | . 86508 | 59.98 | 59.89 |
| 40 | . 89828 | . 90871 | . 90667 | . 84791 | . 79316 | ******* | ****** | . 89767 | 63.93 | 63.85 |
| 80 | . 93149 | . 93679 | . 93622 | . 89674 | . 86278 | ****** | ******* | .93106 | 68,66 | 68.60 |
| 120 | . 96340 | . 96582 | . 96695 | . 94436 | . 923784 | . 35334 | ****** | .96316 | 74.45 | 74.40 |
| 160 | . 98931 | . 99059 | . 99201 | . 98289 | . 97814 | . 88311 | ****** | . 98923 | 81.61 | 81.59 |
| 200 | . 99995 | . 99965 | . 99931 | . 99997 | . 99991 | . 99734 | . 99006 | . 99995 | 90.53 | 90.53 |
| 240 | . 98002 | . 97225 | . 97451 | . 97994 | . 97946 | . 97724 | . 97727 | . 97998 | 101.47 | 101.48 |
| 280 | . 91153 | . 87925 | . 91373 | . 90588 | . 90838 | . 90245 | . 90410 | . 91136 | 114.28 | 114.31 |
| 320 | . 78663 | . 69447 | . 84141 | . 75452 | . 80277 | . 77272 | .79024 | . 78639 | 128.12 | 128.15 |
| 360 | .62061 | . 40855 | . 80664 | . 49701 | . 75238 | . 49127 | .73039 | .62005 | 141.63 | 141.68 |

$$
\begin{array}{r}
\text { FIRST } \\
.482753 \\
.427273 \\
.355538 \\
.261448 \\
.137176 \\
-.026094 \\
-.235553 \\
-.491414 \\
\hline . .781700 \\
\pm .087610
\end{array}
$$

$$
\begin{array}{r}
\text { SECOND } \\
.487590 \\
.432039 \\
.357135 \\
.257094 \\
.126407 \\
-.037018 \\
-.225774 \\
-.415374 \\
-.563178 \\
-.621860
\end{array}
$$

\[

\]

$$
\begin{gathered}
\text { SIXTH } \\
* * * * * * * * \\
* * * * * * * \\
6.562116 \\
8.950356 \\
1.780303 \\
.140578 \\
-.211954 \\
-.427408 \\
-.614183 \\
-.686123
\end{gathered}
$$

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.501623 \\
.440658 \\
.364857 \\
.268927 \\
.146339 \\
-.009186 \\
. .199062 \\
. .411600 \\
. .617725 \\
-.784557
\end{array}
$$

|  |  |  |  |  | LE 4-97 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAMBDA 3 | $(5,3)$ | AA24C |  |  |  |
|  |  |  |  | SUCC | E SUBSTI | IONS |  |  |  |
| TIME | TRUE | FIRST | SECOND | THIRD | FOUR'TH | FIFTH | S IXTH | SEVENTH | NEW-RAPH |
| 0 | . 15157 | . 13640 | . 12149 | . 18018 | . 2061.5 | . 60397 | -3.64909 | ******* | . 17715 |
| 40 | . 17077 | . 15404 | . 13969 | . 20408 | , 22638 | . 58513 | -. 71316 | ******* | . 19762 |
| 80 | . 19319 | . 17478 | . 16205 | . 22975 | . 24642 | . 54034 | -1.00054 | ******* | . 21861 |
| 120 | . 21936 | . 19925 | . 18917 | . 25498 | . 26501 | . 47006 | 3.03356 | ******* | . 23967 |
| 160 | . 24945 | . 22791 | . 22096 | . 27602 | . 28091 | . 28824 | . 94642 | -. 35483 | . 26051 |
| 200 | . 28239 | - 26072 | . 25551 | . 28926 | . 29309 | . 32144 | . 36076 | . 35171 | . 28.120 |
| 240 | . 31464 | . 29673 | . 28734 | . 29577 | . 30050 | . 29401 | . 29290 | - 29062 | . 30427 |
| 280 | . 33933 | . 33401 | . 30580 | . 30467 | . 30319 | . 30656 | . 30455 | . 30517 | . 32470 |
| 320 | . 34873 | . 37058 | . 29612 | . 32362 | . 30636 | . 33047 | . 32904 | . 32943 | . 34176 |
| 360 | . 34024 | . 38329 | . 22045 | . 32830 | . 29599 | . 32061 | . 29771 | . 31634 | . 33331 |

NEW-RAPH
.36186
.37513
.38760
.39958
.41211
.42721
.44733
.47205
.48867
.46802
SEVENTH
$* * * * * * *$
$* * * * * * *$
$* * * * * * *$
$* * * * * * *$
$* * * * * * *$
.53907
.43064
.44566
.47253
.44702
SIXTH
$* * * * * * *$
-1.56880
-4.38084
4.88863
1.49875
.54705
.43376
.44471
.47185
.42318



品


| $\vec{n}$ | 0 |
| :--- | :--- |
| $n$ | 0 |
| $n$ | 0 |
| $n$ | 0 |

$\infty$
$\infty$
$\infty$
$\infty$

| $N$ |
| :---: |
| $\stackrel{N}{\sim}$ |
| $\underset{\sim}{7}$ |

.46809
.49457
.49834

| 9 |
| :--- |
| 0 |
| 0 |
| $\vdots$ |

思
0 오 옷 응
8
우N
으N
ल
N




SUCCESS IVE SUBSTITUTIONS






table 4-100
LAMBDA 2 ROTS (4,4) STD. AAI

| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| TH IRD | FOURTH | FIFTH |
| .224303 | .235588 | .102816 |
| .137180 | .142155 | .851660 |
| .041775 | .042955 | .027842 |
| . .060645 | -.061423 | -.056726 |
| -.168078 | -.169527 | -.158466 |
| -.278019 | -.278950 | -.268786 |
| -.387832 | -.386529 | -.380393 |
| -.495243 | -.488724 | -.487700 |
|  |  |  |
| .599526 | -.582569 | -.587898 |

SECOND
.187499
.104607
.014085
-.082808
-.183965
-.286493
-.386889
-.481366
-.566811


| 罥 | N | $\begin{aligned} & 0 \\ & \text { O } \\ & \substack{9 \\ 7 \\ \hline} \end{aligned}$ | $\begin{aligned} & \hat{0} \\ & \text { n } \\ & \text { nin } \end{aligned}$ | O O on |  | $\pm$ $\underset{Z}{0}$ 0 0 $\vdots$ | $\begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & \cdots \\ & 0 \\ & \hline \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |




 TABLE 4-101
LAMBDA 3 ROTS (4,4) STD. AAI

| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| THIRD | FOURTH | FIFTH |
| .18520 | .19101 | .10960 |
| .19004 | .19306 | .15090 |
| .19327 | .19503 | .18149 |
| .19539 | .19705 | .20324 |
| .19738 | .19924 | .21770 |
| .20047 | .20195 | .22628 |
| .20574 | .20588 | .23036 |
| .21363 | .21201 | .23118 |
| .21734 | .21482 | .22252 |

SECOND
.15698
.16815
.17922
.18969
.19890
.20612
.21054
.21134
.20126
FIRST
.16167
.17205
.18262
.19325
.20384
.21433
.22479
.23536
.23999


NEW-RAPH
.44023
.46040
.48254
.50520
.52536
.53919
.54423
.54085
.53134
SEVENTH
.39477
.43417
.46762
.49919
.53005
.54993
.55225
.54199
.51160
SIXTH
.44152
.44284
.45964
.49452
.52889
.54821
.55053
.54130
.51156
TABLE 4-102
LAMBDA 4 ROTS (4,4) STD. AAI

| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| THIRD | FOURIH | FIFTH |
| .48201 | .49942 | .25720 |
| .48129 | .48997 | .37012 |
| .47824 | .48338 | .44665 |
| .47479 | .47963 | .49593 |
| .47341 | .47854 | .52475 |
| .47637 | .48018 | .53835 |
| .48482 | .48517 | .54105 |
| .49807 | .49445 | .53616 |
| .50057 | .49531 | .51126 | SECOND

.39463
.42014
.44413
.46530
.48222
.49343
.49755
.49345
.46715 FIRS T
.40762
.42987
.45204
.47367
.49428
.51349
.53100
.54672
.54785
TRUE
 .54408 .54026 $\infty$
N
N
n

$\mathrm{CHI}_{\mathrm{nr}}$
63.77
66.42
69.32
72.50
75.99
79.81
83.96
88.45
93.26
98.37
103.71
109.21
114.79
120.34
125.75
130.94
135.84
140.46

************. 99996. 98180
.98003
.98991
.99993
.99739
.99087

:.95278

.86845
.81465
. .75824

$N$
N
寸
+
SUCCESS IVE SUBSTITUTIONS

## TABLE $4-103$

SUCCESS IVE SUBSTITUTIONS



$$
\begin{gathered}
\text { FIRST } \\
.413827 \\
.315991 \\
.196649 \\
.053536 \\
-.113041 \\
-.298518 \\
-.493611 \\
-.686599 \\
-.868391
\end{gathered}
$$

$$
\begin{gathered}
\text { SECOND } \\
.429563 \\
.322747 \\
.195055 \\
.047283 \\
-.115671 \\
-.283736 \\
-.443061 \\
-.580278 \\
-.687455
\end{gathered}
$$

$$
\begin{gathered}
\text { TABLE 4-1.04 } \\
\text { LAMBDA } 2 \text { ROTS }(4,4) \quad \text { STD. AA24 }
\end{gathered}
$$

$$
\begin{array}{r}
\text { SIXTH } \\
* * * * * * * \\
-.008230 \\
.198823 \\
.062645 \\
-.072193 \\
-.211772 \\
-.401635 \\
-.580876 \\
-.716013
\end{array}
$$

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.441927 \\
.353131 \\
.242023 \\
.105237 \\
-.056898 \\
-.236951 \\
. .401929 \\
. .584217 \\
. .717453
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { NEW-RAPH } \\
.23641 \\
.25396 \\
.27398 \\
.29790 \\
.32795 \\
.36168 \\
.37944 \\
.37092 \\
.35007
\end{array} \\
& \begin{array}{l}
\text { SEVENTH } \\
* * * * * * * * \\
.26 .544 \\
.20784 \\
.26834 \\
.32219 \\
.38874 \\
.41702 \\
.37976 \\
.33706
\end{array} \\
& \begin{array}{l}
\text { SIXTH } \\
* * * * * * * \\
.09467 \\
.27888 \\
.28889 \\
.31664 \\
.38390 \\
.39744 \\
.37077 \\
.33611
\end{array} \\
& \\
& \begin{array}{l}
\text { SECOND } \\
.28812 \\
.24818 \\
.26964 \\
.28881 \\
.30255 \\
.30733 \\
.30049 \\
.28138 \\
.24694
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
\text { FIRST } \\
.59155 \\
.63667 \\
.68081 \\
.72061 \\
.75187 \\
.77070 \\
.77532 \\
.76716 \\
.74133
\end{array}
$$

\[

\]

$$
\begin{aligned}
& \text { SEVENTH } \\
& \star * * * * * * \\
& .66494 \\
& .50153 \\
& .65308 \\
& .78122 \\
& .93144 \\
& .98907 \\
& .89884 \\
& .79822
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .59325 \\
& .62529 \\
& .66659 \\
& .72106 \\
& .79311 \\
& .87249 \\
& .90841 \\
& .88068 \\
& .82504
\end{aligned}
$$


$\mathrm{CHI}_{\text {nom }}$

| 9 | - $\sim_{0}^{\sim 9}$ |
| :---: | :---: |
| - |  |
|  | N |




## TABLE 4-107



$\stackrel{\wedge}{n}$.88619
  N N -99997 No 웅 .98363 . 97333 94454 .94604
.92604 . 90491 .88128 ..... 
TIME $\stackrel{8}{-}$ ..... 

$$
\begin{aligned}
& \text { SEVENTH } \\
& .198788 \\
& .141249 \\
& .073734 \\
& -.002868 \\
& -.086806 \\
& -.178055 \\
& -.275743 \\
& -.375708 \\
& -.472616 \\
& . .563230
\end{aligned}
$$

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.240371 \\
.169943 \\
.092167 \\
-.007251 \\
-.084016 \\
-.180138 \\
-.278876 \\
-.377397 \\
-.472613 \\
-.561707
\end{array}
$$

$$
\begin{gathered}
\text { VIVH •als (カ‘カ) SIOY } 2 \text { VagWVT } \\
\text { 80I-カ aTgVI }
\end{gathered}
$$

| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| TH IRD | FOURTH | FIFTH |
|  |  |  |
| .235650 | .245598 | .114130 |
| .162857 | .167893 | .098974 |
| .083199 | .085042 | .056341 |
| -.002731 | -.002756 | -.007960 |
| -.093932 | -.094910 | -.088539 |
| . .188986 | -.190209 | -.180204 |
| -.286207 | -.286801 | -.277856 |
| -.383897 | -.382333 | -.376771 |
| -.480758 | -.474266 | -.473222 |
| -.576350 | -.560104 | -.565021 |





NEW-RAPH
.15926
.16830
.17782
.18769
.19757
.20672
.21422
.21932
.22182
.22135 SEVENTH
.14505
.15801
.17075
.18308
.19592
.20840
.21773
.22213
.22189
.21288
 TABLE 4-1.09
LAMBDA 3 ROTS (4, 4) STD. AAIA

| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| TH IRD | FOURTH | FIFTH |
| .16813 | .17250 | .10181 |
| .17393 | .17620 | .13270 |
| .17855 | .17972 | .15831 |
| .18211 | .18313 | .17891 |
| .18504 | .18645 | .19482 |
| .18802 | .18973 | .20636 |
| .19188 | .19323 | .21402 |
| .19733 | .19739 | .21843 |
| .20428 | .20244 | .21975 |
| .20714 | .20355 | .21267 |





NEW-RAPH
.38422
.39881
.41484
.43181
.44855
.46314
.47341
.47795
.47668
.46921
 SIXTH
.38189
.38449
.39300
.41402
.44160
.46570
.47968
.48265
.47632
.45268
TABLE 4-110
LAMBDA 4 ROTS (4,4) STD. AAIA

|  | SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: | :---: |
| SECOND | THIRD | FOURTH | FIFTH |
|  |  |  |  |
| .33168 | .41684 | .42962 | .22534 |
| .35345 | .41936 | .42559 | .30540 |
| .37467 | .41974 | .42295 | .36641 |
| .39461 | .41891 | .42181 | .41130 |
| .41235 | .41816 | .42203 | .44260 |
| .42685 | .41906 | .42345 | .46246 |
| .43705 | .42302 | .42624 | .47294 |
| .44183 | .43071 | .43084 | .47603 |
| .43927 | .44088 | .43699 | .47249 |
| .41801 | .44172 | .43461 | .45246 |

