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ABSTRACT 

Arc tunnel constrictors have been designed and tested 

which w i l l  to le ra te  heat fluxes up t o  12,000 Btu/’(sec ft2j. 
Thick walled constrictors fa i led by loca l  melting on the 

a.rc side of the wall a t  f lux levels i n  agreement with pre- 

dictions based on exisymn?etric conduction through the wall. 
Burnout type fa i lures  were observed with thinner walled 

constrictors a t  f lux levels  up t o  four times higher than 

predicted by G a m b i l l ’ s  additive method, and the  difference 

is at t r ibuted t o  high non-boiling convective heat t ransfer  

ra tes .  The results of this  study indicate t h a t  with proper 

coolant passzge design and high coolant pressures, heat 

fluxes up t o  20,000 Btu/(sec f t  ) may be tolerable without 

constrictor failure. 
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English Letter Synibols 

C coolant specific heat, Btu/(lbm %) 
hydraulic diameter, f t  

heat transfer coefficient, Btu/(hr f t 2  O F )  

thermal conductivity of constrictor disk, Btu/(hr f t  OF) 

i 
h 
k 

UA heat flux, Btu/(hr ft2) or  Btu/(sec f t  2 ) 
r 
T,t temperature, OF 
V 
V specific volume, f t 3 / 1 b m  

radius  of coolant passage w a l l ,  f t  

mean velocity, ft/hr o r  ft /sec 

Greek Letter Symbols 

CY thermal d i f fus iv i ty  of coolant, f t  2 /hr 

P viscosity, lbrn/(ft hr)  
P density, lbm/ft 3 

Non-Dimensional Quantities 

Fsub 
Pr &andtl Number, p/(pcc) 

Re Reynolds Nmiber, VpDh/p 

S t  Stanton Number, h/(Vpc ) P 

subcooling factor, defined by Equation 10 

Subscripts . 

av denotes average 

b denotes bulk average 
f 

8 
i 

indicates a property at saturated l iqu id  condition 

indicates a property at saturated vapor condition 

indicates a variable e i ther  evaluated at the inner coolant w a l l  
radius o r  at the  coolant passage i n l e t  conditions 

indicates a variable e i ther  evaluated a t  the outer coolant wall 
radius or  at the coolant passage dis-charge conditions 

indicates a variable evaluated a t  the coolant passage w a l l  

0 

W 

V 



I. Introduction 

The constricted arc wind tunnel i s  a research f a c i l i t y  currently i n  use 

wherever steady flows of high enthalpy a r e  required. 

f o r  example, t o  study ablation and heat t ransfer  character is t ics  of space 
vehicles upon entry in to  various planetary atmospheres. 

Center has been involved both i n  the development of the constricted arc  tunnels 
and i n  t h e i r  use as a research tool.  

f n m ~ c e  charec t~r i s t ics  o f  arc tunnels, covers work carried out by the Engin- 

eering Research Center at Arizona Sta te  University under NASA-Ames Research 

Center sponsorship. 

Such devices are used, 

NASA's Ames Research 

The present report, dealing with per- 

A schematic of a constricted arc tunnel i s  shown i n  Fig. 1. Basically, the 

device consists of an anode and cathode separated by a segmented, cooled nozzle, 

. I n  operation, the tes t  gas is  injected near the cathode and accelerated through 

the nozzle in to  the test  section of t h e  tunnel. The ionized test  gas carries a 

high d.c, current between the cathode and the anode; i n  e f fec t  the a rc  i s  carried 

through the nozzle, heating the t e s t  gas t o  high enthalpy levels  i n  the  process. 

A considerable portion of the e l ec t r i ca l  power dissipated i n  the plasma is 

l o s t  t o  the constrictor walls through heat t ransfer .  

is such that  increases i n  energy content of the tes t  gas are necessarily accomp- 

anied by increases i n  constrictor wall heat t ransfer .  

ultimate performance of these devices i s  limited by the m a x i m u m  tolerable w a l l  

heat flux. 

The operation of the device 

As a consequence, the 

For steady state operation, the wall heating from the plasma must be removed 

by the coolant. 

consists of a thin disk with a circular  plasma passage and an annular coolant 

passage. 

water. 
by allowing the coolant t o  boil;  however, the c r i s i s  point associated with the 

t rans i t ion  from nucleate t o  pool boil ing suggests t ha t  constricted arc  performance 

w i l l  be l imited t o  coolant heat fluxes lower than t h i s  t ransi t ion value. 

