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ABSTRACT

This investigation is a study of finite-amplitude free oscillations
of an inviscid incompressible fluid in a cylindrical sector container. The
analysis is made for a standing wave whose motion to the first approxi-
mation is that of the first nonaxisymmetric mode. The effects of surface
tension are not considered. The method of Krylov and Bogoliubov is used

to satisfy the nonlinear boundary condition. Numerical results are

presented for 90° sector tanks. M/‘/
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CHAPTER 1

INTRODUCTION

Purpose and Scope of Investigation

This investigation is a study of finite-amplitude free
oscillations of an inviscid incompressible fluid in a cylindrical sector
container. The analysis is made for a standing wave whose motion to
the first approximation is that of the first nonaxisymmetric mode.
The effects of surface tension are not considered. No limitations are
placed on the liquid depth in the formulation of the problem, however
it is found that at certain discrete depths the solution becomes invalid.

The formulation of the problem results in a governing linear
partial differential equation along with three linear boundary con-
ditions and one nonlinear boundary condition. The main difficulty in
finding a solution is the satisfaction of this nonlinear boundary con-
dition which must be applied to a moving boundary whose shape is
itself unknown. The method of solution is to approximate this
boundary condition by a Taylor series expansion which retains terms
to the third order of the wave height. The solution which satisfies

this approximate nonlinear boundary condition is found by the method




of Krylov and Bogoliubov. It is emphasized that this solution is only
for periodic waves since in general the solutions to nonlinear problems
are nonperiodic.

The solution to this problem is of interest primarily for two
reasons. First, it is fundamental in the study of fluid mechanics an
nonlinear vibrations as an initial step toward the more complex prob-
lem of forced oscillations. Second, the particular container shape
chosen is of interest for application to large space vehicles. The
increasing size of space vehicles and their large diameters has
lowered the natural frequencies of the liquid propellant and thus shifted
them closer to the control frequency of the vehicle. Since propellant
oscillations can create forces which can affect the stability and control
of the vehicle, it is important to both thoroughly understand the phe-
nomenon and to investigate means of raising the propellant natural
frequencies and thus remove them from close proximity to the control
frequency. One proposed means of increasing propellant natural fre-
quencies is to use compartmented cylindrical tanks. The cylindrical
sector tank investigated here can be used as a ''building block' to

make up such a compartmented cylindrical container.

Previous Work

In the past many investigations were devoted to gravity waves.
The majority of these works, however, treated finite-amplitude waves

in deep water and in shallow water as separate problems rather than




considering a solution for general depth. Also until recently most of
the study was devoted to progressive waves. To the author's knowl-
edge the first theoretical study of finite-amplitude standing waves was
conducted in 1952 by W. G. Penny and A. I. Pricel™ who analyzed
such waves in a rectangular tank of infinite depth.

Finite-amplitude axisymmetric gravity waves in a circular
container were studied by Mack? in 1958, who considered period free
oscillations. In 1959 Tadjbakhsh and Keller3 analyzed the same prob-
lem as Penny and Proce except that a solution was found for finite

4 who also included the

depth. Their solution was extended by Concus
effects of surface tension. A perturbation solution for nonlinear free
oscillations of an inviscid incompressible fluid in a circular container
was found by DiMaggio and Rehm® in 1965. Their solution was carried
out for a standing wave whose motion to the first approximation was
that of the first antisymmetric mode.

Although all of the previously mentioned work falls into the
realm of nonlinear oscillations one linear analysis should also be
recognized. In 1963 Bauer8 presented a solution based on a linearized

free surface condition for the cylindrical sector tank. The natural

frequencies predicted by Bauer proved to be too large when compared

*Numbers refer to references listed in Bibliography.
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to experimental values. Bauer's explanation that in tanks of this type
the frequency was strongly influenced by nonlinear effects was one of
the stimuli which prompted this investigation.

The author wishes to express his appreciation to Dr. C. H.

Chang.



CHAPTER II

DERIVATION OF GOVERNING EQUATIONS

In order to make the formulation of the problem as useful as
possible, the governing equations and boundary conditions for the
motion of an incompressible, inviscid fluid in 2 moving container are
developed in a general manner. The use of tensor notation and
orthogonal curvilinear coordinates makes the formulation valid for
containers of arbitrary shape and six degrees of freedom. The effects
of surface tension are not considered.

The coordinate systems used are shown in Figure 1. The zl
system is a rectangular Cartesian inertial system. The xi system is a

rectangular Cartesian coordinate system which moves relative to the

z' system. The x system is fixed in the container with its origin

located at some arbitrary point of the container. The rotational

transformation between the x! and zi systems is given by
zl = le x3

where summation convention is used and the Cji are defined by the

relation

Cji = Cji(t) = cos (zi, xJ)




Figure 1.

Coordinate System



The 'qi system is an orthogonal curvilinear coordinate system which is
used to describe the container shape. The location of the origin of
the 'qi system is given by a constant vector ! measured in the x!
system. The use of the xt system allows the translational and angular

velocities of the container to be expressed as quantities which have
physical significance. The vector 1 is included so that the origin of
the curvilinear system does not have to be the center of rotation.

The position of a particle in the xK system may be described in

the zK system by

zK = Rk 4 cjk xJ

From this point on, capital letters will be used to denote quantities
described in the zK (inertial) system.

The velocity vk is

Denoting d/dt by a dot (- ) and performing the indicated differentiation

yields

vk = Rk ¢ (':jk x) + cjk %

The Cjk can be eliminated in favor of a quantity which has physical
meaning by defining

-k~ k



The w;y can be shown to be a second order antisymmetric tensor

p

which has the dual vector w* given by

p_ _1 tp
w —'26‘] wjl

P

Physically «" is the angular velocity vector of the xK frame with

k k

respect to the 2z system expressed in the x* system. Using this

definition, the velocity can be written

vk = gk . €4im O c,Kxd+ cjk %
Noting that the transformation from the 2K system to the xK system
for any vector quantity, B is
b' = ;¥ BK
and defining
K = Uk
the velocity may be expressed in the xt system as
vi=ui-€ijmwmxj+§ci . (1)
The absolute acceleration is found from
Al= L yiogiyky ik
dt k k
which when expressed in the xk system, becomes
al = v+ €imk o™ vk (2)



The governing equations for an incompressible inviscid fluid

in the z! (inertial) system are Euler's equation of motion

)
Ak =gk 1 7P (3)
P 92K
and the continuity equation
k
<o (4)
oz

where p is the mass density of the fluid and p is the pressure. If the
fluid motion is initially irrotational, it can be shown by Kelvin's
theorem that it remains irrotational. For irrotational flow, there
exists a potential function ¢ such that

vk (5)

9zk

The continuity equation can be written in terms of the velocity

potential ¢ as

0 (99 gtk _
By noting that
0 _ 9 kD

dzk  axd azk T 1 gyl
Equations 3, 5 and 6 can be expressed in the x1 system as

aJ:fJ-l-—p (7)

P 9xJ
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1J
axl dxcJ ) (8)

vj=—ai‘b— . (9)

oxJ
Defining the body force as
g=.22
ox3

and using Equation 2, Euler's equation of motion in the xK system

becomes

82 _1op _ 3 (%), . ‘
- T - = : _"'T + €5
axt P oxd  8x \OL ox? * jm®

which can be integrated to yield

(p-p
o]

-a- —$+—(V3-u3)+€ﬂ oM xl Vit c(t) . (10)

6

It has been shown” that C(t) can be taken as zero without any
essential loss of generality.

Since most containers are more readily described in some
coordinate system other than rectangular Cartesian, the governing
equations and boundary conditions are now formulated in orthogonal
curvilinear coordinates.

The surfaces bounding the region occupied by the fluid can be

described by equations of the form

fngpt)=0 (11)
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where the n; are orthogonal curvilinear coordinates. These surfaces
can be either container walls or fluid free surfaces.
The governing Equations 8 and 10 with ¢ = ¢(ni) become in the

nl system

1 1
(g)'z aak [(g)?‘ gkf -;—¢—J =0 in the region (12)
M n

- i )
3 _ PP 1 3¢ o 3 M ik
ot P 2 oml oxl on” oxK

wmxlﬂ Q’ﬂi (13)

+aij—aluj_l juiﬁij-é A .
ont oxJ

anl 9xd 2" jtm
where g = determinate W) and g, is the metric tensor. Equations 12
and 13 are the governing equations for the interior of the fluid region.
The conditions which must be satisfied on the surfaces given by
Equation 11 can be established from the fact that the surfaces must be
material. A necessary and sufficient condition that the surfaces be

material is

) ond .
df _of  of . 0of  of O .5 _, (14)
dt ot oxt ot aT\J oxt

6

It can be shown® that this relation requires that the fluid velocity
normal to the surface be equal to the normal component of velocity of

the surface itself.
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A unit vector v normal to the surface is described in the 'qi
system by

_ gradf  (df/dnl) gl
V= lgrad f| =~ |grad f]

which has physical components given by

-1 ;
(gj5) 2 (3£/ )

oy = 15
Y (3) lgrad fl (15)
No summation is indicated on quantities such as 8;;° The physical
components of the fluid velocity in the 'qi system are
-1 a¢
= 2 Y@
V(j) = (g_jl) anj (16)
and the physical components of the velocity of the surface are
) 19 J .
(3) = 2 I i
v = (g )P — Vv . (17)
3 oxt

The condition for the equality of the normal velocity components is
found by performing the scalar product of Equations 15 and 16 and
equating this to the scalar product of Equations 15 and 17 which yields

-1 . ) ond
e _af_%.g,lJ:\rl _ai_ﬂ__ gradfl-l,

-1
lgrad f| = (g;; g:: i -
o4 onl onJ ond ox1

Through the use of Equations 1 and 14, this equation can be written as

2
-1 -3 Of 09 ij_ -1 0f O g m jy _9f
erad il lesigy) POy 5 oY =leradtl Hog o T (W Ciyme™ ) -5 |

(18)
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This equation represents the necessary boundary conditions on the
surfaces. The term 0f/ 0t is the relative velocity of the surface in the
x1 system.

