UPPER AND LOWER BOUNDS FOR THE EIGENVALUES OF VIBRATING BEAMS WITH LINEARLY VARYING AXIAL LOAD

By William M. Laird and Guy Fauconneau

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Grant No. NsG-634 by UNIVERSITY OF PITTSBURGH

Pittsburgh, Pa.
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $\$ 2.50$

TABLE OF CONTENTS

Page
ABSTRACT v
NOMENCLATURE vii
I - INTRODUCTION 1
II - bOUNDS FOR EIGENVALUES 3
III - RESULTS AND DISCUSSIONS 7
IV - CONCLUDING REMARKS 9
BIBLIOGRAPHY 10
FIGURES 14
tables of eigenvalues 17

ABSTRACT

Previous investigations have demonstrated the importance of the effect of linearly varying axial or in-plane loading on the vibration characteristics of beams and flat plates. It has already been established that the problem reduces to solving for the eigenvalues of a fourth order, variable coefficient differential equation that can not be solved in closed form. Beginning with a variational representation of the eigenvalue problem, methods are discussed by which both upper and lower bounds for the eigenvalues may be formed. The true eigenvalues may thus be estimated as being bracketed by the upper and lower bounds which are shown to approach each other. The bounds for the eigenvalues may also be estimated by an averaging procedure which may or may not compare favorably with the true values depending on the values of the loading parameters. Finally, numerical values for upper bounds, lower bounds, and average lumped end-load eigenvalues are computed on an IBM 7090 Computer.

A	Differential operator of loaded beam
c	Eigenvectors
c_{i}	Constants
E	Modulus of Elasticity
f	Natural frequency of vibrating beam
I	Moment of inertia
K_{b}	Class of admissible functions in elastic stability problems
K_{v}	Class of admissible functions in vibration problems
L	Length of the beam
$\mathrm{P}_{1}, \mathrm{P}_{2}$	Constant end loads
u	Function
v	Function
X	Axial coordinate
α	Distributed axial load parameter
α_{c}	Critical axial load
β	Ratio of end load to total distributed load
γ^{4}	Separation constant
ϕ	Function
λ	Eigenvalue
τ	Upper bound
ξ	Nondimensional axial variable
ζ	Density per unit of length
ψ	Mode shape, dependent deflection variable

I. INTRODUCTION

In recent years much attention has been given to the effect of linearly varying axial or in-plane loads on the vibrational characteristics of beams and plates. This topic is of particular interest in aerospace applications where inertia and friction drag forces manifest themselves as axial or in-plane loads. A detailed formulation of the problem is the subject of a prior NASA report by authors (1) and is the subject of considerable literature (see ref. 2 through 16).

Formulation of the Problem

As described in references (1) and (2), the eigenvalue problem for both the beam and the rectangular plate may be resolved, under certain restrictions, to a solution of the ordinary differential equation

$$
\begin{equation*}
\frac{d^{4} \psi}{d \xi^{4}}+\alpha \frac{d}{d \xi}\left\{(\beta+\xi) \frac{d \psi}{d \xi}\right\}-\lambda \psi=0 \tag{1}
\end{equation*}
$$

and the boundary conditions

$$
\begin{array}{ll}
\frac{d^{2} \Psi}{d \xi^{2}}=0, & \frac{d^{3} \Psi}{d \xi^{3}}+\alpha(\beta+\xi) \frac{d \Psi}{d \xi}=0
\end{array} \begin{array}{ll}
\text { at a free end } \\
\Psi=0, & \left.\begin{array}{l}
\text { at a simply } \\
\text { supported end } \\
d \xi^{2}
\end{array}\right) \tag{2}\\
\Psi=0 & \frac{d^{2} \Psi}{d \xi}=0
\end{array} \begin{array}{ll}
\text { at a clamped } \\
\text { end. }
\end{array}
$$

where

$$
\begin{equation*}
\xi=\frac{X}{E} \quad \alpha=\frac{\omega L^{3}}{E I} \quad, \beta=\frac{R}{\omega L} \quad \text { and } \quad \lambda=\frac{\gamma^{4} \rho L^{4}}{E I} \tag{3}
\end{equation*}
$$

In view of the definition of the parameter β, it is clear that for a given compressive distributed load ω, the following cases may occur:

1) $\quad \beta>0$, the beam is entirely in compression
2) $0>\beta>-1$, the beam is partly in tension and partly in compression
3) $-1 \geqslant \beta$, the beam is entirely in tension since the tensile and load P_{1} is larger than the total distributed load L.

In the last case, the problem of elastic stability does not exist.
The determination of mode shapes and natural frequencies involves the solution of the differential eigenvalue problem defined by eqs. (1) and (2). Variational techniques (1) (2) finally resolve this to obtaining solutions to the variational principle

$$
\begin{equation*}
\lambda_{1}=\min _{\mu \in K} \frac{\langle A \mu, \mu\rangle}{\langle\mu, \mu\rangle} \quad * \tag{4}
\end{equation*}
$$

where K is the class of functions constituting the domain of definition of the operator A, and, hence, satisfying both the prescribed and the natural boundary conditions, and $\langle\mu, v\rangle$ denotes the inner product between two functions u, v, where

$$
\begin{equation*}
\langle\mu, v\rangle=\int_{0}^{1} \mu v d \xi \quad \text { and } \quad A=\frac{d^{4}}{d \xi^{4}}+\alpha \frac{d}{d \xi}\left\{(\beta+\xi) \frac{d}{d \xi}\right\} \tag{5}
\end{equation*}
$$

Equation (4) may be characterized by Courant's maximum-minimum characterization (ref. 18, Chap. III) given by

$$
\begin{equation*}
\lambda_{j}=\max _{\left\{\mu_{i}\right\}}\left\{\min _{\left\langle\phi, \mu_{i}\right\rangle=0} \frac{\int_{0}^{1}\left[\left(\frac{d^{2} \phi}{d \xi^{2}}\right)^{2}-\alpha(\beta+\xi)\left(\frac{d \phi}{d \xi}\right)^{2}\right] d \xi}{\int_{0}^{1} \phi^{2} d \xi}\right\}_{i=1 \text { to } j-1 .} \tag{6}
\end{equation*}
$$

where ϕ and μ_{i} belong to K_{V}, where K_{v} is the class of admiscible functions required to satisfy only the prescribed boundary conditions.

[^0]In resume, the situation is as follows: if β is such that buckling may occur, there exists for the given falue of β a critical value of this distributed axial load parameter, α_{c}, for which the beam is unstable and the potential energy is equal to zero. For any value of α less than $\alpha_{\text {, }}$, the potential energy is positive, and the beam has discrete natural frequencis whose square are proportional to the eigenvalues of the operator A,
where

$$
\begin{equation*}
\left.A=\frac{d^{4}}{d \xi^{4}}+\alpha \frac{d}{d \xi}(\beta+\xi) \frac{d}{d \xi}\right\} \tag{7}
\end{equation*}
$$

These eigenvalues are assumed to be ordered in the non-decreasing sequences

$$
0<\lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3} \ldots \ldots
$$

The eigenfunction corresponding to distinct eigenvalues are mutually orthogoneal, and correspond to the mode shapes of the beam. For a given value of
β, as α increases, the numerator of the Rayleigh quotient decreases and the eigenvalues decrease. Buckling occurs when α becomes equal to α_{c}, for which the first eigenvalue goes to zero.

