SPACE RESEARCH COORDINATION CENTER

A STOCHASTIC MODEL STUDY OF THE MOVEMENT OF SOLID PARTICLES

BY
CHAO-LIN CHIU
K. C. CHEN

CIVIL ENGINEERING DEPARTMENT
GPO PRICE $\$$ \qquad
CFSTI PRICE(S) \$ \qquad

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PENNSYLVANIA
31 AUGUST 1966

The Space Research Coordination Center, established in May, 1963, has the following functions: (1) it administers predoctoral and postdoctoral fellowships in space-related science and engineering programs; (2) it makes available, on application and after review, allocations to assist new faculty members in the Division of the Natural Sciences or the School of Engineering to initiate research programs or to permit established faculty members to do preliminary work on research ideas of a novel character; (3) in the Division of the Natural Sciences it makes an annual allocation of funds to the interdisciplinary Laboratory for Atmospheric and Space Sciences; (4) in the School of Engineering it makes a similar allocation of funds to the Department of Metallurgical and Materials Engineering; and(5) in concert with the University's Knowledge Availability Systems Center, it seeks to assist in the orderly transfer of new space-generated knowledge in industrial application. The Center also issues periodic reports of space-oriented research and a comprehensive anmual report.

The Center is supported by an Institutional Grant (NsG-416) from the National Aeronautics and Space Administration, strongly supplemented by grants from The A. W. Mellon Educational and Charitable Trust, the Maurice Falk Medical Fund, the Richard King Mellon Foundation and the Sarah Mellon Scaife Foundation. Much of the work described in SRCC reports is financed by other grants, made to individual faculty members.

A STOCHASTIC MODEL STIDY OF

THE MOVEMENT OF SOLID PARTICLES

by
Chao-Lin Chiu
K. C. Chen

Civil Engineering Department University of Pittsburgh

ACKNOWLEDGMENT

The writers are thankful to the Computing Center of the University of Pittsburgh for the extensive use of the computer facilities.

This research received partial support from NASA Grant (799-2.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. RANDOM WALK AND MONTE OARLO 5
A. Random Walk. 5
B. Random Walk Model of the Transport of Suspended Solid Particles 9
O. Monte Oarlo Method 12
III. STOCHASTIC MODEL OF THE TRANSPORT OF
SOLID PARTICLES 14
A. Random Walk of a Particle 14
B. Mean Convective Flnw 16
C. Resultant Stochastin Model 19
D. Group Motion of Solid Particles 22
IV. Digital Computer Simulation 23
A. Oomputer Program 23
B. Generation of Random Numbers 24
O. Flow Field 25
D. Result of Computer Simulation 26

1. The Path of a Single Partiole 26
2. Isopleth Patterns 31
V. OONCLUSION 44
VI. IIST OF REFERENOES 46
APPERDIX I. COMPUTER PLOW GHARTS 49
Figures Page
1.1 Secondary Currents in a Corner of a Straight Rectangular Channel 4
2.1 Schematic Diagram of Random Waik Model 9
3.1 Diagram of Random Walk of a Particle (Spherical Coordinate System) 14
3.2 Coordinate Systems 16
4.1 Schematic Diagram of $\xi-\eta$ Grid Points 24
4.2 The Path of a Single Particle. 27
4.3 The Path of a Single Particle in $X_{1}-X_{2}$ Plane 28
4.4 The Path of a Single Particle in $X_{1}-X_{3}$ Plane 29
4.5 The Path of a Single Particle in $X_{2}-x_{3}$ Plane 30
4.6 Isopleth Pattern of the Cloud at $t=20$ \& $54<X_{1}<74$. 32
4.7 Isopleth Pattern of the Clrud at $t=50$ \& $158<x_{1}<178$ 33
4.8 Isopleth Pattern of the Cloud at $t=80$ \& $268<X_{1}<288$ 34
4.9 Isopleth Pattern of the Cloud at $t-100$ \& $329<X_{1}<349$ 35
4.10 Isopleth Pattern of the Cloud at $t=150$ \& $513<X_{1}<533$ 36
L. 11 Isopleth Pattern of the Cloud at $t=200$ \&
, Figures Page
4.i2 Isopleth Pattern of the Cloud at $t=250$ \&860KX< 880.. 38
4.13 Isopleth Pattern of the Cloud at $t=300$ \&1023<X $<$ 1043.. 39
L. IL The Mass Center of the Cloud 40
4.15 Statistical Parameters Discribing the Spread
of the Cloud 414. 16 The Maximin Spreads of the Cloud in the Longitudinal
Direction.-.. 2

1. IMTRODUGTIOK

"Stochastic Procoas" is a time dependent random phenomenon desoribed by a probability distribution law. 1 In general, physical phenomena can be olassified into deterministic, random and hybrid processes. However, there are few physical phenomena which are pure deterministic or pure random processes. Instead, nost of physical phenomena are hybrid procosine日 which are the combigetion of deterministio and random processes.

Random walk is a kind of Markor chain which in turn is a particular type of stochastic process. The randor walk model was firat used by Karl Pearson ${ }^{7}$ in 1905 in a study of random motion of a particle in apace. Since then, it has been used by a great number of investigators. The random walk process, as described by Pearson, can very closely reproduce the diffusion process. In his book, Feller ${ }^{8}$ states; ${ }^{\circ}$ "If the individual steps of a random walk are made extremely small and occure in rapid succession, then at the limit the process will appear as a continuous motion. The point of interest is that in passing to this limit the formulae (deacribing the motion) remain meaningful and agree with physically significant formulae of diffusion theory..... Thie explains partly why the randon waik model, despite ite orudenpes, desoribes alffucion process reasonably well ".

Random walk provides a solution to a continum equation. Smoluchowski ${ }^{2}$ has applied it to the solution of the one-dimensional diffusion equation. Another example 1s Knighting' ${ }^{3}$ soiution of the three-dimensional turbulent diffusion from an instantaneous point source near the boundary in a uniform velooity field.

The randon waik model can be employed in solving differential equations of the continum case by a method of random sampling. Sometimes, the method of random sampling is more effective than the analytical or numerical method. The method of random sampling, which is called "Monte Cario" method, was first suggested by Permi ${ }^{4}$ for atudying the Schrodinger equation. \& typical example of the application of this method to fluid mechanics is the solution of the Iaplace equation.

Random walk can also be used to simulate physical processes. In a direct simulation the features of a process are reproduced by imitating the behaviors of appropriate discrete entities, suoh as particles. This approach has proved effective in the studies of the diffusion and deoay of nuclear particies6 for simulating a epeoifio problea, the only requirement is to build a disorete model that gives
a proper representation of the behaviors of the particles. The essential features which characterize the specific aspecte of the process being investicated should be reproduced.