The two types of surfaces that are of interest in most problems

are surfaces where
n' = KX (t) (19)

which represent the container walls and the free fluid surface given

by
*=¢(nh, 7% )+’ . (20)

On the types of surfaces described by Equation 19, the boundary

conditions given by Equation 18 become on np = kP

L onP [ omP . 9mP 1
(gpp) * =[a—“i-(u1 - €y @ ) - '?H (g,,)° - (21)
n X L

After multiplying both sides by |grad f|, Equation 18 becomes on

x3=q +1°
Loax® 9 iy 0x® onf
(gg)a-—— J _(1-6- wmxj)
11 2)) nl anJ anl oxt 1ym

(22)
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The complete formulation of the nonlinear boundary value problem in
terms of the unknown velocity potential ¢ and free surface displace-
ment { is given by Equations 12, 21, 22 and Equation 13 evaluated on
x*= g+ 03

Since the transformation to curvilinear coordinates is normally

given in the form
| <K=k (nl)

the partial derivatives o/ ani are more easily found than ani/ ax,

By using the relation

the derivatives onP/ oxk may be eliminated. The formulation of the

problem is now given by

( )-% 9 ]:(g)% gt _84)_} = 0 in the region (23)
87 ank o’
on nP = KP
215 Lo d . 3 1
(8pp) * g = (€PR)F D5 (ul - €y ) - B (gppF (24)
PL n an PP
onx"=¢(+1 3
-1 ox? 9o ox’ 0Ox 1y, i m _i Y}
.. : OX _ 51 £l (ur -e.. W™ xd)sP
N i
(gli gjj)'z _Q% ..ng_ 61‘] _@.g_ ._a_)_{}_ g££ (ul- € wm XJ) 5P1 + _a_é
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onx3=;+l3

j k
B _ g L0 8 90 0% i 44 gjkgimgtn L i i
ot 2 ont anm anl ann 2 ij
‘—aﬁ)—g‘)‘(‘]—g}}uj 6i1-€-1 w™ x l—a‘?- aXJ gll.'_gu
ont onl Jm anl an
(26)
The boundary conditions may be simplified by defining
¢ =¥+ p.k xK
The formulation of the problem now becomes
1 1
(g) 2 ak I:(g)2 gl ﬂ-]:O in the region (27)
on ant
P - kP
JER xd . onP 1
=2 = - (gPP 3 . m_j _ 90 2
on x3= L+ 1 3
(gis gei) 2 & 2w iy, o’ o Pl om o 5Pt
il ) onl onJ anP  ont m
or _i l4 ax Y] m ot
= (g;: g)a—i 54 + g-- €3: . w xi 6PL 4 (29)
ii 23] ont an_] P an 1ym ot
on x’ = L+ 1 ?
T = - 1'1k XK_oga. 1 o oxd 0w oxK g}l gg{ sik gim gin
t 2 anl o™ anl onn

‘ m ox  mj m J 30
4 w xl anl an g €jl w x‘l w . (30)



CHAPTER III

GOVERNING EQUATIONS FOR A CYLINDRICAL SECTOR

Consider now a container whose shape is a sector of a
cylinder with arbitrary angle w/a as shown in Figure 2. The xi
coordinate system is fixed in the container as shown in Figure 2.
The -qi coordinate system is chosen to be cylindrical coordinates
whose origin lies on the x* axis at the undisturbed free surface.

The transformation between the xi and ni systems is given by

x! = ! cos 1? (31)

x? = n' sin n* (32)
h

x =4 2 (33)

For the case of free fluid oscillations with the body forces

considered to be gravity forces,

where G is the gravitational acceleration.

If £ is given by



Figure 2.

Cylindrical Sector Container

17



then Equations 27, 28, 29 and 30 become

o%w -1 ¥ -, oW o*w
+ ()" — + (nY)7? + =0in R
(3nY)? an? (2 (an3F
a—\I, =0 on '}1 = a
ont
-1 0¥ B
(n?) ?= 0 on 1']2= 0 and nZ:;
v .
5;; =0 on n’=-h
ov _ 3y 0w . 4
—_— —_— 1 2..______+ 3=
n® ot on? () m? amz ot Om M EE
or 1 T \2 -2 [ W \2 T \?
G§=‘—“‘[_ + () =) + (— ] on ?
ot 2 anl) (anl) (8n3) n

The boundary conditions at the free surface consist of
Equations 38 and 39. Following the method of Hutton, 11 these

equations may be combined to form one approximate nonlinear

boundary condition. Equation 39 can be written
-GL =T [r,0,¢(r.0,t),t] onz=¢

where

T = \I’t + % [(‘I’r)z + 17?2 (\1;9)?-+ (\Ifz)z]

18

(34)

(35)

(36)

(37)

(38)

(40)

(41)
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By differentiating both sides of Equation 40, the following equations

result:
Gl =T+ Iy Ly
-Ggr = I"r+ rg t_,r
-Gtg=Tgt I‘g ge
where

— -2
Ty= e + W Ypg + v " g Wt + T, Uy
g =Ygt + ¥ Yrp+ r-? Yo Ygg + ¥, Yy

— -2 -3 2
1‘1._ rt+\11r\11rr+r Yg Y9 -1 \119+\Ifz\11rz

-2
Ty =V + ¥y Yy t v " Vg Y, + ¥, Wy,

If Equation 38 is multiplied by - (G+ 1";), the result is
(G+ Ty )%, - (G+Ty) Ly & - ri ¥ (G + Ty) Le
—(G+I‘§)§t=0 onz=¢{
or
-2
G¥ +T, 4L+ T ¥+r " Tg¥+I =0 onz=¢
With the use of Equations 43, 44, 45, and 46, Equation 48 can
be written
G, + 2T, Wy + 29, ¥ W, + 21728, Ug Uy, + (5,)° ¥,
+ 20 Yyt (I)P 8+ 2 0700 U U - v (Tp)

+ 21 Yo gt v (L) W+ Y =0 onz=¢

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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The free surface boundary conditions now consist of
Equation 49 which depends on { implicitly and Equation 39 which
depends on { both explicitly and implicitly. The wave height { can be
eliminated between these two equations if they are each expanded in
a Taylor Series about n = 0 and then combined. For the sake of brevity
the algebraic manipulations are not included, but may be found in

Reference 11. The resulting equation with terms to 0(;3) included is

Y+ G, + B2+ B3+ 0(t*) =0 onz=0 (50)

where
By=2W Wi+ 21 %0 Vg + 2, ¥y

-G W G - Yy, (51)

Ba= ()2 ¥, .+ r % (¥g)? Tgg + (¥,)° L,

- 2 -2
r U (P28 W, ¥+ 2100y Yy Ypg

- 1

2 -1 2 -2 . 22 2
t2r 0, W9 ¥y, - 5 Gy, [(9)° 4 170 (Tg) 4 (B,)7]

1 2 -2 52 2
-5 Yoz [(F ) + r™ % ¥g+ ¥ ]

-1 -2 -2
2G L \I’rz \I’rt + \I’r ‘I'rzt tr ‘I’ez \I’Bt +r " Yy \Ilezt

-+

Yoy Yot t+ \I’z \I’zzt]

“t

G 28, B [Ty + G L, ]

1

2

- 2
G : \I’t [‘I’ttzz t+ G \I’zzz] . (52)



21
Redefining the variables as
a'=r, n’=ze8, n=z ,
the boundary value problem for free oscillations in a cylindrical
sector container can now be restated as

Yoot (r) P o 4 ()P Yg+ Y, =0 in R (53)
¥.=0 on r=a (54)
(r)~! ¥g=0 on 6=0, E’ (55)
¥,=0 on =z=-h (56)

‘, Y+ G+ B+ B3+ 0(L)=0 on z=0 . (57)




CHAPTER IV

SOLUTION

General Method

The problem as formulated now consists of finding a solution
to Laplace's equation which satisfies three linear and one nonlinear
boundary conditions. The basic approach to finding a solution will be
to use classical methods to find a solution of Laplace's equation which
satisfies the three linear boundary conditions and then to satisfy the
nonlinear boundary condition asymptotically using the method of
Krylov and Bogoliubov.

The solution to Laplace's equation in cylindrical coordinates

is well known and has the following form:

¥ = [C; sinh (\z) + C; cosh (xz)] [C3 sin (nB)

+ Cqcos (n0)][CsTn(rr) + Cs ¥y, (A1) (58)

where \ and n are constants to be determined. The above solution
which will be used in this analysis requires that n be an integer. A
solution is available for n not an integer but it will not be considered
here. If ¥is to be bounded at r = 0, then Cy must be taken as zero.

Application of Equation 55 yields at 6 = 0

22
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[C1sinh (Az) + C; cosh (Az)] C3n J, (Ar) =0 ,

and at 0 = v/

[Cy sinh (Az) + C; cosh (\z)] {-C‘; n sin (%r_)] Jo(A\r)=0

which requires that

or
n = ka, k=20,1,2.,.

It should be noted here that in order for n to be an integer, o must be

an integer.