In the next section, we review the methods used in this work to obtain approximate solutions.
II. BOUNDS FOR EIGENVALUES

There appear in the literature many methods for finding bounds for eigenvalues. Upper bounds are usually found without too many difficulties by the Rayleigh-Ritz method. Lower bounds present considerably more difficulties, and it can be said that no method having the generality, simplicity, and success of the Rayleigh-Ritz method exists for the computation of lower bounds. The most suitable method usually depends on the problem at hand.

In this section, we review briefly the methods used in this work in the calculations of approximations to eigenvalues. They are the Rayleigh-Ritz method, the method of Rato, and the method of intermediate problems of Weinstein and Aronszajn, with some modifications introduced by Bazley and Fox.

The Rayleigh-Ritz method for numerical computations of approximations to eigenvalues has been used extensively and with great success in the literature.* Consequently, it will only be outlined briefly here.

The basic idea of the method consists in determining the stationary values of the Rayleigh quotient, not over all admissible functions u, but only over the linear manifold spanned by an arbitrary set of n linearly independent functions $\left\{u_{i}\right\}$. satisfying the boundary conditions of the operator A. The problem then consists in finding the functions u of the form

$$
\begin{equation*}
\mu=\sum_{i=1}^{n} c_{i} \mu_{i} \tag{8}
\end{equation*}
$$

i.e., in finding the constants C_{i}, making the Rayleigh quotient stationary, and the stationary value of the quotient. Substitution of Equation(8)into Rayleigh's quotient yields

$$
\begin{equation*}
\frac{\langle\mu, A u\rangle}{\langle\mu, \mu\rangle}=\frac{\sum_{i, j=1}^{n} c_{i} c_{j}\left\langle\mu_{i}, A \mu_{j}\right\rangle}{\sum_{i, j=1}^{n} c_{i} c_{i}\left\langle\mu_{i}, \mu_{j}\right\rangle} \tag{9}
\end{equation*}
$$

which is the ratio of two quadratic forms in the n real variables C_{1}, C_{2}, $\ldots . C_{n}$. Its stationary values can be obtained by finding, for instance, the stationary values of the quadratic form in the numerator, subject to the auxiliary condition that the denominator be equal to one, and using the method of the Lagrange undetermined multiplier. The result is the general matrix eigenvalue problem

$$
\begin{equation*}
\left[\left\langle\mu_{i}, A \mu_{j}\right\rangle\right]\left[c_{j}\right]=\tilde{\lambda}\left[\left\langle\mu_{i}, \mu_{j}\right\rangle\right]\left[c_{j}\right] \tag{10}
\end{equation*}
$$

[^1]4

Since the class of admissible functions was restricted to the finite dimensional manifold, it follows that the eigenvalues $\tilde{\lambda}_{j}$ are upper-bounds for the eigenvalues of A, i.e.,

$$
\begin{equation*}
\lambda_{j} \leqslant \tilde{\lambda}_{j} \quad, j=1,2, \ldots n \tag{11}
\end{equation*}
$$

Furthermore, it follows that as n increases, the upper bounds are improved, or at least, not worsened.

From a computational standpoint, it is advantageous to choose mutwally orthogonal coordinate functions to avoid the solution of a general eigenvalue problem. Also, Equation (9) may be written as in Equation(6)with the functions $\left\{u_{i}\right\}$ required to satisfy only the prescribed boundary conditons. This point is discussed in detail in references 18 and 19. The coordinate functions utilized in this work satisfy both the prescribed and the natural boundary conditions, as will be seen later.

B. The Method of Kate

The Rayleigh-Ritz method described above furnishes upper bounds for eigenvalues. The results, particularly for the first eigenvalue, are usually in agreement with the exact eigenvalues for the cases where the latter can be obtained. However, in general, the question regarding the closeness of these bounds to the true values remains unanswered, although in some instances, an estimate of the error is possible. ${ }^{*}$ One way of determining how good the approximations are is to compute also lower bounds. If these turn out close to the upper bounds, the question is essentially answered. The method of Kate (22), which is an extension of Temple's method, furnishes lower bounds, provided rough estimates of the sought eigenvalues are known. This is outlined by Freidman (22, p. 212).

C. The Method of Intermediate Problems

The methods described in the preceding two sections furnish upper and lower bounds for eigenvalues. In both methods, the quality of the results

[^2]depends strongly on how well the trial functions approximate the eigenvectors ${ }^{*}$. of the operator. Hence, both methods may require considerable ingenuity in the selection of the trial functions. Furthermore, for different sets of trial functions, there is little prior knowledge of which set will give the best results. For these reasons, it is in order to consider also another method for the computation of the lower bounds. The method used here is the method of intermediate problem, which presents the advantage that the bounds can be improved.

Quite a few years back, Weinstein (24) introduced the method of intermediate problems, which gives improvable lower bounds by changing the boundary conditions of differential operators. Briefly, the method consists in relaxing the boundary conditions to obtain a solvable problem, the base problem, whose eigenvalues give rough lower bounds for the eigenvalues of the given problem. A sequence of intermediate problems linking the base problem to the given problem is then introduced. These are such that they can be solved in terms of the base problem, and that they give improved lower bounds. The details of the procedure are exposed in references 17 and 25.

In 1951, Aronszajn ${ }^{(26)}$ pointed out that a base problem can be obtained by changing the differential operator, and indicated the method of construction of the intermediate problems. The solution of these intermediate problems requires the determination of the poles and the zeroes of a meromorphic function given in its partial fractions representations. From a computational standpoint, the determination of the zeroes present many difficulties which have been removed in a dissertation by Bazley (27), and in a series of recent papers by Bazley and Fox (28-33). These authors have applied their method to the determination of the eigenvalues of Schrodinger's equation and Mathieu's equation with excellent results.

A more detailed resume of the Method of Kato and the Method of Intermediate Problems is given in Reference (2). Reference (2) also describes specific application to the simply supported beam and the beam with builtin ends. These procedures are not particularly difficult in principle, but the calculations involved are somewhat laborious.

D. Lumped Constant End Load Approximation

An approximation to the response of beams with distributed axial load may be accomplished by replacing the distributed load and its reaction with equal and opposite average end loads. This results in an ordinary linear differential equation with constant coefficient which may be solved exactly in terms of trigonometric functions. A comparison of the eigenvalues calculated in this manner is made with the upper and lower bounds in the section on Results and Discussion.

III. RESULTS AND DISCUSSION

Following the methods described above, upper and lower bounds for the eigenvalues of the simply supported and clamped beam were calculated on an IBM 7090 Computer in the Computation and Data Processing Center of the University of Pittsburgh. The results are displayed in Tables I and II and Figures 1, 2, and 3. Upper bounds, lower bounds and lumped end-load eigenvalues are displayed for a wide range of loading parameters α and β.

A. Simply Supported Beam

The bounds for the first five eigenvalues of the simply supported beam are presented in Table I. To facilitate the comparison between the RayleighRitz upper bounds and the lower bounds by the method of intermediate problems, the ratio of their difference to their average has been computed and is also presented in Table I. Since the eigenvalues of a simply supported beam are easy to obtain, it is interesting to compare the upper and lower bounds of the eigenvalues obtained by lumping half of the total distributed load as a constant load at each end. These results are also included in Table I.