Bugliarello and Jackson ${ }^{1}$ applied the random walk method to the molecular diffusion in convective flow fields. They showed that the use of a random walk technique fields. solution to problems of molecular diffusion in a convective flow field. They stated, "It has been shown for the laminer flow that the random walk not only has the advantage of bje passing the analytical solution of the problem, but also allows for considerable insight into the physical process. Both of these properties render the method a tool of potentially great usefulness in the treatment of turbulent diffusion problems". Results of a random walk study of turbulent diffusion agreed very well with those given by Taylor's statistical theory of turbulent diffusion ${ }^{\text { }}$. Random walk thus emerges as a good approach to the solution of the diffusion problem.

In this study, the transport of suspended solid particles under the influence of secondary flow will be studied in a three dimensional convective flow field in a corner of a straight rectangular channel. The secondary flow is a circulatory motion of the fluid around an axis. paraliel to the longitudinal axis of a channel, while the primary flow 1e tranalation of the fluld parallel to the
longitudinal axis of the channel. The combination of primary and secondary flows results in a spiral motion. There are two types of secondary flow: (1) secondary currents in straight, nonoircular channel, and (2) seoondary currents at bende of a channel. In the present etudy only the first type of secondary fiow, as shown in Pig. 1-1, 18 coneldered.

Fig. l-1 Secondary Currents in a Oorner of a Straight Rectangular Ohannel

There are two principal objectives in this study. The first objective 18 to build a stochastic model to represent the transport of suspended solid particles in corners of straight channels under the influence of secondary flow. The second objective is to solve the developed diffusion equation (equation (2-14)) of suspended solid particles by Monte Carlo method. The solution will give

II RANDOY WAIK AND MONTE OARIO

As stated previously, random walk can be used as a model of a physical phenomenon. Once the model is built the Monte Carlo method can then be employed to simulate the physical system and find solutions to a problem through the random sampling technique. Thus, a combination of random walk and Monte Oarlo can provide solutione to complex problems in fluid mechanics which can not be solved by analytical methods.
A. Random Walk

Mathematioally, a stochastic process can be written as a collection of time-dependent random rariables as $\{x(t) ; t \in T\}$ that is, a sequence of time dependent random varlables. 4 discrete parameter stochastic process $\{x(t), t=0,1,2, \cdots\}$ or a continuous parameter atochastic process $\{x(t), t \geqslant 0\}$ is sald to be a Markor process if, for $t_{1}<t_{2}<\cdots<t_{n}$

$$
\begin{align*}
& P\left[x\left(t_{n}\right) \leqslant x_{n} \mid x\left(t_{1}\right)=x_{1}, \cdots, x\left(t_{n-1}\right)=x_{n-1}\right] \\
& =P\left[x\left(t_{n}\right) \leqslant x_{n} \mid x\left(t_{n-1}\right)=x_{n-1}\right] \tag{2-1}
\end{align*}
$$

where P denotes a conditional probability function.
A real number X is said to be a possible value, or a state, of a stochastic process if there exista a time t in T suoh that the probability, $P[x-h<x(t)<x+h]$ is positive for an increment of $x, n>0$. The eet of poseible ralues of a stochaetic
process $1 s$ called state space. A Markov process whose state space is discrete is called a Markov Chain.

A Markov process is described by a transition probability function, often denoted by $P\left(x, t_{0} ; E, t\right)$ or $P\left(E, t \mid x, t_{0}\right)$, which represents the conditional probability that the state of a system will at time t belong to the
 state X. In order to specify the probability law of a^{\prime} discrete parameter Markov chain $\left\{X_{n}\right\}$, "it suffices to state for all times $n \geqslant m \geqslant 0$, and states g and k, the probability mass function

$$
\begin{equation*}
p_{j}(n)=P\left[x_{n}=j\right] \tag{2-3}
\end{equation*}
$$

and the conditional probability mass function

$$
\begin{equation*}
-P_{j k}(m, n)=P\left[x_{n}=k \mid x_{m}=j\right] \tag{2-4}
\end{equation*}
$$

The function $P_{j k}(m, n)$ is called the transition probability function of the Markov chain. The probability law of a Markov chain is determined by the functions in equations $(2-3) d(2-4)$, since for all integers q, and any q times $n_{1}<n_{2}<\cdots<n_{g}$, and states $k_{1}, k_{2}, \cdots, k_{q}$

$$
\begin{aligned}
P\left[x_{n_{1}}=k_{1}, \cdots, x_{n g}=k_{f}\right]= & p_{k_{1}}\left(n_{1}\right) p_{k_{1} k_{2}}\left(n_{1}, n_{2}\right) p_{k_{2} k_{3}}\left(n_{2}, n_{3}\right) \\
& \cdots p_{k_{j}-1} k_{g}\left(n_{j-1}, n_{g}\right)
\end{aligned}
$$

A Markov chain is said to be homogeneous. in time or to have stationary transition probability if $\mathcal{P}_{j k}(m, n)$ depends only on the difference $n-m$. Then,

$$
P_{j k}(n)=P\left[x_{n+t}=k \mid x_{t}=j\right]
$$

for any integer $t \geqslant 0$.....(2-6) is the n-step transition probability: function of the homogeneous Markov chain $\left\{X_{n}\right\}$. In words, $P_{j k}$ ($n j$ is the conditional probability that a homogeneous Markov: chain now in state g will move, after n steps, to state k . The onesstep transition probability $P_{j k}(1)$ are usually written simply Pk, or

$$
\begin{equation*}
p_{j k}=P\left[x_{t+1}=k \mid x_{t}=j\right] \tag{2-7}
\end{equation*}
$$

The transition probabilities of a Markov chain $\left\{X_{n}\right\}$ with state space $\{0,1,2, \ldots$.$\} are best exhibited:$ in the form of a matrix:

$$
P(m, n)=\left[\begin{array}{ccccc}
p_{\infty}(m, n) & p_{01}(m, n) & \ldots & p_{0 k}(m, n) & \ldots \\
p_{10}(m, n) & p_{11}(m, n) & \ldots & p_{1 k}(m i n) & \ldots \\
\vdots & \vdots & & & \vdots \\
p_{j 0}(m, n) & p_{j 1}(m, n) & \cdots & p_{j k}(m, n) & \cdots \\
\vdots & \vdots & & &
\end{array}\right]
$$

In which tine elements of a transition probability matrix $P(m, n)$ satisfy the conditions

$$
\begin{array}{ll}
p_{j k}(m, n) \geqslant 0 & \text { for all } j, k \\
\sum_{\vdots} p_{j k}(m, n)=1 & \text { for all } \dot{\gamma} \tag{2,-9}
\end{array}
$$

$$
(2-8)
$$

A. fundamental relation satisfied by the transition probability function of a Markov chain $\left\{X_{n}\right\}$ is the so-called Chapman-Kolmogorov equation; for any time $n>u>m \geqslant 0$ and states g and k .