The basic constrictor configuration is  shown i n  Fig. 2, and 

The disk material usually employed is copper and the  coolant is usually 

The capabili ty of the coolant f o r  removing the w a l l  heating is  enhanced 

The present study deals with the heat removal capabi l i t ies  of cooled con- 

s t r i c t e d  disks; fur ther  discussion of the theory of constricted arc  jets may be 

found i n  References 1 and 2. 

1 
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. 11. Basic Considerations of the He& Transfer Problem 

The constrictor geometry under considerction may be idealized as follows. 

A plasma passage of c i rcular  cross section is  separated from a concentric cool- 

ing passage by a copper annulus as shown i n  Fig. 2. 

axi-symmetrical radial conduction, the temperature drop through the copper wa l l .  

and the heat fluxes at the inner and outer radii are related through the steady 

Assuming one-dimensional 

1 state conduction r a t e  equation: 

I 

. Ti - To . k  

Ai 

- 
i 3- = I n G i )  r 

. k  Ti - To 

1 For a given plasma passage diameter, the inner and outer heat fluxes can 

be evaluated fromEquation 1 as a function of the w a l l  temperature drop and radius 

ra t io ,  r&i, as shown i n  Fig. 3 for a 1/4" diameter copper constrictor.  

I 

The inner temperature, Ti, cannot exceed the w a l l  material melting point, which 

f o r  copper i s  approximately 1980°F. 

will vary depending on the coolant, coolant pressure, flow conditions, and whether 

or not surface boiling is  occurring. Nevertheless, f o r  the f lux levels  under con- 
sideration, T w i l l  rarely e i the r  exceed 45OoF or  be less than 25OoF. 

m a x i m u m  possible non-melting w a l l  temperature difference may be represented as a 

band centering at  165OoF as shown i n  Fig. 3. 

The wall temperature on the coolant side, 

Thus the 
0 

The coolant w a l l  temperatures quoted above are va l id  only i n  the non-boiling 

A t  some value of the coolant flux, ( V A  ), and nucleate boiling coolant regimes. 

nucleate boiling cannot be maintained, and as a t ransi t ion t o  the film boiling 

regime occurs, with a concurrent rapid rise i n  To, Ti also rapidly rises past the 

melting point, thus the c r i t i c a l  heat flux must be considered as a l i m i t ,  beyond 

which the  constrictor cannot operate. An often quoted, though seldom achieved, 

l imit ing value of the c r i t i c a l  heat flux is  10,000 Btu/sec.ft.*, and t h i s  value 

is also indicated i n  Fig. 3. 

0 .  

3 



From Fig. 3, it can be seen that  two modes of constrictor f a i lu re  axe 
possible. 

the large gradients s e t  up i n  a re lat ively thick wall may cause melting a t  

f l ux  levels well below the c r i t i c a l  level .  

Failure may be due t o  a t ransi t ion t o  film boiling; alternatively,  

Figs.  4 and 5 show similar p lo ts  of equations 1 f o r  1/2" and 1" diameter 

constrictors. 

4 
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FIGURE 5 
CONDUCTION THROUGH I"0 CONSTRICTORS 
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111. Performance Possibi l i t ies  of Non-Boiling Convective Cooling 

Seban and McLaughlin (Reference 3) report heat t ransfer  coefficients ob- 

tained fron experiments with turbulent f low i n  curved passages, the general 

configuration of the constrictor coolant passages. Data is reported only f o r  

passages of c i rcular  cross section and uniform peripheral heating; whereas the 

constrictors have rectangular passages with the heating concentrated a t  one 

side. 

ceeded those f o r  s t ra ight  tubes. Expressed emperically: 

They found tha t  the average peripheral heat t ransfer  coefficients ex- 

(2 1 hcurved = 1 + 3.5 (d/D) - - - - - - - - -  
hstraight 

where d is the tube cross section diameter and D is twice the rad ius  of curva- 

ture  of the tube. 

Seban and McLaughlin also measured the difference between the heat t ransfer  

coefficients on the inside and outside of the tube curvature. They found tha t  the 

secondary flow induced jn the curved passage significantly lowered the coefficients 

on the  inside. 

respectively 0.75 and 0.5 of the mean peripheral values.) 

