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ABSTRACT 

The purpose of t h i s  contract  w a s  t o  expand the GT-7 Laser Communicator 
Ekperiment in to  a s c i e n t i f i c  study of l a s e r  wave sca t te r ing  due t o  re f rac t ive  
index perturbations i n  the atmosphere. 

This repor t  contains a complete description of the two data recording 
and processing systems t h a t  were constructed on the contract. 
describes the a c t i v i t i e s  of the Melpar personnel who were stationed a t  the 
White Sands and Ascension Is land Laser Comunicator S i t e s  during the f l i g h t  
of GT-7. An analysis of the  data obtained during s t a t i c  l a s e r  wave 
propagation experiments a t  the WSME s i t e  is included. Finally, the  repor t  
presents recommendations f o r  fu tu re  space-to-earth and ground-based 
l a s e r  wave propagation experiments tha t  seem necessary i n  order t o  fu r the r  
c l a r i fy  the nature of opt ical  propagation over grea t  distances i n  the 
atmosphere. 

It a l so  
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1, INTRODUCTION 

The purpose of t h i s  contract  was t o  provide the personnel, equip- 
ment, and data reduction capabi l i t ies  f o r  expanding t h e  ctr-7 Laser Com- 
municator Experiment i n t o  a sc i en t i f i c  study of laser wave sca t te r ing  
due t o  refract ive index perturbations i n  the atmosphere. Specifically, 
the  contract called for: 

a, Constructing two separate data recording and processing systems, 

b, Ins ta l l ing  one of these systems a t  the White Sands Missile Range 
Laser Communicator Si te ,  and the other a t  the Ascension Island Laser Com- 
munic a t  o r  S i t e  e 

C, Operating the two systems during t h e  f l i g h t  of GT-7, 

d, Analyzing the da ta  obtained during the f l i g h t  with respect t o  
the variance and autocorrelation of the received signal,  

e, Recommending what additional experiments might be necessary i n  
order t o  c lar i fy  fur ther  the  nature of op t ica l  propagation over great 
distances i n  the  atmosphere. 

Figure 1- l is  a sketch of t h e  overal l  operation of the  Laser Communi- 
cator  Expriment a t  the wsE;iR receiving f a c i l i t y ,  
have first acquired the spacecraft as it began i ts  pass over the receiving 
f a c i l i t y .  
t o  have aimed automatically both the opt ica l  receiver and the  beacon laser 
d i r ec t ly  a t  the capsule, The astrcnaut was t o  have visually acquired the 
powerful beacon laser, and was then t o  have aimed his hand-held spacecraft 
laser transmitter directly a t  the  ground beacon, 
contained four G A S  l a s e r  diodes, and could be operated i n  either a low 
pulse rate mode ("100 pps), o r  a high pulse rate mode ('"8,000 pps) capable 
of carrying the astronaut's voice by pulse posit icn modulation, T h e  l a s e r  
energy emitted by the hand-held transmitter was t o  have been collected by 
the op t i ca l  receiver on the ground, and focused onto a I-iPT. 
the  klpT was then t o  have been fed  t o  the  Nelpar Field Laboratory, where 
the signals were t o  have been processed and recorded. 

The FPS-16 radar was t o  

The opt ica l  pedestal, which was slaved t o  the  radar, w a s  then 

The hand-held transmitter 

The output of 

The primary s c i e n t i f i c  significance of the GT-7 Laser Communicator 
Experimnt  lay i n  the fact  that  it presented, f o r  t h e  first time, a long- 
distance opt ical  propagation experiment wherein t h e  re la t ionship  between 
range and the s t a t i s t i c s  of the received s igna l  might have been determined, 
A significant and singular advantage is  obtained through the use of a 
spaceborne transmitter as the  energy is propagated through the ent i re  ver- 
t i c a l  prof i le  of the  atmosphere, T h e  r e su l t s  are, therefore, directLy 
applicable t o  long-range deep-space communications, In the  low pulse rate 
mode of operation, the experiment might have yielded data on t h e  variance 
i n  received signal as a function of range, I n  t h e  high pulse r a t e  mode of 

1 
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operation, da ta  might have been acquired on t h e  spec t r a l  d i s t r ibu t ion  of 
energy i n  t h e  received s igna l  as a function of range. 
high pulse rate mode might have given considerable informt ion  on t h e  re- 
la t icnship  between range and the  time autocorrelation function of the  re- 
f r ac t ive  index perturbations along nearly v e r t i c a l  atmospheric paths. 

In  addition, t h e  

Another important possible contribution of t he  experiment lay i n  tfie 
fact  that t h e  emitted pulses were only about 100 nanoseconds i n  duration. 
This presented an opportunity f o r  measuring the  delay time between multiple 
arrivals, provided th i s  delay time were equal. t o  o r  greater  than 20 nano- 
seconds. With a spacecraft  transmitter beam divprgence of k milliradians, 
a ground receiver  angle of v i e w  of l m i l l i r a d i a n ,  and a t  a range of 600 
H o m t e r s ,  -the maximum delay time between the d i r e c t  arrival and a singly 
scat tered arrival would be 7 nanoseconds. Therefore, i n  the event %he ex- 
periment had indicated multiple arr ivals ,  the  later arrivals would almost 
ce r t a in ly  have been due t o  multiple scat ter ing.  

Unfortunately, f o r  various reasons (see sec t ion  4), no da ta  w a s  re- 
However, the availability of ceived or  recorded during this experiment. 

a hand-held laser communicator a t  t h e  WSR s i t e  permitted short-range 
static propagativn measurements at  this location. 
perinent i s  presented and analyzed i n  sec t ion  5. 

T h e  data  from this ex- 

3 



2, REVIEW OF PREVIOUS WORX ON OPTICAL SCATTEXCNG BY AlMOSPHERIC 
TURBULEXCE 

2.1 General Discussion of Scattering Mechanisms 

The turbulent character of the atmosphere gives r i s e  t o  a random 
d i s t r ibu t ion  of regions of air whose densi t ies  a re  e i t h e r  grea te r  than o r  
l e s s  than the  average atmospheric density. Since the re f rac t ive  index of 
a gas depends on i t s  density, these sma l l  regions of dense or ra ref ied  
m q  be thought of as re f rac t ive  index perturbation patches. An electro- 
magnetic wave o r  beam propagating through the atmosphere i s  randamly re- 
f rac ted  o r  scat tered by these patches, par t icu lar ly  i f  the wavelength i s  
s m a l l  compared to  the patch dimensions, 
gives r i s e  t o  random s p a t i a l  variations in the amplitude and phase across 
the wave front .  
of the patches are random functions of time implies t h a t  the s p a t i a l  dis- 
t r ibu t ions  of amplitude and phase across the beam f r o n t  are a lso  random 
functions of time. 

This random sca t te r ing  phenamenon 

"he f a c t  t ha t  both the s p a t i a l  d i s t r ibu t ion  and magnitudes 

There a re  generally two distinct types of interact ions between a laser 
beam and a perturbation patch, 
steering, i s  i l l u s t r a t e d  in f igure 2-L It i s  characterized by a re f rac t ive  
bending of the en t i r e  beam by the  perturbation patch, and occurs when the  
beam diameter i s  much l e s s  than the patch dimensions. The second mechani sm,  
which might be cal led beam focusing and defocusing, is i l l u s t r a t e d  in f igure  
2-2, This phenomenon ischaracter ized by a convergence o r  divergence of all 
o r  part of the  beam front,  and occurs when the beam diameter i s  on the  same 
order as, o r  l a rge r  than, the patch dimensions. 

The f irst  of these, cal led beam bending or 

If an opt ica l  receiver were s e t  up t o  receive a l a s e r  beam propagating 
through the atmosphere, the scattering of the beam by ref rac t ive  index 
perturbation patches would cause random f luctuat ions i n  the received signal 
level,  "he s t a t i s t i c a l  character of these f luctuat ions would be a function 
not or i l y  of the s p a t i a l  and temporal charac te r i s t ics  of the perturbation 
patches, but  of the properties of the t ransmit ter  and receiver as well, 
Some of the more important e f fec ts  of the t ransmit ter  and receiver  a re  as  
follows : 

a, Transmitter beam diameter and beam divergence - if the  diameter of 
the beam a t  the t ransmit ter  is  smaller than the  perturbation patch dimen- 
sions, then beam bending can occuro Depending on the amount of beam diver- 
gence, the beam might be deflected off the receiver  entirely.  Furthermore, 
the  beam might be bent several times, thereby changing the angle of arfival 
of +he beam a t  the receiver, Of course, if the diameter of the beam a t  the 
t ransmi t te r  i s  la rger  than the patch dimensions, then no s igni f icant  bending 
can occuro 

4 
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bo Receiver angle of View - a large angle of v i e w  of the receiver  
w i l l  permit the receiver  t o  co l l ec t  energy over widely varging angles of 
a r r iva l ,  thereby enhancing the col lect ion of s ignal  energy which has been 
scat tered toward the receiver from the perbneter of the  beam (see f igure  2.2). 
O f  course, a la rge  receiver angle of v5ew also enhances the co l lec t ion  of 
l i g h t  originating from sources other than  the  transmitter,  

c. Receiver aperture diameter - the grea te r  the receiver  aperture 
diameter, the greater  i s  the a b i l i t y  of the receiver  to average over a 
large number of the var ia t ions ir, anplitcde and phase across the beam front.  
Hence, as the  receiver  aperture diameter i s  increased, the f luctuat ions i n  
received signal l eve l  decrease. 
to c o l l e c t  a l l  of the transmitted energy, &then 4iieoreticall.y t he  fliictu- 
a t ions in received s ignal  l e v e l  cease conpletely. 

If the receiver  diameter is la rge  enough 

d. Distance between t ransmit ter  and receiver  (range) - as the  distance 
between t ransmit ter  and receiver is increased, the number of sca t te r ing  
patches in  the op t i ca l  path increases. 
f luctuat ions i n  received s ignal  l eve l  will increase w i t h  lncreasing range. 