$$
\begin{equation*}
p_{j k}(m, n)=\sum_{\text {state } i} p_{j i}(m, \mu) p_{i k}(\mu, n) \tag{2-10}
\end{equation*}
$$

A random walk is a Markov chain $\left\{x_{n} ; n=0,1, \ldots,\right\}$ which consists of integer state spaces, with the property that if the system is in a given state. k then in a singie transition the system either remains at k or moves to ione of the states immediately adjacent to k. For example; as in the one-dimensional oase it can be represented by a transition probability matrix P as:

$$
P=\left[\begin{array}{cccccc}
r_{0} & p_{0} & 0 & 0 & 0 & \ldots \tag{2-11}\\
q_{1} & r_{1} & p_{1} & 0 & 0 & \ldots \\
0 & q_{2} & r_{2} & p_{2} & 0 & \ldots \\
0 & 0 & q_{3} & r_{3} & p_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

where,

$$
\begin{array}{ll}
r_{k}+p_{k}=1 & \text { for } k=0 \\
q_{k}+r_{k}+p_{k}=1 & \text { for } k=1,2, \ldots
\end{array}
$$

and
$P(q)$ represents the probability that the particle moves in positive (negative) direction.
$x_{\text {. }}$ represents the probability that the particleiremain, at the same place.
B. Random Walk Model of the Transport of Suspended Solid Particles

Let $P\left(x_{1}, x_{2}, x_{3}, t\right)$ be the probability
that a particle, which at t_{0} starts from the origin $(0,0,0)$, arrives at the position (x_{1}, x_{2}, x_{3}) at t. P will be called the probability function of displacement. Let $P_{j}\left(g_{j}\right)$ denote the probability that a particle moves in the positive (ne-: gative) X_{j}-direction. Suppose in each step a particle travels a distance ΔX_{j} in the X_{j}-direction and the time interval between any two consecutive steps is τ.

Fig 2-1. Sohematic Diagram of Random Walk Model

Then, by total probability theorem;

$$
\begin{equation*}
P\left(x_{1}, x_{2}, x_{3}, t\right)=\Sigma\left[p_{j} P\left(x_{j}-\Delta x_{j}, t-\tau\right)+q_{j} P\left(x_{j}+\Delta x_{j}, t-\tau\right)\right]^{1} \tag{2-12}
\end{equation*}
$$

where the index j refers to the coordinates whioh varies. : For example, when $g=2, P\left(x_{j}-\Delta x_{j}, t-\tau\right)=P\left(x_{1}, x_{2}-\Delta x_{2}, x_{3}, t-\tau\right)$. After rearranging, equation (2-12) oan be rewritten in the form oí difference equation:

$$
\begin{align*}
& \frac{P\left(x_{1}, x_{2}, x_{3}, t\right)-P\left(x_{1}, x_{2}, x_{3}, t-\tau\right)}{\tau}=\sum_{j=1}^{3} \frac{\left(p_{i}+q_{j}\right)\left(\Delta x_{j}\right)^{2}}{2 \tau}\left[P\left(x_{j}+\Delta x_{j}, t-\tau\right)\right. \\
& \left.+P\left(x_{j}-\Delta x_{j}, t-\tau\right)-2 P\left(x_{1}, x_{2}, x_{3}, t-\tau\right)\right] /\left(\Delta x_{j}\right)^{2}+\sum_{j=1}^{3} \frac{\left(q_{j}-p_{j}\right)\left(\Delta x_{j}\right)}{\tau} \\
& {\left[P\left(x_{j}+\Delta x_{j}, t-\tau\right)-P\left(x_{j}-\Delta x_{j}, t-\tau\right)\right] /\left(2 \Delta x_{j}\right) \quad(2-13)} \tag{2-13}
\end{align*}
$$

In the limiting case, equation (2-13) becomes; differential equation of particles.

$$
\frac{\partial P}{\partial t}=\sum_{j=1}^{3}\left[\epsilon_{j} \frac{\partial^{2} P}{\partial x_{j}^{2}}+\left(\frac{\partial \epsilon_{j}}{\partial x_{j}}-v_{j}\right) \frac{\partial P}{\partial x_{j}}\right] \quad(2-14)
$$

where

$$
\epsilon_{j}=\lim _{\tau \rightarrow 0} \frac{\left(p_{j}+q_{j}\right)\left(\Delta x_{j}\right)^{2}}{2 \tau}=\frac{\sigma_{j}^{2}}{2 \tau}=\text { the } x_{j} \text {-component of }
$$

the diffusion coefficient.
.....(2-15) in which σ_{j}^{2} represents the mean square displacement of particles in the X_{y} direction.

$$
\begin{equation*}
\frac{\partial \epsilon_{j}}{\partial x_{j}}-v_{j}=\operatorname{Lim}_{\tau \rightarrow 0} \frac{\left(\delta_{j}-p_{j}\right)}{\tau}=\frac{\overline{\Delta x_{j}}}{\tau} \tag{2-16}
\end{equation*}
$$

which is the mean displacement of particles in the $x_{j}-$ direction and is called the "drift coefficient".
Equation (2-16) is shown by Then ${ }^{15}$.

In one dimensional case, equation (2-14) becomes a diffusion equation

$$
\begin{equation*}
\frac{\partial P}{\partial t}=\epsilon_{1} \frac{\partial^{2} P}{\partial x_{1}^{2}}+\left(\frac{\partial \epsilon_{1}}{\partial x_{1}}-V_{x_{1}}\right) \frac{\partial P}{\partial x_{1}} \tag{2-17}
\end{equation*}
$$

in the x_{1}-direction. Further more, if pen, equation (2-14) becomes the classical diffusion equation

$$
\begin{equation*}
\frac{\partial P}{\partial t}=\epsilon_{1} \frac{\partial^{2} P}{\partial x_{1}} \tag{2-18}
\end{equation*}
$$

where $\boldsymbol{E}_{;}$is called diffusion ooefficient in an one dimensional flow. Equation (2-18) can be solved analytioally to give

$$
\begin{equation*}
P\left(x_{1}, t\right)=\frac{1}{\Gamma} e^{-x_{1}^{2} / 4 \epsilon, t} \tag{z-i9}
\end{equation*}
$$