FIRST
.34582
.36376
.38285
.40206
.42112
.43974
.45769
.47474
.48986
.49272
TRUE


| $\infty$ |
| :---: |
|  |
|  |

$N$
N
寸
$\circ$
0
in
子

.47504

$\xrightarrow[\substack{ \pm \stackrel{\infty}{+} \\ \hline \\ \hline}]{ }$ .47664 | in |
| :--- |
| $\stackrel{0}{\circ}$ |



| $\underset{\sim}{\sim}$ |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |









SECOND
.415366
.330034
.229381
.113172
-.017011
-.156918
-.299334
-.434994
-.554711
-.651617
TABLE 4-112
NEW-RAPH
.430363
.356308
.266905
.159817
.034001
. .108780
-.262522
-.417095
. .560118
-.681823
J.AMBDA 2 ROTS (4,4) STD. AA24A

| SUCCESSIVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| TH IRD | FOURTII | FIFTH |
| . 443441 | . 487914 | -. 861866 |
| .357627 | .380763 | -. 337761 |
| . 256169 | . 264590 | -. 070176 |
| $\cdot 138593$ | .139221 | . 016863 |
| . 006040 | . 00376. | -. 012336 |
| .. 138107 | -. 140967 | . . 115018 |
| -. 288289 | -. 290189 | -. 258756 |
| -. 437888 | -. 435429 | . .414441 |
| -. 581178 | -. 566974 | -. 561070 |
| -. 715011 | . . 676316 | -. 690137 |
| -. 848493 | . .762538 | -. 811758 |

FIRST
.402227
.323711
.229887
.118892
-.010277
-.156902
. .317781
-.487118
-.657948
-.823457
-.990321
TRUE
.431192
.357209
.267784
.160551
.034446
-.108731
-.262823
-.417325
. .560093
. .681635

$$
\begin{array}{r}
\text { SEVENTH } \\
* * * * * * * \\
.337280 \\
.152082 \\
.082060 \\
.003145 \\
-.112116 \\
-.240910 \\
-.398891 \\
-.556000 \\
-.684419 \\
-.797873
\end{array}
$$



$$
\begin{aligned}
& \text { FIRS T } \\
& .20490 \\
& .22110 \\
& .23773 \\
& .25419 \\
& .26964 \\
& .28310 \\
& .29371 \\
& .30112 \\
& .30555 \\
& .30674 \\
& .09987
\end{aligned}
$$

$$
\text { TABLE } 4-113
$$

$$
\text { LAMBDA } 3 \text { ROTS }(4,4) \text { STD. AA24A }
$$

\[

\]

$$
\begin{aligned}
& \text { STXTH } \\
& * * * * * * * \\
& .12348 \\
& .24225 \\
& .25960 \\
& .26114 \\
& .29892 \\
& .34313 \\
& .35443 \\
& .33998 \\
& .31809 \\
& .05906
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .21117 \\
& .22535 \\
& .24095 \\
& .25820 \\
& .27922 \\
& .30327 \\
& .32691 \\
& .33971 \\
& .33712 \\
& .32494 \\
& .01092
\end{aligned}
$$

NEW-RAPH
.50652
.52936
.55738
.59232
.63615
.68863
.73842
.76080
.74805
.71480
.12003
SEVENTH
$* * * * * * *$
.56456
.43140
.49873
.60891
.68522
.77970
.81257
.76535
.70346
.00128
SIXTH
$* * * * * * *$
.26738
.56997
.60414
.59859
.67912
.77172
.78995
.75320
.70142

| LAMBDA 4 ROTS (4,4) |  |  |
| :---: | :---: | :---: |
| SUCCESS IVE SUBSTITUTIONS |  |  |
| THIRD | FOURTH | FIFTH |
| .62158 | . 68218 | -. 01138 |
| .63032 | .65774 | -. 42307 |
| .62890 | .63629 | . 06460 |
| .61826 | . 62149 | 0.37876 |
| .60274 | .61310 | . 57470 |
| . 58996 | .60797 | . 68649 |
| . 58767 | . 60418 | .73412 |
| . 59834 | . 60414 | .73813 |
| .61599 | .61279 | . 71914 |
| .62773 | . 62984 | . 68718 |
| .02955 | -. 01287 | .00980 |


FIRST
.48474
.52000
.55588
.59097
.62333
.65067
.67090
.68283
.68638
.68071
.11894



NEW-RAPH
.96292
.97044
.97737
.98362
.98906
.99356
.99698
.99917
.99999
.99928
.99688
.99264
.98643
.97812
.96764
.95490
.93988
.92259
.90308
.88144
.85781


[^2]


## GIVF •aLS（ガゅ）SIO甘 2 VOANVI

# .044084 

－． 028383
हIzsoto－
$N$
$\sim$
$\sim$
$\infty$
$\cdots$
$\cdots$
$i$
$n$
$N$
$\infty$
0
0
0
$c$
$i$
$o$
$\vdots$
$\vdots$
$j$
$i$
$i$
. .426287
. .499276
SUCCESS IVE SUBSTITUTIONS
THIRD FOURTH FIF
.123169
.114356
$\underset{\substack{N \\ N \\ \multirow{2}{N}{\multirow{2}{c}{\hline}}\\ \multirow {2} { c } \\ \hline}}{ }$
.043482

$n$
$N$
$N$
$N$
0
0
0
$\pm$
0
$\vdots$
0
$\vdots$
$i$
$\infty$
$\stackrel{\infty}{\infty}$
$\stackrel{n}{n}$
$\stackrel{n}{n}$
$\vdots$

$\begin{array}{ll}\hat{0} & n \\ & n \\ \underset{\sim}{n} & n \\ \underset{\sim}{n} & n \\ i & i \\ i & i\end{array}$

S IXTH
.248989
.187468
.121400
.054677
．． 013256
$897580^{\circ}-$
-1
0
+
0
0
$i$
$i$

-.339683
-.428763

| $n$ | $n$ |
| :--- | :--- |
| 0 | $n$ |
| $\infty$ | 0 |
|  | $n$ |
|  | $n$ |
|  | $i$ |

$065800^{\circ}-$
E6T890
ワワワOサT
$08080 Z^{\circ}$
T9TTLZ
$\infty$
$\sim$
$n$
$\sim$
$\infty$
0
0
$i$

1
0
N
N
0
N
N

$-.432164$
$566 \angle 90^{\circ}$
$6 T \angle 8 E T^{\circ}$
$\angle 08 E 0 Z^{\circ}$
$9 Z I E 9 Z^{\circ}$
＋ $26 \angle 00^{\circ}$－
Z६\＄880

| $n$ |
| :--- |
| $\stackrel{n}{\infty}$ |
|  |
| $\cdots$ |
|  |
| $i$ |

$n$
$n$
0
$n$
$\stackrel{n}{n}$
$i$

9289をカ゚ー
. .525641
ERROR

| SECOND |
| ---: |
| .229438 |
| .173254 |
| , 111432 |
| .044084 |
| -.028383 |
| -.105213 |
| -.182425 |
| -.266829 |
| -.347970 |
| -.426287 |
| .499276 |

FIRST
.234988
.189679
.120280
.053402
-.020223
-.100701
-.187927
-.281499
-.380809
-.484980
COMPUTER TRUNCATION



$$
\begin{aligned}
& \text { FIRST } \\
& .13251 \\
& .14102 \\
& .14996 \\
& .15931 \\
& .16907 \\
& .17923 \\
& .18977 \\
& .20073 \\
& .21210 \\
& .22394 \\
& .23567 \\
& \text { COMPUTER }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SECOND } \\
& .12713 \\
& .13625 \\
& .14580 \\
& .15565 \\
& .16558 \\
& .17529 \\
& .18438 \\
& .19238 \\
& .19869 \\
& .20261 \\
& .20268
\end{aligned}
$$

\[

\]

\[

\]

$$
\begin{aligned}
& \text { SEVENTH } \\
& .13648 \\
& .14604 \\
& .15666 \\
& .16723 \\
& .17791 \\
& .18910 \\
& .20040 \\
& .21022 \\
& .21679 \\
& .21967 \\
& .21900
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .14862 \\
& .15654 \\
& .16483 \\
& .17349 \\
& .18245 \\
& .19148 \\
& .20016 \\
& .20787 \\
& .21401 \\
& .21818 \\
& .22032
\end{aligned}
$$







$\mathrm{CHI}_{\mathrm{nr}}$
64.52
66.31
68.23
70.27
72.45
74.78
77.27
79.92
82.74
85.74
88.92
92.27
95.79
99.47
103.29
107.22
111.23
115.30
119.37
123.41
127.39
131.27
135.01
138.64



$\qquad$ 04
o
o
o
0
0
 .99998
 $\circ$
8
0
0
0


 . 89046





$$
\begin{array}{r}
\text { NEW-RAPH } \\
.430199 \\
.370907 \\
.301503 \\
.220412 \\
.126357 \\
.018878 \\
-.100955 \\
-.229877 \\
-.362190 \\
-.390454 \\
-.607326 \\
-.707287
\end{array}
$$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\ddagger}
\end{aligned}
$$




TABLE 4-122
LAMBDA 4 ROTS (4,4) STD. AA24B




TABLE 4-123
LAMBDA 1 ROTS (4,4) STD. AA1C
$\mathrm{CHI}_{\mathrm{nr}}$
65.32
67.33
69.49
71.81
74.32
77.03
79.97
83.17
86.64
90.40
94.46
98.84
103.53
108.51
113.72
119.13
124.65
130.17
137.71

$\mathrm{CHI}_{\text {nom }}$


TABLE 4－124
LAMBDA 2 ROTS（4，4）STD．AAIC

|  | SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: | :---: |
| SECOND | TH IRD | FOURTH | FIFT | .147811

.129882 .104504
.061861

$$
\begin{array}{r}
\text { S IXTH } \\
.395324 \\
.333132 \\
.249440 \\
.145411 \\
.027716 \\
-.198665 \\
-.238383 \\
-.400067 \\
-.564596 \\
\hline .683459
\end{array}
$$

NEW－RAPH
.417555
.350408
.270301
.174096
.058687
-.077830
-.233996
-.402312
-.568360
. .739759
SEVENTH
.405007
.322251
.234209
.141243
.037066
-.089565
-.235466
. .399696
-.570225
-.788638

 $-.236283$ n
N
ू
2
i


| $\pm$ |
| :--- |
| $\vdots$ |
|  |
| - |
| $\infty$ |
| $i$ | .384351

.317206 $\stackrel{N}{0}$
$\stackrel{\rightharpoonup}{N}$
$\underset{\sim}{N}$ .144321 .034474

－． 245318 －． 406984 $N$
$n$
$n$
$n$
$n$
$\infty$

$i$
$i$ .402042
.339702 ． 261004 .163500 .045997 $n$
0
0
0
0
0
$i$ $-.244759$ $-.413749$ 0
$\stackrel{9}{8}$
8
0
$i$
．． 855362 .366960
.311858
.240315
 .035886 $n$
$N$
n
0
0
0

0 $-.248072$ . .398121 | $n$ |
| :--- |
| $N$ |
| $N$ |
|  |
|  |
| $?$ | $n$

$n$
0
0
0
0
0
0 LSXIA乌て879 ${ }^{\circ}$
.312018 .244131 .157042 .046165 N
O
§
0
0
$i$ $\infty$
N
＋
o
N
$i$ $-.467693$ $n$
0
0
0
0
0
0 N
N
O
O

$i$ Gntid .417679 E090ヶ£ | $\stackrel{n}{4}$ |
| :--- |
| $\stackrel{1}{\circ}$ |
| $\stackrel{N}{\wedge}$ | LSEちLT• 0

-1
0
0
0

0 | $\infty$ |
| :--- |
| 0 |
| 0 |
|  |
|  |
| $i$ |
| $i$ |



 | $N$ |
| :---: |
| $N$ |
|  |
|  |
|  | $n$

$\underset{i}{N}$
$\underset{i}{+}$ $\underset{\underset{H}{\mid}}{\underset{y}{|c|}}$ 0 오 윽 $\stackrel{8}{-}$ 응 우N O
$\stackrel{\infty}{\sim}$ 스N

$$
\begin{gathered}
\text { TABLE 4-125 } \\
\text { LAMBDA } 3 \text { ROTS }(4,4) \text { STD. AA1C }
\end{gathered}
$$

\[

\]

$$
\begin{aligned}
& \text { S IXTH } \\
& .13302 \\
& .14930 \\
& .16439 \\
& .17806 \\
& .19348 \\
& .21641 \\
& .24842 \\
& .27543 \\
& .28304
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .14280 \\
& .15743 \\
& .17319 \\
& .19034 \\
& .20928 \\
& .23030 \\
& .25254 \\
& .27193 \\
& .28275
\end{aligned}
$$

NEW-RAPH
.26560
.27585
.28800
.30277
.321 .01
.34312
.36710
.38594
.391 .59
-2.36923

SIXTH
.23073
.25071
.26697
.27950
.29456
.32143
.36097
.39081
.39191
-2.51224

| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| TH IRD | FOURTH | FIFTH |
|  |  |  |
| .25132 | .24783 | .09192 |
| .27330 | .25960 | .12465 |
| .29403 | .27265 | .16601 |
| .31155 | .28838 | .21314 |
| .32466 | .30733 | .26448 |
| .33433 | .32749 | .31732 |
| .34492 | .34480 | .36229 |
| .36209 | .35668 | .38782 |
| .38615 | .36288 | .39221 |
|  |  |  |
| 2.40131 | -2.63039 | -2.39339 |

CHI nr
59.99
61.88
63.95
66.21
68.69
71.44
74.48
77.87
81.65
85.87
90.56
95.76
101.48
107.68
114.28
121.15
128.13
135.02
141.68



|  |  |
| :---: | :---: |
| E |  |
| $\stackrel{\text { a }}{\sim}$ |  |
| 资 |  |
|  |  |
| 㦛 |  |
|  |  |
| 5 |  |
|  |  |
| S | $\%$ |
|  |  |
|  |  |
| ๗o |  |
| O |  |
|  |  |
| ${ }^{\circ}$ |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


TABLE 4-128

$$
\text { LAMBDA } 2 \text { ROTS }(4,4) \text { STD. AA24C }
$$

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.500183 \\
.439159 \\
.363359 \\
.267540 \\
.145235 \\
-.009792 \\
-.199026 \\
-.411139 \\
-.617455 \\
-.784547
\end{array}
$$