(For d/D = 0.0096 and d/D = 0.059, the inside coefficients were 

I n  some of the 1/4" diameter constrictors, the coolant passages have d/D 

ra t ios  of 0.2 and greater, so secondary flow may be expected t o  have a signifi- 

cant e f fec t  on the constrictor heat transfer coefficients. 

of the secondary flow pattern is  shown i n  Fig. 6 .  
at -one side of the passage only, it can be seen tha t  the heated w a l l  is continually 

flushed with fluid from the unheated sides, and the heat t ransfer  rates may be 

considerably enhanced over the uniform peripheral heating case. 

A qualitative picture 

For the case where heating is 

In  view of the lack of information available on heat t ransfer  coefficients 

f o r  the constrictor geometry, the estimation of the performance poss ib i l i t i es  of 

the non-boiling cooling must be considered a rough estimate a t  best .  

For estimation purposes, the heat t ransfer  i n  the coolant passages will be 
predicted from the Colburn Equation: 

I. 

9 



The heat flux per uni t  area i s  given by: 

(4 1 - - - - - - - -  i = h (tw e \,,I 
A 

where 

The maximum possible non-boiling heat 

~c~~~~~~~~~ =t the poiut. of bcinimf-  

at t h i s  point has been s h o h  t o  be of 

L.^-r-rL..u.r 

4). Thus: 

t w = t  + 
S,O 

transfer rate is  attained with the w a l l  

nuc!.eate boiling. The w a l l .  temperature 

the order of 2OoF of superheat (Reference 

20 

Note tha t  the bulk temperature rise i n  the coolant passage i s  related t o  the 

heat flux: 

For a given passage cross section, flow velocity, and outlet  pressure, 

equations 3 - 7 can be solved i te ra t ive ly  t o  yield the heat f lux at  incipient 

boiling. 

Generkily, the flow velocity and outlet pressure is  related through the 

t o t a l  head capability of the  system. 

constant, as dictated by the pressure capabili t ies of the f i t t i n g s ,  etc. ,  then 

an lncrease i n  ex i t  pressure obtained by doimstream thro t t l ing  w i l l  be accom- 

panied by a decrease i n  flow velocity. Experience shows tha t  i n  the constrictors 

only about one-half the pressure head difference is converted in to  kinet ic  energy, 

f r i c t i o n a l  losses accounting f o r  the remainder. 

If we consider the upstream pressure a 

With these assumptions, equations 3 - 7 have been solved f o r  one passage 

cross section (% = 0.09 in.), one bulk in l e t  temperature (TOOF), and three 

supply pressures (Pi = 1000, 500, 100) with various out le t  pressures. 

sults are shown i n  Fig. 7. 
pressure results i n  a decrease i n  f l o w  velocity and an increase i n  w a l l  tempera- 

ture, the lat ter tending t o  increase the heat transfer and the fomer  tending t o  

decrease it. The result i s  an optimum outlet  pressure f o r  each supply pressure; 

however, the curves are rather f la t  near t h e i r  m a x i m u m  point. 

The re- 

An increase i n  out le t  pressure at  a given supply 

10 



FIGURE 6 
SECONDARY FLOW PATTERNS 
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N. Performance Possibi l i t ies  with Surf ace Boiling 

The most workable scheme a t  present for predicting the burnout heat f lux 

i n  a flow boiling situation i s  the superposition method where a pool boil ing 

burnout heat flu i s  added t o  a forced convection, non-boiling heat flux. 

par t icular  scheme which has been most extensively compared with available ex- 

perimental data i s  tha t  proposed by Gam'bill (Reference 5 ) .  
the burnout heat flu, ( d A ) b . o  

The 

"his scheme predicts 

as : 

(8 1 - - - - -  4 Fsub + ( E )  
b.0. Sat-poo1,b .o. non-boi1,b .o. 

represents the boiling contribution t o  the where ('*)Sat-pool,b .o. Fsub 
burnout heat f lux i n  the absence of forced convection and ( V A )  

term (qA)Sat-pool,b .o. 
factor introduced t o  correct the saturated pool boil ing burnout results f o r  non- 

s a t u a t e d ,  or subcooled, conditions. 

non-boi1,b .o. 
\ . represents the forced convection contribution i n  the absence of boiling. The 

represents saturated pool boil ing burnout and Fsub i s  a 

The available experimental evidence indicates t ha t  many of the available 

correlations f o r  ( ' A ) ~ ~ ~  - pool,b oo can be used with success i n  t h i s  super- 
position method. 

has been used i n  the present study. 