In a steady uniform flow in the x-direction, P is independent of x and t. Then ${ }_{n}$ equation (2-14) becomes

$$
\begin{aligned}
&-\epsilon_{2} \frac{\partial^{2} p}{\partial x_{2}^{2}}-\epsilon_{3} \frac{\partial^{2} p}{\partial x_{3}^{2}}-\frac{\partial \epsilon_{2}}{\partial x_{2}} \frac{\partial P}{\partial x_{2}}+V_{2} \frac{\partial P}{\partial x_{2}}-\frac{\partial \epsilon_{3}}{\partial x_{3}} \frac{\partial P}{\partial x_{3}}+\left(V_{5}+V_{P_{1}}\right) \frac{\partial P}{\partial x_{3}} \\
&=0 \quad(2-20)
\end{aligned}
$$

which is analogous to the equation of particle concentration

$$
\begin{gather*}
-\epsilon_{2} \frac{\partial^{2} c}{\partial x_{2}^{2}}-\epsilon_{3} \frac{\partial^{2} c}{\partial x_{3}^{2}}-\frac{\partial \epsilon_{2}}{\partial x_{2}} \frac{\partial c}{\partial x_{2}}-\frac{\partial \epsilon_{3}}{\partial x_{3}} \cdot \frac{\partial c}{\partial x_{3}}+v_{2} \frac{\partial c}{\partial x_{2}} \\
\quad+\left(v_{3}+v_{p}\right) \frac{\partial c}{\partial x_{3}}=0 \tag{2-21}
\end{gather*}
$$

where

$$
\begin{aligned}
\epsilon_{2}, \epsilon_{3}= & \text { the } x_{2} \& x_{3} \text {-components of the diffusion } \\
& \text { ooeffioient for the transport of solid } \\
& \text { particles; } \\
C= & \text { average concentration of solid particles } \\
& \text { at a point: } \\
V_{p}= & \text { setting velocity of the representative } \\
& \text { particle under the influence of gravity; } \\
V_{2}, y, V_{3}= & \text { the } x_{2} \text { and } x_{3} \text {-components of the average se- } \\
& \text { condary velocity at a point, which can be } \\
& \text { either positive or negative in the fluid } \\
& \text { carrying solid partioles. }
\end{aligned}
$$

Above 1llustrations show that the treneport of use pended solid partiolea can be represented by a random waik model. since the equation (2-14) can not be solved analytically, the Monte Oarlo method seene to be the only posalble meane for use.

O. Monte Cario Method

The Monte Oarlo methea pling teachnique in the treatment of either deterministic or probabilietio problems. The random eampling inoludes (1) modeling the probability process to be sampled, (2) dee oiding how to generate random variables from the given probability distribution in some efficient ways and (3) applying. variance reducing techniques, that is, methode of inereaning the acouracy of the estimates obtained from the mamping prooese.

When differential equations can not be solved analytically, the 1mportance and value of a Monte Oarlo method become apparaent. Although equation (2-20) can be solved by a numerical method, unoh as the relacation method, it requiree boundery reluea whioh muet he shteined ince yht
experimenti. Turthermore, the relaxation mothod'is not oultable for rachine oomputation.

C

III STOCHASTIC MODEL OF THE TRANSPORT OF SOLID PARTICLES.

In this study the transport or motion of a solid particle in a fluid is considered to arise as a result of the superposition of the following two independent phenomena: (I) random walk of the particle itself at the presence of the fluid turbulence, and (2) action of the gravity force and the mean convective flow on the particle which is considered to be a deterministic process. In brief the stockastic model of this study consists of random and determinis tia components.
A. Random Walk of a Particle

Random walk can be used to simulate the normal diffusion process. The random process of this system is governed by the uniform or rectangular distribution proba-i bility law, that is, the particles diffuse with an isotropic diffusion coefficient when the fluid is macroscopically at rest. The basic step of random walk process of a particle consists of a constant length l and a random direction. Therefore, the positions of a particle that undergoes random walk process can be described by the following model in Cartesian coordinates, as shown by Fig. 3-1

Fig. 3-1. Diagram of Random walk of a Particle (Spherical coordinate system)

$$
\left.\begin{array}{rl}
\left(x_{1}\right)_{i+1} & =\left(x_{1}\right)_{i}+\left.L_{1}\right|_{i} \\
\left(x_{2}\right)_{i+1} & \doteq\left(x_{2}\right)_{i}+\left.L_{2}\right|_{i} \\
\left(x_{3}\right)_{i+1} & =\left(x_{3}\right)_{i}+\left.L_{3}\right|_{i}
\end{array}\right\} \text { for } i=0,1,2, \cdots(3-1)
$$

where

$$
\begin{aligned}
& \left.L_{1}\right|_{i}=l \sin \theta_{i} \cos \phi_{i} \\
& \left.L_{2}\right|_{i}=l \sin \theta_{i} \sin \phi_{i} \\
& \left.L_{3}\right|_{i}=l \cos \theta_{i}
\end{aligned}
$$

In which
l is assumed to be a constant group mean value defined
$a 8$

$$
\begin{equation*}
\ell=\frac{1}{M} \sum_{k=1}^{M}\left(\frac{1}{N} \sum_{k=1}^{N}\left|\ell_{k i}\right|\right)=\frac{1}{M N} \sum_{k=1}^{M} \sum_{i=1}^{M}\left|\ell_{k i}\right| \tag{3-2}
\end{equation*}
$$

It will be used as length unit in measuring quantities of length dimension in order to preserve the generality of the problem.
θ and ϕ are two independent random numbers which are governed by a certain probability distribution law. They can be generated easily by a digital ôōpluter. For an isotropic diffusion, they are governed by the
uniform (or rectangular) probability distribution law. In other words, they vary uniformity from 0 to $360(1, e$, $\left.0^{\circ} \leqslant \theta \leqslant 360^{\circ}, \phi \leqslant \phi \leqslant 360^{\circ}\right)$

B. Mean Convective Flow

The convective diffusion process in a corner of a straight channel is the transport due to the gravity force and primary and secondary flows. The suspended solid particles with densities greater than that of water have a settling velocity due to the gravity force. The primary flow is a translation of the fluid in the longitudinal direction of a channel. The secondary flow is a circulatory motion of the fluid in the plane perpendicular to the primary flow.