In order to satisfy the first boundary condition, Equation 54,

it is necessary that
T 2) =0
Thus,
A\a = Yy, = mth zero of J1'<a

The third linear boundary condition yields the relation

sinh (g, mb)
cosh (A, mb)

C1= CZ
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The solution of Laplace's equation which satisfies the three linear

boundary conditions is thus given by

cosh Ay, m (z+h)]

Yo, m = Aka, m €05 (kab) Jig (Mg, mT) (59)

cosh ()‘kaf, mb)

Solution for Linearized Free Surface Condition

If now only small wave heights and slopes are considered, the

linearized fourth boundary condition, Equation 57, reads

%, +G¥, =0 on z=0 . (60)

This condition applied to Equation 59 yields

@ @
Z Z {[(Aka, m)tt ¥ G Mo, m tanh ()‘ka, mb) Aka, m]
k=0 m=0

X cos (kab) Jkaf (Xka,mr)} =0
If Aka, m = K cos (‘"ka, Int), then the linear solution gives

@ w0
¥ = Z Z K cos (“’kcx,mt) cos {ka0)
k=0 m=0

cosh [\, m(zth)]
X Jxa (\ka, m*) ~Coah g 1) (61)

wfm’ =G A\g, mtanh (\g m h) ) (62)



25
The fundamental mode of the linear solution will now be chosen as the

one which has the frequency ©a,0° Then the linear solution is given by

cosh [\g,o (z+h)]

¥ = K cos (“’a,o t) cos (a6) J, (a0 r) —oob. ()‘a,o 1) (63)
where
wg 0= G Ag,otanh (A, Jh) . (64)
The expression for the wave height (linear theory) is
t=-G! Y on z=0
t=KGg! Wy, o 8in (wy o t) cos (aB) J, Ag,0T) - (65)

Nonlinear Solution

To find a solution which satisfies the approximate nonlinear
boundary condition (Equation 57), the method of Krylov and Bogoliubov

is followed. This method seeks a solution of the form

g= Y et gld) (66)

i=1
where € is a small positive parameter which will be defined later and

cosh [\gq, miz+h)]

«© [e0] :

. 1
v = P P AL, m@,K) cos (ka8) T (Mg, m )
k= 0m=0 cosh (A\ky, m h)

(67)
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The quantities 2 and K are defined by

2 =wy o+ € BUK) + € BX(K) + ... (68)

K=¢D{K)+e*D3(K)+... (69)

An addition restriction that is necessary to insure uniqueness is that

i
the expression for Ak, m contain no first harmonics fori 2 1. To

this end the following conditions are specified:

2w

S‘\p(i) (K,2)cosQad2=0 izl (70)
0

27

g (i) (K,Q)sin2 a2 =0 izl (71)
0

From a physical point of view the imposition of these conditions is
equivalent to selecting K as the full amplitude of the first fundamental

harmonic of the oscillation.

The following notation is now employed for convenience.

(72)
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Noting that ¥ = ¥ [K(t), Q2(t)], the time derivatives are
Y = To0 + e K (73)
Ty = Yo Q+ Ton )7+ 20K Iygg + (K)* Y + K I (74)

From Equations 68 and 69, it is found that

'si:s')Kf(=[e BI‘<+ezBf<+ ...][e D'+ €2 D%+ ...]
= €2 [Bk D'] + €* [BL D'+ By D*]+ 0(e*) (75)
i{'=f{Kf{=[e Dll<+ eZD;{+ ...][e D'+ €*D*+ ...]
= €2 [D! Dg] + € [D* Dy + D? Dyl + 0 (e*) (76)
(@)% = w? + € [20BY] + €2 [20B% + (BY)’] + 0(e?) (77)
(K)? = €2 [D'° + €3 [2D*D? + 0(e% (78)
QO K=e[wD]+e?[B'D'+wD?+0(e?) . (79)

Now substituting Equations 75, 76, 77, 78, 79, into Equations 73 and

74 results in
1 2 3 1 2
U=le¥ot+te?¥ot+te g+ ... ][wteB'+e*B*+...]

[E‘I{(+€2\I§ +e3\11é+...] [e D'+ e?D*+...]

-+

1 1 2 1
€ [w o]+ € [B' ¥g + w g+ D! ]

-+

€ [BPwd + BIwg + w ¥y + D2 G + DV gl + 0(e®)  (80)
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Yy = [€ To+ €295+ ... ]1[€? (Bg DY) + €3 (Bg D'+ B DA + ... ]
+ [e \I/;m + €l \If;m +e3uha+.. . ] {w? + € [20B']+ €? [20B%+ (BY)°1}
+ 2 [e (wDY) + €2 (B'D'+ wD?] [e \Iféﬂ + €2 \Iféﬂ +€? wéﬂ]
+ [€2 (DY)’ + €* (2D D)) [e \ItéK + €l \IIIZ{K+ 63‘I§K]

+ [€® (D' Dg) + € (D' D& + D?* Dg)] [€ W + €% Wy + € 52 ]

1
€ [0 Tagl + €2 [20B} T + w? Uog + 26D Yo ]

4

3! 1o} 2 .1 1,2 .1 1.2 2 .3
€’ [Bg D" ¥g + 20B” ¥ + (B') oo + 20B™ Yoo + w” T,

1 2 1 1 1 2 1 1,2 1
+ 20D* Yo + 2B D! Yo + 20D Y + (DY) Iy

-+

D! Dy Uil . (81)

Using Equations 80 and 81 in the first part of the nonlinear

boundary condition (Equation 57), the following is obtained:
T, + GT =€ [0l + GTY
tt z = €@ Yoo p
1 2
+ €% [20B! Uag + w? ¥ + 20D ¥yo + G L]
31l 1.1 2 51 L2 41 14,2
+ € [Bpg D ¥g+2 B"¥oq+ (B) Yoot 2 B Yoo

2 .3 142 1 1.1 2.1

+ (DY Gk + D' Dy Iy + GB+ 0(%) . (82)

The remainder of the nonlinear boundary condition is given by

Ez and 133 which through the use of Equations 80 and 81 become
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= 1 1 - 1
By = €% [20 ¥ ¥, +21 2w Ygg¥y

1 1 -1 3.1 _1 1 1
+2co\Ile\Ilz-G m\IIQ\IImz-w\IfQ\Ilzz

1 1 2 1 1
2B Yo, ¥ +20 ¥ ¥ +2D e ¥

~+

8

1 - 1 - 2
+2w\II_Qr\I/:+2r 2 BI\I’QB‘I’BI"’ZI' Zw \I’()e

€

+2r2D g Yt 2 1% w B Yge + 2 B g Uy

2 1 1 .1 1 1 2
+2w\szq,z+2D \IIKZ\I’Z'}'ZQ)WQZWZ

- 1 - 1
-2G MW B ¥, ¥o - GTle® g, Yg

- 1 - 1
2 G 'w? D! Yy, Vg - G w? Bl o v

1 3.2 1 -1 2 11 21
G O)‘I’Q\I’mz'G (A)D\Ik\lfmz

z 1 1450 518 4
w\I/Q , - B! \IIQ zz-w\I/Q 2 - D Y T, 1+ 0(e?) (83)

1,2 1 -4 1.2 1 1,2
[(‘I’r) \I’rr +r (‘I’e) ‘I’ee + (\I’Z)
1

-3 _1 1,2 1 1 1 -2 .11
V() +2%, ¥, T +217% 0 Yy,

-2 o1 211 -1 2.1 1,?
+2r \I’Z qfe ‘I’ez- G w q/mzz (\I’r)

1
2

-1 _-2 2 1 1 1 -1 2 .1 1,2
G r "W Yoo, (\Ilef-'Z-G w” Yoo, (\IJZ)

N

-2 .1 2 1

1 2 1 1,2
Yyn (\IIII') -5 r Y, (%) - 2 zlz (%)

N |

1 -
-2G O Y, v - 2GRy ) WY

-1 -2 2 1 1 1 -1 2 2 1 1 1
-2G I w WQWGZQQB-ZG T W \I/Qq’e\llezg

-1 2 1 1 1 -1
-2GTtO Rl w)l vl - 26T WP Y ey

-2 4 1 1 1 -1 2
+ Gt W wge + GTw qxgzwﬂquz

1 - 2 1
* 2 G%w? (‘I’é) \I'§1252zz + 2 G (\IIQ) zzz] + 0(e*) (84)
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Upon substituting expressions 82, 83, and 84 into the nonlinear
boundary condition and equating coefficient of €®, the following results
are obtained. All three equations are evaluated on z = 0. For the

first approximation,

2 1 .
W ¥t GY, =0 . (85)
For the second approximation,

WU+ G =-2Blo¥-20D Yy - 20 Wy T}
-217f UG Ug- 20 WG W+ G e W W

I 7 A (86)

For the third approximation,

1

2 .3
w ¥ K

3_—
ot G¥,=-B

141 2 .1
D%, -2wB" ¥

2 41 1
(BY) ¥, - 2w B ¥5, - 20 D'y, - 2 B' Dy

2 1 1,2 11 1 1.1 1
2 0 D* g - (DY) Yy - D' Dy Y - 2 B o) ¢!