Analysis of the results in Table I indicates that the Rayleigh-Ritz upper bounds and the lower bounds by the method of intermediate problems remain close over the whole range of axial loadings. This is particularly true for the first eigenvalue. Only when the beam is extremely close to buckling does the relative error increase greatly as a result of the smallness of the eigenvalues. For eigenvalues of order higher than one, the error is slightly higher, but, if necessary, it could be reduced by considering higher intermedfate problems.

The lower bounds for the first eigenvalue by the method of Kato remain close to the upper bounds for moderate loading, but drop off considerably at the loading increases. Perhaps, this effect might be attributed to the fact that as the first eigenvalue approaches zero, the choice arbitrary trial variations becomes more and more critical. For higher eigenvalues, this selection is not as critical, and consequently, the lower bounds remain close to the upper bounds. However, in the cases where the beam can not become elastically unstable, the Kato lower bounds eventually decrease as the loading becomes very large, and no explanation for this behavior can be offered.

The eigenvalues of the beam with lumped constant end load are remarkably close to those of the beam with distributed load for compressive end thrusts, i.e., for $\beta>0$. For negative β, the results are quite far apart. In particular, for $\beta=-5$, the beam with distributed axial load may become elastically unstable, while the beam with lumped load can not buckle, because its net thrust is zero. Consequently, extreme care should be exercised in the lumping of the loads when they are of opposite signs.

The effect of the axial loads on the first frequency of the simply supported beam is shown in Figures 1 and 2. Figure 1 represents the ratio of the first frequency of the loaded beam to that of the unloaded bean as a function of the distributed load parancter α, as obtained by Kato's method and the Ray-leigh-Ritz method. The lover bounds of the method of intermediate problems are not shown because their curve practically coincides with the Rayleigh-Ritz curve for the scale used. The curves correspond to $\beta=0$. Figure 2 also represents the ratio of the fundamental frequency of the loaded beam to that of the unloaded bean as a function of α for various values of β. The curves were obtained by using the average of the upper bounds and lower bounds by the method of internediate problerns.

The values of the critical axial load α_{c} are given at the intersection of the frequency ratio curve with the horizontal axis. The bucking loads obcained fron graphs having a larger scale than that of Figure 2 compare favorably with the exact results of Tyler and Rouleau (i1). For $\beta=0$, the graphs indicate that $\alpha_{c} \simeq 18.7 \mathrm{EI} / \mathrm{L}^{3}$ while Tyler and Rouleau's result is $\alpha_{c}=18.763 \mathrm{EI} / \mathrm{L}^{3}$ For $\beta=1.0$, we obtain $\alpha_{c} \simeq 6.5 \mathrm{EI} / \mathrm{L}^{3}$
while the exact answer is $\alpha_{c}=6.519 E I / L^{3}$ and for $\beta=-.50$ we have $\alpha_{c} \simeq 83 E I / L^{3}$ against the exact result o $\$ 82.8819 \mathrm{EI} / \mathrm{L}^{3}$. The approximate values are certainly close enough for enginecring application.

B. Clamped Beam

The bounds for the first four eigenvalues of the clamped bean are presented in Table 2. Tine zatio of the difference between the upper bound and the corresponding lowe: bound by the method of incemediate probleas to their average has also been computed. The eigenvalues of the clamped bean carryine a constant end load equal to half the total distributed load and the constant end load are also presented in Table II to indicate for what values of the loading parameters this lumping is acceptable.

Examination of the results indicate the following:
i) The lower bounds by the method of intermediate problems are very close to the Rayleigh-Ritz upper bounds for all eigenvalues and for the whole range of the loading parameters.
ii) The lower bounds by the method of Kato present the same features demonstrated in the simply supported beam calculations: whenever the loading is small, the bounds are fairly good but become worse as the loads increase.
iii) The eigenvalues of the beam with lumped end load are fairly close to the upper bounds for moderate loading, particularly for $\beta>0$. For negative values of β, they can be quite remote from the upper bounds, particularly for β for which the beam with distributed axial load may buckle while the beam with lumped end load can not.

The effect of the axial loads on the first frequency of the clamped - beam are shown in Figure 3, which represents the ratio of the first frequency of the loaded beam to that of the unloaded beam as a function of the axial load parameter α for various values of β.
IV. CONCLUDING REMARKS

Bounds for the eigenvalues of a simply supported and a clamped beam carrying linearly distributed axial loads have been presented. The main difficulty in problems of this nature arises from the fact that the governing differential equation has a varying coefficient which usually prevents one from obtaining exact solutions. Upper bounds were easily obtained by the Rayleigh-Ritz method. Lower bounds by the method of Kato were also easy to obtain. In both methods, the closeness of the results to the true eigenvalues depends on the quality of the coordinate functions. It appears that for moderate loading, the eigenfunctions of the unloaded beams were good coordinate functions, as our results indicate.

The lower bounds computed by the method of intermediate problems were very close to the upper bounds, both for the simply supported and the clamped beam. The modifications introduced by Bazley and Fox eliminate the computational difficulties which prevented extensive use of the method of intermediate problems.

For engineering applications, it appears that lumping the axial loads gives eigenvalues that are larger than the true eigenvalues, and that care must be exercixed whenever the distributed load and the constant end thrust are of opposite signs. In this case, the buckling loads predicted by the lumped end load problem can be quite remote from the actual critical loads.

The present research could be extended to the consideration of beams with other boundary conditions, closer determinations of the buckling loads, and the methods used here can be applied to other problems giving rise to differential equations with variable coefficients, such as in the problems of the determination of natural frequencies and buckling loads of beams of varying cross sections, plates with varying in-plane loads, and plates of non-uniform thickness, to mention a few. Information of this nature would be valuable to designers, particularly in the Aerospace industry.

BIBLIOGRAPHY

1.) Fauconneau, G., and Laird, W., 'The Eigenvalue Problem for Beams and Rectangular Plates with Linearly Varying In-Plane and Axial Load, " NASA CR-459, August 1966.
2.) Fauconneau, G., 'Upper and Lower Bounds for the Eigenvalues of Simply Supported and Clamped Uniform Beams Carrying Linearly Varying Axial Loads," Ph. D. Dissertation, University of Pittsburgh, 1966.
3.) Glaser, R. E., "Vibration and Stability Analysis of Compressed Rocket Vehicles," NASA TN D-2533, January 1965.
4.) Seide, P., "Effect of Constant Longitudinal Acceleration on the Transverse Vibration of Uniform Beams," Aerospace Corporation Report No. TDR-169 (3560-30) TN-6, October 1963.
5.) Beal, T. R., "Dynamic Stability of a Flexible Missile under Constant and Pulsating Thrusts," AIAA Journa1, Vol. 5, No. 3, pp. 486-494, March 1965.
6.) Stevens, J. E., "The Effect of Thrust and Drag Load on the Aeroelastic Behavior of Booster Systems," Journal of Aerospace Sciences, Vo1. 27, pp. 639-640, August 1960.
7.) Nowacki, W.: Dynamics of Elastic Systems. New York: John Wiley and Sons, Inc., 1963.
8.) Timoshenko, S. P., and J. M. Gere. Theory of Elastic Stability. New York: McGraw-Hill Book Company, 1961.
9.) McKinney, E. H., "Vibration Analysis of Continuous Beam-Colunns with Uniformly Distributed Axial Load," Ph. D. Dissertation, University of Pittsburgh, 1960.
10.) Tu, Y. O., and G. Handelman, "Lateral Vibrations of a Beam under Initial Linear Axial Stress," Journal of Soc. Industr. Appl. Math., Vol. 9, No. 3, pp. 455-473, 1961.
11.) McLachlan, N. W. Bessel Functions for Engineers. Oxford: Oxford University Press, 1955.
12.) Bowman, F. Introduction to Bessel Functions. New York: Dover Publications, 1958.
13.) Tyler, C. M., and W. T. Rouleau, "An Airy Integral Analysis of Beam Columns with Distributed Axial Load that Deflects with the