Iiggett, Ohiu and Mia. 13 used an ourvilinear orthogonal coordinate system, as shown in Fig. 3 -2 in deriving equations for secondary velocities.

lines of $\eta=$ constant, or orthogonal trajectories of isovels of primary flow. Isovels of primary flow , or $\xi=$ constant.
$\xrightarrow{\text { bottom }}$ of a channel
rig. 3-2 Coordinate systems

The ξ-curves are made to represent the isovels of the primary flow and the $\boldsymbol{\eta}$-curves are orthogonal trajectories of the family of \mathcal{F}-curves. In such a coordinate system, for a steady, uniform flow in the $x_{i}-d i r e c t i o n, ~ t h e ~ p r i m a r y ~ ': ~$ flow velocity is

$$
V_{x_{1}}=V_{x_{1}}(\xi)
$$

depending on only, the equation of motion is

$$
\begin{equation*}
\rho \frac{1}{h_{f}} \cdot V_{\xi} \cdot \frac{\partial V_{x_{1}}}{\partial \xi}=-\frac{\partial}{\partial x_{1}}(P+\rho g h)+\frac{1}{h_{\bar{F}}}\left(\frac{\partial \tau_{\xi x_{1}}}{\left.\frac{\partial g}{\xi}+\frac{1}{\rho_{i}} \frac{\partial h_{k}}{\partial \xi} \cdot \tau_{\xi x_{1}}\right)}\right. \tag{3-3}
\end{equation*}
$$

and the equation of continuity is

$$
\begin{equation*}
\frac{\partial}{\partial \xi}\left(h_{\eta} V_{\xi}\right)+\frac{\partial}{\partial \eta}\left(h_{\xi} V_{\eta}\right)=0 \tag{3-4}
\end{equation*}
$$

where
$V_{\xi}=$ the ξ-component of the average secondary velocity. $h_{\xi}, h_{\eta}=$ scale factors on the ξ and η coordinates, respectively
($h_{f}^{2}=g_{\xi F}$, where $g_{\xi \xi}$ is the metric tensor of the coordinate transformation)
$\rho=$ density of the fluid
Equation (3-3) gives

$$
V_{\xi}=\left[-h_{\xi} \frac{\partial}{\partial x_{1}}(p+\rho g h)+\frac{\partial \tau_{\xi x_{1}}}{\partial \xi}+\frac{1}{h_{1}} \frac{\partial h_{n}}{\partial \xi} \cdot \tau_{\beta x_{1}}\right] /\left(\rho \frac{\partial V_{x_{1}}}{\partial \xi}\right)
$$

while equation (3-4) gives

$$
\begin{equation*}
V_{\eta}=-\frac{1}{h_{\xi}} \frac{\partial}{\partial \xi} \int_{0}^{\eta} h_{\eta} V_{\xi} d \eta \tag{3-6}
\end{equation*}
$$

The numerical solution of equations $(3=5)$ and $(3=6)$ for secondary velocities can be accomplished once the ppimary velocity distribution and $\frac{\partial}{\partial x_{1}}(p+p h)$ are determined
empirically, since the shear distribution can be obtained from one primary velocity ilstribution. It was shown ${ }^{13}$ that the vertical velocity profile of the primary flow can be adequately represented by a simple power law.

$$
V_{x_{1}}=c \xi^{1 / n}
$$

Inggett, OLin and Mia o also used the following equation to represent a family of isovels of the primary flow

$$
\begin{equation*}
\xi=\frac{x_{2} x_{3}}{\left(x_{2}^{x}+x_{3}^{4}\right)^{x}} \tag{3-8}
\end{equation*}
$$

which gives its orthogonal trajectories as

$$
\begin{equation*}
\eta=\frac{x_{2}^{\alpha+2}-x_{3}^{\alpha+2}}{\alpha+2} \tag{3-9}
\end{equation*}
$$

where α is a constant to be determined empirically. . greater value of α represents a greater curvature of the family of isovels. The scale factors can be derived from equation e ($3-8$) and ($3-9$) os:

$$
\begin{align*}
& h_{\xi}=\frac{\left(x_{2} x_{3} / E\right)^{(\alpha+1}}{\sqrt{x_{2}^{2(\alpha+1)}+x_{3}^{2(\alpha+1)}}} \\
& h_{\xi}=\frac{1}{\sqrt{x_{2}^{2(\alpha+1)}+x_{3}^{-(\alpha+1)}}} \tag{3-11}
\end{align*}
$$

$$
(3-10)
$$

Substituting equations (3-10) and (3-11) into equations $(3-5)$ and $(3-6)$, then

$$
\begin{aligned}
V_{R}= & \left\{\frac{\partial \tau_{8 x_{1}}}{\partial \xi}-\frac{(\alpha+1)\left(x_{2} x_{3}\right)^{3 \alpha+2}}{\xi^{2(\alpha+1)}\left[x_{2}^{2 \alpha+1)}+x_{3}^{2(\alpha+1)}\right]^{2}} \tau_{\xi x_{1}}\right. \\
& \left.+\frac{\left(x_{2} x_{3} / \varepsilon\right)^{\alpha+1}}{\sqrt{x_{2}^{2(\alpha+1)}+x_{3}^{2(\alpha+1)}}} \frac{\partial}{\partial x_{1}}(p+p g h)\right\} /\left(p \frac{\partial v_{1}}{\partial g}\right)^{\cdots \alpha-12)}
\end{aligned}
$$

$$
\begin{equation*}
V_{p}=\frac{-\sqrt{x_{2}^{(2 x+1)}+x_{3}^{2(x+1)}}}{\left(x_{2} x_{3} / 2\right)^{(x+1}} \cdot \frac{\partial}{\partial k} \int_{0}^{\eta} \frac{v_{1}}{\sqrt{x_{2}^{2(x+1)}+x_{3}^{2(x+1)}}} d \eta \tag{3-10}
\end{equation*}
$$

where the turbulent shearcrinean be obtained from vol Carman's formula

$$
\begin{equation*}
\tau_{\xi X_{1}}=\rho K^{2}\left(\frac{\partial V_{x_{1}}}{\partial \phi}\right)^{4} /\left(\frac{\partial^{2} V_{x_{1}}}{\partial \xi^{2}}\right)^{2} \tag{3-14}
\end{equation*}
$$

where K is yon Kerman's constant (0.4 for clear water and less for sediment laden water).