NEW-RAPH
.16105
.17871
.19784
.21884
.24251
.27023
.30341
.33628
.34927
.33376


TABLE 4-129
LAMBDA 3 ROTS (4, 4) STD. AA24C

FIRST
.13009
.14902
.17113
.19692
.22675
.26045
.29700
.33444
.37085
.38332

$\begin{array}{llllllll}\text { Min } & 0 & \text { ㅇ } & \text { O } & \text { ㅇ } & \text { O } & \text { O } & \text { O } \\ \boldsymbol{H} & \text { O } & \text { N } & \text { O } \\ \text { N }\end{array}$

$$
\begin{aligned}
& \text { SECOND } \\
& .16423 \\
& .19730 \\
& .23690 \\
& .28305 \\
& .33433 \\
& .38630 \\
& .42946 \\
& .44868 \\
& .42721 \\
& .32521
\end{aligned}
$$

TABLE 4-130

$$
\text { LAMBDA } 4 \text { ROTS }(4,4) \text { STD. AA24C }
$$

\[

\]



$$
\begin{array}{r}
\text { FIRST } \\
.191126 \\
.110587 \\
.020652 \\
-.078678 \\
-.186818 \\
-.302563 \\
-.424136 \\
\hline .549379 \\
-.676953
\end{array}
$$

$$
\begin{array}{r}
\text { SECOND } \\
.183691 \\
.101614 \\
.011871 \\
-.084319 \\
-.184888 \\
-.286971 \\
-.387078 \\
-.481419 \\
-.566813
\end{array}
$$

$$
\text { TABLE } 4-132
$$

$$
\text { LAMBDA } 2 \text { ROTS }(5,4) \text { STD. AA1 }
$$

\[

\]

$$
\begin{array}{r}
\text { SEVENTH } \\
.214134 \\
.132088 \\
.041652 \\
-.056300 \\
-.161052 \\
-.270721 \\
-.381264 \\
-.487520 \\
-.582922
\end{array}
$$

$$
\begin{array}{r}
\text { NEW-RAPH } \\
.227659 \\
.144266 \\
.051413 \\
. .050071 \\
-.158241 \\
-.269943 \\
-.381073 \\
-.487210 \\
. .584552
\end{array}
$$

$$
\begin{aligned}
& \text { FIRST } \\
& .161097 \\
& .171486 \\
& .182092 \\
& .192781 \\
& .203451 \\
& .214049 \\
& .224611 \\
& .235279 \\
& .239985
\end{aligned}
$$

$$
\begin{gathered}
\text { TABLE } 4-133 \\
\text { LAMBDA } 3 \text { ROTS }(5,4) \text { STD. AA1 }
\end{gathered}
$$

$$
\begin{aligned}
& \text { SEVENTH } \\
& .168062 \\
& .179967 \\
& .191539 \\
& .203653 \\
& .215755 \\
& .225611 \\
& .231245 \\
& .232322 \\
& .222556
\end{aligned}
$$

NEW-RAPH
.173708
.184380
.195677
.207211
.217986
.226513
.231638
.233287
.232292

$$
\begin{aligned}
& \text { FIRS T } \\
& .40615 \\
& .42847 \\
& .45076 \\
& .47256 \\
& .49339 \\
& .51284 \\
& .53060 \\
& .54655 \\
& .54782
\end{aligned}
$$

$$
\begin{array}{cc} 
& \text { TABLE 4-134 } \\
\text { LAMBDA } 4 & \text { ROTS }(5,4) \quad \text { STD. AAI }
\end{array}
$$

\[

\]

$$
\begin{aligned}
& \text { S IXTH } \\
& .43971 \\
& .44610 \\
& .46641 \\
& .49409 \\
& .51958 \\
& .53636 \\
& .54231 \\
& .53817 \\
& .51128
\end{aligned}
$$

$$
\begin{aligned}
& \text { SEVENTH } \\
& .42483 \\
& .44993 \\
& .47302 \\
& .49695 \\
& .52014 \\
& .53696 \\
& .54314 \\
& .53864 \\
& .51131
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .44042 \\
& .46054 \\
& .48261 \\
& .50518 \\
& .52524 \\
& .53898 \\
& .54401 \\
& .54070 \\
& .53129
\end{aligned}
$$



カZVF LAMBDA 1 ROTS $(5,4)$


8
$\infty$
$\infty$
$\infty$
$\infty$

.98759


NEW-RAPH
.442995
.354039
.242679
.105536
-.057042
. .237456
-.419750
-.584380
.. .717469

SIXTH
.009391
.291358
.210585
.064487
-.082151
-.243828
-.420117
-.584401
-.716061
TABLE 4-136
LAMBDA 2 ROTS (5,4) STD. AA24
SECOND
.425398
.219337
.192420
.045401
-.116875
-.284394
-.443345
-.580359
-.687464
FIRST
.412174
.314524
.195426
.052602
-.113690
-.298913
-.493807
-.686666
-.868400




$$
\begin{aligned}
& \begin{array}{r}
\text { SEVENTH } \\
.19563 \\
.57518 \\
.55357 \\
.68213 \\
.76416 \\
.85987 \\
.90655 \\
.87358 \\
.79637
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TABLE 4-1.38 } \\
& \text { LAMBDA } 4 \text { ROTS }(5,4) \text { STD. AA24 } \\
& \\
& \text { SECOND } \\
& \begin{array}{r}
.55770 \\
.61216 \\
.66478 \\
.71011 \\
.74083 \\
.74939 \\
.73100
\end{array} \\
& \begin{array}{ll}
n & - \\
0 & - \\
0 & - \\
0 & 0
\end{array} \\
& \text { FIRST } \\
& \begin{array}{r}
.59011 \\
.63523
\end{array} \\
& .63523 \\
& \begin{array}{r}
.67944 \\
.71938
\end{array} \\
& .75084^{\circ} \\
& \begin{array}{r}
.76992 \\
.77480
\end{array} \\
& \begin{array}{r}
.77480 \\
.76689
\end{array} \\
& \begin{array}{ll}
0 & n \\
\infty & \cdots \\
0 & - \\
& \text { - }
\end{array}
\end{aligned}
$$

$\mathrm{CHI}_{\mathrm{nr}}$
76.08
78.10
80.21
82.41
84.71
87.10
89.58
92.16
94.82
97.56
100.38
103.26
106.20

112.18
115.19
118.21
121.20
124.17
127.16


.97893 .98418
 .99695
.99922 .99999
.99900 0
0
0
0
0
0 .99073
.98304 $\circ$
$N$
$N$
$\vdots$

 .92433 .90383 .88124

.85677 | + |
| :---: |
| 0 |
| 0 |
| $\infty$ |

.97073
.97889
.98599
.99184
.99625
.99903
.99999
.99896
.99576
.99022
.98223
.97165
.95842 $\infty$
$\stackrel{\infty}{7}$
$\stackrel{1}{\infty}$ 98052 $\qquad$ 92703 .92968 $\wedge$
$\underset{\sim}{-\infty}$
$\underset{\sim}{\infty}$
 0
$\stackrel{-}{-}$
$\cdots$臽

 $\begin{array}{llll}n & 0 & N & N\end{array} \sqrt{n}$

|  |
| :---: |
|  |  |
|  |  |


TABLE $4-140$
LAMBDA 2 ROTS (5,4) STD. AA1A
LAMBDA 2 ROTS $(5,4)$ STD. AA1A



| SIXTH |
| ---: |
| .225717 |
| .155087 |
| .079575 |
| -.001524 |
| . .088992 |
| -.182392 |
| -.279710 |
| -.377759 |
| -.473010 |
| .562324 |


| SUCCESS IVE SUBSTITUTIONS |  |  |
| :---: | :---: | :---: |
| TH IRD | FOURTH: | FIFTH |
| . 240218 | . 249463 | . 204190 |
| . 166777 | . 172186 | . 147012 |
| . 086480 | . 088998 | . 077937 |
| -. 000109 | . 000350 | -. 001515 |
| .. 091984 | -. 092786 | -. 089409 |
| -. 187688 | -. 188961 | -. 183369 |
| -. 285472 | -. 286189 | -. 280632 |
| -. 383575 | -. 382101 | -. 278279 |
| -. 480669 | . .474211. | -. 473689 |
| . . 576343 | . . 560100 | . . 575058 |






SEVENTH
.37323
.39100
.40771
.42479
.44265
.45933
.47151
.47676
.47377
.45241
S IXTH
.38325
.38767
.40028
.41946
.44056
.45881
.47112
.47627
.47345
.45223

SUCCESS IVE SUBSTITUTIONS TH IRD 41972 $\underset{\sim}{N}$
-42264 .42169 .42066 .42111 .42449 .43157
.44124 .44178 SECOND
.32916
.35106
.37247
.39266
.41070
.42555
.43611
.44126
.43901
.41795 FIRST
.34435
.36300
.38205
.40128
.42040
.43914
.45723
.47443
.48970
.49268




SEVENTH
.429432
.320946
.216870
.123354
.006530
-.125190
-.267054
-.416767
-.560351
-.684768
.797873
S IXTH
.265960
.316065
.244716
.126907
.002931
. .125567
. .267514
-.417845
-.560258
-.680293
TABLE 4-1. 44
LAMBDA 2 ROTS (5,4) STD. AA24A
NOIUNLILSAOS GAISSADRS
THIRD FORTH FIFTH
.083268
.150989
. 152259
$\stackrel{\rightharpoonup}{-}$
$\underset{\sim}{0}$
O
O.
.001217
-.126579
-.272437
-.422099



SECOND
.411972
.327050
.226874
.111184
. .018473
. .157890
-.299896
-.435257
. .554799
-.651631
-.727335
FIRST
.401567
.322928
.229085
.118152
-.010897
-.157368
-.318089
-.487348
-.658015
-.823470
.990321
TRUE
.431192
.357209
.267784
.160551
.034446
-.108731
-.262823
-.417325
-.560093
-.681635
-.777901

0 어 어 요 이억 억 억 어 우
Z60I0
08ヵて
モ $~$


TABLE 4-145
LAMBDA 3 ROTS (5,4) STD. AA24A

|  | SUCCESS IVE SUBS'TITUTIONS |  |  |
| :---: | :---: | :---: | :---: |
| SECOND | TH IRD | FOURTH | FIFTH |
| . 19489 | .24809 | .26273 | . .07859 |
| .21260 | .25904 | .26584 | .39049 |
| .23100 | .26575 | .26764 | .13380 |
| .24912 | .26758 | .26890 | .20578 |
| .26539 | .26531 | .26957 | .25818 |
| .27775 | .26161 | .26906 | .29343 |
| .28387 | .26037 | .26747 | .31318 |
| .28176 | .26429 | .26692 | .32033 |
| .27016 | .27259 | .27106 | .31880 |
|  |  |  |  |
| .24780 | .28023 | .28133 | .30985 |

                        FIRST
    .20469
.22082
.23740
.25384
.26929
.28278
.29344
.30092
.30543
.30670
.00998


$\mathrm{CHI}_{\mathrm{nr}}$
74.34
76.02
77.78
79.61
81.51
83.49
85.54
87.67
89.88
92.17
94.53
96.96
99.45
102.01
104.62
107.28
109.97
112.69
115.44
118.18
120.93
123.66

SUCCESS IVE SUBSTITUTIONS
THIRD FOURTH FIFTH SIXTH



 SECOND



TABLE 4-148
LAMBDA 2 ROTS (5,4) STD. AAIB




$$
\begin{array}{r}
\text { FIRST } \\
.13268 \\
.14109 \\
.14995 \\
.15924 \\
.16895 \\
.17908 \\
.18961 \\
.20058 \\
.21199 \\
.22386 \\
.23564
\end{array}
$$

$$
\begin{aligned}
& \text { SECOND } \\
& .12648 \\
& .13558 \\
& .14513 \\
& .15499 \\
& .16496 \\
& .17472 \\
& .18389 \\
& .19199 \\
& .19841 \\
& .20244 \\
& .20261
\end{aligned}
$$

TRUNCATION ERROR

$$
\text { TABLE } 4-149
$$

$$
\text { LAMBDA } 3 \text { ROTS }(5,4) \text { STD. AA1B }
$$

$$
\begin{aligned}
& \text { 品 } \\
& \text { [9 } \\
& \text { 总 } \\
& 0 \\
& \hline 0
\end{aligned}
$$

$$
\underset{H}{\underset{H}{H}}
$$

220

$$
\text { LAMBDA } 4 \text { ROTS }(5,4) \text { STD. AAIB }
$$

SUCCESS IVE SUBS'TITUTIONS
TH IRD FOURTH FIFTH .37723
.37687 .37686 .37733 .37832 .37978 38166 .38408 .38728 .39161 .39618
37029 .37369 .37551 .37626 .37674 .37795 .38094 .38641 .39447
.40336
COMPUTER TRUNCATION ERROR SECOND
.27145
.39021
.30914
.32703
.34575
.36226
.37655
.38782
.39509
.43737
.39248 FIRST
.28777
.30345
.31974
.33656
.35378
.37124
.38875
.40615
.42322
.42973
.45435 TIME
TABLE 4-1.50

$$
\begin{aligned}
& .24034 \\
& .28136 \\
& .31670 \\
& .34638
\end{aligned}
$$

$$
\text { . } 40441
$$

$$
.41452
$$

$$
.42055
$$

$$
\text { . } 42272
$$

$$
.41984
$$

$$
\begin{aligned}
& \text { SIXTH } \\
& .33637 \\
& .33897 \\
& .34545 \\
& .35614 \\
& .37226 \\
& .38899 \\
& .40438 \\
& .41627 \\
& .42339 \\
& .42529 \\
& .42081
\end{aligned}
$$

$$
\begin{aligned}
& \text { SEVENTH } \\
& .32825 \\
& .34079 \\
& .35308 \\
& .36535 \\
& .37824 \\
& .39191 \\
& .40523 \\
& .51657 \\
& .42365 \\
& .42555 \\
& .42103
\end{aligned}
$$



$$
0
$$

옥

8 은
옥 억 8
-1 $\underset{\sim}{8}$ 오N

$$
.37068
$$

$$
.38992
$$


NEW－RAPH
.430861
.371524
.302048
.220853
.126656
.019003
-.101020
-.230090
-.362438
-.490622
-.607300
-.707296


| 78¢ZO＜${ }^{\circ}$ |
| :---: |
| サ $27909^{\circ}-$ |
| ES9067＊＊ |
| ¢ELE98－ |
| STカ9とで－ |
| E60LTT ${ }^{\circ}$ |
| $981400^{\circ}-$ |
| $989660^{\circ}$ |
| $70766 \mathrm{I}^{\circ}$ |
| ¢ $1988 \mathrm{Z}^{\circ}$ |
| 968サワを |
| ¢ 28.7 ¢ ${ }^{\circ}$ |
| HLXI．S |


| TABLE 4－152 |  |  |
| :---: | :---: | :---: |
| LAMBDA 2 | ROTS（5，4） | STD．AA24B |
| SUCCESS IVE SUBSTITUTIONS |  |  |
| THIRD | FOURTH | FIFTH |
| ． 453545 | ． 466995 | ． 165408 |
| ． 384644 | ． 391965 | ， 187597 |
| ． 304955 | ． 307870 | .180326 |
| ． 213796 | ． 214169 | ． 143400 |
| .111109 | ． 110404 | ．079184 |
| －．002239 | －． 003328 | －．008932 |
| －． 124224 | －． 125572 | －． 116799 |
| －． 251742 | －． 252903 | －． 238637 |
| －． 381088 | －． 379932 | －． 366713 |
| －． 508898 | －． 500110 | －． 493046 |
| －． 632835 | －． 606516 | －． 611912 |
| －． 752685 | －． 692857 | －． 722314 |