It therefore follows t h a t  the 

2,2 Previous EkperSmental Work 

Several invest igstors  have made experimental studies of l a s e r  wave 
propagation through the  atmosphere, 
preliminary r e s u l t s  of an experiment which involved operating a He-Ne 
l a s e r  ovQr 9- and 9 e m i l e  paths, 
which var ied i n  frequency from a f rac t ion  of a cycle t o  several  hundred 
cycles per second, 
ing. I n  a l a t e r  report, Buck (1965) presented the  results of t h i s  study 
i n  g rea t e r  detai l .  Unfortunately, since the measurements over the  two 
paths were performed at  different times, no precise conclusions could be 
drawn about the e f f e c t  of range on the s t a t i s t i c s  of the received signal. 

Hinchman and Buck (1964) reported 

They observed amplitude f luctuat ions 

They a l s o  observed both rapid and long-term beam bend- 

Subramanitan and Collinson (1965) performed an experiment which involved 
t r ansn i t t i ng  a He-Ne l a se r  beam over 120- and 36bmeter paths, 
reported no detectable change in the s t a t i s t i c s  of t he  received s ignal  as 
a funct ion of range, 
sho r t  ranges employed in this experiment might have obscured the e f f ec t  
of increasing range. 

They 

However, it i s  t o  be expected t h a t  the extremelv 

Edwards and Steen (1965) observed the  e f f ec t s  of atmospheric twbu- 
lence on the  transmission of incoherent v i s i b l e  and near-infrared radiation, 
They reported spec t r a l  components in the f luctuat ions in received s ignal  
up t o  severa l  hundred cycles per  second, However, range w a s  not a parameter 
i n  these experiments, the measurements being performed over a f ixed path 
length of about 300 meters,, 
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Under cer ta in  conditions, the propagation of l i g h t  through turbulent 
atmosphere i s  exactly analagous t o  t h e  propagation of sound through a w a t e r  
medim which possesses a random temperature microstructure , 
(1965) measured the random var ia t ion  i n  the  amplitudes of sonic pulses 
propagated through a water med ium i n  which w a s  induced a near* homogeneous 
rardom dis t r ibu t ion  of temperature perturbations, The measurements were 
carr ied out a t  frequencies of 480 kc and 1.42 Mc, and f o r  t ransmit ter  t o  
receiver  separations ranging from 16 inches t o  76 inches. 
that the time autocorrelation of the received s ignal  equalled the time 
autocorrelation of the temperature microstructure, and, second, t h a t  the 
variance in received signal w a s  roughly proportional t o  the  square of the 
range, 

Campanella 

He found, first, 

I 

2.3 Previous Theoretical Work 

A considerkile mount of theoret ical  work has been done on the  scat ter-  
ing of waves in random m e d i a ,  Bergman (1946) investigated opt ical  sca t te r -  
ing  under the approximations of gemetr ic  optics, and predicted t h a t  the 
variance i n  amplitude f luctuat ions would be proportional t o  the cube of the 
range, 
random medim under the c a d i t i o n  tha t  only single  scat ter ing prevailed, 
and t h a t  t h e  phases of the  scat tered arrivals w e r e  dis t r ibuted over a t  least  
an i n t e r v a l  of 0 t o  21T. 
received signal would equal the time autocorrelation of the re f rac t ive  index 
of the  medium, and t h a t  the variance i n  received s igna l  would be d i r ec t ly  
proportional t o  range. 

Mintzer (1953 A and 1953 B )  considered acoustic scat ter ing in a 

He predicted t h a t  the  time autocorrelation of the 

More rzcz~tly, T z r t z r s k i  (1961) investigated t he  propagation of coherent 
waves through turbulent atmosphere, H i s  findings, as  presented by Davis 
(1966), predicted t h a t  the variance i n  logarithmic amplitude l eve l  would be 
proportional t o  the 11/6 power of range f o r  propsgation paths horizontal  t o  
the earth surface, 

- i 



3. DATA RECORDING AND PROCESSING SYSTEMS 

3.1 General 

Two data recording and processing systems were constructed, One of 
these systems was ins ta l led  a t  the Laser Receiving Sta t ion  a t  White Sands 
Missile Range, while the other was  i n s t a l l e d  a t  the Laser Receiving Sta t ion  
on Ascension Island, 

The purpose of these two  s y s t e m s  was t o  record the signal. pulse train 
arr iving a t  t h e  op t ica l  receiver,  and t o  process the information contained 
i n  the received pulse t r a i n  so a s  t o  make t M s  information more readi ly  
amenable t o  post-fl ight analysis. Both systems are capable of: 

a. Direct ly  recording the output o f  the MPT on video tape. 

bo Detecting the amplitude of each incoming pulsee 

e. Generating and recording a 2 kc tone burst  f o r  each incoming 
pulse, such t h a t  the i n i t i a l  amplitude of the tone burs t  i s  proportional. 
t o  the amplitude of the pulse. 

do Cross-correlating the  periods between pulses, 

e. Generating a gate pulse trainwhose frequency and phase a re  
iden t i ca l  with those of the signal pulse t ra in .  

I n  addition, the WSMR system includes equipment for:  

I f ,  Generating f ive  autocorrelation coeff ic ients  f o r  each of the 
incoming pulses , 

go Recording the  f ive  autocorrelation coeff ic ients  on a Pow noise, 
wide dynamic range, FM tape recording system. 

3.2 DeswiDtion of WSMR Svstem 

Figure + l i s  a block diagram of the data recording and processing 
system ins t a l l ed  a t  White Sands Missile Range, 
subsystems: 

It is  composed of s h  major 

a. The amplification and pulse inversion subsystem. 

b. The video subsystem, 

c, The pulse period cross-correlator subsystem, 

d o  The autocorrelator subsystem. 
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Figure 3-1. WSMR Data Recording and Processing System 



e. The  All and FM audio recording subsystem, 

f ,  The tine-voice mix subsystem, 

The output of t he  PIWT preamplifier is fed  i n t o  the amplification 
and pulse inversion subsystem, This subsystem then drives the inputs 
t o  the  video subsystem, the pulse period cross-correlator subsystem, 
and the auto-correlator subsystem, T h e  output of the 2-kc tone genera- 
t o r  i n  the pulse period cross-correlator subsystem is recorded by one 
channel of the AM audio recorder, while the  synchronous pulse t r a i n  out- 
put of t he  pulse period cross-correlator is used t o  drive the  autocor- 
r e l a t o r  gate c i r c u i t  and the external sync of an oscilloscope. The five 
autocorrelation coeff ic ient  outputs of t he  autocorrelator are recorded 
on five chanriels of the FE audio recorder, The output of t he  time-voice 
m i x  subsystem is  recorded on the audio channel of the video recorder, on 
one channel of the Al l  audio recorder, and on one channel of the FM audio 
recorder. 
the control  voltage of the AGC system f o r  t h e  "I!, 

?(he f i n a l  channel of the  FM audio recorder is used t o  record 

The dynamic recording range of the video channel of the RCA TR-5 
recorder is 10 t o  1 (input leve ls  from 0.1 t o  1.0 vo l t ) ,  It was there- 
fo re  decided t o  design both the pulse period cross-correlator subsystem 
and autocorrelator  subsystem t o  operate over t h e  range of 0.1 vo l t  t o  
1.0 volt. 
t h a t  t h e  average s igna l  pulse  level is approximately 0,3 volt ,  thereby 
assuring that perturbations i n  received s igna l  level which are 10 80 above 
o r  below t h e  average level will be within the  operating dynamic range of 
the video and correlation subsystems. 

The gain of the  main driver a m p l i f i e r  is manually selected s o  

R.gm?s 3-2,3-3,3-4, and 3-5 are photographs showing t h e  IGMR system 
as it was ac tua l ly  ins ta l led  a t  the I4elpar Field Laboratory a t  White Sands. 
Figures 3-6 and 3-7 are views of t h e  main dr iver  amplifjer chassis, on 
which are mounted the  pulse  inverter, main d r ive r  ampl i f i e r ,  video pream- 
p l i f i e r ,  first pulse stretcher,  autocorrelator, and autocorrelator grid 
bias  supplies. 
cross-correlator chassis, 

Figures 3-8, 3-9, and 3-10 are views of the p u l s e  period 

3.3 Description of Ascension Island System 

Figure 3-11 is a block diagram of the da ta  recording and processing 
system ins t a l l ed  at Ascension Island. 
except t ha t  it does not include an  autocorrelator subsystem, a seven- 
channel F'M audio recorder, o r  an interface amplifier. The elimination of 
the interface amplifier a t  Ascension Island was made possible by the  fact  
that t h e  Melpar system was housed , i n  t h e  same building as the  NASA system; 
hence, interconnections between the  two systems could be made d i r e c t l y  
without introducting any serious ref lect ions or  loading. 

It is ident ica l  t o  the F.Jsp4R system, 
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Figure 3-2. Overall View of WSMR Field Laboratory 

Figure 3-3 .  Autocorrelator and Pulse Period Cross-Correlator Subsystem 
in Operation 
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Figure 3-5. Video Recording System in Operation 
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Figure 3-7. Rear  View of Main Driver Amplifier Chassis 
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Figure 3-8. Front View of Pulse Period Cross-Correlator Chassis 

Figure 3-9. Rear View of Pulse Period Cross-Correbtor  Chassis 
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Figure 3-10. Bottom View of Pulse Period Cross-Correlator Chassis 



E5901 

I 
I 
I 
I 
I 
I 
I 

I 
I 

I 

I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
I 
L -  

Figure 3-11. Ascension Island Data Recording and Processing System 

15 



3.4 Amp l i f i c a t i o n  and Pulse Inversion Subsystem 

The amplification and pulse inversion subsystem comprises t h e  IJSPIR 
in te r face  mplifier, the  pulse inverter, and the  main dr iver  amplifier, 

Figure 3-12 is  a schematic of the WsFlR interface amplifier. This 
amplifier was located i n  the  NASA f i e l d  van, and tapped o f f  t h e  signal. 
arriving a t  t h e  NASA post-amp f r o m  the MPT preamp, The in te r face  ampli-  
f ier  was carefdlly designed t o  have an output iapedance of 50 ohms, 

Figure 3-13 is a schematic of the pulse-inverter circui5,  The purpose 
of t h e  inverter i s  t o  change incoming negative pulses into posi t ive pulses. 
If t h e  incoming s ignal  happens t o  cons i s t  o f  posi t ive pulses, then t h e  
pulse inverter  i s  bypassed, and t h e  signal is connected d i r e c t l y  t o  the  
input of the main driver amplifier. 