For simplicity, the Rohsenow-Griffith equation (Reference 6) 

- 

(9) = 143 h (A ) - - - - - -  
f g  vg -Vf Sat-poo1,b .o. 

The r a t i o  of the subcooled t o  saturated pool-boiling burnout heat flux, F 
sub ' 

is given by Bonilla (Reference 7). . 
v 0.93 (4 Fsub = 1 + p A tsub 

f V 25 hfg 

The non-boiling contribution at  burnout is  calculated from the convective 

rate equation : 

= h (tv - non-boi1,b .o. ' -'b. 0. 



L 

The calculation of t h i s  la t ter  contribution requires knowledge of the amount 

of w a l l  superheat at burnout; however, considerable disagreement ex i s t s  i n  

the published literature 6s t o  t h i s  amount. Bernath (Reference 8) has given 

a general re la t ion f o r  the amount of wall superheat (at burnout) which indi- 
cates reductions i n  w a l l  superheat with increases i n  f l o w  velocity. Because 

of the evident uncertainty i n  the exact level  of wall superheat at  burnout, 

the convective contribution t o  the burnout heat flux has been calculated with 

w a l l  temperatures of zu r a%ove sztxaxi.%Zc~. !This Is epprnximtely the amount 

of superheat at incipient boiling, and should result in a somewhat conservative 

estimate of the burnout heat flux. 

-*o- 

, is thus given f o r  the The non-boiling contribution, (uA)non-boil,b ,o. 
present system by Figure 7. 
factor  have been evaluated f o r  a bulk temperature of 70% f o r  a range of pressures 

up t o  the c r i t i c a l  pressure, and these are presented i n  Figures 8 and 9. 
t o t a l  non-convective contribution, (il/A)Sat-pool,b .o. Fsub is plot ted i n  Figure 

10. It should be noted tha t  one apparent e f fec t  of large amounts of subcooling is  

t o  lower the  optimum pressure fo r  maximum heat f lux far below the one-third c r i t i -  

c a l  pressure generally recognized fo r  saturated boiling and evident i n  Figure 8. 

The saturated pool boil ing contribution and subcooling 

The 

Finally, i f  the boiling and convective contribution of Figures 7 and LO are 

summed, the predicted burnout f lux as a function of supply and discharge pressures 

is as shown i n  Figure 11. 

the passage out le t  pressure should be maintained at from one-third t o  one-half the 

.These resu l t s  indicate tha t  f o r  m a x i m u m  heat fluxes, 

supply pressure ., 
Most of the available experimental data f o r  subcooled flow boiling has been 

obtained with passage hydraulic diameters much larger  than those required f o r  the 

constrictor cooling. 

(Reference 9). 
meters and lengths congarable t o  those employed i n  the constrictors. 

One notable exception t o  t h i s  i s  the work of Bergles 

He  presents burnout data fo r  s t ra ight  c i rculzr  tubes with dia- 

The superposition scheme outlined above has been used t o  predict  the effect  

of out le t  pressure on burnout flux for the condition presented i n  Figure 3 of 

Reference 9. This comparison is shown in Fig& E, and indicates the predicted 

values a r e  approximately 5 6  of the observed values. Nevertheless, the observed 

trend of the resu l t s  with out le t  pressure i s  similar t o  tha t  predicted, and the 

I 
14 



and the conservative estimate of the Way superheat at burnout. 

lends some degree of confidence t o  the use of the superposition scheme fo r  pre- 

This cornparison 
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V . Experimental Apparatus 

Constrictors with several different  coolant passage configurations were 

b u i l t  and tes ted i n  the apparatus shown i n  Fig. 13. 
was i n i t i a t ed  between the cazbon electrodes through three test constrictors.  

D i s t i l l e d  water was circulated through each constrictor,  and the flow rate 
through the center constrictor was  metered with a rotameter. 

input t o  the center constrictor was determined by an energy balance on i t s  
coolant flow, u t i l i z ing  upstream and downstream iiiei~imcmples 

constrictor flow l ines .  

on a CEC recording oscillograph along with the  a rc  current. 