NEW-RAPH
.18938
.20092
.21327
.22667
.24150
.25817
.27673
.29540
.30943
.31451
.31136
.30220
SEVENTH
.20265
.18965
.18841
.20747
.22987
.24891
.26831
.29024
.30817
.31422
.30899


| TABLE 4-153 |  |  |
| :---: | :---: | :---: |
| LAMBDA 3 | ROTS (5,4) | STD. AA24B |
| SUCCESS TVE SUBSTITUTIONS |  |  |
| TH IRD | FOURTH | FIFTH |
| . 21415 | . 22301 | -. 00585 |
| . 22560 | . 22944 | .05442 |
| . 23499 | . 23504 | .11101 |
| . 24161 | . 24020 | . 66131 |
| . 24514 | . 24504 | . 20447 |
| . 24602 | . 24926 | . 24026 |
| . 24573 | . 25230 | . 26810 |
| . 24654 | .25396 | . 28731 |
| . 25054 | .25513 | .29811 |
| .25828 | . 25787 | . 30189 |
| . 26822 | . 26465 | . 30036 |
| . 27414 | .27304 | . 29005 |



| H | - | N | $\bigcirc$ | $n$ | $\bigcirc$ | $\infty$ | $a$ | m | $\cdots$ |  | 9 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $N$ | ${ }^{17}$ | $\xrightarrow{7}$ | $\stackrel{\sim}{6}$ | ¢ | - | N | n | $\infty$ |  | $\stackrel{\infty}{ \pm}$ | $\infty$ |
| $\stackrel{\text { H }}{ }$ | $N$ | ¢ | 0 | $\cdots$ | m | $\pm$ | - | N | $\infty$ |  | O | - |
| 仙 | $\cdots$ | $\cdots$ | N | ง | $\sim$ | $\sim$ | N | $\cdots$ | N | $\checkmark$ | m |  |









|  | $\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{\infty} \\ & \text { Non } \end{aligned}$ |  | $\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & n \\ & \text { n } \\ & \text { of } \end{aligned}$ | $\begin{aligned} & \text { n } \\ & \substack{\infty \\ \underset{\sim}{0} \\ \hline} \end{aligned}$ | $\begin{aligned} & \stackrel{\sim}{0} \\ & \text { Non } \\ & \text { ñ } \end{aligned}$ |  |  | $\underset{\substack{n \\ i n}}{n}$ | $\begin{aligned} & \text { N} \\ & \\ & \end{aligned}$ | $\underset{\sim}{N}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| $\begin{aligned} & \text { 気 } \\ & \text { 品 } \end{aligned}$ | $\begin{aligned} & \text { N} \\ & \underset{~ N}{n} \end{aligned}$ | $\begin{aligned} & \text { す } \\ & \text { N్ } \\ & \text { さै } \end{aligned}$ | $\begin{aligned} & \text { N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \text { on } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { n } \\ & \text { ñ } \\ & \text { fon } \end{aligned}$ | $\begin{aligned} & \text { ơ } \\ & \text { on } \\ & \hat{n} \text { n } \end{aligned}$ | $\begin{aligned} & 0 \\ & \vec{y} \\ & 0 \end{aligned}$ | 응 | $\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { 융 } \\ & \text { ! } \end{aligned}$ | ¢ | ＋ | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |




$$
\begin{array}{r}
\text { NEW-RAPH } \\
.417849 \\
.350700 \\
.270578 \\
.174338 \\
.058865 \\
-.077745 \\
-.234009 \\
-.402368 \\
-.568386 \\
-.739741
\end{array}
$$

$$
\text { DIVF • ULS (†'ऽ) SLO甘 } \zeta \text { VOGNV'I }
$$

\[

\]

$$
\begin{array}{r}
\text { FIRS T } \\
.376971 \\
.320721 \\
.350018 \\
.160731 \\
.048246 \\
-.092083 \\
-. .263822 \\
-.467597 \\
-.699956 \\
-.999687
\end{array}
$$

COMPUTER TRUNCATION ERROR

\[

\]

\[

\]

$$
\begin{aligned}
& \text { NEW-RAPH } \\
& .14286 \\
& .15750 \\
& .17327 \\
& .19042 \\
& .20935 \\
& .23035 \\
& .25253 \\
& .27185 \\
& .28266
\end{aligned}
$$



NEW-RAPH
.26573
.27599
.28814
.30290
.32112
.34318
.36708
.38583
.39147


 | TABLE 4-158 |  |
| :---: | :---: |
| LAMBDA 4 | ROTS $(5,4) \quad$ STD. AA1C |


COMPUTER TRUNCATION ERROR TRUE
.25000
.26603
.28454
.30552
.32839
.35171
.37268
.38732
.39157
.38354



SUCCESS IVE SUBSTITUTIONSIXTH94294


$$
\begin{array}{r}
\text { FIRS T } \\
.469561 \\
.418649 \\
.350655 \\
.259313 \\
.136775 \\
-.025665 \\
-.234970 \\
-.491042 \\
-.781590 \\
-1.087608
\end{array}
$$

TABLE 4-160
LAMBDA 2 ROTS (5,4) STD. AA24C


$$
\begin{array}{r}
\text { NEW-RAPH } \\
.500653 \\
.439651 \\
.363860 \\
.268020 \\
.145636 \\
-.009557 \\
-.199036 \\
-.411324 \\
-.617559 \\
-.784550
\end{array}
$$

NEW-RAPH
.16116
.17884
.19798
.21899
.24265
.27033
.30340
.33602
.34896
.33370
SEVENTH
.17903
.19186
.20065
.21419
.23630
.26373
.29605
.33348
.34783
.32711

| $\underset{\substack{\text { Tis } \\ \text { 感 }}}{ }$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \stackrel{\infty}{\hat{N}} \end{aligned}$ | - | $\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \text { n } \\ & \stackrel{n}{n} \end{aligned}$ | $\begin{aligned} & \stackrel{a}{0} \\ & \stackrel{0}{\sigma} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{n} \end{aligned}$ |  | ¢ | $\frac{\square}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$\begin{array}{ll} & \text { TABLE 4-161 } \\ \text { LAMBDA } 3 & \text { ROTS (5,4) } \\ \text { STD. AA24C }\end{array}$





10
NEW－RAPH
.30485
.31749
.33232
.35062
.37445
.40668
.44892
.48948
.49870
.46851

|  | $\stackrel{\stackrel{\rightharpoonup}{4}}{\stackrel{1}{2}}$ |  | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { N} \\ & \end{aligned}$ | $\begin{aligned} & \stackrel{n}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$ | $\begin{aligned} & \pm \\ & \stackrel{+}{0} \\ & \stackrel{0}{0} \end{aligned}$ |  |  | $\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$ | $\pm$ <br> 0 <br> 0 |  | N | $\stackrel{\sim}{\sim}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


$\begin{array}{ll} & \text { TABLE 4－162 } \\ \text { LAMBDA } 4 & \text { ROTS }(5,4) \\ \text { STD．AA24C }\end{array}$
FIRST
.20069
.22849
.27130
.29966
.34366
.39241
.44322
.49137
.53156
.53230

| $\begin{aligned} & \text { 罢 } \\ & \hline \end{aligned}$ | $\frac{0}{0}$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \underset{\sim}{\sim} \end{aligned}$ | テ̛ | $\begin{aligned} & n \\ & n \\ & n \end{aligned}$ | $\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$ | $\underset{\sim}{\sim}$ | o | $\begin{aligned} & \hat{7} \\ & \text { た } \end{aligned}$ | な |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



# Table 4-163 COMPARISON OF $\lambda_{1}$ SOLUTIONS FOR DIFFERENT ORDERS OF ROTS EQUATIONS WITH CONSTANT $\triangle R$ AND VARIABLE $\Delta T$ 

$$
\Delta \mathrm{R}=19.78 \mathrm{KM}
$$

STD. NUM. ROTS ( 3,3 ) ROTS (4,3) ROTS (5,3) ROTS (4,4) ROTS $(5,4)$ MAX $\triangle T$ THRUST

| AA24 | $-6.89 \%$ | $1.30 \%$ | $.06 \%$ | $-.06 \%$ | $.00 \%$ | 178.70 | 200 K lb |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AA24A | $-5.96 \%$ | $1.55 \%$ | $.09 \%$ | $-.04 \%$ | $.00 \%$ | 203.60 | 175 K lb |
| AA24B | $-5.25 \%$ | $2.07 \%$ | $.08 \%$ | $-.03 \%$ | $.00 \%$ | 237.98 | 150 K lb |
| AA24C | $-3.85 \%$ | $7.34 \%$ | $.09 \%$ | $-.01 \%$ | $.02 \%$ | 373.74 | 100 K lb |

Table 4-164 EFFECT OF STEERING ANGLE ERRORS ON INJECTION ACCURACY

| NOMINAL <br> CASE | SUBSTITUTION <br> STEP FOR $X$ | $\Delta x$ <br> $(\mathrm{~m})$ | $\Delta y$ <br> $(\mathrm{~m})$ | $\Delta u$ <br> $(\mathrm{~m} / \mathrm{sec})$ | $\Delta v$ <br> $(\mathrm{~m} / \mathrm{sec})$ |
| :--- | :--- | ---: | ---: | ---: | ---: |
| AA1 | THIRD | 1.1 | -26.0 | -1.48 | 4.86 |
| AA1 | FOURTH | 187.4 | -116.2 | 3.26 | 2.45 |
| AA1 | FIFTH | 230.0 | -137.6 | 2.86 | 2.80 |
| AA1 | SIXTH | 207.0 | -126.9 | 3.18 | 2.74 |
|  |  |  |  |  |  |
| AA1C | THIRD | -1391.6 | 1045.6 | -12.29 | 16.16 |
| AA1C | FOURTH | 543.3 | -447.7 | 4.45 | -.14 |
| AA1C | FIFTH | 859.8 | -693.5 | -.65 | 3.44 |
| AA1C | SIXTH | 1174.5 | -935.9 | 3.48 | -.31 |
|  |  |  |  |  |  |
| AA24 | THIRD | -314.6 | 90.0 | -7.99 | 8.83 |
| AA24 | FOURTH | 396.6 | -259.9 | 5.31 | 1.07 |
| AA24 | FIFTH | 480.4 | -305.6 | 4.49 | 1.91 |
| AA24 | SIXTH | 347.0 | -247.7 | 5.31 | 2.29 |
|  |  |  |  |  |  |
| AA24C | THIRD | -2218.1 | 1699.4 | -24.04 | 29.13 |
| AA24C | FOURTH | 1467.5 | -1199.2 | .38 | -5.24 |
| AA24C | FIFTH | 1443.0 | -1187.3 | -5.30 | 8.06 |
| AA24C | SIXTH | 2557.4 | -2062.9 | 7.99 | -4.53 |

Steering angle computed from ROTS (4,3) equations.

## SECTION V

SOLUTION FOR TIME-TO-CUTOFF FUNCTION

### 5.1 INTRODUCTION

In this section the results of an analysis of the time-to-cutoff function are discussed. The analysis is based on the use of true or nominal values for the multipliers. As previously stated, the guidance problem was divided into two parts, the solution for the multipliers based on true $\Delta t$ and solutions for $\Delta t$ based on true multiplier values. Each part was analyzed somewhat independently of the other.

The $\Delta t$ studies are particularly critical. The entire guidance problem solution hinges on obtaining an accurate representation for $\Delta t$. The accuracy of the steering angle obtained from the ROTS equations, or some analagous system of equations, depends on $\Delta t$. Ultimately, the mass loss depends on $\Delta t$, and its accuracy determines the degree of optimality achievable. A more immediate and bothersome problem is the complexity of the resulting formulas after a $\Delta t$ expression is substituted into the ROTS equations.

### 5.2 CHOICE OF SERIES FOR $\Delta t$

Recall from Section III that the three functions chosen for the circular orbit terminal condition were expanded in Taylor series about the unknown $\Delta t$ interval. An explicit solution for $\Delta t$ was then obtained by reverting the "Velocity" series, equation (22).

Either of the other two series, equations (21) or (23), could have been used to solve for $\Delta t$. However, as explained in Section IV, the systems of algebraic equations in the multipliers which result from these two choices, and which must be solved for the multipliers, do not generally have satisfactory solutions. Moreover, use of the "Radius" or "Orthogonality" series for computing time-to-cutoff is not always satisfactory. Reversion of the "Radius" and "Orthogonality" series yields a term analogous to "Z" in the velocity series.

For the "Radius" series:

$$
\phi=\frac{R_{c o}^{2}-\left(x^{2}+y^{2}\right)_{o}}{2(x u+y)_{0}}
$$

For the "Orthogonality" series:

$$
\Omega=\frac{-(x u+y v)_{0}}{2(u \dot{u}+v \dot{v})_{0}}=\frac{-(R V \cos \theta)_{0}}{2(u \dot{x}+v \dot{v})_{0}}
$$

where $\theta$ is the flight path-angle. Both of these terms can cause problems. In the case of $\phi$, if the initial radius exceeds the cutoff radius before other orbit conditions are met, becomes zero and so does $\Delta t$, In some cases $\theta$ may pass through 90 degrees before orbit is achieved. For an optimal flight velocity should be increasing until cutoff and no singularity problems encountered.