Equations (3-7) and (3-14) give

$$
\begin{equation*}
\tau_{f x_{i}}=\rho r^{2}\left(\frac{c}{n-i} \xi^{1 / n}\right)^{2} \tag{3-15}
\end{equation*}
$$

Secondary flow velocities can be calculated by numerical solution of equations (3-12) and (3-13).
C. Resultant Stochastic Model

Superposition of the deterministic and pure random components of the motion of a single solid particles, as described previously, forms the following resultant itochastio model. Let the position of a particle at the and of the $1^{\text {th }}$ step be $\left.\left(X_{1}\right)_{2}, \xi_{i}, \eta_{i}\right)$,
then

$$
\begin{align*}
& \left(x_{1}\right)_{i+1}=\left(x_{1}\right)_{i}+\left.L_{1}\right|_{i}+\left.v_{x_{1}}\right|_{i} ^{\tau} \\
& \left.\epsilon_{1} \cdot i+1=\xi_{i}+\left(\left.L_{p}\right|_{i}+\left.v_{p}\right|_{i} \cdot \tau+\left.\left(v_{p}\right)_{\xi}\right|_{i} \in \tau\right) \frac{1}{\xi_{\xi}}\right\} \tag{3-16}
\end{align*}
$$

where
$\left.V_{X_{1}}\right|_{i}=$ average velocity of primary flow at the point
$\left.Y_{f}\right|_{i}, V_{\left.\right|_{i}}=$ the δ and η enmponents of overage secondary velocity at the point $\left(\left(x_{1}\right)_{i}, \xi_{i} \xi_{i}\right)$ respect-

- timely, which can be either positive or negative.
$\left.\left(V_{p}\right)_{p}\right|_{i},\left(V_{p}\right)_{Y_{i}}=$ the components of the settling rel oo city of the particle in Find $\%$ direction respectively.

$$
\begin{aligned}
L_{1} & L_{i},\left.L_{\&}\right|_{i},\left.\& L_{7}\right|_{i}= \\
& \text { the } x_{1}, \mathcal{F} \text { and } \eta \text {-components of the pure } \\
& \text { motion of the particle during }
\end{aligned}
$$ the $1^{\text {th }}$ strip.

for a uniform flow in the x-direction,

$$
\begin{aligned}
& \left.V_{x_{1}}\right|_{i}=\left.V_{x_{1}}\right|_{i-1}+\left.\left.\frac{\partial V_{x_{1}}}{\partial \xi}\right|_{i-1} \cdot L_{\xi}\right|_{i-1} \\
& \left.V_{\epsilon}\right|_{i}=\left.V_{\xi}\right|_{i-1}+\left.\left.\frac{1}{\delta_{\beta}} \frac{\partial V_{\xi}}{D}\right|_{i-1} \cdot L_{\xi}\right|_{i-1}+\left.\left.\frac{1 \partial V_{\xi}}{h_{\eta} \rightarrow \eta}\right|_{i-1} \cdot L_{\eta}\right|_{i-1}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(v_{p}\right)_{\xi}\right|_{i}=\left.\left(\frac{1}{h_{\xi}} \cdot \frac{\partial x_{3}}{\partial \xi}\right)\right|_{i} \cdot\left(v_{p}\right)_{x_{3}}=\left.\left(h_{\xi} \frac{\partial \xi}{\partial x_{3}}\right)\right|_{i} \cdot\left(v_{p}\right)_{x_{3}} \\
& \left.\left(V_{p}\right)_{\eta}\right|_{i}=\left.\left(\frac{1}{h_{1}} \cdot \frac{\partial x_{3}}{\partial \eta}\right)\right|_{i} \cdot\left(v_{p}\right)_{x_{3}}=\left.\left(h_{1} \cdot \frac{\partial \eta}{\partial x_{3}}\right)\right|_{i} \cdot\left(v_{p}\right)_{x_{3}} \\
& \left.L_{\xi}\right|_{i}=\left.\left[\left.\left.\frac{\partial \xi}{\partial x_{2}}\right|_{i} \cdot L_{2}\right|_{i}+\left.\left.\frac{\partial \xi}{\partial x_{3}}\right|_{i} \cdot L_{3}\right|_{i}\right] \cdot h_{\xi}\right|_{i} \\
& \left.L_{\eta}\right|_{i}=\left.\left[\left.\left.\frac{\partial \eta}{\partial x_{2}}\right|_{i} \cdot L_{2}\right|_{i i}+\left.\left.\frac{\partial \eta}{\partial x_{3}}\right|_{i} \cdot L_{3}\right|_{i}\right] \cdot h_{1}\right|_{i} .
\end{aligned}
$$

where $L_{1}, L_{y_{2}}$ and L_{3} are given by equation (3-2)
τ is a constant time interval between two consecutive steps. It can be determined
turimesere as the upper measure of correlation. 16 τ will be used as a time unit.

We can see from equation (3-16) that the distance travelled by a particle in each step can be expressed as:

$$
\Delta\left(x_{1}\right)_{i+1}=\left(x_{1}\right)_{i+1}-\left(x_{1}\right)_{i}=\left.L_{1}\right|_{i}+\left.v_{x_{1}}\right|_{i} E \mathbb{E}
$$

$\Delta \xi_{i+1}=\xi_{i+1}-\xi_{i}=\left.L_{\xi}\right|_{i}+\left.v_{p}\right|_{i} \oplus \boldsymbol{T}+\left.\left(v_{p}\right)_{\xi}\right|_{i} \otimes \boldsymbol{T}$
$\Delta \eta_{i+1}=\eta_{i+i}-\eta_{i}=\left.L_{i j}\right|_{i}+V_{\eta_{i}} \in E+\left.\left(V_{i}\right)_{\eta}\right|_{i} \leq$
The positions of a particle in x_{1}, and η ordinates can also be expressed in cartesian coordinates by a coordinate transformation.
D. Group Motion of Solid Particles

In the present study the motion of a group or cloud of solid particles emitted from a point source is studied as well as that of a single particle. The group motion of partioles is oomplex. However, in oxder to simplify the problem, the chemical reaction and interaction among particles in the fluid are not considered in this study. Each partiole is considered to behave independentiy..

IV DIGITAL COMPUTER SIMULATION

The simulation of the developed stochastic model was performed on the IBM 7090/1401 digital computer of Computing Center, University of Pittsburgh. The programs' were written in MAD (Michigan Algorithm Decorder) language.
A. Computer Program

The computer program of the developed model is diviaed into two parts because of the limited computer storage. The first program is for computing primary and secondary velocities and their derivatives with respect to ξ and η at each $\xi-\frac{2}{c}$ grid point. In other words, the outpuit of the first program oonsists of values of $V_{x}, V_{\xi}, V_{\eta}, \frac{\partial V_{x}}{\partial \xi}, \frac{\partial V_{\xi}}{\partial \xi} ; \frac{\partial V_{\xi}}{\partial \eta}, \frac{\partial V_{n}}{\partial \xi} d \frac{\partial V_{i}}{\partial \eta}$
at each $\xi-\eta$ grid point. The output of the first program at each $\xi-\eta$ grid point. The output of the first program is then stored in magnetic tapes and serve as the input for the second program. The second program is written for computing the positions of a particle after each time period:. The fiow charts of these programs are presented in Appendix I.