The main driver amplifier consis ts  of a Tektronix 1121 wideband 
amplifier, which has a ga in  of 100, and a passband f r o m  5 cps t o  17 Nco. 
It also features a bui l t - in  0 to 32 db attenuator which can be varied 
i n  s teps  of approximately 6 db, The main dr iver  amplifier is capable of 
a 1-volt output into 93 ohms. 

During s y s t e m  operation, t h e  system operator monitors t he  output of 
t h e  main driver amplifier on t h e  oscilloscope (shown i n  figure 3-l), 
and adjusts t h e  attenuator of t h e  main driver amplifier so t h a t  t he  
average output is approximately 003 vo l t ,  The operator then records t h e  
pos i t ion  of  t he  attenuator by speaking into the  microphone of the  t i m e -  
voice itih s&q~stex, These are the  o n l y  functions t h e  operator must 
perform during normal s y s t e m  operation, since the  video and correlat ion 
subsystems are all designed to operate automatically with input s ignals  
10 db above o r  below O,3 volt ,  

3*5 Video Subsystem 

3*5.1 Video Preamp 

Figure 3-14 i s  a schematic of t he  video preamp, It has a high 
input bpedance, so as not to l o a d  the output of t he  main driver ampli., 
fier.and a 75-0hm output; impedance, i n  order t o  drive t h e  7S-ohm cable 
leading t o  t h e  75-ohm "video inputlt terminal of the  TLSO The video 
preamp has a gain of  approximately 1 when operated in to  a terminated 
75-0hm line, 

3.502 RCA TR-S Recorder 

The RCA TR-5 recorder i s  a general-purpose video Ep4 recorder, It 
permits t h e  recording o f  one channel of video information (with a band- 
width of se5 mcs) and one channel of audio information on t h e  same s t r i p  
of 2-Lnch-w5de magnetic tape, The dynamic recording range of t h i s  
instrument i s  f rom 0,I vo l t  t o  1 volt, I n  order t o  provide maximum 
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Figure 3-13. Pulse Inverter 
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recording s t a b i l i t y  and tape  l i f e ,  both TBPS recorders used i n  t he  present 
systems were provided with special  air bearing conversion k i t s ,  
compressors shown i n  the  video subsystems shown (f igures  3-1 and 3-EL) 
cons t i tu te  par t  of t h e  a i r  bearing conversion k i t s o  

The 

The TRS was or ig ina l ly  designed f o r  recording te lev is ion  signals, 
In  order t h a t  t h e  instrument might be sui table  f o r  t he  recording and 
p l q i n g  back sequences of100-ns pulses, a number of modifications were 
necessary, as follows: 

ito The magnetic headwheel of the instrument consis ts  of four  separate 
heads, each occupying approximately one-fourth of the circumference of the 
wheel, During recording, all f o u r  wheels are driven i n  para l le l ;  however, 
during playback, the machine m u s t  switch from the head t h a t  is f inishing its 
t r a v e l  across the  tape t o  the  head t h a t  is  just beginning i t s  t r m e l  across 
the  tape, In  order t o  maintain continuity of signal, t h i s  switching m u s t  
take place during t h e  overlap time wnen both heads are scarming the  tape. 
In additinn.> +he switching must take place in phase with one of the  horizontal  
sync pulses of t he  recorded te levis ion signal,  s o  f la t  the t rans ien t  pulse 
w-hich i s  generated by the switching action does not  appear on the te levis ion 
screens of the audience. 
by a coincidence multivibrator, w’nich puts out a pulse i n  phase with the 
f i rs t  horizontal  sync pulse t h a t  occurs a f t e r  the beginning of the overlap 
period between two adjacent heads, The beginning of the overlap period is 
signaled by the  hX tone wheel multivibrator, which i n  turn is t r iggered by 
the output of a b n e  wheel mounted on the headwheel. 
pulses muld  not be present in the  100-n~ pulse-train data,  it w a s  decided 
to e‘iiminate the co5,nclder;ee ml+,i.iibrat..or altogether and simply t r igge r  
the  switching processes with the output of t he  bX tone wheelmultivibrator,  
Therefore, switching would take place precisely at the beginning of each 
overlap period. 
within the FM Switcher, PIodule D-10: (1) broke connection between RQ7 and 
C81, thereby disconnecting output of 960-43 from t h e  input of the  head 
switching c i r cu i t ;  (2 ) connected external connection no. 28 through G82 and 
C 8 1 t o  base of a 6 ,  thereby connecting output of the 4.X tone wheel m u l t i -  
v ib ra to r  t o  the  input of the  head switching c i rcu i t .  

Therefore, the switching between heads is triggered 

Since horizontal  sync 

Specifically,  the following modifications were performed 

bo I n  order t o  maintain s table  recording and playback both the  head- 
wheel servo and capstan dr ive  must be synchronized with some s t ab le  reference 
signal, The source of t h i s  reference s igna l  is  chosen by the  Yhternal-  
External” switch on the  Reference Generator Module. During recording, t he  
instrument i s  synchronized with either the v e r t i c a l  sync pulses of the  
incoming te lev is ion  s igna l  (switch i n  tlInternalll pos i t ion)  or  by the v e r t i c a l  
sync pulses from the 60-cps s ta t ion  master clock (switch i n  llEjfternallt 
posi t ion) ,  
i n t e r n a l  o sc i l l a to r  (switch i n  llInternaln position), o r  by the v e r t i c a l  sync 
pulses from the 6 k p s  s t a t ion  master clock (switch i n  %rternaltl posit ion).  
In order  t o  provide maximum s t a b i l i t y  during recording and playback of the  
l h s  pulse data, a spec ia l  24O-cps video synchronizer was acquired (see 
sec t ion  3,5.4), 

During playback, the instrument i s  synchronized with e i the r  an 

In  order t o  permit the recorder to be synchronized with 

j 



this spec ia l  video synchronizer, and i n  oxder t h a t  the recorder not load t h e  
output of t h e  sync-monizer, the  following modifications were performed i n  
the  Reference Generator, Module D-16: (1) added 1.5-d capacitor across C10 
in v e r t i c a l  multivibrator;  (2) disconnected R.43 from a9 and shorted Uj 
(3) connected common s i d e  of A section G f  S l  d i r e e t l y  t o  C11 and C1; and (4) 
grounded both throw poles of B section of S1, 



3.5.3 Video Switch Pulse Gating Circuit 

Figure 3-15 is  a schematic of the  video switch pulse gating circui t .  

When the FPI switcher of the TR-5 switches from one head t o  the next  
during playback, a switch pulse is generated a t  t h e  output of the recorder. 
T h i s  video switch pulse can be extremely annoying when the recorded s igna l  
i tsel f  is a sequence of pulses, 
c i r c u i t  is  t o  prevent the  video switch pulse from appearing a t  the output. 
The c i r cu i t  achieves i ts  purpose by simply shorting the output during the  
time the  video switch pulse occurso 

The purpose of the video switch pulse gating 

With the  modifications described i n  section 3.5*2, part  (a), the FT4 
switcher i s  triggered by the  AX tone-wheel multivibrator. Therefore, the 
r ide0 switch pulse occurs i n  phase with the output of the  tone wheel 
multivibrator. Therefore, i n  order t o  gate out the video switch pulse, 
t he  video switch pulse gating c i rcu i t  i s  a l so  triggered by t h e  output of 
the ~-J.X tone wheel multivibrator (collector of t rans is tor  Q-36, Reference 
Generator, Module D-16) . 

It w i l l  be noted tha t  t h e  video switch pulse gating c i r cu i t  does 

Since this  c i r c u i t  is needed only f o r  laboratory analysis 
not appear i n  e i t h e r  the WsF.IIR or Ascension Island systems (figures 3-1 
and 3-11). 
of recorded pulse data, it was not incorporated i n t o  the f i e l d  systems. 

3.5.4 Other Video Subsystem Components 

The video synchronizer i s  a 240-v cps tuning-fork osci l la tor ,  
Melpar model nco 925, which exhibits a long-term s t a b i l i t y  of 1 part  i n  
lose It is  powered by a 22.5-volt battery. 

The video monitor i s  an RCA model AGOOSJ New Vista te lev is ion  set. 
It is  used as  a te levis ion display f o r  the  video output of the  TR-5 
recorder during playback of the  alignment tape. 
of video s ignals  f o r  aligning the recording sections of the TR-5, 
set was modified f o r  use as a video monitor by in s t a l l i ng  a connection from 
the  input  t o  t h e  v5deo s t r i p  inside the set t o  a BNC: output jack on the  
back of the  seto 

It also provides a source 
The 

. 

The Sola transformer is a Sola Corporation model 23-25-230-3, 
3-kVA, isolation-regulation transformer. Its purpose is t o  provide the 
TR-5 with distortion-free, constant-voltage, l i n e  power while operating 
i n  the f ie ld .  