### 5.3 REVERSION OF THE VELOCITY SERIES

The reversion or inversion of the velocity series, as noted in Section III, is discussed here in some detail. Equations (22) in expanded form are:
or

$$
\begin{aligned}
& \left(u^{2}+v^{2}-v_{c o}^{2}\right)_{0}+2(u \dot{u}+v \dot{v})(\Delta t)+\left(u \ddot{u}+v \ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right)(\Delta t)^{2}+\ldots=0 \\
& \frac{v_{c o}^{2}-\left(u^{2}+v^{2}\right)}{2(u \dot{u}+v \dot{v})}=\dot{z}=\Delta t+\frac{\left(u \ddot{u}+v \ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right)}{2(u \dot{u}+v \dot{v})}(\Delta t)^{2}+\ldots
\end{aligned}
$$

The series to be reverted may be written as,

$$
\begin{equation*}
z=A_{1}(\Delta t)+A_{2}(\Delta t)^{2}+\ldots+A_{i}(\Delta t)^{i}+\ldots \tag{31}
\end{equation*}
$$

and the reverted series written as,

$$
\begin{equation*}
\Delta t=B_{1} z+B_{2} z^{2}+\ldots+B_{j} z^{j}+\ldots \tag{32}
\end{equation*}
$$

where the $B_{j}$ are in terms of the $A_{i}$. The coefficients can be obtained by several methods and are tabulated in numerous mathematical tables and handbooks. A discussion of series reversion is found in reference 8. Table 5-1 lists the $B_{j}$ in terms of the $u$ and $v$ time derivatives for the reversion of a sixth-order series to a sixth-order series. Series of lesser orders can be derived from these formulas,

One problem that arises when the velocity series is reverted is the term in the denominator of Z .

$$
\begin{aligned}
\delta & =2(u \dot{u}+v \dot{v}) \\
& =2 u \frac{F}{m} \lambda_{1}+2 v \frac{F}{m} \lambda_{2}+2 u v_{x}+2 u v_{y} \\
& =K_{o}+K_{1} \lambda_{1}+K_{2} \lambda_{2}
\end{aligned}
$$

The problem is that two multipliers occur in the denominator. They can be put into the numerator by expanding $\delta^{-1}$ into a series, but for the values encountered for $K_{0}, K_{1}$, and $K_{2}$ the series diverges. Because of this problem the "Z" term in the time-to-cutoff expression was left as shown above. It was assumed that the quantities in the denominator cotid ali be measured at any initial time. The $\lambda_{1}$ and $\lambda_{2}$ which occur there would be the current values and would not be directly involved in the solution for the optimal steering function.

The reversion (or inversion) of a series representation for a function is actually a method for expressing the inverse of that function. It is equivalent to finding a zero of the original function, if the original series expansion is about the origin, the inverse series converges to the smallest real root of the function, If the function has no real roots, the series will, of course, not converge to real values. (Complex zeros can be computed, but the algorithm is very cumbersome and of no use in the gildance problem anyway.) There are no convergence problems with multiple real roots, provided enougn terms are taken in the inverse series,

Equation (31) is a finite series and can be regarded as a polynomial in the unknown variable, $\Delta t$. Inversion of the polynomial, which is its own series, should produce the desired value for $\Delta t$ if Ehe original series is sufficiently accurate, A study was made to determine what orders of series are necessary to ensure that an accurate root (corresponding to the actial $\Delta t$ ) would be implicitly defined by equation (31),
NDRTHROP SPACE LABORATORES $\quad$ JM-292-6-038

The $A_{i}$ in equation (31) were evaluated with nominal data from a number of trajectories, The resulting polynomials, of orders three through six, were then solved for all of their roots by the Bairstowe method. In nearly all cases there was one small, real positive root; the others were either complex or very large, These smallest roots were usually close to nominal $\Delta t$ values, and are referred to as "actual roots".

After the actual roots of the polynomials were obtained, the roots obtained from reversions of these polynomials were evaluated and compared to the actual roots, The orders of the reverted series used (order with respect to $Z$ ) ranged from the order of the original series up through the sixth order. The notation, "I to J " indicates a series of order I reverted to one of order J.

These calculations were done for all nominal cases described in Table 4-2. Representative results are shown in the remainder of this section.

### 5.4 ITERATED REVERSION FOR $\Delta t$

From Table 5-6, it can be seen that a polynomial or series of relatively low order can have an acceptable actual root. The third-order series in $\Delta t$, for example, has roots which are close to actual $\Delta t$ values and not too much more accuracy is obtained by taking roots of higher order series. Yet, when these series are reverted to orders three, four, five, or six, the values obtained are unacceptable. Had more terms been taken, the value obtained for $\Delta t$ would have been much more accurate. However, a large number of terms will lead to an undesirable amount of algebra and complicated formulas for the guidance function. Because of this problem an investigation was made to find a simpler way to derive the expression for $\Delta t$. A possibility considered was an iteration of the series reversion.

As noted in Section 5.3, the reversion of a finfte series is equivalent to finding a root of that series. If an estimate of the root is available, the reverted series may be made to converge more rapidly. Suppose equation (31) is written as

$$
\begin{equation*}
z=A_{1}(\tau+d t)+A_{2}(\tau+d t)^{2}+\ldots \tag{33}
\end{equation*}
$$

where $\tau$ is an estimate for $\Delta t$ and $d t$ is an unknown correction such that $t+d t=\Delta t$. Equation (33) can be rewritten as

$$
\begin{aligned}
z & =\left(A_{1} \tau+A_{2} \tau^{2}+A_{3} \tau^{3}+\ldots\right)+\left(A_{1}+2 A_{2} \tau+3 A_{3} \tau^{3}+\ldots\right)(d t) \\
& +\left(A_{3}+3 A_{2} \tau+\ldots\right)(d t)^{2}+\ldots
\end{aligned}
$$

or

$$
\begin{equation*}
Z^{\prime}=A_{1}^{\prime}(d t)+A_{2}(d t)^{2}+\ldots \tag{34}
\end{equation*}
$$

Equation (34) may be reverted for $d t$ which is added to $\tau$ to obtain $\Delta t$. In some cases this procedure may involve less complicated formulas than the usual reversion, especially if a large number of terms are required in the reverted series,

It was assumed that the estimate, $\tau$, would somehow be available. During flight, if $\Delta t$ is computed along with the steering angle, the estimate would be obtained from a previous value, The estimate might also be made analytically. A simple and obvious estimate would be $\tau=Z$. Whatever estimate is used, it
should be sufficiently accurate to determine $\Delta t$ after only one iteration, because the expression for $\Delta t$ must be substituted into the ROTS equations to be solved for the steering function.

This approach was tested using $Z$ for the estimate, For most of the cases tested it was not worth the effort because of the complexity of equation (34) and its reversion. However, for a case involving a flight time of 300 seconds and a large $\Delta R$ such as shown in Table 506 , the approach did seem to have merit. There is probably less complication in using the "icerative" approach than extending the reverted series past the sixth order for a certain class of missions. Further investigation of this topic would be desirable.

### 5.5 ERROR ANALYSIS

Studies of the errors in the $\Delta t$ expression were carried out to determine what orders of series should be used for subscitution into the ROTS equations. Specific questions considered were: (1) Do $s$ s the $\Delta t$ accuracy depend on $\Delta R$ as the : accuracy seems to? (2) What effect does a $\Delta t$ error have on the accuracy of the guidance function? (3) How does the $\Delta t$ error affect the accuracy of the guidance function with respect to accuracy at the target orbit?

A number of nominal cases were tested for comparison against analytically predicted results in much the same way as done with the steering angle studies. Figures 5-1 through 5-4 show time histories of the $\Delta t$ errors for one nominal case, and are representative of the pattern found on other cases, For longer duration flights and larger $\Delta R$ values, the behavior is the same,but the magnitudes tend to increase. This is shown in Figure $5-5$ where the percent errors of actual roots at the beginning of flight are plotted against $\Delta R$. There is a tendency for all orders of series to have increasingly inaccurate roots for $\Delta t$. No explanation has been found for the apparent increase in accuracy for the third-order
series. Additional cases were observed which were identical to those shown in Figure 5-5 except for lower thrust levels to obtain longer flight times. For these cases the behavior was the same and errors were only slightly changed. Based on these results, it appears that $\Delta R$ is an indication of the order of series needed for $\Delta t$ for a given mission; rather than the expected $\Delta t$.

To determine the sensitivity (to $\Delta t$ ) of the steering angle computation, perturbed nominal values of $\Delta t$ were used in the ROTS equations. The behavior of the $\Delta t$ error was crudely simulated by perturbing the initial (ignition) $\Delta t$ value 2 percent and 5 percent true values and then linearly decreasing the error to zero at cutoff (see Figure 5-1). The perturbed $\Delta t$ values were then used in the ROTS equations, and values for multipliers were computed. The effect of the $\Delta t$ error on the solution for the multipliers was then observed. Figure 5-6 shows the effect on $\lambda_{1}$ for one case and is representative of what was found. It should be noted that the deliverate error in $\Delta t$ is far worse than actual error, Based on these results, it was decided that no more than a 5 percent error in $\Delta t$ would be acceptable.

The next step in analyzing the sensitivity of the steering angle solution to errors in time-to-cutoff was to stimulate the flight of a vehicle with a simulated linear error in $\Delta t$. This was done to determine the effect at the target orbit of an initial error in $\Delta t$ combined with the error in the steering angle solution. The solution of the ROTS $(4,3)$ equations was used to simulate flights from ignition to orbit for two cases. first with true $\Delta t$ and then with a perturbed true $\Delta t$ of -5 percent at ignition to 0 percent at cutoff. Coordinates at cutoff were then compared with each other and with nominal values. Table 5-7 indicates the increase in error due to the simulated error in $\Delta t$.


Figure 5-2. PERCENT ERROR OF ACTUAL ROOTS OF 4th ORDER SERIES AND INDICATED REVERSION





Table 5-1. COEFFICIENTS OF REVERTED VELOCITY SERIES

$$
\begin{aligned}
& \Delta t=\sum B_{n}(Z)^{n} \\
& \mathrm{~B}_{1}=1 \\
& B_{2}=-\frac{1}{\delta}\left(u \ddot{u}+v \ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right) \\
& B_{3}=\frac{2}{\delta^{2}}\left(u \ddot{u}+\ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right)^{2}-\frac{1}{\delta}\left(\frac{1}{3} u \ddot{u}+\frac{1}{3} v \underset{v}{v}+\ddot{u} \ddot{u}+\ddot{v}\right) \\
& B_{4}=-\frac{5}{\delta^{3}}\left(u \ddot{u}+v \ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right)^{3}+\frac{5}{\delta^{2}}\left(u \ddot{u}+v \ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right)\left(\frac{1}{3} u u\right. \\
& \left.+\frac{1}{3} v \mathbf{v}+u \ddot{u}+\underset{v}{w}\right)-\frac{1}{\delta}\left(\frac{1}{12} u \bar{u}+\frac{1}{12} \underset{v}{\text { F }}+\frac{1}{3} u \vec{u} \vec{u}\right. \\
& \left.+\frac{1}{3} \ddot{v}+\frac{1}{4} \ddot{u}^{2}+\frac{1}{4} \ddot{v}^{2}\right) \\
& B_{5}=\frac{14}{\delta^{4}}\left(u \ddot{u}+v \ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right)^{4}-\frac{21}{\delta^{3}}\left(\ddot{u}+\ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right)^{2} \\
& \left(\frac{1}{3} u \ddot{u}+\frac{1}{3} v \ddot{v}+\ddot{u} \ddot{u}+\ddot{v}\right)+\frac{6}{\delta^{2}}\left(u \ddot{u}+v \ddot{v}+\dot{u}^{2}+\dot{v}^{2}\right) \\
& \left(\frac{1}{12} \ddot{u} \vec{u}+\frac{1}{12} \underline{v} \mathbf{v}+\frac{1}{3} \ddot{u} \ddot{u}+\frac{1}{3} \ddot{v} \ddot{v}+\frac{1}{4} \ddot{u}^{2}+\frac{1}{4} \ddot{v}^{2}\right)
\end{aligned}
$$

where,

$$
\begin{aligned}
& \delta=2(u \dot{u}+v \dot{v}) \\
& z=\frac{v_{c o}^{2}-\left(u^{2}+v^{2}\right)}{\delta}
\end{aligned}
$$

Table 5-2 COMPARISON OF ACTUAL ROOTS AND ROOTS OBTAINED BY REVERSION

3 to 5
158.65
148.16
130.54
110.58
90.39
70.36
50.37
30.36
10.35
3 to 4
165.33
142.85
124.40
107.02
89.03
70.02
50.32
30.36
10.35
ACTUAL

$3 \mathrm{rd*}$${ }^{2}$| 166.57 |
| :--- |
| 147.32 |
| 128.30 |
| 109.24 |
| 89.24 |
| 70.26 |
| 50.36 |
| 30.36 |
| 10.34 |

[^3]TRUE $\Delta t$
170.34
150.34
130.34
110.34
90.34
70.34
50.34
30.34
10.34
Table 5-2 (Concluded)
*Actual "nth" is the smallest real root of the nth order velocity series. Data from Nominal AAl.
TRUE $\Delta t$
$$
155.26
$$
$$
135.26
$$
$$
115.26
$$
$$
95.26
$$
3 to 5
178.89
169.73
154.00
135.12
115.22
95.21
75.25
55.28
35.28
15.27
\[

$$
\begin{aligned}
& 195.26 \\
& 175.26
\end{aligned}
$$
\]75.2655.2635.2615.26

*Actual

| 6 | S | No | $\stackrel{\infty}{\circ}$ | - | ${ }^{2}$ | 9 | ज | 9 | $\stackrel{\infty}{\sim}$ | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O | - | - | - | $\bullet$ | - |  |  | , | - | - |
| 4 | $\bigcirc$ | $\infty$ | $\stackrel{-1}{0}$ | N | $\bigcirc$ | $\stackrel{\sim}{6}$ | $\stackrel{\sim}{\sim}$ | in | $\stackrel{\sim}{n}$ | $\stackrel{1}{\sim}$ |
| $\pm$ | N | $\cdots$ | - | - | $\cdots$ |  |  |  |  | $\cdots$ |