A direct  current arc  

The energy 

t5e center 

This coolant flow temperature difference w a s  recorded 

Boron n i t r ide  was used f o r  the insulating mfers on both sides of all three 

The outermost w a f e r s  were replaced a f t e r  each run, and these plus constrictors. 

the larger  boron n i t r ide  end pieces, served t o  shield the constrictors from the 

anode and cathode heating. 

reducing end effects since some runs were’taken with only the tes t  constrictor 

between the two shields, and the results of these runs compared favorably with 

those obtained with three constrictors. 

It is  f e l t  t h a t  t h i s  shielding was  successful i n  

The constrictor configurations tested are shown i n  Figures 14 through 17. 
Ten constrictors of each type were fabricated. 

the’ two por t  and four port  configuration is 1.4. 
t ion,  radius r a t io s  of both 1.4 and 1.6 were tes ted.  

constrictors of both two port and four port  designs, but with a radius r a t i o  

of 2.75, were tested.  These older constrictors were electron beam fabricated 

rather  than s i lve r  brazed. 

.di&ters of 0.25 inches. 

The radius ration, ro/r on i’ 
On the eight port  configura- 

I n  addition, some older 

All of the test constrictors had plasma hole 

21 
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V I .  Experimental Results 

Melting Failures. I n  tes t ing  each constrictor configuration, successive 

runs were made with increasing arc  currents u n t i l  rupture of the coolant passage 

occurred. 

corder traces,  &as approximately two seconds. 

i n  Figure 18. 

The t i m e  required t o  achieve steady state, as indicated by the re- 
A typical  recorder t race is  shown 

Many of the test  sequences with the electron beam welded constrictors were 

terminated pr ior  t o  a t rue failure by the appearance of stress leaks a t  the  weld. 

Some of the s i lver  brazed constrictors also developed leaks around the braze, 

but these were found t o  be much more reliable than the beam welded disks. 

For the  2.75 radius r a t i o  constrictors with good welds, the pattern of 

failure was as follows. F i r s t ,  after a run at  a cer ta in  current level,  the 

dismantled constrictors exhibited melting at  the edges of the plasma hole. 

most cases, there was mainly rounding of the edges of the hole, but i n  some 

cases there  was a noticeable enlargement of the hole d i amte r .  

stage of melting took place without causing any coolmt passage leaks; however, 

subsequent runs with s l i gh t ly  higher a r c  currents always resulted i n  a complete 

failure of the coolant passage. For both the two and four port  2-75 radius 

r a t i o  constrictors, the first signs of melting occurred at plasma side heat 

fluxes of from 3500 t o  4000 Btu/(ft*sec). 

3, which predicts premature melting f o r  these constrictors.  

In  

This first 

This value is consistent with Figure 

A possible explanation f o r  the subsequent failure of these constrictors i s  
tha t  the  l iqu id  copper shorts ecross the boron n i t r ide  separating the constric- 

to rs ,  result ing in  attachment of the a r c  t o  the constrictors and increased loca l  

heating r a t e s  at the attachment points. 

Burnout Failures. The f a i lu re  pattern observed in  the tes t  sequences f o r .  

the 1.4 and 1.6 radius r a t i o  constrictors was  quite different  than tha t  followed 

by the  la rger  radius r a t i o  disks. Failure i n  these tests occurred before steady 

state was reached, but a t  a f lux  l eve l  higher than that reached i n  the preceding 

run a t  steady state. 
the f a i lu re .  

failure. 

No loca l  melting was noted i n  the run immediately preceding 

This conforms t o  the pattern tha t  would be expected f o r  a burnout 

The fa i lure  i n  all  cases was accompanied by a d i s t inc t  "pop" sound, 
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which could be characterist ic of burnout i n  t h i s  si tuation. The failure i n  

these tests was generally very complete, with large portions of the coolant 

passage WaJl completely destroyed. 

In  the two and four port constrictors, the flow turning and accelerations 

are such t h a t  any vapor formed which remains i n  the flow would be forced t o  
the heated side of the passage by buoyant forces. 

s i b i l i t y  of the vapor coalescing in to  a f i l m ,  t r iggering burnout. 
is overcome by the eight port  design which essziitidl;. r e ~ e r s e s  the turning 

direction. 

t ransfer  coefficients normally associated with flow impingement normal t o  a 
surf ace. 