Column," Proceedings of the Second U. S. National Congress of Applied Mechanics, pp. 397-305, 1954.
14.) Przemieniecki, J. S., "Struts with Linearly Varying Axial Loading," The Aeronautical Quarterly, Vol. 11, pp. 71-98, 1960.
15.) Woinowsky-Krieger, S., "The Effect of an Axial Force on the Vibration of Hinged Bars," Journal of Applied Mechanics, Vol. 17, pp. 35-36, 1950.
16.) Burgreen, D., "Free Vibrations of a Pin Ended Column with Constant Distance Between Ends," Journal of Applied Mechanics, Vol. 18, pp. 135-139, 1951.
17.) Gould, S. H. Variational Methods for Eigenvalue Problems. Toronto: University of Toronto Press, 1957.
18.) Courant, R., and D. Hilbert. Methods of Mathematical Physics. Vol. I. New York: Interscience Publishers, Inc., 1953.
19.) Cranda11, S. H. Engineering Analysis. New York: McGraw-Hill Book Company, 1956.
20.) Mikhlin, S. G. Variational Methods in Mathematical Physics. New York: MacMillan Company, 1964.
21.) Kantorovich, L. V., and V. I. Krylov. Approximate Methods of Higher Analysis. Groningen: P. Noordhoff, Ltd., 1958.
22.) Kato, T., "On the Upper and Lower Bounds of Eigenvalues," Journal of physical Society, Vol. 4, pp. 334-339, 1949.
23.) Friedman, B. Principles and Techniques of Applied Mathematics. New York: John Wiley and Sons, Inc., 1956.
24.) Weinstein, A., "Etude des Spectres des Equations aux Dérivées Partielles," Memorial des Sciences Mathématiques, No. 88, 1937.
25.) Diaz, J. B., "Upper and Lower Bounds for Eigenvalues," Proceedings of Symposia in Applied Mathematics, Vo1. 8, pp. 53-78, 1959.
26.) Aronszajn, N., "Approximation Methods for Eigenvalues of Completely Continuous Symmetric Operators," Proceedings of Symposium on Spectral Theory and Differential Problems, pp. 179-202, 1951.
27.) Bazley, N. W., "Lower Bounds for Eigenvalues," Ph. D. Dissertation, University of Maryland, 1959.
28.) Bazley, N. W., "Lower Bounds for Eigenvalues with Application to the Helium Atom," Physical Review, Vo1. 120, No. 1, pp. 144-149, 1960.
29.) Bazley, N. W., "Lower Bounds for Eigenvalues," Journal of Mathematics and Mechanics, Vo1. 10, No. 2, pp. 289-307, 1961.
30.) Bazley, N. W. and D. W. Fox, "Truncations in the Method of Intermediate Problems for Lower Bounds to Eigenvalues," Journal of Research, Vol. 65B, No. 2, pp. 105-111, 1961.
31.) Bazley, N. W. and D. W. Fox, "Lower Bounds for Eigenvalues of Schrodinger's Equation," Physical Review, Vol. 124, No. 2, pp. 483-492, 1961.
32.) Bazley, N. W. and D. W. Fox, "A Procedure for Estimating Eigenvalues," Journal of Mathematical Physics, Vol. 3, No. 3, pp. 469-471, 1962.
33.) Bazley, N. W. and D. W. Fox, "Lower Bounds to Eigenvalues Using Operator Decompositions of the Form B*B," Archives Rational Mechanics and Analysis, Vol. 10, pp. 352-360, 1962.
34.) Abramowitz, M. and I. A. Stegun, ed. Handbood of Mathematical Functions. National Bureau of Standards, 1964.
35.) Rayleigh, J. W. S. The Theory of Sound. Vo1. I. New York: Dover , Publications, 1945.
36.) Timoshenko, S. Vibration Problems in Engoneering. Princeton: Van Nostrand, 1956.
37.) Protter, M. H., "Lower Bounds for the First Eigenvalue of Elliptic Equations," Anna1s of Mathematics, Vol. 71, pp. 423-444, 1960.
38.) Protter, M. H., "Vibration of a Nonhomogeneous Membrane," Pacific Journal of Mathematics, Vo1. 9, pp. 1249-1255, 1959.
39.) Hersch, J., "Sur la Fréquence Fondamentale d'une Membrane Vibrante: Evaluations par Défaut et Principe de Maximum," Zeitschrift fur Angewandte Mathematik und Physik, Vol. 11, pp. 387-413, 1960.
40.) Hersch, J., "Physical Interpretation and Strengthening of M. H. Protter's Method for Vibrating Nonhonogeneous Membranes; Its Analogue for Schrodinger's Equation," Pacific Journal of Mathematics, Vol. 11, pp. 971-980, 1961.
41.) Hersch, J., "On the Methods of One-Dimensional Auxiliary Problems and of Domain Partitioning: Their Application to Lower Bounds for
the Eigenvalues of Schrodinger's Equation," Journal of Mathematics and Physics, Vo1. 43, pp. 15-26, 1964.
42.) Hooker, W. W., "Lower Bounds for the First Eigenvalue of Elliptic Equations of Order Two and Four," Ph. D. Dissertation, University of California, 1960.

Effect of Distributed Axial Load on the First Frequency
of the Simply Supported Beam

FIGURE 3
Effect of Axial Loads on the Fundamental Frequency of a Clamped Beam

	00000 $00^{\circ} 0^{\circ}$		엉 $00^{\circ} 0^{\circ}$	
		N్ర N デが心～N ーヘさ゚		
$\begin{aligned} & \text { H } \\ & \text { du } \end{aligned}$	－Nmさん	－Nmナ	－9mさn	HNmざ
ð	8－	8	8	8

TABLE

$\beta=0.25$

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
10.00	1	21,78530	18.95922	21.74532	0.184	23.3871
	2	1261.426	12.13 .824	1260.936	0.039	1262.457
	3	7222.901	7015.972	7212.221	0.148	7223.937
	4	23751.33	23.196 .75	23562.72	0.797	23752.37
	5	59029.08	57864.62	58066.49	1.644	59030.12
12.00	1	6.190051	2.817389	6.1546701	0.573	8.5827
	2	1201.793	1144.882	1201.233	0.047	1203.239
	3	7089.221	6840.497	7076.629	0.178	7090.697
	4	23514.01	22846.74	23288.30	0.965	23515.01
	5	58658.51	57257.28	57503.46	1.989	58660.01
12.50	1	2.260952	----	2.224899	1.607	4.8815
	2	1186.877	1127.648	1186.297	0.049	1188.435
	3	7055.789	6796.590	7042.739	0.185	7057.387
	4	23454.67	2.2759 .13	23219.72	1.007	23456.28
	5	58565.86	57105.22	57362.69	2.076	58567.49