Table 5-3 (Concluded)

| TRUE $\Delta t:$ | ACTUAL <br> $6 t h *$ | ACTUAL <br> $5 t h *$ | ACTUAL <br> 4 th* | 6 to 6 |
| :--- | :---: | :---: | :---: | :---: |
| 195.26 | 196.21 | 194.70 | 192.19 | 192.28 |
| 175.26 | 176.08 | 175.43 | 173.41 | 174.39 |
| 155.26 | 155.78 | 155.71 | 154.40 | 155.12 |
| 135.26 | 135.50 | 135.67 | 135.05 | 135.30 |
| 115.26 | 115.34 | 115.51 | 115.34 | 115.31 |
| 95.26 | 95.29 | 95.37 | 95.38 | 95.30 |
| 75.26 | 75.28 | 75.30 | 75.34 | 75.29 |
| 55.26 | 55.28 | 55.28 | 55.30 | 55.28 |
| 35.26 | 35.27 | 35.27 | 35.27 | 35.27 |
| 15.26 | 15.27 | 15.27 | 15.27 | 15.27 |

$$
\begin{aligned}
& 5 \text { to } 6 \\
& 176.86 \\
& 169.47 \\
& 154.75 \\
& 136.04 \\
& 115.85 \\
& 95.50 \\
& 75.33 \\
& 55.28 \\
& 35.27 \\
& 15.27
\end{aligned}
$$

$$
\begin{aligned}
& 4 \text { to } 5 \\
& 174.34 \\
& 161.88 \\
& 148.49 \\
& 132.72 \\
& 114.69 \\
& 95.29 \\
& 75.35 \\
& 55.30 \\
& 35.28 \\
& 15.27
\end{aligned}
$$

$$
\begin{aligned}
& \text { O} \\
& \text { O } \\
& \overrightarrow{0} \\
& \overrightarrow{3} \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

Table 5-4

$$
\begin{array}{rrrrr}
\text { TRUE } \Delta t & \begin{array}{c}
\text { AGTUAL } \\
6 t h^{*}
\end{array} & \begin{array}{c}
\text { AGTUAL } \\
5 t h^{*}
\end{array} & \begin{array}{c}
\text { ACTUAL } \\
4 t h^{*}
\end{array} & 6 \text { to } 6 \\
229.41 & 229.84 & 227.75 & 225.39 & 220.85 \\
209.41 & 210.11 & 208.76 & 206.49 & 205.58 \\
189.41 & 190.07 & 189.42 & 187.54 & 187.89 \\
169.41 & 169.87 & 169.72 & 168.43 & 168.91 \\
149.41 & 149.66 & 149.76 & 149.05 & 149.30 \\
129.41 & 129.52 & 129.66 & 129.39 & 129.42 \\
109.41 & 109.46 & 109.55 & 109.50 & 109.44 \\
89.41 & 89.44 & 89.47 & 89.50 & 89.44 \\
69.41 & 69.44 & 69.44 & 69.46 & 69.44 \\
49.41 & 49.43 & 49.43 & 49.44 & 49.43 \\
29.41 & 29.42 & 29.43 & 29.42 & 29.42 \\
9.41 & 9.41 & 9.41 & 9.41 & 9.41
\end{array}
$$

$$
\begin{aligned}
& 5 \text { to } 5 \\
& 235.99 \\
& 211.61 \\
& 189.84 \\
& 169.31 \\
& 149.26 \\
& 129.34 \\
& 109.40 \\
& 89.43 \\
& 69.43 \\
& 49.43 \\
& 29.42 \\
& 9.41
\end{aligned}
$$

Table 5－5 COMPARISON OF ACTUAL ROOTS AND ROOTS OBTAINED BY REVERSION
3 to 6
486.58
387.58
308.54
248.66
200.58
159.50
120.95
81.90
42.06
2.05
3 to 5
87.11
260.27
245.12
224.65
195.60
159.97
121.40
81.95
42.06
2.05

3 to 3
406.78
335.31
$58^{\circ}$ £8乙
241.72

162.99
サじててし
82.29

2.05
4 to 6
26.48
210.45
253.46
240.66
205.11
163.45
122.37
82.13
42.07
2.05 $\begin{array}{lr}4 \text { to } 4 & 4 \text { to } 5 \\ 250.99 & 568.77 \\ 280.11 & 388.81 \\ 270.82 & 289.20 \\ 241.89 & 231.02 \\ 203.90 & 192.55 \\ 163.11 & 158.54 \\ 122.35 & 121.63 \\ 82.10 & 82.11 \\ 42.06 & 42.07 \\ 2.05 & 2.05\end{array}$

Table 5-5 (Concluded)

$$
\begin{aligned}
& \begin{array}{r}
5 \text { to } 5 \\
495.30 \\
374.21 \\
301.70 \\
248.08 \\
203.14 \\
162.06 \\
122.03 \\
82.07 \\
42.06 \\
2.05
\end{array} \\
& \begin{array}{l}
6 \text { to } 6 \\
249.16 \\
294.71 \\
272.91 \\
237.91 \\
200.54 \\
161.75 \\
122.05 \\
82.08 \\
42.06 \\
2.05
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 85 \cdot 08 \\
& 0 \cdot 089 \\
& \cdot 9 โ 78 \\
& \cdot 6759 \\
& \cdot 0 \varepsilon \varepsilon 89- \\
& \cdot \varepsilon \varepsilon 8 \% \tau- \\
& \cdot \angle 01 \varepsilon \\
& 9.07 \varepsilon
\end{aligned}
$$

Table 5-6 COMPARISON OF ACTUAL ROOTS AND ROOTS OBTAINED BY REVERSION


$$
\begin{array}{llllllll}
+ & & & + \\
0 & & n & N & n \\
0 & \infty & 0 & \cdots & 0 & 0 & 0 & \dot{+} \\
+ & 0 & 0 & 0 & \infty & \circ & n & n \\
+ & \cdots & 0 & - & n & N & \cdots &
\end{array}
$$




| AGTUAL <br> 4 th* | 6 to 6 | 5 to 5 |
| :--- | ---: | ---: |
| 310.80 | -476.07 | -5693. |
| 240.51 | 23989. | 735.48 |
| 175.29 | 5935. | 7821. |
| 115.84 | -8350. | 27.38 |
| 71.64 | 856.2 | -194.5 |
| 61.16 | 116.94 | 139.6 |
| 72.75 | 80.86 | 69.73 |


| - | $\cdots$ | 0 | $\pm$ | N |  | O |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 苞 | N | - | - | 9 | un | 0 | $m$ |
| 二 | $\infty$ | $\infty$ | $\cdots$ | $\infty$ | N | $\infty$ | 0 |
| 0 ¢ | $N$ | $\cdots$ | 6 | $\bigcirc$ | $\bigcirc$ | $\pm$ | 0 |
| < | N | N | - | $\cdots$ | -1 |  |  |


TRUE $\Delta t$
301.53
261.53
221.53
181.53
141.53
101.53
61.53
21.53
Table 5-7 EFFECT OF LINEAR ERROR IN $\triangle t$ ON INJECTION ACCURACY


True $\Delta t$ perturbed $-5 \%$ Steering Angle computed from $\operatorname{ROTS}(4,3)$ equations 6 th Substitution Step.
at ignition. Nominal AAl.

## SECTION VI

TERM ELIMINATION AND SIMPLIFICATION

### 6.1 SIMPLIFICATION OF THE ROTS EQUATIONS.

Due to the number and complexity of terms in the ROTS (5,4), and lower order equations, some simplification or elimination of terms is essential. The need becomes particularly evident when the analytical expression for $\Delta t$ is to be substituted into the ROTS equations. The speed of computation of the guidance function must also be considered.

Unfortunately, there is no obvious way to proceed in eliminating terms from the equations. To a large extent, this elimination has been determined empirically. A significant amount of algebraic simplification can be done, and this was exploited as far as possible. The formulas for the $R_{i j k \ell}$ and $Q_{i j k \ell}$ coefficients appear to some sort of power series in $\Delta t$. (See Table 4-1). Some time was spent in an effort to derive a general expression for these coefficients, but it was not successful.

Because each coefficient appears to be a series in $\Delta t$, one would expect the higher order terms in them to be small, and such is the case. In particular, the high order derivatives of the gravity potential function contribute little to the coefficients' values and can be dropped without adverse effects. Potential derivatives of order four and greater were set to zero and virtually no change was observed in the solutions of the ROTS equations. This did not cause any significant simplification, and third-order derivatives were set to zero. This caused approximately twice as much error in the solution of the ROTS equations, and so the third derivatives were retained.

The next approach to simplification was to eliminate entire $R$ and $Q$ coefficients. The approach was as follows: In the equation

$$
\sum_{i j k \ell^{\lambda}}{ }_{1}{ }^{\lambda}{ }_{2}{ }^{\lambda^{\ell}}{ }_{4}=s^{\approx} 0
$$

the terms are summed from the left by increasing powers of the $\lambda$ 's. When a term is encountered which does not significantly alter the previous value of S, it is eliminated. Solutions to the ROTS equations are computed and compared to those obtained before the elimination. If they are close, the term is dropped; otherwise, it is retained. The same is done for the $Q$ coefficients. When all terms to be dropped have been identified, they are simultaneously eliminated and the ROTs equations' solution observed. From the above procedure, it was found that about one fourth of the terms in the ROTS $(4,3)$ equations could generally be eliminated without varying the error of the solution by more than $\pm 1$ percent. Some of these terms cause larger errors when eliminated alone; but when eliminated in combination with others, a smailer error results. Both the Newton-Raphson and Successive Substitution solutions were examined. Three terms were noted which could be eliminated when Newton-Raphson was used, but not when Successive Substitution was used. These terms were retained. The reason for this discrepency is due to the alteration of the equations' structure upon which Successive Substitution is dependent. This topic was discussed in Section 4.6, The coefficients of those terms which were finally eliminated from the ROTS ( 4,3 ) equations are as follows:


Four nominal cases were used to test formulas for term elimination; AA1, AA24, AA1C, and AA24C. These cases included flight times of 170.34 sec to 373.74 sec and altitude changes of 9.8 km to 18.8 km . Tables $6-1$ and $6-2$ show comparisons of the Newtow-Raphson and Successive Substitutions solutions for $\lambda_{1}$ and $X$ before and after eliminating the terms listed above.

It was also noted that terms which could be eliminated by this approach did not appear to depend on the flight time or altitude change.

### 6.2 SIMPLIFICATION OF THE U AND V TIME DERIVATIVES

In Section 3.2 an explanation was given for the algebra used to obtain the ROTS equations. One of the intermediate steps was to develop polynomial-type expressions for the $u$ and $v$ time derivatives such that the four multipliers would appear explicitly and have coefficients involving the state variables and vehicle parameters.

These expressions have the form,

$$
\begin{aligned}
U^{(n)} & =\left\{L_{n} \lambda_{1}^{i} \lambda_{2}^{j} \lambda^{k}{ }_{3} \lambda^{\ell}{ }_{4}\right. \\
L_{n} & =L(x, y, u, v, m, \dot{m}, F)
\end{aligned}
$$

Two approaches to simplification were employed. The first attempt was to eliminate numerically insignificant terms and then differentiate the result; repeating the process until the desired derivatives were obtained. Such a scheme was mechanized, using the FORMAC computer language to obtain the derivatives in a symbolic form. Only a few terms were found which could be eliminated, and this approach was discarded.

The second approach was to evaluate the $u$ and $v$ derivatives term-byterm with nominal data and then sort them by magnitude from largest to smallest. After this, the cross terms in products of the derivatives could possibly be eliminated. This, too, was not feasible because the magnitudes of the terms changed too unpredictably and ordering them by magnitude was not generally possible. No notable success was achieved in the simplification of the $u$ and $v$ time derivatives.

### 6.3 SIMPLIFICATION OF THE $\triangle t$ EXPRESSION

The expression for $\Delta t$ can be considered as a polynomial-type expression in terms of the multipliers. (See Table 7-1.) The same approach to term elimination as used for the $u$ and $v$ derivatives was applied to its simplification.

Because $\Delta t$ must be raised to at least the fourth power, the number of terms involved becomes enormous. The expression for $\Delta t$ shown in Table $7-1$ was evaluated, term-by-term, with nominal data and was squared, cubed, etc. Those cross products which were small compared to the known product were dropped. A large number of terms were eliminated. However, this work still requires further analysis because there are terms which change their relative magnitude quickly
and by large amounts. Some of these terms may have been eliminated from the formulas when they should not have been.

### 6.4 SIMPLIFICATION OF THE SUCCESSIVE SUBSTITUTION SOLUTION

The result of applying the Successive Substitution method to the ROTS equation has not been carried analytically. Some preliminary work has been done, and it appears that a considerable amount of algebraic simplification of the result may be possible. It is planned to use the FORMAC computer language to carry out the necessary algebra and examine the resulting formula. In a practical sense, one might actually prefer not to have an explicit solution of the ROTS equations if the numerical equivalent (as is now being used) is as fast or faster.
nominal aAl
Table 6-1 COMPARISON OF PERCENT ERRORS OF NEWTON-RAPHSON (N-R) AND
SUCCESSIVE SUBSTITUTION SOLUTIONS OF THE ROTS (4,3) EQUATIONS

| CN <br> 6STMTUTION <br> AFTER | X <br> NOMINAL | $\mathrm{X}_{\mathrm{N}-\mathrm{R}}$ <br> BEFORE | $\mathrm{X}_{\mathrm{N}-\mathrm{R}}$ <br> AFTER |
| :---: | :---: | :---: | :---: |
| 0.18 | 76.84 | 76.86 | 76.45 |
| 0.03 | 81.70 | 81.71 | 81.62 |
| -0.01 | 87.05 | 87.06 | 87.19 |
| 0.02 | 92.87 | 92.87 | 93.11 |
| 0.08 | 99.10 | 99.10 | 99.35 |
| 0.10 | 105.66 | 105.66 | 105.85 |
| 0.09 | 112.40 | 112.40 | 112.51 |
| 0.07 | 119.15 | 119.16 | 119.21 |
| 0.23 | 125.76 | 125.77 | 125.84 |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  \& $$

$$ \& N \& $$
\begin{aligned}
& m \\
& \dot{0} \\
& \dot{\sim}
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { n } \\
& \dot{\infty} \\
& \infty
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { o } \\
& \text { f } \\
& \text { f }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { og } \\
& \text { n } \\
& 0 \\
& 0
\end{aligned}
$$ \& $$
\begin{aligned}
& \stackrel{n}{n} \\
& \stackrel{n}{-1}
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { O. } \\
& \underset{\sim}{0}
\end{aligned}
$$ \& $\infty$

$\sim$
$\sim$ <br>

\hline  \& $$
\begin{aligned}
& \stackrel{\Gamma}{8} \\
& \stackrel{0}{0}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { N } \\
\text { oi }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ} \\
& \stackrel{n}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { t } \\
& \text { N. } \\
& \dot{\infty}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { Ǹ } \\
\text { N் }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\stackrel{\rightharpoonup}{+} \\
\stackrel{\rightharpoonup}{0}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& \stackrel{+}{于} \\
& \underset{\sim}{1}
\end{aligned}
$$
\] \& - \& n