2

Zw\IIQ

1 1 1 2
r\I'r'ZD eV - 20¥5, ¥,

-2 1 1 1 -2 2 1 -2 1 1 1
2r B "I’QB\I’G-ZI‘ w‘I’Qe‘I/e-ZI‘ D\I’KB‘I’B

2r

2 2 1 151 1 2 1 1 1
w\I/e\I’Qe-ZB \IIQZ\IIZ '2(&)‘1’m‘1’z°2D ‘I’I{Z‘I/z

1

2 2 -1 27141 1 -1 342
2005, ¥ +2G T o' B g w5+ G W W

-+

2 G 'w? D! \I’Klﬂz vh+ G w'B' ¥ \Ilglmz + Gl v vl

-1 2 1 1 1 1 2 1 1 1 2 1
+G wD\I’K\IIQ.Qz'i'w\I’Q\IIzz"'B \I’Q\Ifzz'i‘w\l’g\llzz
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1 .1 .1 1,2 _1 - 1,2 2
t DO By - (B) Gy - 1T () Tgg- (T,)° Y,

-3 1,512 151 1 -2 51 -1 1 -2 51 51 21
trTT W (Yg) - 29 Y W - 217 U Wy Wg - 210, Uy Yy,
1 - 1 2 1 _ - 2
+35 G lef ¥, (%) +5 G xT ‘I’mz(‘l’eH L Glwt W, (1)
1 1 1.2 1 -2 1 1,2 1 1 1,2
+-2-\I/z(\Ilr) +—2'r v, (¥g) +-2-'\Ilzz(‘lfz)

-1 2 1 -1 2 1 1 1 -1 _«2 2 1 1 1
-1 -Z Z -1 Z 1 -1 2 1 1.1
-2 4 -1 2.1 1
- Gt Wi, - G WP RS, W w), - S Gt (wh)” v

zZ "Q Tzz 19-944°2

l -1 2,01
) G e (‘I'Q) \I/zzz : (87)

In a similar manner expressions for the wave height { may be

developed.

t=-G'y —% G )P+ 172 ()2 + (9,)]] on z=¢

- 1 1
- G M {efo Tl + € [B! h + 0 TS+ D wy]
+ e [B*el+ B o +wwd+ D'y + DIy}
1
-3 G e w) + €2 ¢f] [e ¥+ € ¥]]

+17% [e g+ €2 3] [e wg+ €® ¥E]

+ ey, + €29’ [e g + e 9] . (88)

Expanding { as
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and equating coefficients of € gives the following equations for the wave

heights. For the first approximation,
tl=-Glow \11;2 on z=0 . (89)
For the second approximation,
t?=-G'B'¥) -G oy -G Dy

-% G (gl + r2 (79)° + (¥H’] on z=0 . (90)

For the third approximation,

3 -1 2 .1 1.2 3 2 .1 1.2
’=-G 1 [B°Uq+ B Y +tw¥g+ D" Y + D Yl

1 1,2 -2 51 52 12
-G R 2T Y2, I on z=0
(91)
It is easily seen that the first approximation represents the linear
theory and is satisfied by choosing }
. cosh [\ (z+h)]

¥ =K cos 2 cos (a8) J 92

* O cosh (\h) (92)

t'=K G 'wsin® cos (ab) I, o (93)

To satisfy Equation 86 which represents the second order

\

approximation, one uses Equation 67 and Equation 92 and seeks \‘
expressions for the Af{m such that Equation 86 is satisfied. Sub-

stitution of Equation 67 and Equation 92 into Equation 86 gives
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«© w
kZO Zo {[wz (Af(a, m)m + G )‘ka, mta-nh (Xka’ mh) Af{a, m] coOs (kaO) Jka, m}
=0 m=

2w B'K cos £ cos (a8) Ja, otdw D! sin 2 cos (a8) Ja, o
+ 2K2w)\%cosQ sinf2cos?(ab) + 2 r?K2wa® cosQ sin® sinz(aa)J;’ o
+2K2wA\cosQsin®Q cos’ {aB) tanh?® {\h) Jé’ .

v

+ G 'K*w® \cos Q2sinQ cos’ (a©) tanh (\h) J'é,, o

K2 w 2% cos Q sin Q cos? (aB) JZ, o . (94)

The identities

cos® (@8) == [l + cos (2a6)] (95)

N |-

[1 - cos (2a6)] (96)

sin® (a@) =

1]

and use of Equation 62 enables Equation 94 to be written as

(L

(=]

Bpas

o

2 2 2 2
{[w” (Ako, m)m + Wka, m Aka, ml cos (ka®) Jka, m}

2 wB'K cos Q cos{a8) I, o+2w D! sin Q@ cos (aB) Jq, o
w K% \? sin 2Q (J&’ 0)Z + -:1;‘- a?r % w K?sin 2Q J;’ °

G ?w’K?sin2Q I} | +% G? w’K’sin2Q7}

w K’ sin2Q T, + -;— » K2\ sin 202 cos (2a68) (T}, o)

- 1 -
o’r ?wK?%sin2Qcos (206)J3’0+ > G2w’K?%sin2Q cos (2a8) Jg,o

+

N T N RN N P N Y ] Lo

G~ %w® K? sin 29 cos (206) fo,o - i-w)\ZKzsin 2Q2cos (ZQB)J; o.(97)




34

Equating coefficient of cos (kaf) yields four equations which

after being multiplied by r Jo, g ¥ Ja’ j T JZa, j T Jka, j? respectively,

and being integrated over the interval 0 to a will appear as

. 2
2 2 2 2 a 2
[w (onj)m+wo,j Ao’j]—z— JO (Xo,ja)

1 : 2 -
=5 Kfosin20 (N1 (3 o) To 51+ 172 37 3, 51}

1. .2 . 3 -2 5 1 2 | 2

+2K smm[ZG w ‘Zw)‘JI[Ja,oJo,j] (98)

2

2
2 2 2 2 __a___ i_ 2
[(.0 (Aa,j)m + wa:j Aa’j] [1 - x‘zz } az} 2 Ja ()\Q,ja)
»J

2
= w [B'K cos 2 + D! sinQ] {1 - ;—Z—a—;} a? JZ (A, o2) (99)
a,0

2 2
2 2 2 2 4o a 2
[w (Azg, g t ©20, j Am’j] [1 -5 2:’ 5 2,0 (Azq,j2)
A\a, 0 2

1 . 2 -
=5 KPwsin 20 (N 1(Jg,0) Ju0,5] - @®1[r7 35 o Toq, ]
FL KPsin20 |2 G WB- 2 w22 132 73, ;]
> sin 2Q > w > @ o,0Y20,j (100)
2,2 2 2 _
[w (Aka’:J)QQ + wkCl,j Aka,J] - O k ; 3 . (101)

By using the first two Bessel function identities from Appendix A,
these equations become

2 2 2 . 2
w? (AZ Do t o, j Ao, j = K Cijsin 221 [T o Jo, 5] (102)
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2 2 .
w (Ag, oo + 94, ] Ag ;=(B'Kcos 2+ D'sin Q) Cy (103)
2 (52 2 2 w2 2 .
0 (A2g, j)oo t “2a,j Ara,j =K Cyl [Ja, o Jm,j] sin 22  (104)
2 2 2 2 _ -
0" (Ary 5000t “ka,j Aka,j= 0 kZ3 (105)
where

C _1 -2 (32 ]"1 A2 - 2 +3w4

j=3 wa o (Mo, j2) o, p (106)

-1

- 201 2 132 () [1- 2 [3% (x i
Cy = CLT T N2 a2 o (Aa) - L aPg,j2 (107)

)‘,j

-1

1 -2 I: 4o° :J -1 [ 301 z 2
Cyi=- wa i-— [J, (A a)] —— + A" - :
3J 2 Xzza’j az 2 2a, ) GZ 20, }

(108)

To determine the Alzw j from Equations 102, 103, 104, and 105,

the Alz(a j is expanded in a Fourier series.
2

(o0}
1 o J] £ .
Aka,j == aka,j + lzl{aka’j cos IQ + bka,j sin IQ} . (109)

Upon substitution of Equation 109 into Equations 102, 103, 104, and 105,

the following is obtained:

(o0}
1o z z 27 2 2 2 27,1 .
an’j+lzl{[wo,j—l w]ao’jcos!§2+[mo’j-l “’]bo,js‘nlﬂ

=K® Cy sin 22 1 [I5, o Jo, ] (110)
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w
1 o 2 1 1 .
-2- aa,j + 121{[wa’j -1 wz] aa,j cos I +[w2’j -2 wz] ba,j sin IQ}
=(B1KcosQ+DlsinQ) Czj (111)
[oe]
1 a.o i Y 2 Z 2 £ 2 2, 21,4 ]
2 %20,) IL:I i[“’zaf.J 2°w*] azq,jco8 12 +[wzg, j- 45w ]bza’jsinlﬂf
= K? C3j L [Jq, 0 T34, 3] sin 20 (112)
1 [e0]
a§QJ+ Z [wf(a’ -2%w ]akaJcoslﬂ
2 - )
2 2 2.2 .
+[‘*’ka,j“ w']bza’jmnlfz} =0 (113)
for k 2 3.