TABLE I - BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	Lower Bounds by Kato's Method	Lower Bounds by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1.00	1	87.52560	87.209 .57	87.51748	0.009	87.5395
	2	1519.055	1514.228	1519.001	0.004	1519.067
	3	7801.297	7780.766	7800.157	0.015	7801.309
	4	24778.79	24724.01	24.759 .71	0.078	24778.81
	5	60633.91	60518.92	60537.63	0.159	60633.94
3.00	1	67.67012	66.80439	67.65601	0.021	67.8003
	2	1440.011	1425.730	1439.847	0.011	1440.110
	3	7623.559	7562.125	7620.156	0.045	7623.656
	4	24462.88	24298.45	24405.78	0.234	24462.98
	5	60140.35	59794.90	59851.52	0.481	60140.46
5.00	1	47.68328	46.38864	47.66803	0.032	48.0611
	2	1360.886	1337.431	1360.623	0.019	1361.153
	3	7445.739	7343.619	7440.165	0.075	7446.003
	4	24146.89	23872.72	24051.95	0.394	24147.15
	5	59646.70	59070.15	59165.95	0.809	59646.98
7.00	1	27.54646	25.95841	27.51930	0.099	28.3219
	2	1281.687	1249.359	1281.329	0.028	1282.196
	3	7267.840	7125.257	7260.169	0.106	7268.350
	4	23830.81	23446.81	23698.26	0.558	23831.33
	5	59152.97	58344.64	58479.11	1.146	59153.49

α	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1.00	1	85.05812	84.74914	85.05647	0.002	85.0721
	2	1509.186	1504.381	1509.134	0.003	1509.197
	3	7779.090	7758.597	7777.946	0.015	7779.102
	4	24739.31	24684.58	24720.24	0.077	24739.33
	5	60572.23	60457.30	60475.94	0.159	60572.25
2.00	1	72.67783	72.10252	72.66977	0.011	72.7351
	2	1459.805	1450.306	1459.697	0.007	1459.849
	3	7668.026	7627.168	7665.747	0.030	7668.069
	4	24541.89	24432.50	24503.77	0.155	24541.94
	5	60263.77	60033.91	60071.21	0.320	60263.83
3.00	1	60.26579	59.47118	60.25156	0.024	60:3981
	2	1410.403	1396.327	1410.242	0.011	1410.501
	3	7556.940	7495.851	7553.539	0.005	7557.036
	4	24344.45	24180.50	24287.33	0.235	24344.55
	5	59995.29	59610.47	59666.46	0.483	59955.40
4.00	1	47.81929	46.85748	47.80695	0.026	48.0611
	2	1360.982	1342.451	1360.769	0.016	1361.153
	3	7445.834	7364.650	7441.338	0.060	7446.003
	4	24146.98	23928.56	24070.93	0.315	24147.16
	5	59646.80	59187.00	59261.69	0.065	59646.98

β-. 75
Wษga ablyodans xtanis ahl ao santvanaoit arl yoa sannog

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	by Lower by Bound Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
5.00	1	35.33536	34.26425	35.31343	0.062	35.7241
	2	1311.542	1288.684	1311.276	0.020	1311.805
	3	7334.708	7233.570	7329.137	0.076	7334.970
	4	23949.50	23676.70	23859.56	0.376	23949.76
	5	59338.28	58763.48	58856.91	0.815	59338.55
6.00	1	22.81063	21.69496	22.78719	0.103	23.3871
	2	1262.085	1235.035	1261.775	0.025	1262.457
	3	7223.563	7102.614	7216.936	0.092	7223.937
	4	23751.99	23424.91	23638.22	0.480	23752.37
	5	59029.74	58339.92	58452.12	0.983	59030.12
7.00	1	10.24133	9.153818	10.21664	0.241	11.0501
	2	1212.514	1181.513	1212.262	0.029	1213.109
	3	7112.400	6.971.787	7104.729	0.108	7112.904
	4	23554.47	2317.319	23421.92	0.564	23554.98
	5	58721.18	57916.33	58047.31	1.154	58721.70
7.50	1	3.938669	2.895383	3.907605	0.792	4.8815
	2	1187.873	1154.802	1187.496	0.032	1188.435
	3	7056.811	6906.424	7048.634	0.116	7057.388
	4	23455.70	23047.36	23313.78	0.607	23456.28
	5	58566.89	57704.51	57844.89	1.240	58567.49

$\beta=.75$

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
7.75	1	0.7825819	----	0.7542064	3.693	1.7973
	2	1175.502	1141.460	1175.109	0.033	1176.098
	3	7029.015	6873.755	7020.583	0.120	7029.629
	4	23406.31	22984.45	23259.71	0.628	23406.94
	5	58489.75	57598.60	57743.69	1.284	58490.38

table I - bOUNDS FOR THE EIGENVALUES © THE SIMPLY SUPPORTED BEAM

α	Order	Upper Bound by Rayleigh-Ritz	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1.00	1	82.59065	82.28879	82.58765	0.004	82.6047
	2	1499.316	1494.533	1499.263	0.004	1499.327
	3	7756.884	7736.428	7755.743	0.015	7756.896
	4	24699.84	24645.15	24680.75	0.077	24699.85
	5	60510.55	60395.69	60414.26	0.159	60510.57
3.00	1	52.86138	52.14043	52.85093	0.020	52.9959
	2	1380.795	1366.927	1380.634	0.012	1380.892
	3	7490.320	7429.579	7486.927	0.045	7490.416
	4	24226.01	24062.55	24158.90	0.236	24226.11
	5	59770.24	59426.05	59481.41	0.484	59770.35
5.00	1	22.98678	22.15408	22.96599	0.090	23.3871
	2	1262.199	1239.950	1261.929	0.021	1262.457
	3	7223.677	7123.531	7218.113	0.077	7223.937
	4	23752.11	23 480.69	23657.17	0.401	23752.37
	5	59029.85	58456.83	58548.49	0.819	59.030 .13
6.00	1	7.984866	7.241968	7.961275	0.296	8.5827
	2	1202.877	1176.730	1202.567	0.026	1203.239
	3	7090.327	6970.827	7083.696	0.094	7090.698
	4	23 515.12.	23190.04	23401.35	0.485	23515.5
	5	58659.63	57972.37	58082.01	0.990	58660.02

α	Order	Upper Bound by Rayleigh-Ritz	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
6.25	1	4.22834	3.524225	4.197706	0.692	4.8816
	2	1188.045	1160.955	1187.721	0.027	1188.435
	3	7056.987	6932.686	7050.098	0.098	7057.388
	4	23455.87	23117.41	23337.41	0.506	23456.28
	5	58567.07	57851.28	57965.38	1.033	58567.49
6.50	1	. 4656114	----	. 4387692	5.938	1.1804
	2	1173.212	1145.193	1172.879	0.028	1173.630
	3	7023.645	6894.559	7016.496	0.102	7024.078
	4	23396.62	23044.79	23273.46	0.528	23397.05
	5	58474.51	57730.19	57848.76	1.076	58474.96

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	Lower Bound by Kato's Method	```Lower Bound by Intermediate Problems```	Gap/Average Per Cent	Lumped. Constant End Load
4.80	1	2.272578	1.910738	2.251292	0.941	2.6609
	2	1179.323	1159.031	1179.062	0.022	1179.552
	3	7037.165	6942.770	7031.815	0.076	7037.402
	4	23420.41	23162.41	23329.35	0.390	23420.75
	5	58511.72	57964.83	58049.61	0.793	58511.97
4.90	1	. 2892582	----	. 2603751	7.358	. 686968
	2	1171.419	1150.776	1171.164	0.022	1171.657
	3	7019.390	6923.126	7013.928	0.078	7019.636
	4	23388.92	23125.55	23295.88	0.399	23389.17
	5	58462.36	57904.18	57990.62	0.810	58462.62