$\cdots$
$\cdots$
$\cdots$ <br>

\hline  \& $$
\begin{aligned}
& \text { 앙 } \\
& \text { ஜ் }
\end{aligned}
$$ \& \[

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{n} \\
& \stackrel{n}{n}
\end{aligned}
$$

\] \& \[

\stackrel{\rightharpoonup}{\sigma}

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{n} \\
& \underset{\sim}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { n } \\
& \stackrel{0}{0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& \stackrel{+}{-} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& \stackrel{\text { ñ }}{\sim}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& \dot{n} \\
&
\end{aligned}
$$
\] <br>

\hline  \& $$
\begin{aligned}
& \underset{\sim}{0} \\
& \vdots
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { ơ } \\
& \dot{0} \\
& \hline 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { ư } \\
& \stackrel{0}{0}
\end{aligned}
$$

\] \& \[

\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\stackrel{1}{c}}

\] \& \[

$$
\begin{gathered}
\underset{\sim}{\circ} \\
\dot{\circ}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { No } \\
& \stackrel{\circ}{0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{0}{0} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { of } \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& -0 \\
& - \\
& -
\end{aligned}
$$
\] <br>

\hline  \& $\stackrel{\sim}{\sim}$ \& \[
$$
\begin{aligned}
& \overrightarrow{1} \\
& \dot{i}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& 0 \\
& i
\end{aligned}
$$

\] \& \[

\stackrel{\underset{N}{+}}{\dot{i}}

\] \& \[

$$
\begin{gathered}
\text { N } \\
\stackrel{\circ}{\circ}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { No } \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \overrightarrow{0} \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \stackrel{\infty}{0} \\
& 0
\end{aligned}
$$
\] \& $\stackrel{n}{\circ}$ <br>

\hline  \& - \& $$
\begin{aligned}
& 8 \\
& 0 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { N } \\
& \dot{O}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{0}{0} \\
& \stackrel{i}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& \text { O }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \overrightarrow{0} \\
& \dot{0}
\end{aligned}
$$
\] \& O \& 0

0
0 \& $\stackrel{\infty}{\sim}$ <br>

\hline  \& - \& $$
\begin{aligned}
& + \\
& 0 \\
& \dot{0}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\vec{n} \\
\dot{0}
\end{gathered}
$$

\] \& \[

\stackrel{\underset{\sim}{0}}{\stackrel{1}{2}}

\] \& \[

$$
\begin{gathered}
\pm \\
\underset{0}{+}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \overrightarrow{0} \\
& \dot{0}
\end{aligned}
$$

\] \& \[

\underset{\sim}{n}

\] \& \[

$$
\begin{aligned}
& \vec{N} \\
& \dot{\circ}
\end{aligned}
$$
\] \& - <br>

\hline $$
\underset{\substack{\text { M } \\ \hline \\ \hline}}{ }
$$ \& $\bigcirc$ \& \[

$$
\begin{aligned}
& \text { B. } \\
& \stackrel{\text { N }}{ }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& 8 \\
& \hline 8
\end{aligned}
$$

\] \& 8-8 \& 8 \& \[

$$
\begin{aligned}
& 8 \\
& \hline 0 \\
& \hline 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { O} \\
& \text { ì }
\end{aligned}
$$

\] \& | 8 |
| :--- |
|  |
| ¢ |
| - | \& | 8 |
| :--- |
| 8 |
| 0 |
| -1 | <br>

\hline
\end{tabular}

NOMINAL AA24

## SECTION VII

COMBINATION OF STEERING ANGLE AND TIME-TO-CUTOFF EXPRESSIONS

It was noted in Section 4.1 that the expressions for the steering angle and time-to-cutoff would be analyzed independently of each other, and the results of each analysis would be combined. Based on the studies reported in previous sections, it was decided that a feasible undertaking would be the substitution of a third-order series for $\Delta t$ into the ROTS (4,3) equations. Solution of the resulting equations would then yield an analytical solution which would be valid for certain classes of missions. In addition, term elimination and simplification would be used to reduce the complexity of the equations as far as possible. Such was done and the resulting formulas were coded, and numerical results were obtained for comparison with nominal cases.

The expression used for $\Delta t$ is shown in Table 7-1. This series was substituted into the $R$ and $Q$ coefficients of the ROTS (4,3) equations. The resulting equations in the multipliers have coefficients similar to the $R$ and $Q$ coefficients shown in Table 4-1. Instead of the explicit appearance of $\Delta t a$ series expression in terms of $Z$ appears. Table $7-2$ displays a samplecof these coefficients.

Figures 7-1 through 7-4 are comparisons of nominal and analytical solutions for the steering angle. Figure 7-1 indicates a maximum error of about five degrees early in the flight and was the best result achieved. The other figures show cases where larger $\Delta R$ and $\Delta t$ values are considered and indicate poorer results.






Table 7-1. EXPRESSION FOR $\Delta$ U USED TO DEVELOP ANALYTICAL SOLUTION FOR GUIDANCE FUNCTION, OBTAINED FROM THIRD-ORDER SERIES AND EXPRESSED IN TERMS OF MULTIPLIERS

$$
\begin{aligned}
\Delta t= & \gamma_{0000}+\gamma_{1000} \lambda_{1}+\gamma_{0100} \lambda_{2}+\gamma_{2000} \lambda_{1}^{2}+\gamma_{0200} \lambda_{2}^{2} \\
& +\gamma_{1100} \lambda_{1} \lambda_{2}+\gamma_{0111} \lambda_{2} \lambda_{3} \lambda_{4}+\gamma_{1011} \lambda_{1} \lambda_{3} \lambda_{4}+\gamma_{1101} \lambda_{1} \lambda_{2} \lambda_{4} \\
& +\gamma_{1110} \lambda_{1} \lambda_{2} \lambda_{3}+\gamma_{1002} \lambda_{1} \lambda_{4}^{2}+\gamma_{0120} \lambda_{2} \lambda_{3}^{2}+\gamma_{0210} \lambda_{2}^{2} \lambda_{3} \\
& +\gamma_{2001} \lambda_{1}^{2} \lambda_{4}+\gamma_{1200} \lambda_{1} \lambda_{2}^{2}+\gamma_{2100} \lambda_{1}^{2} \lambda_{2}+\gamma_{3000} \lambda_{1}^{3} \\
& +\gamma_{0300} \lambda_{2}^{3}+\gamma_{2200} \lambda_{1}^{2} \lambda_{2}^{2}+\gamma_{1201} \lambda_{1} \lambda_{2}^{2} \lambda_{4}+\gamma_{2110} \lambda_{1}^{2} \lambda_{2} \lambda_{3} \\
& +\gamma_{1210} \lambda_{1} \lambda_{2}^{2} \lambda_{3}+\gamma_{2101} \lambda_{1}^{2} \lambda_{2} \lambda_{4}+\gamma_{0310} \lambda_{2}^{3} \lambda_{3}+\gamma_{3001} \lambda_{1}^{3} \lambda_{4} \\
& +\gamma_{4000} \lambda_{1}^{4}+\gamma_{0400} \lambda_{2}^{4}+\gamma_{1220} \lambda_{1} \lambda_{2}^{2} \lambda_{3}^{2}+\gamma_{1202} \lambda_{1} \lambda_{2}^{2} \lambda_{4}^{2} \\
& +\gamma_{2120} \lambda_{1}^{2} \lambda_{2} \lambda_{3}^{2}+\gamma_{2102} \lambda_{1}^{2} \lambda_{2} \lambda_{4}^{2}+\gamma_{2210} \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3} \\
& +\gamma_{2201} \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{4}+\gamma_{1211} \lambda_{1} \lambda_{2}^{2} \lambda_{3} \lambda_{4}+\gamma_{2111} \lambda_{1}^{2} \lambda_{2} \lambda_{3} \lambda_{4} \\
& +\gamma_{3101} \lambda_{1}^{3} \lambda_{2} \lambda_{4}+\gamma_{1301} \lambda_{1} \lambda_{2}^{3} \lambda_{4}+\gamma_{3110} \lambda_{1}^{3} \lambda_{2} \lambda_{3}+\gamma_{1310} \lambda_{1} \lambda_{2}^{2} \lambda_{3} \\
& +\gamma_{4001} \lambda_{1}^{4} \lambda_{4}+\gamma_{0410} \lambda_{2}^{4} \lambda_{3}+\gamma_{2202} \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{4}^{2}+\gamma_{2220} \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} \\
& +\gamma_{2211} \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3} \lambda_{4}+\gamma_{1311} \lambda_{1} \lambda_{2}^{3} \lambda_{3} \lambda_{4}+\gamma_{3111} \lambda_{1}^{3} \lambda_{2} \lambda_{3} \lambda_{4} \\
& +\gamma_{3102} \lambda_{1}^{3} \lambda_{2} \lambda_{4}^{2}+\gamma_{1320} \lambda_{1} \lambda_{2}^{3} \lambda_{3}^{2}+\gamma_{4002} \lambda_{1}^{4} \lambda_{4}^{2} \\
& +\gamma_{0420} \lambda_{2}^{4} \lambda_{3}^{2}
\end{aligned}
$$

Table 7-1. (Concluded)

$$
\begin{aligned}
\gamma_{0000}= & z-\frac{z^{2}}{\delta} u L_{5}-\frac{z^{2}}{\delta} v L_{6}-\frac{z^{2}}{\delta} L_{2}^{2}-\frac{z^{2}}{\delta} L_{3}^{2} \\
& +\frac{2 z^{3}}{\delta^{2}} u^{2} L_{5}^{2}+\frac{2 z^{3}}{\delta^{2}} v^{2} L_{6}^{2}+4 \frac{z^{3}}{\delta^{2}} u v L_{5} L_{6} \\
& +4 \frac{z^{3}}{2} u L_{2}^{2} L_{5}+4 \frac{z^{3}}{\delta^{2}} u L_{3}^{2} L_{5}+4 \frac{z^{3}}{\delta^{2}} v L_{2}^{2} L_{6} \\
& +4 \frac{z^{3}}{\delta^{2}} v L_{3}^{2} L_{6}+2 \frac{z^{3}}{\delta^{2}} L_{2}^{4}+4 \frac{z^{3}}{\delta^{2}} L_{2}^{2} L_{3}^{2}+2 \frac{z^{3}}{\delta^{2}} L_{3}^{4} \\
& -\frac{z^{3}}{3 \delta} u L_{12}-\frac{z^{3}}{3 \delta} v L_{13}-\frac{z^{3}}{\delta} L_{2} L_{5}-\frac{z^{3}}{\delta} L_{3} L_{6}
\end{aligned}
$$

ETC.
where

$$
\begin{aligned}
& \delta=2 u \dot{u}+2 \dot{v} \dot{v} \\
& z=\frac{v_{c o}^{2}-u^{2}-v^{2}}{\delta}
\end{aligned}
$$

Table 7-2. SAMPLES OF $Q^{\prime}$ COEFFICIENTS AFTER SUBSTITUTION of SERIES EXPRESSION FOR $\Delta t$

$$
\begin{aligned}
Q_{0000}^{\prime}=(x u & +y v)+\left(x L_{2}+y L_{3}+u^{2}+v^{2}\right)\left(z-\frac{z^{2}}{\delta} u L_{5}\right. \\
& -\frac{z^{2}}{\delta} v L_{6}-\frac{z^{2}}{\delta} L_{2}^{2}-\frac{z^{2}}{\delta} L_{3}^{2}+2 \frac{z^{3}}{\delta^{2} u^{2} L_{5}^{2}} \\
& +2 \frac{z^{3}}{\delta^{2}} v^{2} L_{6}^{2}+4 \frac{z^{3}}{\delta^{2}} u v L_{5} L_{6}+4 \frac{z^{3}}{\delta^{2}} u L_{2}^{2} L_{5}+4 \frac{z^{3}}{\delta^{2}} u L_{3}^{2} L_{5} \\
& +4 \frac{z^{3}}{\delta^{2}} v L_{2}^{2} L_{6}+4 \frac{z^{3}}{\delta^{2}} v L_{3}^{2} L_{6}+2 \frac{z^{3}}{\delta^{2}} L_{2}^{4}+4 \frac{z^{3}}{\delta^{2}} L_{2}^{2} L_{3}^{2} \\
& \left.+2 \frac{z^{3}}{\delta^{2}} L_{3}^{4}-\frac{z^{3}}{3 \delta} u L_{12}-\frac{z^{3}}{3 \delta} v L_{13}-\frac{z^{3}}{\delta} L_{2} L_{5}-\frac{z^{3}}{\delta} L_{3} L_{6}\right) \\
& +\left(\frac{1}{2} \times L_{5}+\frac{1}{2} y L_{6}+\frac{3}{2} v L_{3}+\frac{3}{2} u L_{2}\right)\left(z-\frac{z^{2}}{\delta} u L_{5}\right. \\
& -\frac{z^{2}}{\delta} v L_{6}-\frac{z^{2}}{\delta} L_{2}^{2}-\frac{z^{2}}{\delta} L_{3}^{2}+2 \frac{z^{3}}{\delta^{2}} u^{2} L_{5}^{2}+2 \frac{z^{3}}{\delta^{2}} v^{2} L_{6}^{2} \\
& +4 \frac{z^{3}}{\delta^{2}} u v L_{5} L_{6}+4 \frac{z^{3}}{\delta^{2}} u L_{2}^{2} L_{5}+4 \frac{z^{3}}{\delta^{2}} u L_{3}^{2} L_{5}+4 \frac{z^{3}}{\delta^{2}} v L_{2}^{2} L_{6} \\
& +4 \frac{z^{3}}{\delta^{2}} v L_{3}^{2} L_{6}+2 \frac{z^{3}}{\delta^{2}} L_{2}^{4}+4 \frac{z^{3}}{\delta^{2}} L_{2}^{2} L_{3}^{2}+2 \frac{z^{3}}{\delta^{2}} L_{3}^{4} \\
& \left.-\frac{z^{3}}{3 \delta} u L_{12}-\frac{z^{3}}{3 \delta} v L_{13}-\frac{z^{3}}{\delta} L_{2} L_{5}-\frac{z^{3}}{\delta} L_{3} L_{6}\right)^{2} \\
& +\left(\frac{1}{6} \times L_{12}+\frac{1}{6} y L_{13}+\frac{2}{3} u L_{5}+\frac{2}{3} v L_{6}+\frac{1}{2} L_{1}^{2}+\frac{1}{2} L_{2}^{2}\right. \\
& \left.+\frac{1}{2} L_{3}^{2}\right)\left(z-\frac{z^{2}}{\delta} u L_{5}-\frac{z^{2}}{\delta} v L_{6}-\frac{z^{2}}{\delta} L_{2}^{2}-\frac{z^{2}}{\delta} L_{3}^{2}\right. \\
& +2 \frac{z^{3}}{\delta} u^{2} L_{5}^{2}+2 \frac{z^{3}}{\delta^{2}} v^{2} L_{6}^{2}+4 \frac{z^{3}}{\delta^{2}} u v L_{5} L_{6}+4 \frac{z^{3}}{\delta^{2}} u L_{2}^{2} L_{5} \\
& +4 \frac{z^{3}}{\delta^{2}} u L_{3}^{2} L_{5}+4 \frac{z^{3}}{\delta^{2}} v L_{2}^{2} L_{6}+4 \frac{z^{3}}{\delta^{2}} v L_{3}^{2} L_{6}+2 \frac{z^{3}}{\delta^{2}} L_{2}^{4} \\
& 4 L_{3}^{2}+2 \frac{z^{3}}{\delta^{2}} L_{3}^{4}-\frac{z^{3}}{3 \delta} u L_{12}-\frac{z^{3}}{3 \delta} v L_{13}-\frac{z^{3}}{\delta} L_{2} L_{5} \\
&
\end{aligned}
$$

## SECTION VIII

## DESCRIPTION OF THE TOPSY COMPUTER PROGRAM

The numerical results shown in this report were generated by a computer program named "TOPSY". Because numerical tests of the formulas against nominal trajectories were necessayy, the testing processawas automated as far as possible in order to handle a larger number of cases. TOPSY is written almost entirely in FORTRAN IV for the IBM 7094 operating under IBSYS. The source program of about 3000 cards was put on tape, and the IBSYS's "alter" routines were used to modify the program when desired; e.g., for term elimination. A collection of nominal trajectories for purposes of comparison was obtained from the MSFC V-1 program and written on another tape. With this set-up a large variety of information could be conveniently obtained. Numerous options are available for timing certain computations, plotting results, etc. Approximately 28 hours of computer time were made available for this study through the MSFC Computation Laboratory under the Resource Sharing Program. Depending upon the options called for, average compilation and execution time for a single nominal time history is three to five minutes. Compilation time accounts for about 80 percent of the run time.