22 
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Figure 3-15. Switching Transient Gating Circuit 
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3.6 Autocorrelator Subsystem 

3.6.1 Theoretical Considerations 

The autocorrelation function, d (T), fo r  a square integrable 
function, f ( t ) ,  can he represented by f f  

Since a f f ( ~ )  i s  clear ly  symmetric about T = 0, it inay be rewrit ten as  

Finally,  i f  f ( t )  5 0 fo r  tq, the autocorrelation function becomes 

For example, suppose f ( t )  is given by 

3-44? 

that is, f ( t )  i s  a square pulse H uni ts  high o f  T seconds duration. 
the autocorrelation function corresponding to  f ( t )  i s  given by 

Then, 

dff(T) = H 2 (T- 171)wksu 1.1 5 T 

= O  when 171 5. T 

Now, l e t  f ( t )  be a Gaussian pulse, given by 

Then t h e  corresponding autocorrelation function i s  

( 3-5? 



which i s  seen t o  be a Gaussi 
standard deviation which i s  F 2 times the standard deviation of  f ( t ) .  
Figure 3-16 i l l u s t r a t e s  the  Gaussian pulse and i t s  autocorrelation function 
under the  conditions A = 1, Q = 1, and Is = 4. 

ulse centered a t  the origin,  and having a 

The purpose o f  
s y s t e m  i s  t o  de tec t  
arrival case can be 

the  autocorrelator i n  the data recording and processing 
multipath arrivals of Gaussian s igna l  pulses. The two- 
represented by 

where T represents the  delay i n  a r r iva l  of the second pulse r e l a t ive  to the  
first. The autocorrelation function fo r  t h i s  double Gaussian pulse i s  given 
by 

which i s  seen t o  be a two-sided double Gaussian pulse, centered a t  the 
origin,  and with secondary maxima a t  T = f T. 
double Gaussian pulse and i t s  autocorrelation function under the conditions 
A = 1, 3 = 0.5, Q - 1, T1 = 4, and T = 6,  

Figure 3-17 i l l u s t r a t e s  the 
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Figure 3-16. Gaussian Pulse and Corresponding Autocorrelation Function 
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Figure 3- 17. Double Gaussian Pulse and Corresponding Autocorrelation Function 

27 



I 

3 A 2  General DescriDtion of Autocorrelator 

Thepulses emittedby the  hand-held l a se r  t ransmit ter  are approximately 
Gaussian i n  shape, and have a pulse width on the  order of 100 nanoseconds. 
It would be extremely difficult t o  resolve multiple a r r i v a l s  of these pulses 
f o r  wfiich the  delay time between ar r iva ls  was l e s s  than 20 nanoseconds. Cn 
the  other hand, the  theore t ica l  considerations presented i n  sect ion 3 would 
indicate  t h a t  delay times greater  than 80 nanoseconds are extremely improbable. 
Therefore, the  delay times (arguments) f o r  the f i v e  autocorrelation coeff ic ient  
outputs of the autocorrelator were chosen as  0, 20, 40, 60, and 80 nano- 
seconds. 

Figure 3-18 is a block diagram of a theore t ica l  aut.oc',orrelator. 
device performs the mathematical operation described i n  equation 3-3 f o r  
T = 0, 20, 40, 60, and 80 nanoseconds. 

This 

Figure 3-19 is a block diagram of the autocorrelator which was a c t u a l l y  
constructed. 
t heo re t i ca l  autocorrelator, with two exceptions: 

The performance of this device i s  i d e n t i c a l  t o  t h a t  of the  

a, Only posi t ive input s ignals  are autocorrelated. This exception is 
not important when the  input s ignals  a r e  posit ive pulses. 

b. The in tegra tors  of the p rac t i ca l  autocorrelator have f inite storage 
times (4 microseconds ) t h a t  are long compared t o  the duration time of tbe 
individual  s igna l  pulses (-100 nanoseconds), but t h a t  a r e  shor t  compared t o  
the pulse repe t i t ion  r a t e  (100 pps ). Therefore, each incoming s igna l  pulse 
is individual ly  autocorrelated, and the autocorrelation coeff ic ient  outputs 
f o r  a par t icu lar  pulse are not functions of the autocorrelation coeff ic ients  
of any previous pulses. 

Tha pr inc ipa l  problem area i n  the development of this p rac t i ca l  auto- 
cor re la tor  was the  pulse multiplying c i r cu i t s ,  
mul t ip l ie r  i s  t h a t  i ts output be proportional t o  the  product of two inputs. 
This requirement necessi ta tes  t ha t  the output be zero when e i the r  o r  both 
of the  two inputs are zero. Hence, if some act ive element having two control 
terminals is t o  be used a s  a multiplier,  the  element must be operated ne= 
its cutoff point with respect t o  both of the control terminals. 
nuvistor te t rode chosen as the  multiplying element exhibi ts  a square-law 
cha rac t e r i s t i c  when operated near cutoff with respect  t o  e i t h e r  grid;  
therefore, a compensating square-root c i r c u i t  was provided so t h a t  the 
output of each mult ipl ier  is essent ia l ly  l i nea r ly  proportional t o  both of 
i ts  inputs. 

The incoming s igna l  (shown i n  Figure 3-19 as a lOO-nanosecond I-volt 
square pulse)  enters the  autocorrelator a t  the gate c i r c u i t  d r iver  ampliffctir, 
The purpose of this emitter-follower amplifier is t o  present a high impedancs-i 
load t o  the s igna l  source. 
The purpose of the gate c i r c u i t  is t o  permit the free passage of s igna l  pulses 
W i l e  preventing the  passage of noise pulses. After passing through the 

The first requirement of any 

The 7587 

c 

The s ignal  then passes i n t o  the gate c i rcu i t .  
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Figure 3-18. Theoretical Autocorrelator Block Diagram 

29 



c 

Figure 3-19. Practical Auto Correlator Block Diagram 
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square-root driver amplifier and square-root c i rcu i t ,  the  signal is ampli- 
f i e d  t o  a high level by the  grid driver amplifier. A t  this point part of 
the signal is attenuated and fed  t o  the delay l i n e ,  where it is tapped off 
a t  various delay points and fed t o  t he  low level cont ro l  gr ids  of t he  multi- 
pliers.  
the high level screen grids of the multipliers.  The mult ipl ier  outputs 
are then fed  t o  the integrators,  which i n  turn produce output pulses whose 
heights are proportional t o  the  in tegra l  of the mult ipl ier  outputs. 
ly, i n  order t o  permit the recording of t he  integrator  outputs by audio FPI 
machines, the integrator  output pulses are stretched by the amplification 
and detect ion circui ts .  Calibration of t he  en t i r e  autocorrelator is 
achieved- feeding a t r a i n  of 100-nanosecond 1-volt square pulses i n t o  the 
autocorrelator, and then adjusting the g a i n  cont ro l  potentiometers on the 
amplification and detection c i rcu i t s  s o  t h a t  the five outputs are propor- 
t i ond l  t o  the corresponding theoret ical  vdlues (equation 3-5). 

The  main output of the grid d r ive r  amplifier is f e d  d i r e c t l y  t o  

Final- 

Figures 3-20, 3-210 3-22, and 3-23 are photographs of the ex ter ior  
and in t e r io r  of the autocorrelator. 
3-28 are schematic diagrams of the  various autocorrelator c i rcui ts .  Fig- 
u r e  3-29 illustrates the  waveforms appearing a t  various test points in the 
autocorrelator f o r  a 100-ns 1-volt square-pulse input. E'igure 3-30 il lu- 
s t r a t e s  the relative response of the autocorrelator outputs as a function 
of input pulse height. Figure 3-31 compares the a c t u a l  autocorrelator out- 
puts with the theore t ica l ly  predicted autocorrelation function f o r  a double 
Gaussian pulse input. 

Figures 3-24, 3-25, 3-%, 3 - 3 ,  and 

3,7 Pulse Period Cross-Correlator subsystem 

General Description 

The purpose of the pulse period cross-correlator subsystem is  three- 
fold: 

a. To provide a 2-kc tone burst each time a s igna l  pulse arrives. 

b. To detect  the periodicity and phase of the s igna l  pulse t r a i n  i n  
the  presence of noise pulses. 

C. 
pulse t r a in .  
l a t o r  gate c i rcu i t ,  and t o  t r i gge r  an oscilloscope display. 

To provide a gate pulse t r a i n  precisely i n  phase with the s igna l  
T h i s  gate pulse t r a in  is  then used t o  actuate the autocorre- 

Figure 3-32 i s  a block diagram of the pulse period cross-correlator 
subsystem. 
second pulse s t re tchers ,  the  s ignal  is fed t o  both the Zero Phase F i l te r  
(ZPF) preamp, and the 2-kc tone generator. Within the tone generator, 
the pulses are used t o  drive a 2-kc tuned tank. 
generator is  a n  exponentially dmped 2-kc wave with a time constant of 
about 6 milliseconds. 

After being stretched t o  miUisecond lengths by the first and 

The output 3f tk tone 
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Figure 3-20. Front View of Autocorrelator 
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Figure 3-21. Rear  View of Autocorrelator 32 
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Figure 3-22. Right Side Interior View of Autocorrelatvr 

5591.00 100 - 11 

Figure 3-23. Left Side Interior View of Autocorrelator 33 
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Figure 3-24. Gate Circuit Driver Amplifier and Gate Circuit 
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Figure 3-25. Square-Root Driver Amplifier and Square-Root Circuit 
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Figure 3-26. Grid-Driver Amplifier 
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Figure 3-27. Delay-Line, Multiplier, and Integrator Circuits 
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Figure 3-28. Integrator Output Amplification and Detection Circuit 
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OUTPUT 0 
0.5 V/CM; 1 

OUTPUT OF 0 NS INTEGRATOR 
0.5 V/CM; 1 pS/CM 



F SQUARE ROOT CIRCUIT 
j0 NS/CM 

OUTPUT OF GRID DRIVER AMPLIFIER 
5 V/CM; 50 NS/CM 

OUTPUT OF 0 NS AMPLIFIER AND 
DETECTOR 0.5 V/CM; 2 MS/CM 

I 

F&ure 3-29. Waveforms at Autocorrelatar Test Points far a lOO-ns, 1-Volt, 
Square Pulse Input 
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I 
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NOTE: IDEALLY, THE SLOPE OF EACH OF THE 
CURVES WOULD BE 2 db OUTPUT ATTENUATION 
FOR 1 db INPUT ATTENUATION. 