α	Order	Upper Bound by Rayleigh-Ritz	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1.00	1	72.72075	72.44813	72.71235	0.012	72.7351
	2	1459.838	1455.143	1459.786	0.004	1459.849
	3	7668.058	7647.753	7666.911	0.015	7668.069
	4	24541.92	24487.45	24522.84	0.045	24541.94
	5	60263.81	60149.23	60167.52	0.150	60263.83
2.00	1	48.00062	47.58488	47.99471	0.012	48.0611
	2	1361.110	1352.067	1360.999	0.008	1361.153
	3	7445.960	7405.870	7443.674	0.031	7445.003
	4	24147.11	24038.80	24108.99	0.158	24147.15
	5	59646.92	59418.45	59454.36	0.323	59646.98
3.00	1	23.24296	22.84481	23.232020	0.047	23.3871
	2	1262.364	1249.352	1262.204	0.013	1262.457
	3	7223.842	7164.512	7220.445	0.097	7223.937
	4	23752.27	23590.78	23695.16	0.241	23752.37
	5	59030.02	58688.35	58741.18	0.491	59030.13
3.75	1	4.645885	4.391169	4.629351	0.357	4.88155
	2	1188.294	1172.574	1188.087	0.017	1188.435
	3	7057.242	6983.855	7053.022	0.050	7057.388
	4	23456.13	23255.20	23384.81	0.305	23456.28
	5	58567.33	58141.24	58206.29	0.618	58567.49

TABLE I - BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM

TABLE I - BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	```Lower Bound by Intermediate Problems```	Gap/Average Per Cent	Lumped Constant End Load
1.00	1	93.44753	93.11508	93.44343	0.004	93.5612
	2	1542.742	1537.864	1542.688	0.004	1542.754
	3	7854.593	7833.972	7853.450	0.015	7854.605
	4	24873.54	24818.62	24854.46	0.077	24873.56
	5	60781.96	60666.80	60685.67	0.159	60781.98
4.00	1	81.39310	80.01163	81.37477	0.023	81.6177
	2	1495.202	1475.431	1494.993	0.014	1495.380
	3	7747.841	7664.568	7743.345	0.058	7748.013
	4	24683.89	24462.53	24607.84	0.309	24684.06
	5	60485.71	60022.11	60100.61	0.639	60485.89
8.00	1	64.89664	61.93527	64.87003	0.041	65.8264
	2	1431.516	1391.182	1431.118	0.028	1432.214
	3	7605.211	7436.416	7596.508	0.115	7605.891
	4	24430.72	23983.31	24279.42	0.621	24431.40
	5	60090.42	59155.1	59320.31	1.290	60091.11
12.00	1	47.86730	42.97865	47.83155	0.075	50.0350
	2	1367.508	1305.609	1366.943	0.041	1369.049
	3	7462.254	7205.422	7449.643	0.169	7463.769
	4	24117.23	23498.74	23951.47	0.938	24178.74
	5	59694.81	58279.23	58539.68	1.954	59696.32

α	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
15.00	1	34.70939	28.00187	34.66177	0.137	38.1915
	2	1319.305	1240.427	1318.638	0.051	$\begin{array}{ll}1 & 321.675 \\ 7 & 357.177\end{array}$
	3	7354.827	7030.143	7339.476	0.209	23 989.24
	4	23986.98	23131.58	23705.87	2.460	59400.24
	5	59397.88	57616.27	57 954.20		
19.00	1	16.59538	6.639269	16.55101	0.268	22.4001
	2	1254.801	1151.969	1254.016	0.063	1258.509
	3	7211.323	6793.473	7192.587	0.260	7215.055
	4	23732.84	22636.78	23378.85	1.503	23736.58
	5	59001.70	56723.86	57173.23	3.148	
21.00		7.271955	----	7.220387	0.712	14.5044
	2	1222.460	1106.989	1221.621	0.069	1226.927
	3	7139.458	6673.771	7119.119	0.285	7143.994
	4	23605.69	22387.01	23215.54	1.667	23610.25
	5	58803.48	56273.92	56782.65	3.497	
22.00			----	2.489753	1.955	10.5565
	1	1206.270	1084.293	1205.413	0.071	1211.136
	3	7103.499	6613.559	7082.395	0.298	7108.563
	4	23542.09	22 261.51	23133.93	1.749	23547.08
	5	58704.35	56047.99	56587.34	3.672	58709.36

$\beta=-0.25$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline α \& Order \& $$
\begin{gathered}
\text { Upper Bound } \\
\text { by } \\
\text { Rayleigh-Ritz }
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Lower Bound } \\
\text { by } \\
\text { Kato's Method }
\end{gathered}
$$ \& Lower Bound by Intermediate Problems \& Gap/Average Per Cent \& Lumped Constant End Load

\hline \multirow[t]{5}{*}{20.00} \& 1 \& 42.00398 \& 30.90309 \& 41.95275 \& 0.122 \& 48.0611

\hline \& 2 \& 1356.890 \& 1257.749 \& 1356.070 \& 0.060 \& 1361.153

\hline \& 3 \& 7441.805 \& 7021.661 \& 7422.214 \& 0.264 \& 7446.003

\hline \& 4 \& 24142.97 \& 22990.42 \& 23770.82 \& 1.553 \& 24147.15

\hline \& 5 \& 59642.79 \& .57 245.57 \& 57718.18 \& 3.280 \& 59646.98

\hline \multirow[t]{5}{*}{25.00} \& 1 \& 25.97378 \& 8.89325 \& 25.91837 \& 0.214 \& 35.7241

\hline \& 2 \& 1305.264 \& 1179.673 \& 1304.336 \& 0.071 \& 1311.805

\hline \& 3 \& 7328.459

23 \& 6802.433 \& 7305.086 \& 0.319 \& 7334.970

\hline \& 4 \& 23943.26 \& 22482.28 \& 23481.30 \& 1.948 \& 23949.76

\hline \& 5 \& 59332.04 \& 56301.99 \& 56926.59 \& 4.138 \& 59338.55

\hline \multirow[t]{5}{*}{30.00} \& 1 \& 8.906012 \& ---- \& 8.848833 \& 0.644 \& 23.3871

\hline \& 2 \& 1253.232 \& 1100.010 \& 1252.223 \& 0.081 \& 1262.457

\hline \& 3 \& 7214.636 \& 6579.224 \& 7187.091 \& 0.371 \& 7223.937

\hline \& 4 \& 23743.05 \& 21964.30 \& 23192.62 \& 2.345 \& 23752.37

\hline \& 5 \& 59020.79 \& 55388.08 \& 56134.63 \& 5.013 \& 59030.12

\hline \multirow[t]{5}{*}{32.00} \& 1 \& 1.765746 \& ---- \& 1.710738 \& 3.165 \& 18.4522