At this point the assumption will be made that the liquid depth
is such that wf(a j # 4w’. The significance of this assumption will be
examined later. At this point the conditions imposed by Equations 70

and 71 require allm,j = bllca,j = 0. Now equating coefficients of cos £

and sin £$2 gives the results

2 2 211 2 2
bo,jz[wo’j--’}w] K Cle[Ja,oJo’j] (114)
2 2 21~ 1
Blg,j = [@ia,j - 4w I"rPcy1(ag , T,a, i) (115)
B'=D'=0 (116)
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£

a.ka’j=0 ‘=0,1,2,... (117)
2
bkar,j =0 1 # 2 . (118)

The results of the second approximation are given by

cosh [)‘o,j (z+h)]
cosh ()\O,j h) }

E‘N

1]
«:":aM 8
~—

2 .
bo,j sin 22 J ()\o,j r)

® N cosh [sz,j (z+h)]
+ Z {bza’jsin ZQJza,j(xza,jr)cos (2a90) }

5=0 cosh xza,j h
(119)
, [ -
z_;z = - -;— G ! cos?q K? l-cos?‘ (a©) )\021, o (Jc'r, O)Z + r~% o sin® J;, o
w4 2 2 1 < 2
+? cos” (aB) Ja, o] -2G Z {bo,j cos 20 Jo,j
j=0
+byq,jcos 22 T,, j cos 2&9} . (120)

The third approximation is found by a similar procedure. Substituting

Equations 67, 92, and 119, into Equation 87, yields
@ D 3
2 2 3
Z Z {[w (Akg, 1,n)m2 t Ok, m Aka, ml cos (ka) Jka, m
k=0 m=0

=2 K w B® cos Q cos (a6) J, of 2 w D? 5in © cos (a6) Ja, o

@

-4 KwcosQcos 22 \ cos (ae)J‘;’o Z {bz ')‘o,ch;,j
j=0

+ baa, j N2q,j Jza, j cos (2(19)}
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+2wKs1nQCOS(09))\Ja OSInZQZ{OJ o °J

+ b:a,j )‘za,j Jéa,j cos (Zae)}

- . 2 N
-41r"% WK cos Q asin(o8) Jq, o co8 22 {“ZQ,JJZQ J\aa)sm(caﬂ)f

J

gl_\da

o]
+2r°? wKsin(Q) o sin(aG)Ja osin?.Q Z {bza,j Jza,j(Za)sin(Zae)}
’ =0

9]
-4wKcosQcos (aG)XJa,otanh(Xh)cos 2Q E {bo,j )‘o,j Jo,j tanh ()‘o,j h)
=0

2
+ bza,j Jza,j cos (2a0) )‘ZQ,j tanh ()‘za,jh)}

+2wK sinQcos (a6) J, o\ tanh (\h) sin 2Q ZO bo 3)‘0 J1:anh()\ )Jo,j
J—

2

t bza,j )‘za,j Jzoz,j

cos (2a8) tanh ()‘Za,j h)}

[0}
4 2
+ e w’ K sin Q cos (a6) J, o 8in 22 -20 b, j Mo j Jc,j tanh ()‘o,j h)
J:
2
* b2g,j Mea,j J2a,j cos (2a8) tanh (X, 4 5 h)}
2
-Ew K cos Q cos (af) Jao)\tanh (\h) cos 29 Z o_] 0.j

j=0
oo}
+b2 i J -cos(ZaB)}-wKsichos(aB)J’ 7 {bz A% . J. :sin2Q
2, Yaa,j a,0 '_}0 0,)70,]70,]

+b2 .1, : cos (2a0) )‘ia,j sin ZSZ}

Z,j Z,J
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+ 2wKcosf2cos (aG)Ja ocos (202) \? Z { 0, o,3+b.zzaJJza,j cos (209)}

3
2
- K3 cos3s2cos3(ae) )‘4(J11’0) (Jt':r',o) + —K4 cos’Q sin®(a8)a®cos (aB)Jé o
r ’

~K?*\%cos3Q cos3(ae) Jé,o tanhz()\h)

+ Ar™? K® cos’ 2 cos (a0) sin’® (ab) of Jé,o Ja,0

- 2K’ cos’ 2 cos® (a8) \* T, (T, ) tanh?® (Ah)

- 27 K®cos®Q sin® (a6) o® cos (a8) AT _ (I] )

[}
™~
Lo ]

2 K? cos®Q sin® (aB) of cos (2©) sz,o A% tanh? {\h)

K> G ! wf cos® 0 cos® (aB) \* T, , (Jp, o) tanh (Ah)

r-?2w? K> cos (aB) o’ sin® (@8) cos®Q X\ tanh (\h) J; o

]
N= =
Q Q
[} []
[ (%]

w? K* cos® 2 cos® (ab) J;, , \* tanh® (\h)

+
N |

K®cos®Q cos’® (ab) Jq.0 (T4, 0)°

2K?®cos?$ cos (@8) o sin’® (ab) J; o A2

V=

+ -% K? cos®Q cos? {aB) ng,o \* tanh® {(\h)

+4 G ! K3w? cos 2 5in® Q cos? («9) Ja,o (Jéy, 0)Z A tanh (A\h)
+ 4G WP K3cosQ sin®Q cos (@0) o’ sin®(aB) J;’o \ tanh (\h)
+4 G ' w’ K’ cos © sin’Q cos® (a8) T, A\’ tanh (\h)

+ G 2 w*K? cos Q sin?Q cos’ () J;,o A% tanh?® {(\h)

- G ' wK?cos © sin® Q cos?® (a®) J;,O 2? tanh {(\h)
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1
+= G ?w*K?cos 2 sin® Q cos? (aB) J; o %

2

1 -
-3 G™! w? K®cos 2 sin® Q cos® (20) Jé o A\? tanh (A\h) . (121)

By using identities A-7, A-8, A-9, A-10, A-11, A-12, and

-~

A, Equation 121 may be written

t-___..- i 4

A-13 from Appendix

w

3
{[w (Aka mloo T w2 m Akar,m] cos (ka®) ‘Ika,m}
k= 0 m=0

= 2w B*K cos Q cos (ab) JQ,0+ 2 w D® sin Q cos (a0) Jo o

- 2wK[cos Q2+ cos 3Q2] X\ cos (aB) Ja o Z { ,J 0,j o,_]}
+wK[cosQ-COS39])\J COS(QB)Z{OJ }
-2G % WK [cos 2+ cos 32] Jy,0 cos (ab) Z {o_] 0,j ¢ ,J}
+ 3G K[cosQ-cos3Q]JaoCOS(019)Z{OJ o,j O,J}

[s0]
-G LK [cos Q@ + cos 3%2] Ja,o cos (a9) Z {bé j Jo j}

K

1 : L2

-5 K [cos 2 - cos 322] cos (ab) Ja,0 _ZO {bo,j )‘o,j Jo, j}
J:

+ w K [cos @ + cos 30] cos (a8) Ty o \° Z { 0,] °’~’f
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w KX\ ‘I('x, cos (a8) [cos 2 + cos 3] Z { 2a,j Mzaj JZa,J}

w0
- w K\ Jy o cos (3a6) [cos Q@ + cos 3] Z {bga,j X2a,j J:’.a,j}
B

.
bza _] )‘ZQ,_] Jza JJ

w KA Jy o cos (ab) [cos 2 - cos 32]

.'.‘
NI'—‘
ip-18

J

+-;— w KA\ Ja o cos (3a8) [cos Q - cos 302] E {bza_] X2a,j Jza,_]}

- r ?wKa®J, o cos () [cos 2+ cos 3] Z {bza,_] 2a _]}
+ r 2w Kol Jq,0 €08 (3a9) [cos Q + cos 30] Z { 2a,j Za',J}

+% r'?wKa’ Jq, 0 COS (a8) [cos 2 - cos 3%] Z {bza_] JZCY,J}

N

r’? wK o Jq,0 cos (3a8) [cos 2 - cos 322] Z {bza_] za,_]}
-2 3 0) [cos @ + os3sz]z bl T, w
-G wKJa cos {«a cos C 2a,j Y2a,j “za,j
2
-G ? LK ‘Ta cos (3a0) [cos © + cos 3] Z { 2a,j Jzaj wZQ,J}

+-§- G 2u’K Jo,0 €OS (aB) [cos Q - cos 3Q] Z {bzaJ 20,j za,_]}

+§- G ?w'J cos (3a8) [cos Q2 - cos 3] 2 L ZQJJZQJ zaf_]}

«,0 JO
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N =

G ?w’K Jo,0 cos (aB) [cos 2 + cos 32] Z {bza jTza J}

1 ..
3 G2 5 Ja,0 €08 (36) [cos @ + cos 3] Z { 20, JZQ,J}
@©
1 (2
—wK7J cos {8 fcos @ - cos 301 ¥ {1 I
0 N2 coe \&©T CLC8 we CO8 Ja¢j 3] R Jza’ A
2 @,0 {a®)} | jétol 20,j j za,J]

w K Jy, 0 cos (3a8) [cos © - cos 3] Z {bza,J J, )‘ga,j}

N

N -

© K A? Ja,0 cos (ab) [cos @+ cos 32] Z {bZQ'J Jo0 J}

N -

w
w K \? Ja,o cos (3a8) [cos 2 + cos 3] Z {b;a,j JZa,j}
By

—1'% K? cos (a8) [3 cos Q + cos 3] {— \¢ (Jéx,o)z sz',o

2 =2 4 13 2 ~=2 4 1
\° G wJa,o-ZXG ‘*’Ja,o(J

- 1 - 1
G™? W\ T, o (Tp, o) -3 G *0832 _+2 0\t

N

-2 2 4 3
G )“"Ja,o}

N |~

16 K? cos (320) [3 cos 2 + cos 3Q] { \* (Jy o) J

NGty -2Zigtietr, (1

)Z
a,0 a,0 a,o

1 -2 4 .2 2 1 -4 8 .3 1
-Z—G wo A Ja,o(J&,o) --Z‘G w J + =
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1 . 1
+ 3 G2\t Ja?,o} + 1 K? cos (a0) [3 cos 2 + cos 39] {r"a‘J;’o

-3 2 3 1 -2 2.2 142
+r° a )\Ja,oJa,o-Zr a“ ) Ja,o(‘]a,o)

- - 1 . - |
.ZGZrzaZw4J;,O—EGZrzw4azJ3 +—2'rzazXZJ3°}

- Tlg K3 cos (3a0) [3 cos 2 + cos 3Q] {r'4 ot Jc:,o

Godho-21 2N, (g, ) -2G e Wt

+r2a®? AT

-2 _-2 4 2 13 1l -2 2.2.3
- G r waJa,o+2r a)\.]'a’o}

1
2

+ 3> K? cos (ab) [cos @ - cos 30] {z G™% W A2 T, (T4, o)