INPUT PULSE 
HEIGHT 
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Figure 3-30. Relative Response of the Autocorrelator Outputs as a Function of Input 
Pulse Height 
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Figure 3-31. Theoretical and Experimental Autocorrelation of a Double Gaussian 
Pulse 
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The output of  the zpf preamp i s  fed t o  the zero phase f i l t e r ,  which 
re ta ins  only the fundamental component of the  stretched pulse t r a i n  (i ,ee3 
the harmonic component whose frequency i s  t h a t  of t h e  pulse repe t i t ion  r a t e  
and Whose phase coincides with t h a t  of the pulse t ra in) .  
randomly spaced noise pulses are f i l t e r e d  out. 
f i l t e r  i s  fed t o  the zpf postamp, which i n  turn dr ives  bot’n the  adjustable 
phase shifter and the  AGC c i r c u i t  i n  the feedback loop. 
AGC c i r c u i t  is t o  adjust  the gain of the zpf preamp so t h a t  t he  s igna l  l e v e l  
entering the zero phase f i l t e r  i s  always about l v o l t ,  
adjustable phase s h i f t e r  is t o  remove any s l i g h t  phase difference between 
the  incorning s igna l  pulse t r a i n  and the  sinusoidal output of the zero phase 
f i l t e r .  
generating circui t ry ,  which consists o f  an infinite clipper, a monostable 
multivibrator, and a gate pulse output amplifier,  

In t h i s  manner any 
The output of the zero phase 

The purpose of the  

The purpose of the 

The output of the  adjustable phase s h i f t e r  i s  f e d  t o  t h e  gate pulse 

The most c r i t i c a l  par t  of the pulse period cross-correlator subsystem 
is the zero phase f i l t e r ,  
t h i s  subsystem t h a t  the zero phase f i l t e r  be properly tuned t o  the  pulse 
r epe t i t i on  ra te ,  and t h a t  there  be no t i m e  var ia t ion  i n  the  r e l a t i v e  phase 
between the output of t he  zero phase f i l t e r  and the s igna l  pulse t r a i n  (any 
constant phase difference between these two s ignals  can be removed by the 
ad jus tab le  phase s h i f t e r ) ,  
were constructed f o r  t h e  Laser Communicator Ekperiment. Each exhibited a 
d i f f e ren t  pulse r epe t i t i on  ra te ,  ranging from 80 pps t o  over 100 pps, In  
addition, the specif icat ions f o r  these transmitters were such t h a t  the pulse 
repe t i t ion  r a t e  f o r  any one transmitter could vary with time over a 2-cycle 
bandwidth, Therefore, it was necessary t o d e s i g n  the  zero phase f i l t e r  
such tha t :  

It is absolutely e s sen t i a l  t o  the operation of 

Three different  hand-held l a s e r  t ransmit ters  

a ,  Its center frequency could be manually varied from 75 t o  1 2 0  cps, 

b, For any given center freqaency, the f i l t e r  would exhibi t  an essen- 
t i a l l y  zero phase charac te r i s t ic  over a 2-cps bandwidth. 

Figure 3-33 is a pole-zero p lo t  o f  an i d e a l  bandpass zero phase f i l ter ,  
centered a t  woo 
at 3 = uo + jwoe 
w = wo + A is c) - 2 9, where 8 i s  the angle of the zero and $ i s  the angle 
of one of the  poles. 

It consists of a double pole a t  s = -20, + jcuo.% and a zero 
The angle of the t ransfer  function of the  f i i t e r  a t  

Clearly, f o r  small A, 

A (3 -10 B’”- 
‘“0 

Hence t h e  angle of the  tramfer function of t h e  f i l t e r  i s  e s s e n t i a l l y  zero 
i n  t h e  neighborhood of wo: 
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Figure 3-33. Polezero  Plot of Ideal Zero Phase Filter in the Neighborhood of w0 
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It i s  a l so  apparent that ,  f o r  large A (i,e., f o r  wzs far from ~a,)~ the  
zero i s  ef fec t ive ly  canceled by one of the poles, and the i d e a l  zero phase 
filter behaves essent ia l ly  l i k e  a single pole, 
magnitude and phase functions of a zero phase f i l t e r  with those of a s ingle  
pole, 

Figure 3-34 compares the 

In practice,  the pole-zero p lo t  of t he  i d e a l  zero phase f i l t e r  i n  the 
neighborhood of w0 can be synthesized by two networks, F1 and Fz9 act ing i n  
cascade, 
while Figures 3-37 and 3-38 are  pole-zero p lo t s  of the t ransfer  functions 
of the two networks (it is  assumed tha t  R c l  is much greater  than the 
resonant impedance, RQ, of TI). 
ships between the v a r ~ o u s ' c i r c u i t  parameters and the location of the  poles 
and zeroes i n  the s-plane, 

Figures 3-35 and 3-36 are simplified schematics of these networks, 

These figures a l so  i l l u s t r a t e  t he  relat ion-  

Figures 3-39, 3-40, and 3-4.l a r e  schematic diagrams of the first and 
second pulse s t re tchers  and the 2-kc tone generator, 
schexatic of the zpf preamp and zero phase f i l t e r ,  In  ac tua l  operation the  
values of the  two variable capacitors i n  the zero phase f i l t e r  are chosen 
so  t h a t  the  resonant frequencies of the two tank c i r cu i t s  coincide with the 
pulse repe t i t ion  r a t e  of the par t icular  hand-held laser t ransmit ter  which 
is being used, 
has a Q of 10 and the  second tank has a Q of 20, Finally,  the Tank 2 b a d  
control  is set so t h a t  the  t o t a l  load resis tance i n  s e r i e s  with the  second 
tank equals t t ' e  resonant impedance of the  recond tank c i r cu i t ,  
give rise t o  an overa l l  Q of 5 for  the zero phase f i l t e r ,  and insure essen- 
t i a l l y  zero phase over a 2-cps bandwidth, 

Figure 3-42 is a 

The Q S p o i l  controls are then s e t  so t h a t  the first tank 

These values 

Figure 3-43 is a schematic diagram of the  zpf post amp and adjustable 
phase shifter, f igure  3-44 is a schematic diagram of the AGC c i r cu i t ,  and 
f igures  3-45' and 3-46 are  schematic diagrams of the gate pulse generating 
c i rcu i t ry .  

3.8 Time-voice Mix Subsystem 

The purpose of the  time-voice mix subsystem is t o  pernrit a l t e rna te  
recording of voice commentary and a standard time s igna l  on the  same data 
channel, 

Figure 3-47 i s  a schematic diagram of the time-voice mixing c i r cu i t ,  
The system operator se lec ts '  e i t he r  voice recording o r  t i m e  recording by 
mannual operation of the  ,switch, 
Ia faye t te  Radio Co, model 99-9037 t rans is tor  amplifier, powered by a 
9-volt d r y  c e l l ,  

The amplifier noted i n  the schematic i s  a 
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Figure 3-41. 2-KC Tone Generator 
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Figure 3-43. ZPF Postamp md Adjustable Phase Shifter 
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Figure 3-44. AGC Circuit 
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Figure 3-45. Infinite Clipper and Monostable Multivibrator 
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Figure 3-46. Gate Pulse Output Amplifier 
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Figure 3-47. Time-Voice Mixing Circuit 
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The time-voice mix c i r c u i t  generates two d i f f e ren t  levels of output; 
one a t  about l v o l t  t o  dr ive  one charmel of the  PIC F" audio recorder, and 
one a t  about 50 mil l ivo l t s  t o  drive both the  audio chamel  of the  la-5 video 
recorder and one channel of the Lafayette AI4 audio recorder, 

3.9 AN and FM Audio Recording Subsystem 

The BM recorder used i n  t h i s  subq-stem is  a Iafagette Radio Coo model 
m60aA two-channel recorder. The recorder i s  operated a t  7.5 inches per 
second, One channel of the recorder is driven by the  output of the  time- 
voice M n g  c i rcu i t ,  a l e  the other channel is driven by the  output of 
the tone generator. 
of t he  secona channel is driven by the  tone generator, s o  t h a t  the system 
operator perceives a d i s t inc t ,  audible tone whenever the  signal from the 
hand-held laser transmitter i s  being received, 

In addition, the audio amplification and speaker system 

The FM audio recorder used i n  this subsystem is a Precision Instruments 
Corporation model pS207-A3H seven-channel recorder. 
adapted f o r  FM recording and playback of nominal l v o l t  rms signals  a t  a tape 
speed of 15 inches per second. 
of each channel i s  from dc t o  approximately 2.5 kc, and the  dynamic recording 
range i s  approximately LO db. Five channels of t he  recorder a r e  used t o  
record autocorrelation coefficients,  one channel i s  used for recording the  
output of t he  time-voice mixing circuit, and the  last channel i s  used t o  
record the MPT AGC voltage. 

A l l  seven channels are 

Under these conditions, t he  frequency range 
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40 FIEZD A C T I V I T l E S  DURING THE FLIG?3T OF GT-7 

4.1 W S f f i  Laser Communicator S i t e  

On,26 November 65, the WSMR data recording and processing system (des- 
c r ibed  i n  section 3.2) was shipped f r o m  the Melpar plant in Fa l l s  Church t o  
the White Sands Missile Range. The system was accompanied by a senior scien- 
tist and a senior engineering technician, who were responsible f o r  i n s t a l l i ng  
and operating the system a t  the WSMR Laser Communicator site. 
ber 65, the WSIR d a t a  recording and processing system was completely ins ta l led  
and operating i n  the field. 