\hline \& 2 \& 1232.318 \& 1067.875 \& 1231.279 \& 0.084 \& 1242.718

\hline \& 3 \& 7168.977 \& 6489.106 \& 7141.022 \& 0.391 \& 7179.524

\hline \& 4 \& 23662.83 \& 21755.39 \& 23077.39 \& 2.505 \& 23673.41

\hline \& 5 \& 58896.14 \& 54954.51 \& 55817.73 \& 5.367 \& 58906.75

\hline
\end{tabular}

$\beta=-0.25$

	$0^{\circ} 0^{\circ} \mathrm{N}$ in
䔍	－Nのナー
0	$\underset{\sim}{\sim}$

TABLE I - BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM

α	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	```Lower Bound by Intermediate Problems```	Gap/Average Per Cent	Lumped Constant End Load
1.00	1	97.39548	97.05219	97.38885	0.007	97.4091
	2	1558.533	1553.621	1558.481	0.003	1558.545
	3	7890.123	7869.443	7888.977	0.015	7890.135
	4	24936.71	24881.71	24917.63	0.077	24936.72
	5	60880.66	60765.39	60784.37	0.158	60880.68
5.00	1	97.06945	95.02756	97.05359	0.016	97.4091
	2	1558.264	1532.551	1558.000	0.017	1558.545
	3	7889.865	7783.922	7884.291	0.071	7890.135
	4	24936.45	24656.89	24841.50	0.381	24936.73
	5	60880.40	60296.88	60399.04	0.794	60880.68
10.00	1	96.05006	91.43544	96.01405	0.037	97.4091
	2	1557.425	1506.462	1556.936	0.031	1558.545
	3	7889.057	7677.593	7878.347	0.136	7890.134
	4	24935.66	24368.81	24747.01	0.759	24936.73
	5	60879.61	59699.54	59917.04	1.594	60880.68
20.00	1	91.96428	78.64063	91.91397	0.055	97.4091
	2	1554.071	1446.067	1553.239	0.054	1558.545
	3	7885.830	7451.941	7866.169	0.250	7890.135
	4	24932.48	23756.87	24560.22	1.504	24936.73
	5	60876.46	58451.08	58951.90	3.212	60880.68

$\beta=-0.50$

	人 Noñ －○○ $\dot{\circ} \dot{\sim}$	$\dot{\circ} \dot{\circ} \dot{\circ}$ in		
			∞ ก ～m in \rightarrow Nべ	$\stackrel{\infty}{n}$ N 긁․ がが $\rightarrow \sim N \sim N$
$\begin{aligned} & \text { ü } \\ & \text { Ö } \end{aligned}$	－Nのナル	\rightarrow－	－NmJin	－Nms in
ठ	$\begin{aligned} & \text { ㅇ } \\ & \dot{R} \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & -i \end{aligned}$	－

TABLE I－BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM

		 $\dot{-0.000}$	 $\circ \circ 0^{\circ \circ} 0^{\circ}$	엉́n in OUN N 000 Mm
		$\stackrel{\infty}{\circ}$ n － 		
$\begin{aligned} & \text { H } \\ & \text { OH } \end{aligned}$	－Nのざ	－Nmず	－Nmさん	－NMさん
O	8	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{0} \end{aligned}$	－8

w甘gg agiyodans xtdwis mel ai santinngoia ghl yos sannog
$\beta=-0.75$

α	Order	Upper Bound by Rayleigh-Ritz	$\begin{gathered} \text { Jower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
30.00	1	160.7671	129.6790	160.7000	0.042	171.4311
	2	1844.200	1653.497	1843.138	0.058	1854.633
	3	8546.365	7840.957	8519.187	0.319	8556.334
	4	26111.35	24. 234.53	25560.22	2.133	26121.079
	5	62721.62	58916.90	59835.84	4.709	62731.23
40.00	1	177.8850	123.8125	177.8083	0.043	196.1051
	2	1934.700	1656.769	1933.479	0.063	1953.329
	3	8760.552	7776.235	8727.331	0.380	8778.400
	4	26498.48	23875.30	25773.49	2.774	26515.86
	5	63330.94	58083.83	59484.58	6.264	63348.08
50.00	1	193.3510	108.4000	193.2635	0.045	220.7791
	2	2022.857	1643.877	2021.548	0.065	2052.0256
	3	8972.409	7684.302	8934.409	0.424	9000.466
	4	26883.35	23454.02	25989.35	3.382	26910.64
	5	63938.06	57149.33	59131.86	7.811	63964.93
60.00	1	207.3155	82.13972	207.2298	0.041	245.4531
	2	2108.712	1611.067	2107.367	0.064	2150.726
	3	9181.915	7572.918	9140.270	0.455	9222.532
	4	27265.95	22945.47	26207.73	3.958	27305.43
	5	64542.95	56109.45	58777.69	9.350	64581.78

$\beta=-0.75$
BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM

α	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
70.00	1	219.9011	45.50295	219.8101	0.041	270.1271
	2	2192.316	1565.173	2190.959	0.062	2249.417
	3	9389.065	7423.49	9344.764	0.473	9444.598
	4	27646.24	22435.10	26428.54	4.504	27700.22
	5	65145.60	54952.82	58422.11	10.882	65198.63
80.00	1	231.2094	----	231.1131	0.042	294.8011
	2	2273.728	1497.529	2272.369	0.060	2348.114
	3	9593.853	7241.964	9547.784	0.481	9666.664
	4	28024.21	21680.87	26651.69	5.021	28094.99
	5	65745.98	53671.96	58065.14	12.407	65815.48
90.00	1	241.3245	-	241.2256	0.041	319.4752
	2	2353.010	1410.343	2351.666	0.057	2446.809
	3	9796.286	7026.768	9749.202	0.482	9888.731
	4	28399.86	20992.29	26877.07	5.510	28489.78
	5	66344.09	52257.63	57706.82	13.925	66432.33
100.00	1	250.3169	----	250.2154	0.041	344.1492
	2	2430.225	1303.072	2428.900	0.055	2545.505
	3	9996.371	6795.214	9948.945	0.476	10110.79
	4	28773.16	20018.08	27104.57	5.972	28884.57
	5	66939.92	50702.86	57 347.18	15.436	$67 \quad 47.18$

44

TABLE I - BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM

α	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
0.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 500.564 \\ 3 & 803.54 \\ 14 & 617.6 \\ 39 & 943.8 \end{array}$	$\begin{array}{rl} & 500.564 \\ 3 & 803.54 \\ 14 & 617.6 \\ 39 & 943.8 \end{array}$	$\begin{array}{rl} & 500.564 \\ 3 & 803.54 \\ 14 & 617.6 \\ 39 & 943.8 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{array}{rl} & 500.564 \\ 3 & 803.54 \\ 14 & 617.6 \\ 39 & 943.8 \end{array}$
10.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 438.485 \\ 3 & 572.38 \\ 14 & 122.2 \\ 39 & 084.9 \end{array}$	$\begin{array}{rl} & 436.964 \\ 3 & 570.81 \\ 14 & 119.9 \\ 39 & 081.3 \end{array}$	$\begin{array}{rl} & 438.281 \\ 3 & 571.05 \\ 14 & 115.8 \\ 39 & 069.3 \end{array}$	$\begin{aligned} & 0.047 \\ & 0.037 \\ & 0.045 \\ & 0.040 \end{aligned}$	$\begin{array}{rl} & 438.857 \\ 3 & 573.03 \\ 14 & 123.0 \\ 39 & 085.8 \end{array}$
20.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 375.192 \\ 3 & 339.36 \\ 13 & 624.9 \\ 38 & 224.2 \end{array}$	$\begin{array}{rl} & 366.109 \\ 3 & 320.29 \\ 13 & 589.2 \\ 38 & 189.7 \end{array}$	$\begin{array}{rl} & 374.825 \\ 3 & 336.87 \\ 13 & 612.6 \\ 38 & 196.0 \end{array}$	$\begin{aligned} & 0.098 \\ & 0.074 \\ & 0.091 \\ & 0.074 \end{aligned}$	$\begin{array}{rl} & 376.742 \\ 3 & 342.01 \\ 13 & 628.2 \\ 38 & 227.7 \end{array}$
30.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 310.543 \\ 3 & 104.42 \\ 13 & 125.9 \\ 37 & 361.7 \end{array}$	$\begin{array}{rl} & 289.161 \\ 3 & 062.73 \\ 13 & 047.8 \\ 37 & 285.5 \end{array}$	$\begin{array}{rl} & 310.010 \\ 3 & 100.83 \\ 13 & 107.8 \\ 37 & 318.9 \end{array}$	$\begin{aligned} & 0.171 \\ & 0.115 \\ & 0.138 \\ & 0.114 \end{aligned}$	$\begin{array}{rl} & 314.184 \\ 3 & 110.44 \\ 13 & 133.2 \\ 37 & 369.5 \end{array}$
40.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 244.366 \\ 2 & 867.50 \\ 12 & 625.1 \\ 36 & 497.3 \end{array}$	$\begin{array}{rl} & 200.691 \\ 2 & 786.55 \\ 12 & 472.4 \\ 36 & 364.3 \end{array}$	243.766 2 863.13 12 601.6 36 440.4	$\begin{aligned} & 0.245 \\ & 0.152 \\ & 0.186 \\ & 0.156 \end{aligned}$	$\begin{array}{rl} & 251.143 \\ 2 & 878.30 \\ 12 & 638.1 \\ 36 & 511.2 \end{array}$