-2 442 12 -2 4 y2 13
+2G w0\ Ja,o(Ja,o) +4G % 0" N Ja,o

-4 8 3 -2 4 y2 12 1 -2 4,23
+ G wJa,o-G w )‘Ja,o+2G w )‘Jar,o

1 1 B
) GZw* \? JZ,0}+T5 K cos (3a8)[cos2 - cos 3] <2 G 2“4)‘2Ja,o(er,0)2

-2 4 2 2 -2 4 2 +3
+2G 20 AT, (Fh,0)7+ 4Gt AT

+ G W8 J; o - G ut xZJ; o

1 -2 4,23 1l -2 4,23
+SGTR NI -5 Gt NI,

+i— G % r % w*K?cos (0) [cos @ - cos 3] ot J;’O

1 -
) GZr 2 w* K3 cos (a8) [cos Q - cos 3Q] o J(;,o . (122)
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Now equating the coefficients of cos (ka®) two equations
result. Multiplying these equations respectively by r Jon and

rJ and integrating over the interval 0 to a will result in the

3an

following two equations:

2 2
2 3 3 o 2 a
{[w (Aan)og, + “on Agnl [1 -3 az] I, (A\gn a)} >

an

2w[B?KcosQ+ D%sinq] I P40 Ja,n]

(o)
© K\ [cos 2+ cos 32] )} b i No, j11T0 5 T4, 0 T, nl
j=0

-+

® 3 5
2 w 2 w w 2 2
KcosQZ b -[——w -——G -3 )\o’-+w)\jjl[J 0, aoJan]}

=4

@© 5
2 5 3 2 w l
K cos 3Q Z b -[-—(;z'w @o,j -—G2+2 ,J+w)\ ]I[JOJ aoJan]}

«©

1 2

- > KwX[cosQ+3cos 32] ) {bm,j Na,j1Tz2a,i Ja,0 Ja,n]}
j=0

®
..Kwaz [COS Q2+ 3 cos 39] Z {b;a’j I [r—z JQ’,OJZQ,j Ja’n]}
j=0

@© 3 5

1 W w w2 2

+E Kcos Z {b;aJl:G wgad E-Z- Y )\za,j'“")‘ JI[JZa,j Ja,oJa,n]}
j=0

1 2 w’ 2 2
+2Kcos392{zaj[ —-; e i 2 wawx 1[J,0,ja,0Ja,nl

9
- ¢ K’ cos @ NI [(3y o) T 6 Ty n)
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+{+ 2 [3 M- T Gt ]I [Ua,0)" Ja,0 Ta,n]

- -3 52 g
+a*Ifr Jao a,n]'*'a’ MNI[r T2,0 Ja,0 Ja,n!

- 1 -
- 202 MNI[r?g ao(Jao) Jan]+2.-l:-7 G+3)\2 z:}I[rZaoJa,n]

3 2 4 lwa 3 3 3
303 % 1o senl} g 00 con

1
+ R 3 cos 30 { G [(J J:z',o Ja,n]

3 X 39 )\ 1 2 4 -4 3
+ [—2— 2 —G—J Ta,0 Ua,0) Tg nl #0173, T4 0l

-3 2 -2 t 2
+o®NI[r ath:z,o an]"za)‘l[ OO(JO’,O) Ja”n]

-

+
o=

4
2 2 2 W -2 33
AMa"-13a Gz] I[r™ Jg0 Ja/,n]

— X (.08
21“4__+9_]1[J 1. (123)
o G* @,0 Ja,n

t
N~

2 2
2 ,,3 2 3 o 2 =
{[w (Algnloq * “3a,n A0 [1 - z:] T3a (V30,0 a)} 2

A3g,n a

= - E— A K w [cos @+ 3 cos 3] 2 { 2a,j M2q,j L [J:za,j J:z,ojsa,n]}
1 S z
) -
+ 5 @ K a® [cos 2+ 3 cos 32] 'Zo bza,j I[r* Jza/,j Ja,0 Isa, n]}
J:

1 Z V) W 2
+—2-KcosQ Z' lza Jl: Y2a,j” 2 ‘E‘ Kza,j*‘wk]l[JzaJ aona n]}
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@ 3 5
1 2 w 2 w
+=Kcos 3Q {b . [- 5— w - —

+E wa+mx }I[szJ aona,n]}

— K’cos 0 {_ 31 [(J;y,o)z Ta,0 T34,n]

41O ’

41 w? -
ts [3 A - 78 — } 10T, 0030,0  T5gnl-3* 17" 73,6 T34,n]

1

-3a2NI[r? 3L (T, (Taanl v 6 QS NI Ty (0,00 T30,n)

+—[7aw-3a )\Z]I[ aojsa,n}

+l[3w4—)‘i-9—]1[J J ]}
2 GZ G a,0 Y3ia,n

1 4 o2
18 K> cos 30 {- MI[(3g,0)° 5.0 Tsa,nl

1 4 2
+E[ - 13\° _G—}I[Jao a,o) J3a,n]

-1 [r7* T, ] - a° XI['3JQOJQ,OJ3a’n]

3an

2,2 -2 12
+2a*N\1]r Ja,0 (Ja,o) ‘Isa,n]

1 2w4 2 2 -2 +3

+E [130{ ; -a” N\ I[r Ja,ojsa,n]

1 ot w8

--2-[7x E—+3_JIU“° mn]} . (124)

To simplify the algebra, the following constants are defined.
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2 T -2 3 2 2 w |2
Q,. == "G L VA
4jn= 2z w mo,_] G? w O,J+ 2 A
-1
1 2 aZ -2
+s w)‘a,n] [1 -—2-——;] [3, O, 2)] (125)
. )‘a,na
2 7 w2 w® 2 1 2
Q5jn-a_2 --SGZ wo’j—-a—z- w O,J-Ew)\
3 2 777
-Zw ]!il—-—ji—-—] [T, (A, nn a)] 2 126
2 ¥ %a,n )‘é,naz a \Aa,n (126)

-1
_ 2 r(.o3 2 w’ 3 2 2 o’ -2
Qéjn = a—z IL_z “2a,j T~z T2 ¢ )‘za,j - “’"a,n 1-= 22 [Jaf()‘a,na)]

a,n
(127)
2 w? w?® 5 2 2
Q"Jn—az [: SEE Zasj_EE+E Xza’j-Zw)\
2 1-1
2 a -2
X\ a
C(,n
3 20t 1w 1 2 2 3.2 7wt
[®) =[—)\——--——+—-(3)\-)\ )(—-)\ -——-) (129)
sn "~ | 2 a? 2G4 6 a,n’\ 2 ZG?-
21 2% 4. 9 w® 1 2 p) (1 2 13wt
== S et S - (3R = -——-) 130
Qon [ 2 gt ° 2G4+2( anl (32 2 G2 (130)
2 [w? w3 2
Qugn = 55| & vlay -2 -3 02,
-1
1 9 o -2
2 a
+“°)‘3a~,n_' I_l ";2___2:} [T3¢ (30,0 2)] (131)
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. - 2 w3 2 w5 5 2 2
Qu_)n—az [" 5Gz w2 q,j -Gz -3 w)\za’j 2w\
902 1" 2
2 o =
3w )\3a,nJ [1 - N2 z] [Jsa (A 3q,n a)]
3a,n @

-1
2 2 -2
Qun =— [1 - —)\Z—Q_Z:’ (7, (Ag,n 2)]

-1

2 9 of
Qisn = ) [1 - z———z_] [Jm, ()\3a,na)]
A3g,na

-2

PP 3 .
Once again it is assumed that the Ay, can be expanded in a

Fourier series of the form

[0
3 _ 1 o] l I .
Aka,n = E- Cka,n + 21 {cka,n cos £Q + dka,n sin IQ}

With the use of Equations A-9, A-10, A-11, A-12, and A-13,

Equation 123 can be written as

o

=2w[B*Kcos 2+ D*sin Q] 1[I, , Ty 1]
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(132)

(133)

(134)

(135)

(136)

(137)

(o]

1

> Cant Z {[wé n- 12 w?] c; L, Cos 12+ [‘*’a,n - 2% 0% d‘:’n sin IQ}
2= ’ d
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2
¥ Z’ {K €08 2 bo,5 Qujn L 1o,5 74,0 Ja,n]}

{K cos 3Q bo J QSjn [Jo,j JQ,O Ja’n]}

]8
)

+ -2- K cos Q JLJme’J Q4 jn [sz’j Jg.0 Ja’n]}

1
+3 K cos 32 Z {bm,J Qin IU20,5 Ta0 Ja n]}

3 3 4 12
+ 1% K’ cos Q {- 32°1 [(Ja,o) Ja,0 Ja’n]

3

4 -4
+a°1]r ao an

-3
]+akI[r Jozo‘Iar,oJarn]

-2 a22\%1 [r-Z ‘Ia,o (JO’,Q)Z J‘a’n] + an I [J;’o Ja,n]}

1

a,0 an]+al[r-4~]3 J ]

@,0 “a,n

1
+ 1g K’ cos 30 {- 3NI[T, ) T

+ o )\I[’“”J Jopod, -2 2\1[xr"2 (3} )3

«,0 “@,0 “g,n Q, @,0 Jar,n]

+ Q9n I [Jc31r,n ‘Ia,n]} , (138)

and Equation 124 may be written as

@

1 2 27 2 .
-é- C?a,n+ lz {[w3a,n - lzw?-] Cyq.n CO8 £Q+[w30 n -1%w ] dsa,nsn‘!gz}

K cos Q E b, Quin I U2a,j Ja,0 T34,n]
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-~ Z
+3 Kcos 32 .E;O{bm,j Qjn ! T20,j Ta,0 T3a,n]
J:

+1— K3cos Q {- 3 X‘I[(J"z o)z.]"| J

4 -4 13
16 a,0J3qn -3’1 [x Ja,0 T34,nl

-3 0132 _ T ]+6a2N1[r 23 ;,o

2
0 o “a,0 30 n Cl’ (o] (J ) J3a,n]