A skeleton flow chart of TOPSY is shown in Figure 8-1. A brief description of each routine is given below.

TOP1: MAIN SECTION

TOP1 serves as a driver for the rest of the program. Its main functions are to search the data tape for the correct nominal, and to call the subprograms in their proper sequence. Subprograms are called and their sequences are determined by the particular assignment and can be manipulated by alterations in this section of TOPSY.

## TOP2: DATAIN

This subroutine reads vehicle constants, cut-off parameters, perturbations, and state variables at each time point.

## TOP3: GRAPOT

This subroutine computes the gravitational potential derivatives through the sixth order.

TOP4: LCOEF

Using nominal data read by DATAIN and values from GRAPOT, this subroutine computes "L coefficients" which are the coefficients of the lambdas in the $u$ and $v$ derivatives.

TOP5: UVDER

Lambda values from the MAIN SECTION and L's" from LCOEF are used to compute $u$ and $v$ derivatives through the sixth order. These values are used in later subroutines to compute coefficients and remainder terms of the radius, velocity, and orthogonality Taylor series expansions.

TOP6: COEFDT

This routine computes coefficients of the Taylor series expansions for the Radius, Orthogonality, and Velocity series. Remainder terms are also calculated. Any order of these series up through sixth can be reverted to any order up through sixth. Actual roots of these series can also be calculated by the Bairstowe method.

TOP7: RPQ

This routine computes values for the $R$ and $Q$ coefficients far series of orders through the fifth for the radius equation and the fourth for the orthogonality equation. The values are used in the following two subroutines.

## NORTHROP <br> TOP8: REVSV

This subroutine solves the ROTS system of equations for lambdas using the successive substitution method. The matrix of the linear coefficients is solved by a Gauss-Jorday method, thus obtaining approximations for successive substitutions.

## TOP9: ROTS

The same system of equations dealt with in REVSV is solved by the NewtonRaphson method using nominal lambdas for initial estimates and a Gaussian solution of the linear equations. The equations are solved simultaneously for the lambdas and the results are converted to the steering angle values. The percent errors are printed for easy comparison with lambda and chi errors from REVSV.

TOP10: TRAJS

Thiscsubroutine tntegrites the equationscofomotion usingua fourthoorder Runge-Kutta integration scheme. Nominal or computed values are read at the initial time point and are used to obtain lambda values from REVSV. The calculated lambdas and initial nominal values are used in this subroutine to find new values for the state variables. These new values are then transferred to TOPI where required calculations are performed before entering routines to compute new lambdas for the integration scheme in TRAJS.

TOP11: RUNKUT

This is a fourth-order Runge-Kutta integration scheme used in TRAJS to integrate the equations of motion.

TOP12: SIMEQ

This subroutine used in ROTS employs a Gaussian method for the solution of simultaneous linear equations.
This subroutine used in REVSV is a Gauss-Jorday solution of simultaneous linear equations similar to SIMEQ.


Figure 8-1. TOPSY FLOW GHART

## SECTION IX

discussion of the formac computer language for symbolic computations

FORMAC, an experimental programming language developed by IBM, can manipulate mathematical expressions, and perform routine algebraic calculations and symbolic differentiation. It is an "extension" of FORTRAN IV, thus providing the capability of performing both numerical computations and symbol manipulations in the same program. Full FORTRAN IV capability and implementation under the IBM 7094 IBSYS Monitor system makes the transition to FORMAC extremely easy for an experienced FORTRAN programmer.

In this study, FORMAC was used to duplicate some of the symbolic differentiation and algebraic expansions that had previously been done by hand. The results were quite encouraging, especially in the area of differentiation. A major goal was to become familiar with the system and to fully realize the capabilities and limitations of the system.

The major problem encountered was maintaining an adequate amount of storage for free list, that is, the storage area used to develop and store expressions. Since the size of an expression and the number of computer words required to store it cannot be predicted, this situation caused the termination of numerous jobs because of non-availability of free list area.

The problem of insufficient core storage has two major aspects. First, the amount of core storage required for the FORTRAN library and FORMAC subroutines often leaves insufficient free list for a given program. Second, since the required size of the free list area cannot be accurately predicted,
it is difficult to make efficient use of this area. Often trial and error is the only available procedure to debug a program.

Overlay can be used if it is anticipated that all available free list will be used. Object time routines can be swapped in and out of core storage when necessary. This allows the space they would occupy to be used as extra free list. However, an adequate free list area could not always be obtained by this technique because of necessary communication between some routines which required most of them to be in core storage simultaneously.

Elimination of expressions that are no longer needed releases the area that they occupied to become free list. This can be accomplished by the "erase" command. Also, expressions that may be required later but which are not needed at a given time: may be erased and regenerated when needed again. This is, in effect, a trade of computing time for storage area. Also, intermediate results can be stored on tape and read from tape as required.

Some problems can be segmented. That is, one program may be broken into several smaller programs with the output of the first becoming input to the second, etc. Again, tape or cards may be used as a communication medium at the programmer's discretion.

Readability of output, especially where long complicated expressions were involved, was another area of concern, Output is in the regular FORTRAN expression format and hand translation is nearly always necessary before results become: meaningful.
manthriop sence lanoratomes
TM-292-6-038

FORMAC promises to be a very powerful mathematical tool, both in capability and ease of program implementation. However, the size of the maximum expression which can be handled is dependent on the number of computer words which make up the free list. The size of the free list varies according to the size of the object program, the number of FORTRAN library routines used, and the number of FORMAC subroutines required. Overlay and other programming techniques can be used to increase the size of the free list. However, this still proves to be insufficient for any problem of considerable size.

## SECTION X

CONCLUSIONS AND RECOMMENDATIONS

This formal, analytical approach to certain types of two-point boundary condition problems has been shown to be feasible. For problems of this type, which occur in optimal guidance, the approach has been shown to be effective. Results have been obtained which are in close agreement with numerical solutions obtained from the usual trial- and-error mehtods. Correlation between nominal trajectories and those predicted by the analytical solution has been demonstrated for a variety of circular orbit missions, and this indicates that favorable, special cases have not been inadvertently used.

One of the outstanding problems encountered was the series for time-tocutoff. As the data in this report indicate, a rather high order series will be required for missions where "large" altitude changes and flight times are necessary. Problems will occur primarily in developing the powers of $\Delta t$. However, there will be a correspondingly greater number of terms that can be eliminated when these formulas are developed. Those terms which can be eliminated will be the most complicated expressions. Most of the labor expended in this area will be in eliminating nonessential terms and in simplification.

The "single iteration" method for obtaining $\Delta t$, using a formula for the estimate, should be investigated further. It may be worth consideration for certain classes of missions, and could conceivably reduce the complexity of the $\Delta t$ expressions.

Even with the complicated expressions now being used to calculate the guidance functions, it requires only about one second of computer time to determine the optimal steering angle. This is for a FORTRAN-compiled program on the IBM 7094, computing the steering angle by the Successive Substitution method. A number of auxiliary computations are also performed in this program which are included in this time, but which are not essential to the steering angle evaluation.

Perhaps the most bothersome problem has been the elimination of terms and algebraic simplifications desired in order to reduce the guidance formulas to expressions that are manageable and feasible for implementation. This area of study still requires work. At best, it is a tedious and time-consuming activity. For the problem studied, much of the work was automated. Any future studies of this nature should be carefully planned, giving consideration to automation from the start. It would be very desirable to have expressions for "the general term" in many of the formulas used. This would not only be for the sake of elegance, but to have some sort of rational guide to the analytical developments and simplifications.

After consideration of the results achieved to date on the circular orbit problem, it is recommended that no further work be done on it unless an implementation study is anticipated. The result of using a higher order series for time-to-cutoff should be evident from the results obtained. Orders of series and numbers of terms required for given circular orbit missions can be estimated closely from the data presented in this report.


1. Thompson, M. L., "Analytical and Mathematical Studies for Direct Solutions for Path-Adaptive Guidance Functions," NSL Research \& Analysis Section Tech Memo No. 39, November 1964.
2. Hu, Steve S. and Thompson, Michael L., "A Direct and Analytical Solution for Space Flight Guidance Functions," AIAA Paper 66-94, Presented to 3rd Aerospace Science Meeting of AIAA, New York, January 1966.
3. Silber, R., "Informel Lecture Notes on the Calculus of Variations, Part I", NSL Research \& Analysis Section Tech Memo No. 114, 20 August 1965.
4. Hoelker, R. F. and Miner, W. E., "Introduction into the Concept of Adaptive Guidance Mode," Aeroballistics Internal Note 21-60, Deçember 1960.
5. Miner, W. E., Schmieder, D. H., and Braud, N. J., "Path-Adaptive Mode for Guiding Space Flight Vehicles," Progress in Astronautics and Rocketry, Vol. 8, Academic Press, 1962.
6. Progress Report No. 1 on Studies in the Field of Space Flight and Guidance Theory, MTP-AERO-61-91, December 1961.
7. Progress Report No. 3 on Studies in the Fields of Space Flight and Guidance Theory, MTP-AERO-63-12, February 1963.
8. Thompson, M. L., "Some Techniques and Applications of Series Reversion," NSL Research \& Analysis Section Tech Memo No. 33, November 1964.
9. Thompson, M. L. and Gray, W. J., "A Method for the Solution of Systems of Norlinear Algebraic Equations Having Non-Numerical Coefficients," NSL Research \& Analysis Section Tech Memo No. 141, November 1965.
10. Hu , Dr. S. S., "Saturn V Guidance Equations for Boost to Transit," NSL Research \& Analysis Section Tech Memo No. 2, 17 July 1963.
11. Hu, Dr. S. S., "An Analytical Approach to Polynomial Guidance Functions for Optimal Space Flight," NSL Research \& Analysis Section Tech Memo No. 3, 9 August 1963.

[^0]:    SUCCESS IV SUBSTITUTIONS SECOND TH ARD FOURTH .40348
    .40751
    .41546
    .42478
    .43329
    .44060
    .44929
    .46519

    | $\circ$ |
    | :--- |
    | N |
    | N |
    |  | .43597

    .41867
    .40166
    0
    0
    0
    0
    0 .38716
    .39842 .42403
    

     FIRST ヶてくで・• .44961 .47175 .49304 .51283 .53047 .54535 .55699 .55202 TRUE .45610 .47794 \begin{tabular}{l}
    $N$ <br>
    $N$ <br>
    $\infty$ <br>
    0 <br>
    $\mathbf{O}$ <br>
    \hline

 

    $n$ <br>
    $\underset{i n}{n}$ <br>
    \hdashline
    \end{tabular} $\stackrel{0}{n}$

    $\underset{n}{n}$
    $n$ 0
    7
    -7
    $!$
    
     $\infty$
    0
    N
    N
    $?$ TIME
    －응 q 8 \＆ 8 욱 욱 160

[^1]:    SUCCESS IVE SUBSTITUTIONS FIRST SECOND THIRD FOURTH
    
    .59328
    $n$
    $\vdots$
    $\vdots$
    $\vdots$
    $\vdots$ .56048
    .53910
    .50566 .46537 a
    $\underset{\sim}{\sim}$
    $\underset{\sim}{7}$

    $\vdots$ | o |
    | :--- |
    | - |
    | - |
    | $\stackrel{y}{0}$ | | $\infty$ |
    | :--- |
    | $\infty$ |
    | $\infty$ |
    | $\sim$ |
    | + | .47640 .53953 .59348 $o$

    $\infty$
    $\infty$
    0
    0 .47287
    .51732 $\circ$
    N
    0
    O? .60433 .64016 .66458
    .67263

    .66072 .62766 | a | 0 |
    | :--- | :--- |
    |  | N |
    |  | 0 |
    |  | $i$ | .49888

    .53467
    .57125 .60712 .64016 .66787 $n$
    $\infty$
    $\infty$
    $\infty$
    0
    0 .69854 $\ddagger$
    す
    0
    0 .68922 $\underset{\sim}{3}$
    $\underset{\sim}{7}$
    $\cdots$ TRUE .51448 .55489 $n$
    n
    N

    n | $a$ |
    | :--- |
    |  |
    | 7 |
    | 6 | .68742 .72456 .74930 .75655 .74453 .71569 .67542

    TIME 0 옹 우 0 $\infty$ 8 $\underset{\sim}{\mathrm{N}}$ O
    $\underset{\sim}{7}$ $\underset{-1}{0}$ $\underset{\sim}{\mathbf{O}}$ 옹

[^2]:    $\qquad$ 26 $99^{\circ}$ $-4$

[^3]:    *Actual "nth" is the smallest real root of the nth order velocity serles.