This would enhance the pos- 
This tendency 

Moreover, t h i s  design takes advantage of the high convective heat 

2 The test  resu l t s  indicate burnout fluxes from 5,000 t o  6,000 Btu/(ft sec) 
2 for  the two port  design, around 6,400 Btu/(ft sec) f o r  the four port  design, 

and between 7,000 and 8,000 Btu/(ft sec) f o r  the eight port design. 2 

The fa i lure  results f o r  test sequences not spoiled by s t ress  leaks are 

summarized i n  Table I. 
100 psia; the discharge pressure approximately 30 psia. 

For a l l  the runs the supply pressure was approximately 
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Run No. 

I 2  
18 
22 

26 
29 

39 
48 

43 
45 

34 
37 
51 

40 
53 

a 

b 

C 

TABLE I - EX€3RIPlENTl& RESULTS 

No. of Ports robi 

2 1.40 
2 1.40 

4 1.40 
4 1.40 

8 1.60 
8 1.60 
8 . 1.60 

8 1.40 
8 1.40 

10,000 

9,650 
io, 300 

10,800 
10,300 

7,450 
8,300 

9,050 
&goo 

12,000 

11,500 
12,200 

10,600 
11,200 

3,630 
3,510 
3,700 

3,930 
3,690 

5,320 
5,930 

6,450 
6,360 

7,500 
7,200 

7,630 

7,580 
8,000 

Melting, further increases i n  heat f lux result i n  failure 

Apparent burnout 3 

Failure Type 

b 

b 
b 

b 

b 

C 

C 

C 

C 

C 

C 

C 

C 

C 
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VSI .  Discussion 

The eight port  constrictor configuration vas designed and tes ted  with 

the thought that  the reverse turning of the flow would result i n  a delaying 

of t ransi t ion boiling and an increase i n  the crit ical .  heat flux. 

tes t  resu l t s  appear t o  support t h i s  argument; however, it m y  be that the 

higher burnout f lux is due more t o  higher non-boiling convection coefficients 

than t o  any enhancement of the boiling behavior. 

comparison of Figures 7 and 11 that the non-tjoiling cczveptive contribution 

t o  the burnout heat flux is a large percentage of the t o t a l  f lux even at  low 

supply pressures, and accounts f o r  an even larger amount a t  higher supply 

pressures. As a result, increases i n  the non-boiling convective coefficient 

result i n  significantly higher burnout fluxes. 

The present 

It can be observed i n  a 

The highest burnout fluxes observed i n  the present tests are approxi- 

m t e l y  four times higher than those predicted by Figure 11; however, it is  

not inconceivable tha t  the convective coefficients are four times higher than 

those calculated by the Colburn Equation. The developing, impinging flow, 

together with heating on only one w a l l  and a strong secondary flow pattern, 

are factors  which would tend t o  increase the average passage heat t ransfer  

coefficient. In  addition, it should be noted tha t  the reported heat fluxes 

are based on the heated side area only. 

of the passage, and the effective coolant side fluxes may be only 1/2 t o  2/3 
the reported values. 

Some heating does occur on the sides 

Without specific non-boiling heat t ransfer  correlations f o r  the con- 

s t r i c t o r  geometry and boundary conditions, it is impossible t o  determine the 

re la t ive  magnitude of the burnout f lux and the f lux at incipient boil ing.  

the boi l ing contribution is small, then constrictors should be designed t o  

operate below incipient boiling, where problems such as flow osci l la t ion and 

If . 

flow excursion do not occur. 

The compressibility of the flow system can lead t o  these in s t ab i l i t i e s  

&en boiling takes place inside the flow passage. 

i n  premature burnout soon a f t e r  boiling starts. 

by th ro t t l i ng  the flow immediately upstream of the heated section, but t h i s  

The in s t ab i l i t i e s  result 

The problem can be solved 



. 
reauces the system head and the convective coefficient. 

no thro t t l ing  was done upstream of the constrictors, and the burnout observed 

could be the result of' f low oscil lation. 

With the present tes t  data, and the trends predicted by Figure 11, it 

In  the present tests, 

seems possible t h a t  coolant side fluxes up t o  2-1/2 t i m e s  the present values, 

or 18,000 Btu/(sec f t  ) can be achieved with a 1000 ps ia  supply pressure. 2 

4 
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