3 4 2 o1
+ le [J @,0 30 n]} +— K? cos 3Q {— A1 [(J:z,o) Jo;,o J3a’n]

4 -4 2 -3 71
- I[r Ja,ona,n]'a’)‘I[ Jozo aoJ3an]

+ 28 NI [r7 Ty 6 (34,0)" T3g.n] + QunI133,0 T3a,m] - (139)

Now equating coefficient of cos £ and sin £ noting that

Cé,n = d&,n = Cala,n = d;a,n = 0, the following expressions result:
0]
2. _ 2
2w B "'Z{Kbo,JQunI[O,J a,o an]}
j=0
l o]
1 2
T2 K Z {bZQ/,J 6jnI [Jza,_] Ja,0 an]J
j=0
S KIQ. d-3NI[I. BT ]
16 14n o a,0 “a,n
+a*I[r"% 53 ]+a)\I[r'3 Jo.0 Ja,nl

-2 N I[r7P T, (3, anl T Qgn I J: 7 ]} (140)
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[+]

1 2

t2 K 'ZO {bza,j Q7jn I [Jza.j Ja,0 Ja,n]}
J:

1 -
+ 76 K* Qun { 33 134,00 Jg,0 Ja,nl *+* T[x™* 15, Ty o]

1 & Wya=a

a,0 a,0 "a,n

3
+ Q9n I JQ,O Ja,n]})

+o® NI 332 5 3 ]-2a% Z2I[r? (J"y,o)’- a0 Ja,n]

-1
3a,n

1 3 4 1 2 1
+Tg K len.{- A I[(Ja,o) ‘Ta,o J3ar,n]

4 -4 13 2 =37
iR § RSP SO [RIPED N o b SN S SO
+2afz)\zl[r'2 o (T4 o) ‘Iaan] Q13nI[J3 J3a n]})
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1
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(141)

9]
1 [ 2
(£ & s 2umt i S )
J:

(142)

(143)

(144)

(145)
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The third order approximation for the velocity potential is now

given by the expression

cosh [xa,n (z+h)]}

©
w3 = 3 os 32 cos (ab) J
nz:o {Ca,n cos (a6) a,n cosh ()‘a,nh)

cosh [\, p(z+h)] }

o]
+ Z {C:anos 3Q cos (3a0) N .
n=0 ’ ’ h)

cosh O‘sa,n

(146)

where c?m and C:a,n are given by Equations 141 and 142.
The frequency correction term B? and the wave height 2_;3 are

found from Equations 140 and 91 to be
@
§3 =K G ! B? sin Q cos (a) Ja,o +w ZO {cé.n cos 3Q cos (ab) Jaf,n}
n=

[+9]
+ w Z {Cza n COs 3% cos (3a9) Jsa,n}
n=0

@
-1 2 )
- G"" AKcoscos (ab) T, , Z {bo,j No,j 8in 22 To,j
j=0
+ b3g,j Naa,j Sin 20 Tya,j @08 (209)}

2

w
-2G ' r? Ko cos Q sin (a6) Ja,o .ZO {Q’ bza,j SinZQJZa,j sin(ZaB)}
J:

=0
- G™? w? cos 2 cos (@8) Ja,0 Z {wi,j b‘:'),j sin 2Q Jo,j
j=0

2 2 . i
+ “’za,j bza,j sin 2 Jza,j cos (206)} (147)
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[os]
1 2
"2 Z {b?.a.j Qg jn 1 [Jza,j Ja,0 Ja,nl

+2a® N I[r P,

-Q, 103,, Ja’n]} : (148)

Physical Significance of €

In order to make the solution meaningful a physical significance
must be found for the expansion parameter €. To the first approxi-

mation the wave height { is given by

{ =€ Z_,l = € KG™! sin & cos (a8) T, (Ar) . (149)

Let¢'=1atQ=n/2, 6=0, and r = a, then 1 =KG™'J, (\a)or

K=G J&l (\a), and thus

¢t = J(;l (Ma) cos (ab) sinQ J (\r)
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Now from Equation 149
t=€t’=¢€J;' (\a) cos (a®) sinn T, (Ar) . (150)

AtQ=w/2, 6=0, and r = a, Equation 150 gives { = €; thus, the
parameter € represents the wave height of the linear theory evaluated
atQ=m/2, 6 =0, and r = a. This is the same physical significance
found by Mack and by DiMaggio and Rehm for circular cylindrical

containers,

It is now convenient to nondimensionalize the solution by

introducing the variables

A
— T - =z m,n
TER BT UER Yy a )
- - N - -
g=_§_’ v = - G = .Gz ’hzE
a (2)a? Q) a a
—_— K -
K = - Z, E:E
Q) a a

(151)
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Summary of Solution

In terms of the variables described above the various solutions
may be summarized as follows. Note that the term (-(-.'}).l represents

a dimensionless frequency parameter.

First Approximation

- _ cosh (z+h
¥! = K cos 22 cos (aB)Jao Ly __)] (152)
’ cosh (y h)
' =K (G) ' sinQ cos (a8) I, o (153)
(G)™! = y tanh (yh) (154)
Second Approximation
- 2, cosh [y(z+h)]
vl = Z{bo-sinZQJo- = 1(
j=0 2J »J cosh (Yh) J
o cosh [y, . (z+h)]
) {T)z sin 2@ J. . cos (2298) %) } (155)
j=0 2a,) 2as) cosh (y H)

2a,j

ZZ - -é— (K)? (G)~! cos? 2 [y? cos?(ab) (le,,o)z

-+

=% 2 .. 2 2 -2 2 2
(r)  a° sin® (aB) Ja.o + (G)™"cos” (a8) T, o]

H

[o0]
—_ -1 -2 T2
2 (G) -Zo {bo,j cos 282 Jo,j tb,, j cos 2Q Jza,j cos 206} (156)
J:
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Ql

(G)7' = y tanh (yB) (157)

where
Fwp -1
T2 _1 =2:70J “2r 2 2 =
i 3 e ] Bl I+ 3@ I, o T ]
(158)
V223
er -1 2 -1
- 1 — 2a 4 -2
2 _ X 2 ] a
b2a,j =7 (K L wZ 4] [ T2 J [T,0 &v,, J)]
Yzqa,j
"2 g2
X [3(G) " +v° ] a0 %a,i] (159)
Third Approximation
o cosh (E«I—K)
Z {c3 cos 3Q cos (@ 0) J [Ya,n ]l
a,n a,n - J
= cosh (ya n h)
o cosh[y (z +h)]
+ Z {Ega,n cos 3Q cos (3a8) J3g,n 2an — }
n=0 cosh (Ysa,n h)
(160)

— —_— — -l -
£ =K (G)" B%(w)"! sin Q cos @) 7,

@

3 (E}-)'1 Z {E; m €°8 32 cos (a 6) I, ml
’ ’ J

m=0

+

oo

— _
+ 3 (G) Y {c:a m COS 32 cos (3a0) T, m}

Ld
m=

z rbOJYo,' sin 2QJ
j=0

(C—}) v K cos Q cos {aB) Jar

0, j
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=2
+ bza,j Y?.01,3'

a,

sin 29 Jz j cos (Zae)}

- (G) (r) 2K o cos Q sin a® Ja o Z {a b2 JstQJ 81n(Zae)}

[+4]
—_— — =3 -,
- K{G) <cos § cos (ad) Ja,o Z ’rwé,j (w)'z bo-,j sin 2Q Jo 3
j=0
2 -272 . . "r
+ (wzar,j) (w) bzcz,j sin 2Q Jza,_) cos (Zae)J (161)
— -1 —_
(G) = y tanh (yh) [1 +€® G_] (162)
where

«Q
1 T2 oy o
- E Z {bz‘r’j Q6Jn1 [Jlaf,j Ja’o Ja,n]}

3 r —~ i
"Te (K’ Qiin {3 vi T [(Ja o “Ja,0 Jar,n]
AT T 1-afy I ()3 T T ]

a,0 a,n CYO a,0 a,n

+ 2 at YZ—I- [(r)™? Ja.0 (Jc‘r,o)z Ja,n] - —8 1 [Jar o Ya, n]} (163)
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+a*1 [(r)t 32

aoan]-'l-ayl[(r)' J2 33 o)

o,0 &,0 "ag,n

2ot yEI[(r)? Iy, o) Je0 Ja,nl * Q 1 [(JQ'O)S Ja,n]}) (164)
J

[ “’ga n '|-l 1 o
—, _ s 1 = =
Csa,n - l_ 2 9. (2 K Z {bza i QllJn I [Jzar_] a,0 Jaa,n]}

1 3 = AT /7' 22
+ 16 (K) len {' v 1 [(Ja,o) Jar,o J3ar,n]

4 -4 3 !
-a*T [(r) J, Jsa,n] o v 1 [(r) a o Ja o Js3q,n]
+ 2 o2 2 'I" [“ -2 'y g ]
a”y (r)  Ja,0 Ug,0) J3a.n
+ 613nT [J;,o J3q,n] ) (165)

~ — -2 @, 1,1 2 17! -

Qujn = 2 [(G) —Zl - (@7, j*EYZJ"z'Yé’nJ [1 _yoi J alvg,n)1”
on (166)

wZ ] 3 2 -1
— —_ =2 5] —_—-2 =
Qi =2 {-5((}) —:Z-l -(G) -vg-3Vi-3 v;,n} {1 -Y‘z" } [Tatv, )]
@,

(167)
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— 5 2 =1

Qn=2[-5@7 2L @r + 3l -2, ] [1 3 ] 3,0, 7
* (169)