B y  2 Decem- 

Poor weather and the failure of the beacon Laser t o  operate properxy 
prevented any attempts a t  laser communication between WSMR and the  space 
capsule during the first week of the f l i gh t  of GT-7 (b December 65 through 
U. December 65). On 12 December 65, the beacon laser  was operating properly, 
the weather was r e l a t ive ly  clear; and an attempt a t  laser communication was 
made during o r b i t a l  pass no. u9. Although the astronauts were unable t o  see 
the WSER beacon f o r  any significant lengths of t i m e ,  they were a b l e t o  
observe one or two f lashes  from it. 
mitter i n  the  general direction of the flashes, one of the astronauts attempted 
t o  transmit laser pulses in the l a w  pulse r a t e  mode, However, a careful  
analysis of a l l  of the  recordings made during Ynis pass showed conclusively 
that no detectable energy from the laser transmitter was received a t  the 
Laser Communicator Si te ,  From 13 December 65 un t i l  the  end of the  f l i g h t  of 
GT-7 (18 December 65), a l l  attempts at  laser communication between WSIR and 
the space capsule w e r e  precluded e i ther  by bad weather o r  by the  engagement 
of the  astronauts i n  other ac t iv i tes ,  

%y aiming the hand held laser trans- 

On December 65, a hand-held laser transmitter was employed i n  a s t a t i c  
transnrissiom experiment between T-5 mountain and the WSMR Laser Communica- 
tor Site,, The opt ica l  path between transmitter and receiver was approxi- 
mateiy 11 miles long, and passed d i rec t ly  over the central  W S R  base facilities. 
The transmitter was aimed by hand and was operated i n  both the low and high 
pulse rate modes, 
s i t e  during this s t a t i c  test i n  both modes of operation; however, the gain 
of the  main dr iver  amplifier was s e t  too high, and a l l  of the recording and 
processing systems were overdriven. Therefore, no useful  data was recorded 
o r  processed during th i e  test. On 16 December 65, mother attempt was made 
t o  obtain low pulse rate (80 pps) tran,mission data from T d  mountain. 
this test, the  transmitter was placed on a concrete ledge, aimed by hand, 
and then f i x e d  i n  position by stones wedged underneath the transmitter casing. 
Severe fluctuations i n  received signal strength were observed during this 
test, and it was extremely d i f f i c u l t  t o  adjust  the gain of the main driver 
amplifier so t h a t  the excursions i n  s ignal  strength remained within the 10- 
to-1 dynamic range of the recording and processing systems. It was finally 
decided t o  simply record the data with the  gain of the main driver amplifier 
s e t  t o  give an average s igna l  level of about 0.3 volt .  

Transmitted energy was definitely received a t  the WSMR 
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On 18 December 65, the W34R data recording and processing system w a s  
disassenbled. 
system ca l ibra t ion  and data analysis were crated and shipped t o  the Fflpar 
plant i n  Fa- Church, The remaining par ts  of the  system (consisting pri-  
marily of the video recording subsystem, racks and shelves, f i e ld  supplies, 
and hand tools)  were l e f t  i n  the llelpar f i e l d  laboratory a t  White Sands, 

Those pieces of the system which were needed f o r  post-flight 

h.2 Ascension Island Laser Communicator Site 

On a November 65, t b i  Ascension Island data  =cording and processing 
system (described i n  sect ion 3.3) was shipped by NASA a i r c r a f t  from Friend- 
sh ip  Airport (Baltimore) t o  Ascension Island. 
by an eiectronlc  engineer, who was responsible f o r  i n s t a l l i ng  and operating 
the system a t  t h e  Ascension Island Laser Communicator Site.  By 29 November 
65, the system was completely ins ta l led  and operating i n  the f ie ld .  

The  system was accompanied 

The failure of the beacon laser t o  operate properly prevented any 
attempt a t  laser communication between Ascension Island and the space 
capsule during a l l  but one of the o r b i t a l  passes which had been assigned 
f o r  this purpose. 
laser was operating, a heavy cloud cover precluded opt ica l  transmission 
i n  any form. Therefore, no l a s e r  cmmnica t ion  data  were received, re- 
corded, o r  processed a t  the Ascension Island Laser Communicator Site. 

During t h e  one assigned pass f o r  which t h e  beacon 

On 18 December 65, the en t i re  Ascension Is land data  recording and 
processing system was crated and shipped back t o  t h e  Melpar plant i n  
Fa l l s  Church. 
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5. POST-F'LIGHT STETDIES AND EXPERIMENTS 

5.1 General 

Init ial  inspection of the  T-5 mountain experiment data a t  t he  Melpar 
laboratories i n  Falls Church, Virginia, showed t h a t  the  fluctuations i n  
received signal  strength had exceeded the 10-to-1 dynamic range o f  the 
recording system by a wide margin, 
of t he  data, t he  fluctuations i n  received signal were on the order of 100 
o r  lo00 t o  1. 
t h a t  could account for  these severe fluctuations: 

It was estimated tha t  over some portions 

A t  the time, there appeared t o  be three possible mechanisms 

a, Gross perturbations i n  atmospheric index of refraction, 

In  order t o  determine which o f  these three mechanisms was indeed the 
cause o f  t he  observed excursions i n  received s ignal  level,  it was decided 
t o  ship the  hand-held transmitter t h a t  had been used i n  the  T-5 mountain 
experiments t o  the Melpar laboratories. If laboratory tests showed that 
the  f luctuat ions w e r e  primarily a t t r ibutable  t o  atmospheric perturbations, 
and i f  sections of recorded data could be found i n  which the  fluctuations 
i n  s ignal  strength had been roughly within the dynamic range o f t h e  recorders, 
then those sections c f  data  would be s t a t i s t i c a l l y  analyzed, 

5.2 Repair o f  Hand-Held Laser Transmitter 

When the hand-held laser transmitter arrived a t  the  Falls Church 
laborator ies  it was found t o  be i n  fau l ty  operating condition. 
output of the  l a s e r  diodes was somewhat e r ra t ic ,  and occasionally sparEng 
could be heard within the in t e r io r  of the transmitter. When operated from 
an external  power supply, the case of the transmitter was found t o  be a t  
300 v o l t s  dc potent ia l  with respect t o  the  positive terminal of t he  external 
supply. Eventually, the instrument simply ceased t o  operate altogether, 

The power 

Upon careful examination of t he  i n t e r i o r  c i r cu i t ry  i t  was discovered 
that : 

a. The wire leading from the positive terminal o f  the power source%@ 
the No. 2 terminal of the power transformer had become pinched between two 
par t s  of the case assembly, and was hence sporadically a t  case potential. 

bo The case of  the RCA 40255 regulation t rans is tor  a t  the 300-volt 
output terminal of the power supply was touching the mounting screw of the 
10-volt plug receptacle. 
transmitter. 
t h e  case of the transmitter became elevated t o  300 volts. 

This screw i n  turn was touching t h e  case o f  the 
Therefore, since the case of the t rans is tor  w a s  a t  300 volts ,  
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Apparently, a spark would occasionally pass from the t ransmit ter  case 
Whenever t h i s  spark occurred, t o  the pinched w i r e  described i n  ( a )  above. 

t he  3W-volt output of the power supply was momentarily grounded, and the 
l a s e r  diodes would fail. t o  operate, 
t he  t ransmit ter  case and the pinched wire permitted an amount of current t o  
flow t h a t  was suf f ic ien t  t o  burn out one of the 2N2878 power t ransis tors .  

Eventually, the connection between 

All of the above difficulties were quickly remedied, and the  transmitter 
was then  found t o  be i n  excel lent  working order. 
whether the transmit ter  had been operating sporadically during the  T-5 
mountain experiments. 

It was not c lear ,  however, 

5.3 Meamement of Beam Power S tab i l i t y  

I n  t h i s  experiment, measurements were performed to determine the power 
output s t a b i l i t y  of each of the four laser  diodes acting individually, and 
of  611 f o u r  diodes act ing i n  concert, 
was f irst  t o  ascertain t h a t  the hand-held l a s e r  transmitter was operating 
properly a f t e r  the repa i rs  described i n  section 5,2 had been performed; and 
second, t o  determine whether inherent i n s t a b i l i t i e s  i n  output power could 
possibly account f o r  the  fluc5uations i n  the T-5 mountain experiment data, 

The purpose of these measurements 

Figure 5-3. shows the experimental arrangement t h a t  was used f o r  making 
the beam power s t a b i l i t y  measurements, 
s t a b i l i t y  o f  only one of the beams, the o ther  three beams were masked, 
Figure 5-2 gives typ ica l  tone generator outputs f o r  each beam act ing 
individually,  and f o r  a l l  four beams acting i n  concert. 
the  power output of the  f o u r  beams acting i n  concert i s  qui te  s tab le ,  exhibit- 
ing f luctuat ions on the order of 10 t o  20 percent. 
power outputs a re  not. so s tab le  as the four  acting i n  concert, and occasionally 
exhibi t  f luctuat ions as  severe as  2 o r  3 t o  1, 
t h a t  even f luctuat ions t h i s  severe c o 3 d  not possibly account f o r  the 
100-to-1 f luctuat ions observed i n  the T-5 mountain experiment data. 

I n  order t o  measure the power output 

It can be seen t h a t  

The individual beam 

However, it was readi ly  noted 

5,L Measurement of Transverse Beam Pattern 

I n  t h i s  experiment, the toss-sectional beam pat tern of one of the l a s e r  
diodes w a s  photographed, 
s ize  of any irregularities i n  the d is t r ibu t ion  of energy across the beam 
f r o n t  which had been induced Qy higher order modes i n  the diode laser cavity. 

The purpose of the experiment was t o  detemine the 

Figure 5-3 shows the experimental arrangement which was used f o r  
photographing tne beam pat tern o f  the upper-left laser diode of t he  hand- 
held l a s e r  transmitter. With no film i n  the camera, and with the  camera 
back and l ens  shut te r  open, the MFT tube was used a s  a detector t o  align 
the camera w i t h  the l a s e r  beam. 
type 4l.3 in f ra red  film, and the lens was adjusted t o  give 8 full-size image 
of the  beam pat tern on the film. 