When the partiole falls in the shaded area shown in Fig. 4 nil at the ena or tine $i^{\text {th }}$ step, $\left.v_{x}\right|_{i},\left.V_{i}\right|_{i},\left.v_{\eta}\right|_{i}$ $\left.\frac{\partial V_{x}}{\partial \xi}\right|_{i},\left.\frac{\partial V_{\xi}}{\partial \xi}\right|_{i},\left.\frac{\partial V_{g}}{\partial \eta}\right|_{i},\left.\frac{\partial V_{n}}{\partial \xi}\right|_{i}$ and $\left.\frac{\partial V_{y}}{\partial \eta}\right|_{i}$ in equations
(3-16) and (3-17) are oonsidered qual to thosei at point 0 .

Fig. Hm Schematic Diagram of $\xi-\eta$ Grid Points
Then the position of the particle at the end of the $(\dot{i}+1)$ th step can be determined from equation (3-16).
B. Generation of Random Numbers

Random numbers are a sequence of numbers which are characterized by the property that, knowing some of the numbers of the sequence, no other number in the sequence can be predicated. Such numbers can be easily generated by a digital computer. There are several random number generators available in "Michigan Execute System"l2. Each random number generator is characterized by a particular probability distribution law. For example, there are uniformyl distributed random numbers generator and normal distributed random numbers generator which are often used. The uniformly distributed random numbers generator was used in this study. It is a particular subroutine available. in "Michigan Execute System". This subroutine provides the means of generating random numbers uniformly distributed over the interval $0 \leqslant x \leqslant 1$.

0. Flow Field

The same three तimonaional spiral flow field in a corner of a $s t r a i g h t$ rectagigular channel as in McSparran'an ${ }^{*}$ experiment was considered in this study. In auch a flow oondition the the parametersa, c, n and k in equations (3-7), (3-8) and (3-15) were determined to be 2.5, 4.43, 5.59 and 0.277 respeotively. These values were used in this study for caloulating seconiary velocities. The maximum primary flow was 4.35. It was also found that Von Karman's formula for turbulent shear was valid only for \mathcal{F} valuee greater than 0.16 when $\alpha=2.5$ and thet equation $(3-8)$ describes the primary isovels very well only in the region bounded by $\mathcal{\xi}=0 ., \xi=0.36$ and $\xi= \pm .020$. Therefore, this study was ilmitted in the region bounded by $\mathcal{E}=0.16$, $\mathcal{F}=0.36$, and $\eta= \pm 0.020$.
D. Result of Computer Simulation

1. The path of a single particle

In order to understand in detail the transport process of suspended solid particies in a three dimensional spiral flow, it is desirable to investigate the path of a single solid particie. A calculated sample particie path is shown in Fig. 4-2, which desoribes a helical motion. Piga. 4-3;.4=4 añ 4=5 anow tine projection of the particle path on the $x_{1}-x_{2}, x_{2}-x_{3}$ and $x_{1}-x_{3}$ planes respectively. The equations for the particle paths in the $x_{1}-x_{2}, x_{2}-x_{3}$ and; $x_{1} x_{3}$ planes were determined by the method of least squares.

2. Isopleth patterns

A typical set of results of computer simulation is presented in Figs. 4-6 through 4-13. This set of results is the Monte Oarlo estimates of the solutions of the diffusion equation of solid particles (1,0, eq 2-14). Shown in the figures, for a selented time and a distance interval ΔX_{1}, are the numbers of particies Ni (in thousand ths of the source emiseion N) inside each $20 \times 20 \times 20$ grid. In other words, $M 1 / \mathrm{A}$ is the probability that a particle inside each grid at the instant t. Points of equal $M 1 / \mathrm{I}$ were connected, for selected values of Ni / N, by isopleths. The local concentration c can be obtained by dividing $N 1$ by the volume. V1 $(=20 \times 20 \times 20)$ of each grid.

Figs. 4-6 through 4-13 show isopleth patternis, whioh represent a solution to a diffusion problem. It an be seen that arter $t=150$ the isopleths are separated into two different systems, in a menner quite similar io that of secondary flow "cells". As time inoreases, the particie distribution tends to become uniform. In other words, the diffusion pattern tends to lose the memory of the souroe. This rniform state is the necessary condition for the application of equation (2-22).

In addition to an examination of isopleth patteras, several etatistioel paraneters desoribing the diffusion process ware amalreed. The mase oenter of the oloud in..

x_{3}														
										$N=100$				
${ }^{\circ}$														
					8									
40					-									
						6								
							1		\%\% 5%	\%				
							${ }^{9} 9$	9	5					
							-	195	-					
${ }^{300}$								$1{ }^{10-}$	-7	P0				
							\bigcirc							
							7							

CLOUD.

THE
OF:

1SOPLETH
$\stackrel{i}{i}$
Fig.

x^{N}
$329<x_{1}<349$

						-	边	R		
								,		
							\cdots	-		
	$\stackrel{8}{8}$							${ }^{-}$		
-								,		
							\bigcirc			
							-			

OF.. THE CLOUD
PATTERN:
ISOPLETH
Fig. 4-9.

-3

Fig. 4-15 STATISTICAL PARAMETERS DISCRIBING THE
SPREAD OF THE CLOUD

described in Fig. 4-14, by $\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}$, at a time t. Three measures of the spread of the cloud are shown in Fig. 4-15. A measure of the longitudinal spread of the cloud is given by the standard deviation $\sigma\left(x_{1}\right)$ of the diffusing particles about the mass center. The measures of the transversal and vertical spreads of the cloud about the mass center are represented by $\sigma\left(x_{2}\right)$ and $\sigma\left(x_{3}\right)$, respeotively. The best fitted line is determined by the least square method for each case. In Fig. 4-I6 $\overline{\text { xmax }}$ and Ximin indicate the positions of the most and least advanced particles of the cloud, contributing significant information ooncerning the diffusion process.

The computing time required to get the result for:a plot of isopleth pattern for $t=100$ and $N=1000$ is about 160 minutes on IBM 7090 digital computer. The computing time increases as tr or V increases. For example, for $t=300^{\circ}$ and $\mathbb{N}=5000$ (as in Fig. 4-13), the computing time is about 2500 minutes.