6 _3 —-4 1 2 2 3.2 1 -z

n -EY @ —(G) tg By -Ya,’n)[EY -3 (@) J (170)

— 21 - - 9 —- 1 1 13 =

Qpn=-5 V@ -2 @ +3 (3yz-vg,n)[g Y: - 5= (G) ] (171)
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(172)
6 2 wél’, l T2 é 2 2
9 ot -1 -2
-3 Yga,n] [1 - } 50 Wsg,n)] (173)
ja,
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CHAPTER V

NUMERICAL RESULTS FOR 90° SECTOR TANK

Numerical results were obtained for @ = 2 which corresponds
to the case of a 90° sector tank, The various definite integrals of
products of Bessel functions were numerically evaluated using Simp-
son's rule. The values of these integrals correct to three significant

figures are given in Appendix B,

Critical Depths

As previously mentioned the expressions for the second
approximation contain the factors wzoj/ « - 4 and w3 o, j/ «® - 4 in the
denominator. Similarly the expressions for the third approximation
contain the factors wzz a, j/mZ - 9 and w23 Q, j/w2 - 9 in the denominator.
If for some particular values of j and h these factors become zero
then the solution is invalid at that point. This type of behavior has
also been noted for other container shapes. 25 It was found that
certain values of j and h do cause these factors to become zero.
These values have been referred to as critical depths., The critical

depths for the 90° sector tank are given in Table 1.
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TARLE 1

CRITICAL VALUES OF h

W2 W2 Wb We 3

3 ~2l-4=0 4]l -4=0 =2l-9=0 _..1_9=0
J wz wz w2 wz

1 --- 0.3236 -—-- 0. 1421
2 0.1695 --- 0. 0808 0.2039
3 0.3910 --- 0.1657 0.2691
4 --- - 0.2233 0.3282
5 --- -——— 0.2908 0.5126

It has been pointed out by Ma,ck2 that a physical meaning may
be attached to these critical depths, It has been assumed that there
is a first mode of order € oscillating at frequency w and that all other
modes and harmonics are of order € or higher. However, when the
debth equals one of the critical depths this assumption is not valid.
At these depths the particular mode designated by j will also be of
order €. Itis interesting to note that the experimental work of Fultz

and Murty7 show no unusual behavior at the critical depth in the case

of a circular cylinder,

Frequency of Oscillation

The frequency equation of the first and second approximations
was found to be
(G) ' =y tanh (YE)

8
which agrees with that found by Bauer for the linear case. The
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frequency then is a function only of the depth through the second
approximation. In the third approximation, however, the frequency
is given by the expression

(G)™! =y tanh (YR) (1 + €* G¢)
where the frequency correction factor G¢ is given by Equation 163
A plot of G, against depth is given in Figure 3., It should be noticed
that G. changes sign, being positive for depths below 0.29 and
negative for larger depths. This correction factor for the natural
frequency is probably the most noteworthy result of this analysis,
One of the prime reasons for compartmented containers is to raise
the natural frequencies of the liquid, The fact that the natural
frequency decreases with amplitude for dimensionless depths above
0.29 is extremely important since it tends to offset the reason for
dividing the tanks into compartments,

The frequency correction factor remains almost constant for
depths greater than h = 1.0, but at the lower depths it becomes very
large. No explanation of this behavior can be offered. Figure 4
compares the frequency correction factor for 90° cylindrical sector
tanks with that found by Mack for the axisymmetric case of a cylin-
drical tank and with that found by DiMaggio and Rehm for the non-
axisymmetric case of a cylindrical tank., It is interesting to note
that for small depths DiMaggio and Rehm's solution also gives very

large values while Mack's does not.
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90° Sector and Circular Cylinder
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The experimental work of Abramson, Chu and Kana, ? while
not directly comparable to this analysis, has nevertheless shown
that for large depths the frequency of 90° sector tanks does decrease
with amplitude and tends to be more strongly nonlinear than circular
cylinders., This result is alsc indicated by Fi

A comparison of the dimensionless frequencies versus depth
for the linear and nonlinear theories is shown in Figure 5. Figure 5
also shows the frequency of the first non-axisymmetric mode for a
circular cylinder. The large values given by the nonlinear theory at
small depths make the usefulness of the solution at these depths
doubtful, From a practical point of view however, the greatest
interest is in relatively large depths since this is where the greatest
forces are generated. For depths above h = 0.4, the nonlinear theory
gives a frequency approximately 15 percent lower than that predicted
by the linear theory. The experimental work presented in Reference 9
showed that for large amplitudes the frequency reduction varied from
10 to 19 percent depending on the amplitude. However, since wave

amplitudes were not measured, an exact comparison is not possible,

Wave Profile

The linear wave height 7 is given by
T=€t' =eR(G) " sinRcos (@0) T, o
By choosing Zl =latQ=w/2, 6=0andr =1, IZ becomes

R =a[ JQ/(YQ,,O)]-l
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and thus the parameter € represents the wave height of the linear
theory evaluated at Q2 =w/2, © = 0and F =1, Figures 6, 7, 8, 9,
10, and 11 give some wave profiles comparing the linear theory and

the third approximation for several values of hand €, As might be

decreases but significant differences may be noted for large values

of €,
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CHAPTER VI

CONCLUSIONS

A solution through the third approximation for finite-amplitude
free fluid oscillations of a partially filled cylindrical sector container
has been presented. The solution is valid for general depth; however,
it was found that some discrete depths must be excluded. The solution
is found for a cylindrical sector tank with arbitrary angle w/a.
Numerical results are presented for the case where o = 2 which
represents a 90° sector tank. The results for this tank indicate
that the frequency is a function of the amplitude, decreasing for
large depths and increasing for small depths. Several wave profiles
are presented to compare linear and nonlinear theory.

To the author's knowledge, no experimental work exists
which can be directly compared to these results., Verification of

this work experimentally would seem to be a desirable extension,
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APPENDIX A

IDENTITIES INVOLVING INTEGRALS OF PRODUCTS

OF BESSEL FUNCTIONS

The number of integrals in the solution may be reduced by the
use of some identities which are derived as follows.

Consider Bessel's equation
ntr iyt (N -nfrH)y=0 (A-1)
y y Yy

which has one solution y = J,(Ar) for n, an integer. Let u(r) be any
function of r with continuous derivatives in the range 0 = r = a.

Multiplication of Equation A-1 by r u and integration from 0 to a yields

a a a a
‘S‘ry"udr + Sy‘udr + )\Z‘S‘ryudr - nz‘g‘r'lyudr =0 . (A-2)
0 0 0 0

Integration by parts of the first term of Equation A-2 enables the
equation to be written as

a a a

I *

‘Sry'u‘de-ngryudr-PnZSr‘lyudr:O (A-3)
0 0

0

provided y'(a) = J;l()\a) = 0. It should be noted here that the notation '

d
d(\r)

s d
in Equations A-1, A-2, and A-3 indicates y' = ar (v) not (y) as

used in the main text.
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Now by proper choice of y and u, several useful identities may
be developed. For example, choosing y = JoAonr)and p = J; (Ago T)

Equation A-3 yields
a a
2 2
2 Non Mo S\r Jon Jao Jao dr - Nop gr Jon Jgo dr = 0 (A-4)
0 0

where the notation now is that of the main text. If we now choose

y=J(Mgor)and u = T, (N, 1) To(AonT), Equation A-3 will give

a

a
2 3
Moo gr (30,002 Jon dr + X, xonS r To0 Jon Ty dr
0

a a
- ’\éongéo Ton dr+QZSr—IJao Jondr=0 . (A-5)
0 0

The combination of Equations A-4 and A-5 give the first identity

which is
a a
Ao Sr (3,002 Top dr + o® S\r'l Jio Top dr
0 0
a
=% (2 Moo - xgn)S‘ rJZ Jopdr . (A-6)
0

By an identical procedure, the following identities can be established.

- 1
A I[(IL0) Jojl+ o 1[r 232, Jojl = > (zxz-xgj) I[3Z, Jo5]1  (A-7)
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- 1
N I{(To) Toq, 3] - @ 1[r 2 350 Trajl=3 (zxz-xw’j) I[T0 T2a, ]

(A-8)
2
~2ANoj I [Tho Jon Toj] + (N 4NG5-2gn) I [T65 Tao Jon] = 0 (A-9)
' 2 2 2
“2X2q,j M [Jon J2a,j Thol + ()‘za,j"' Mo~ Man)I [Ton Jaa, j Jaol
-42’I[r"% T4, Jao Jan]l = 0 (A-10)

2 2
“200,j N [T34,n T2a, j Jaol + (N5q, j+>\z')\3&. n) 1 [J34,n J20,j Jaol
+4a*I[r7%J,4,n720,5 Tg0] =0 (A-11)
- 2 3
6 NI [(I0) Too Janl + 20 1 [r™% 320 Tonl=(3 \% = 20) I [T Tonl
(A-12)
2 3
6 NI [(T40)° Tgo T30, nl + \3q, n-3\%) I [Tao T3a, nl

- 3
-6’ 1[r7 % T, T30, ul (A-13)



VALUES OF INTEGRALS OF PRODUCTS OF BESSEL FUNCTIONS

APPENDIX B

2
I[Ja’oJo,j]

0.6759 X 10-!

-0.

0.

1603 x 10-!
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. 1639 x 1073
. 3646 X 10°*

. 1243 x 1074

1 1
1[(Jg, o) Ta, 0 Jan]

n=20

-0.

-0.

0.

-0.

2041 x 1072
1729 x 102
2912 X 10-3

1452 X 10~*

.3272 X 1075

0(107¢)
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I[J
j=0
1

2

2
a,ona,j]
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0(10°%)
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