Then the  camera was loaded with Polaroid 
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Figure 5-1. Experimental Arrangement for Measuring Beam Power Stability of 
the NASA Hand-Held Laser Transmitter 
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UPPERLEFTBEAM 
0.05 V/CM; 100 MS/CM 

UPPER RIGHT BEAM 
0.05 V/CM; 100 MS/CM 

LOWER RIGHT BEAM 
0.05 V/CM; 100 MS/CM 

LOWER LEFT BEAM 
0.05 V./CM; 100 MS/CM 

ALL FOUR BEAMS 
0.05 V.’CM; 100 MS/CM 

Figure 5-2. Beam Power Stability Data for NASA Hand-Held Laser Transmitter 65 
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Figure 5-3. Experimental Arrangement for Photographing the Beam Pattern of 
the NASA Hand-Held Laser Transmitter 
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Figure 5-4 shows two o f  the beam pat tern photographs taken during this 
experiment. Since the  pulse repet i t ion r a t e  of t h e  t ransmit ter  was about 
80 pps, the  image i n  the upper photograph ( shu t t e r  speed 1/75 second) most 
probably was impressed by only one pulse, while the image i n  the lower 
photograph (shutter speed 1/25 second) was most probably impressed by two 
pulses, 
ally i den t i ca l  beam pat terns  l ed  t o  the conclusion tha t  the beam pa t te rn  of  
a par t icu lar  laser diode is probably constant i n  time, 

The f a c t  t h a t  a large number of such photographs exhibited essenti-  

The distance between m a x i m a  i n  the horizontal  d i rec t ion  across the 
pat tern i s  about 318 inch, while t h e  distance between madma i n  the v e r t i c a l  
direct ion across the beam i s  about 1/8 inch. 
t ransmit ter  and camera was about 50 f ee t  (600 inches), it can be concluded 
t h a t  horizontal  maxima are spaced by about 0.6 milliradian, while v e r t i c a l  
m a  are spaced by about 0,2 milliradian. 

Since the distance between 

No attempt was made t o  photograph the  beam pa t te rn  induced by all four 
It i s  t o  be p r e m e d  that ,  a t  long distances f r o m  beams acting i n  concert. 

the transmitter,  t h e  patterns would tend t o  overlap randomly, thereby 
lessening the probabi l i ty  of sharp, d i s t i n c t  maxima and minima, However, 
assuming t h a t  the single-diode pattern i s  the worst possible case, it can 
be concluded t h a t  beam bending or  steering (induced by e i ther  atmospheric 
e f f ec t s  or  motion of the  t ransmit ter)  of as l i t t l e  a s  a f e w  tenths  of  a 
mill i radian could cause the portion o f  the  beam illuminating the receiver 
t o  change f r o m  a maximum t o  a minimum, thereby inducing fluctuations i n  
the received s ignal  which could not be explained on the basis  of normal 
atmospheric degradation o f  a uniform beam front ,  
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SHUTTER SPEED = 1.’75 SEC. 
ONE PULSE 

SHUTTER SPEED = 1 25 SEC. 
TWO PULSES 

Figure 5-4. Photographs of Beam Pattern of Upper Left Beam of NASA Hand-Held 
Laser Transmitter 
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5.5 Propagation Experiments Over a 1000-Foot Path 

I n  t h i s  experiment, a model of the  T-5 mountain expe rben t  was set up 
over a 1000-foot outdoor opt ica l  l ink a t  the  Falls Church laboratories,  
The hand-held laser i z a n s m i t t e r  w a s  mounted on a t r ipod  a t  the  outer edge 
of the laboratory parking lo t ,  and was careful ly  aimed up t o  an opt ica l  
receiver mounted on the roof of the laboratory, The receiving system w a s  
ident ica l  t o  the receiving system i l l u s t r a t ed  i n  f igure 5-1, except t h a t  
(a) the translucent screen shown i n  figure 5-1 was replaced by a c i rcu lar  
aperture about 3/4 inch in  diameter, and (b )  the  output of the tone gene- 
r a t o r  was recorded on one channel of the Lafayette AM audio recorder de- 
scribed i n  section 3 0 9 .  The 3/4-inch dbension of the aperture was chosen 
so t h a t  t h e  sol id  angle (centered a t  the transmitter)  subtended by the re- 
ceiver in the model experiment would be approximately equal t o  the so l id  
angle subtended by the %-inch receiver used i n  the T-5 mountain experiment, 
thereby insuring that the percentage of t o t a l  beam area subtended by the 
receivers i n  the two experiments would be roughly equal, 

The purpose of t h i s  experiment was t o  determine whether signal f luctua-  
t ions  i n  excess of the 10-to-1 dynamic range of the pulse detection system 
could be observed when the transmitter was r i g i d l y  mounted, accurately aimed, 
and known t o  be operating properly, 
and nighttime operation of the experiment, s ignal  f luctuat ions having r a t i o s  
f a r  greater  than 10 t o  1 could be readi ly  observed, and t h a t  the envelope 
pat terns  of these s ignals  were quite similar i n  character t o  t h e  enveloDe 

It was found that ,  during both evening 

pa t te rns  of the  T-5 mountain experiment data, 
t h a t  the  T-5 experiment was valid, but it did 
could cause wide f luctuat ions i n  the received 
inskumental ly  induced fiuctuat5ons was s m a l i  
f oo t  measurements. It was toncluded that  the 
therefore worthy of analysis 

5.6 A n a l y s i s  of T-5 Mountain Fkperiment Data 

This experiment did not prove 
show t h a t  atmospheric effects 
signal l e v e l  as the sum of 
compared to observed 1000- 
T-5 data could be valid,  and 

Figure 5-5 i l l u s t r a t e s  approximately 3 seconds of t he  tone-generator 
output recorded during the  T-5 mountain experiments, The t o t a l  >second 
data s t r i p  was broken in to  4 s t r i p s  of equal length, with s t r i p  2 follow- 
ing s t r i p  1 i n  time, s t r i p  3 following s t r i p  2, etc, This par t icu lar  seg- 
ment of data was chosen f o r  detailed analysis because approximately 70% of 
the  signal pulses recorded during t h i s  segment were within the dynamic 
range of t he  pulse detection system. The horizontal division marks repre- 
sen t  about 0.1 second in time, The ve r t i ca l  scale is  i n  a rb i t r a ry  units, 
with the  upper and lower limits of the peak detection system being repre- 
sented by approximately 7,6 divisions and 0.6 division respectively. 

Table 5-1 presents the number of gulses n, average pulse s ignal  l eve l  

For the purposes of t h i s  analysis, it 

X, variance i n  pulse signal l eve l  
l e v e l  oXa and signal-to-noise r a t i o  S/N, f o r  each s t r i p  individually and 
f o r  a l l  four s t r i p s  taken together, 
was assumed tha t  the value of each pulse height had been correct ly  recorded 

standard deviation i n  pulse s ignal  
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HORIZONTAL SCALE: 0.1 SECONDDI V I SlON 

Figure 5-5. Tone Generator Output, T-5 Mountain Experiment Data 



on the s t r ip  chart (Le., no at tent ion was paid to t he  fact  that a pulse 
that had been recorded with a height of 7.6 uni ts  (as l imited by saturat ion 
of t he  peak detector) might actually have represented a pulse of much 
greater height,. In  computing the signal-to-noise ra t io ,  it was fur ther  
assumed that t h e  pu l ses  represented uniformly spaced samples of receiver  
output for a constant transmitter output. Under t h i s  assmption, the 
signal-to-noise r a t i o  is given by the r a t i o  of average s igna l  level 'x t o  
rms noise levelax. 

TABU3 5-1 

PlBAMETERS OF T-5 MOUNTAIN E X F E R ~ N T  DATA 

X - U X 
n (units) s/pT 

Figure 5-6 is a graph of the emulative dis t r ibu t ion  function F(X) f o r  
the en t i re  +second da ta  segment, w h e r e  

F(x) = P@ .> (5-1) 

that is, where F(x) i s  the probability that a pulse height w i l l  be less 
than X. 
affected by the l imited dynamic range of t h e  pulse detection system. 

The va l id i ty  of the  data points shown i n  this figure w a s  not 

the 

T h e  
the 
the 

the 

Figure 5-7 is a graph of t h e  probabiLit7 density function f (x) for 
e n t i r e  3-second data s e p n t ,  where 

data points f o r  this graph were obtained,by d i r e c t  d i f fe ren t ia t ion  of 
smoothed F(x)  curve i n  figure 5-6, as opposed t o  a par t i t ioning of 
actual pulse height data. 

It is  in te res t ing  t o  note that  figure 5-6 gives a value of 3.7 f o r  
median pulse height, which happens t o  coincide w i t h  the value of 3.7 

given i n  t a b l e  5-1 for t he  overall. average pulse height. 
amination of the probabili ty density f d c t i o n  i n  figure 5-7 reveals t h a t  

However, an ex- 
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Figure 5-6. Cumulative Distribution Function, T-5 Mountain Experiment Data 
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Figure 5-7.  Probability Density Function, T-5 Mountain Experiment Data 
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pulses having heights of 3.7 occurred infrequently, and t h a t  instead, the  
density function i s  weighted heavily in favor of either low-height pulses 
o r  pulses having heights on the order of 5 units. This double maximma 
appearing in f igure  5-7 might be a t t r ibu tab le  t o  a s l i g h t  back and forth 
bending of the  bean such as would cause the receiver to be a l te rna te ly  
illuminated by a maximum and a minlrmrm in the inherent transverse beam 
pat tern (see section 5.4). 

A q  quant i ta t ive analysis of t h e  harmonic content of the data  pre- 
sented in f igure  5-5 would be necessarily limited t o  frequencies below 
40 cps by v i r t u e  of the f a c t  t ha t  I A e  pulse repe t i t ion  r a t e  was  only 
80 pps. 
of these data  w a s  performed. 

Because of t h i s  severe l imitation, no extensive spec t ra l  analysis 
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6,  CONCLUSIONS AM) R T 3 C O " D A T I O U S  FOR kFURT"Ei STUDIES 

6.l Analysis of GT-7 Laser Commmicator Experiment 

In  Januaqy 1965 a meeting was held at the MASA Manned Spacecraft 
Center i n  Houston t o  review the GT-7 Laser Conarmnicator Experbent. 
following four problem areas w e r e  pinpointed a t  t h a t  meeting: 

The 

a. Beacon lasers - these high-powered gas lasers proved to be rather  
unreliable in the  field.  
WSiR w a s  leaks i n  the  anode assembly, while the  main d i f f i cu l ty  a t  Ascension 
Island was cracking of the laser tubes induced by the  formation of bubbles 
i n  the w a t e r  jacket cooling system. 