v OOMOLUSION

1. The stochastio model has given a solution to the problem of initial phase of the transport of solld partioles in a oorner of a straight rectangular channel. This has led to a belief that the mechanios of the transport of alid particles in a corner of a atraight channel, as developed in this atudy by a stochastic process study, 1s promising. A sumary of the theory established follows:
(a) The established stochastic model consists of pure random and deterministic processes. The pure random process represents the random walk of the pare ticles at the presence of the fluid turbulence. The deterministic process is represented the trang- . port of solld particles due to the gravity force and primary and secondary flowe.
(b) A three dimensional diffusion equation of solid particlea (1,0, eq (2-14)) has been developed by random walk method. It is a quite general diffusion equation. The one dimensional diffusion equation (eq 2-34) which can be found easily in the literature and the eediment diffusion equation (eq 2-37) are Juat two particular cases of it.
(c) The Monte Carlo method can be employed to salve the diffusion equation (eq 2-14). It appears that this is the only feasible method at present (1966) to solve (aq 2-14) without any experiential values.
(d) The notion of a single diffusing particle exhibits a spiral form. This indicates that the transport of a single particle is influenced by secondary flow which mares item motion spiral?.
(a) The diffusion of a cloud of solid particles emitted from a point source results in a particle distribution represented by isopietí pattern which is quite similar to secondary flow "cells".
2. It is believed that the diffusion coefficient as defined in equation (2-15) and the time required to reach uniform state, which are two important parameters of the diffusion process, can be determined by a further study. These investigations will be carried out in a subsequent research.
3. Jackson, E. D., "A Random Walk study of Diffusion in Convective Flow Fields." Ph. D. Thesis, Carnegie Institute of Technology, 1963.
4. Smoluchowski, M., "Drei Vortragé Uber Diffusion, Browneche Molekularbewegung und Koagulation Von Kolloidteilohen $\boldsymbol{N}^{\prime \prime}$ Physik Zeitung, Voi. 17, p. 556 añ 585, 1916.
5. Knighting, E., Meteorologinal Researah Paper RO. 728, . Meteorologioal Office, London, 1952. (As reported. by 0. G. Sutton, "Micrometeorology," p. 286, McGraw-Hill, Уew York, 1953).
6. Metropolie, I. and Ulam, S., "The Monte Oarlo Method," J. Anerican Statibtical Assnciation, Vol. 44, p.335; 1949.
7. Towell, 2. O., "Amonte Oarlo Method of Bolving Laplace's equation," Proceedincs, Dec. 1949. Oomputation Seainsr, IBM, Iev Tork.
8. Dashwell, I. D. and Eherette, D. J., "A praotical,. Manuil on the Monte Darin Method for Rendon Malk Probleme, ". Pergamon Press, London, 1959.
9. Pearson, K., "The Problem of the Random Walk," Nature, Vol. 72, No. 1865, July, 1905.
10. Felier, Wmo, "An Introduction to Probability Theory and its applications," John Wiley \& Sons Inc., New York, 1957.
9.- Chiu, C. L., "Mechanios of Secondary Filowin Corners of Straight Conduits," Ph. D. Thesis, Cornell Univ., 1964.
11. Iohn Es Mosparran, "Effects of Secondary Flow on Seciment Transport in a Cormer," M. S. Thesis, Univ. of Pittsburgh, 1965.
12. Einstein, A., "Investigations on the Theory of the Brownian Movement," Methven \& CO., IID., 1926;
13. Univ. of Michigan, Executive System for the IBM' 7090 Computer, Sept. 1964.
14. IIggett, J. A., Chiu, C. L., and Miao, I. S. "Secondary Currents in a Corner," J. of Hyaraulic Division, : ASCE, VO1. 91, No. HY6, Proc. Paper 4538, Nov. 1965. pp. 99-117.
15. Parzen, E., "Stochastio Processes," Holden-day, Inc., 1962.
16. Tchen, C. M., MMean Value and Correlation Problems Connected with the Motion of Small Particles Suspended in a Turbulent Fluid," The Hague, 2947. Martins Nijhoff.
17. G. I. Taylor, "Iurbulenoe Speotrum,"

Appendix I
Computer Flow Charts

,

$$
\begin{aligned}
& S=\left[V_{f}(I+1, J)+V_{f}(x, J)\right] / 2 \\
& T=\left[V_{f}(I, J)+V_{f}(I-I, J)\right] / 2
\end{aligned}
$$

$$
S S=\left[V_{\eta}(I+1, J)+V_{\eta}(I, J)\right] / 2
$$

$$
T T=\left[V_{\eta}(x, J)+V_{q}(x-1, J)\right] / 2
$$

$$
\frac{\partial V_{\xi}}{\partial \xi}=(s-T) / 001
$$

$$
\frac{\partial V_{\psi}}{\partial z}=(S S-T T) / .01
$$

$$
w=\left[V_{\eta}(I, J+1)+V_{\eta}(x, J)\right] / 2
$$

$$
U=\left[V_{\eta}(I, J)+V_{\eta}(I, J-1)\right] / 2
$$

$$
W W=\left[V_{F}(I, J+1)+V_{F}(x, J)\right] / 2
$$

$$
U U=\left[V_{F}(x, J)+V_{F}(I, J-1)\right] / 2
$$

$$
\frac{\partial V_{\eta}}{\partial \eta}=(w-U) / .001
$$

$$
\frac{\partial V_{s}}{\partial \eta}=(W W-U U) / 00 i
$$

Print BCD Tape:

$$
\underbrace{\partial}_{1, \eta, y, z, v_{\beta}, v_{q}, v_{y}, v_{z}, v_{x}, \frac{\partial v_{x}}{\partial \xi}, \frac{\partial v_{\xi}}{\partial \xi}, \frac{\partial v_{\xi}}{\partial \eta}, \frac{\partial v_{y}}{\partial \xi}, \frac{\partial v_{q}}{\partial \eta}}
$$

$A=R A N D O M$. (RNO)
$\phi=A * 2 \pi$
$B=$ RANDOM. (RNO)
$\theta=B \times 2 \pi$
$2=0.001$
$L_{x}=\ell \sin \theta \cos \phi$
$L_{Y}=\ell \sin \theta \sin \phi$.
$L_{z}=\ell \cos \theta$

$$
\begin{aligned}
& \frac{\partial F}{\partial y}=\frac{z^{\alpha+1}}{\left(y^{\alpha}+z^{\alpha}\right)^{\frac{1}{2}+1}} \quad, \frac{\partial y}{\partial y}=y_{11}^{\alpha+1} \\
& \frac{\partial \xi}{\partial z}=\frac{y^{\alpha+1}}{\left(y^{\alpha}+z^{\alpha}\right)^{\frac{1}{\alpha}+1}} \quad, \frac{\partial \eta}{\partial z}=-3^{\alpha+1} \text { : } \\
& T_{2}=\sqrt{y^{2(\alpha+1)}+z^{2(\alpha+1)}} \\
& \left.\eta_{\eta_{p}}=\left(\frac{\mu 3}{\xi}\right)_{E}\right)^{\alpha+1} / T_{2} \quad, f_{\eta}=1 / T_{2}
\end{aligned}
$$

Subroutine

Notes: 1. Assigned values of $y_{1} \& y_{2}$ depend on the boundary of the region in which the coordinate system is applicable.
2. Assigned value of δ depends on the accuracy required.