The principal problem with the  beacon laser at 

b, 
radar and the opt ical  pedestal were encountered at  both ISHR and Ascension 
Island. 

Tracking systems - severe tracking er rors  between the  tracking 

c. Lack of  prominent landmarks - the  astronauts pointed out that it 
was impossible t o  visually acquire Ascension Island from the capsule, 
because the island is not surrounded by prominent landmarks. This same 
problemwas t r u e  to  some degree with the  Laser Communicator s i t e  on the  
i s land  of Kauai. 

do Hand-held transmitter sighting telescope - %he field of v i e w  of 
the sighting telescope i n  the handAeld laser transmitter uas much too 
small. 
which was  designed t o  a id  the astroriazts 5~ acquiring the  blue-green 
beacon laser ,  proved t o  be a hinderance because it obscured the overiiil 
landscape, thereby obl i terat ing the prominent landmarks which Were so 
essential t o  visual acquisition of the beacon. 

F z t h e m r e ,  the blue-green filter i n  the  reticle of t h i s  telescope, 

The post-flight data analysis of section 5 underscored two additional 
problem areas: 

a. Transverse beam pattern - the cross-sectional beam pattern of the 
hand-held laser transmitter might have induced fluctuations i n  the  received 
s igna l  which would not have been induced by normal atmospheric degradation 
of  a uniform beam front. 

bo Limited dynamic range of the TR-5 - based on the  large excursions 
i n  received signal l e v e l  observed i n  the T-5 mountain experiment data, it 
would appear t ha t  the 10-tool dynamic range of t he  TR-5 video recorder 
severely limits the  usefulness of t h i s  instrument f o r  t he  direct  recording 
of  atmospheric propagation data. 

6.2 Recommendations f o r  Future Spacecraft Laser  Communication Escperiments 

The following recommendations might apply to any future  space-to-earth 
laser commnicat ion experiments s 



a. Receiver S i t e  - t h e  receiver s i tes  should be located in areas 
that ham generally c lear  skies,  
surrounded by part icular ly  large and prominent landmarks. 

I n  addition, the areas should be 

b. Beacon Laser - I n  order t o  a s s i s t  the astronaut in acquiring the 
beacon, equipment should be provided f o r  rapidly changing the divergence 
angle of the  beam, 
the beam i n  a symmetrical pattern around i ts  l ine  of boresight. 

I n  addition, a mechanism might be included f o r  scanning 

C. Recording system - the  recording s y s t e m  should have an extremely 
wide dynamic range, 
rithmic recording, o r  by multichannelrecording wherein the dynamic ranges 
of the  various channels are spaced i n  such a manner as t o  provide the  de- 
s i r e d  overa l l  system range. 

TbLs requirement can be sa t i s f i ed  by e i t h e r  loga- 

d. Capsule t ransmit ter  - the  transmitter i n  t h e  capsule & o d d  emit 
pulses of duration as long as possible, and a t  a pulse repet i t ion rate of 
approximately 10 kc, Optical matial f i l t e r i n g  should be incorporated t o  
insure a uniform bean front,  
employ a variable f o c a l  length lens with a vide f i e l d  of v i e w ,  
of t he  t ransmi t te r  assembly should be accomplished through a set of gim- 
bals  which are i n  turn r ig id ly  attached t o  t h e  spacecraft. 

6,3 Future Ground-Based Laser Propagation Studies 

The t ransmit ter  sighting telescope should 
Aiming 

A --lnl. LAwLiber of ground-based laser  propagation s tud ie s  should be performed 
i n  order t o  measure the  e f f ec t  of cer ia lz  optical system parameters on 
the s t a t i s t i c s  of the received signal. I n  addition, an  e f f o r t  should 'be 
made t o  correlate  macroscopic atmospheric parameters with t h e  s t a t i s t i c s  
of t h e  Eceived signal,  
experiments are t he  following: 

Among the more promising of these studies and 

a, Transmitter aperture diameter - determine the effect  of the 
t ransmit ter  aperture diameter over a range extending from 1 millimeter 
t o  1 meter, I n  particular, measure the e f f ec t ,  if any, of transmitter 
aperture diameter on beam steering, 

b. Transmitter divergence angle determine the e f f e c t  of the diver- 
gence angle of t he  transmitted beam over a range exLending from 0.01 
mi37iradian t o  10 milliradians. 
beam divergence on angle of arrival a t  the  receiver, 
ing beam divergence under various atmospheric conditions. 

I n  particular,  measure t h e  e f f e c t  of 
Determine t h e  l i m i t -  

c,, Receiver angle of view - determine the effect of the receiver 
angle of view over a range extending from 0 , lmi l l i r ad ian  t o  10 m i l l i -  
radians, I n  particular,  measure long-term shifts i n  the angle of arrival. 



d, Receiver aperture area and shape - determine the effect of re- 
ceiver aperture area and shape, 
square mter, and include shapes t h a t  will permit separate determination 
of horizontal  and vertical coherence lengths. 

Include areas ranging from 0.01 t o  1 

e, Long-term beam bending - measure long-term shifts i n  beam bending 
by periodically optimizing transmitter aiming. 

f, Range - determine the ef fec t  of transmitter-receiver separation 
by alternately measuring the transmissions from twc iden t i ca l  transmitters 
t h a t  are a t  d i f fe ren t  distances from the  receiver. 

g. Atmospheric Conditions - record temperature, pressure, relative 
humidity, wind velocity, and wind direction a t  both transmitter and re- 
ceiver during a l l  experiments. 
system parameters under various atmospheric conditions. 

Perform t h e  same experiments with the same 

It should be emphasized here that  none of the above experiments are 
absolute measurements of the e f f ec t  of a cer ta in  parameter; rather,  these 
measurements will hopefully y ie ld  the r e l a t i v e  change i n  the s t a t i s t i c s  of 
t h e  received s ignal  induced by a change i n  one of the system parameters, 
i n  the context of a par t icular  system operating i n  a p a r t i c d a r  environment 
under a par t icular  set of atmospheric conditions. 
pated that a large number of such measurements would most cer ta in ly  provide 
a basis  f o r  an evaluation of published theories  on opt ica l  propagation 
through the ahosphem, 
the engineering d a t a  necessav  fo r  designing prac t ica l  op t ica l  communica- 
t i o n  systems, and f o r  preaictiag %hs ?xhmLor of these systems under various 
atmospheric conditions. However, such experiments, while less expensive an2 
more convenient than spaceborne experiments, are not known t o  be d i r ec t ly  
applicable t o  opt ica l  c ommicat ions systems operating through a v e r t i c a l  
atmospheric profile . 

However, it is ant ic i -  

I n  addition, these investigations uould provide 

e l p a r  is  presently engaged i n  an extensive independent research and 
d e v e l o p n t  program t o  perform sQme of the  ground-based experiments l i s t e d  
above. A completely portable, highly versatile, laser transmitt ing system 
has been designed and constructed, Tfre scurce of laser energy in this 
systemis a Spectra-Physicsmodel125 helium-neon gas laser operated a t  
6328 2, which has an output power of about 80 milliwatts. T h e  laser is 
mounted col inear lg  with a %meter op t ica l  bench, so that components for 
modulating, diverging, spa t i a l ly  f i l tering, and recollimating the beam can 
be rapidly in s t a l l ed  or  interchanged. 
mounted on a U-foot aluminum I-beam, which, i n  t u r n  is mounted between 
two t r iangular  base pods, 
be adjusted t o  within 0.03 milliradian by screw adjustments a t  t h e  ends of 
the I-beam, The system is e l ec t r i ca l ly  powered by a portable motor- 
a l t e rna to r  set. 
(including a l l  auxi l iary equipment) weighs less than 1000 pounds, 
6-1 and 6-2 are photographs of the l a s e r  transmitter i n  operation, 

T h e  e n t i r e  transmitt ing system is 

Both the elevat ion and azimuth of the  system can 

When packed and crated, the e n t i r e  t ransmit ter  assembly 
Figures 

77 



Figure 8-1. Front View of Melpar Laser Transmitter in Operation 



I '  

Figure 6-2. Rear  View of Melpar Laser Transmitter in Operation 



In  addition t o  the transmitter, Melpar has set up an optical receiving 
s t a t ion  a t  its test, s i t e  located i n  Centerville, Virginia. The op t i ca l  
receiver a t  this s t a t ion  is an 8-inch re f lec t ing  telescope, mounted on the 
telescope. The s t a t i o n  is equipped f o r  seven-channel FM audio recording, 
and two-channel AH audio recording. T h  e n t i r e ,  receiving s t a t ion  is 
housed i n  a small f i e l d  laboratory, thereby permitting all-weather opera- 
tion. 
station. Figure 6-4 is  an i n t e r i o r  view of the s t a t ion  showing the t e l e -  
scope, photomultiplier package, and recording equipnent. 

Figure 6-3 is  a photograph of the ex ter ior  of t h e  opt ica l  receiving 

The receiving s t a t ion  is a t  one end of a line-of-sight path t o  the 
t o p  of Bull Run Mountain, which is located approximately U miles north- 
west of the Centerville test site, 
assembly was taken t o  the t o p  of Bull Run Mountain and aimed a t  the re- 
ceiving station. Throughout the night of 29 July 1966 and i n t o  the morn- 
ing  of 30 July 1966, extensive atmospheric perturbation measurements were 
performed as a function of transmitter aperture diameter, transqitter 
beam divergence, and receiver angle of view. Plans are p resen t ly  being 
made t o  perform addi t ional  experiments over the Bull Rm-Centerville op- 
t i c a l  link, i n  order t o  measure long-term beam bending, ultimate diver- 
gence angle, and the e f f e c t  of receiver aperture shape. 

On 29 July 1966, the t ransmi t te r  
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Figure 6-3. Exterior View of Melpar Optical Receiving Station 

Figure 6-4. Interior View of Melpar Optical Receiving Station 
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