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
50.0	1	176.455	110.389	175.815	0.363	187.572
	2	2628.54	2505.85	2623.39	0.195	2645.57
	3	12122.6	11891.2	12094.1	0.234	12142.9
	4	35631.2	35422.2	35562.0	0.194	35652.8
60.0	1	106.557	5.130	105.877	0.639	123.421
	2	2387.52	2164.11	2381.38	0.257	2412.22
	3	11618.4	11249.9	11584.8	0.288	11647.6
	4	34763.3	34453.4	34679.2	0.242	34794.3
70.0	1	34.354	----	33.672	2.004	58.631
	2	2144.43	1801.43	2137.92	0.304	2178.22
	3	11112.6	10592.4	11074.6	0.342	11152.3
	4	33893.8	33459.1	33799.5	0.278	33935.9
72.0	1	19.603	----	18.915	3.567	45.590
	2	2095.57	1735.77	2088.83	0.321	2131.34
	3	11011.2	10464.7	10971.8	0.358	11053.2
	4	33719.7	33261.5	33621.8	0.290	33764.2
73.0	1	12.185	----	11.517	5.632	39.059
	2	2071.11	1702.82	2064.43	0.322	2107.88
	3	10960.5	10400.7	10920.7	0.363	11003.6
	4	33632.5	33097.8	33535.9	0.287	33678.3

table II - bOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

α	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Rato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
5.0	1	438.765	437.247	438.674	0.021	438.857
	2	3572.87	3569.78	3572.20	0.018	3573.03
	3	14122.8	$11^{4} 116.7$	14119.6	0.023	14123.0
	4	39085.1	39079.9	39077.9	0.019	39085.8
10.0	1	376.346	370.642	376.159	0.052	376.743
	2	3341.35	3329.51	3340.05	0.039	3342.01
	3	13627.4	13604.2	13621.1	0.046	13628.2
	4	38226.8	38204.9	38211.4	0.040	38227.7
15.0	1	313.277	300.721	312.998	0.089	314.183
	2	3108.94	3080.15	3107.06	0.060	3110.437
	3	13131.5	13081.0	13122.1	0.071	13133.2
	4	37367.6	47313.1	37343.8	0.063	37369.5
20.0	1	249.456	226.799	249.107	0.140	251.143
	2	2875.62	2826.68	2873.20	0.084	2878.30
	3	12635.0	12548.4	12622.7	0.097	12638.1
	4	36507.9	36413.4	36478.8	0.079	36511.2
25.0	1	184.806	148.818	184.415	0.212	187.573
	2	2641.34	2568.21	2638.51	0.107	2645.57
	3	12138.0	12007.4	12122.9	0.124	12142.9
	4	35647.7	35503.7	35610.2	0.105	35652.8

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
30.0	1	119.229	66.432	118.810	0.351	123.422
	2	2406.08	2292.07	2402.80	0.136	2412.22
	3	11640.6	11458.7	11622.7	0.153	11647.6
	4	34787.0	34555.9	34745.1	0.120	34794.4
35.0	7	52.603	----	52.188	0.791	58.631
	2	2169.82	2000.18	2166.18	0.167	2178.22
	3	11142.7	10874.9	11122.3	0.182	11152.3
	4	33925.9	33570.4	33875.6	0.148	33935.9
37.9	1	13.422	----	13.003	3.165	20.733
	2	2032.32	1806.94	2028.44	0.190	2042.19
	3	10853.7	10546.2	10831.8	0.201	10864.9
	4	33426.2	33016.6	33372.7	0.160	33437.9

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
5.0	1	376.647	371.774	376.549	0.026	376.743
	2	3341.85	3331.81	3341.18	0.020	3342.01
	3	13628.0	13607.9	13624.8	0.023	13628.2
	4	38227.5	38208.8	38220.1	0.019	38227.7
10.0	1	250.726	231.953	250.551	0.069	251.143
	2	2877.65	2836.71	2876.39	0.044	2878.30
	3	12637.4	12563.1	12631.1	0.050	12638.1
	4	36510.5	36430.0	36494.9	0.043	36511.2
15.0	1	122.384	80.317	122.166	0.174	123.422
	2	2410.73	2316.69	2408.97	0.071	2412.22
	3	11646.1	11490.9	11636.8	0.079	11647.6
	4	34792.9	34621.3	34770.9	0.063	34794.4
17.0	1	70.251	15.309	70.006	0.349	71.644
	2	2223.15	2090.54	2221.21	0.087	2225.07
	3	11249.4	11032.7	11238.9	0.092	11251.33
	4	34105.7	33859.8	34081.1	0.072	34107.6
18.0	1	43.993	----	43.747	0.561	45.590
	2	2129.18	1984.01	2127.15	0.095	2131.34
	3	11051.0	10812.0	11039.9	0.099	11053.2
	4	33752.1	33489.6	33736.1	0.076	33764.2

TABIE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM
17.348
1033
390.8
$\beta=1.50$

$\beta=2.00$
whag agawtio mil io santvanaita ahl yoa sannog
TABLE II－

	 $-\dot{\circ} \dot{\circ} \dot{\circ}$
$\begin{aligned} & \text { ü } \\ & \text { 0 } \end{aligned}$	\rightarrow NO
0	\cdots

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
100.0	1	142.697	----		-..--	187.573
	2	2577.45	2255.24		13.33	2645.57
	3	12061.2	11555.8		4.25	12142.9
	4	35565.4	34990.1		1.63	35652.8

table II - bOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
100.0	1	464.419	349.230	462.905	0.326	500.564
	2	3738.80	3492.14	3728.65	0.271	3803.54
	3	14536.3	14210.1	14481.2	0.379	14617.6
	4	39855.6	39429.1	39726.5	0.324	39943.8
125.0	1	443.820	259.076	442.025	0.405	500.564
	2	3702.43	3315.45	3689.41	0.352	3893.54
	3	14490.7	13981.0	14423.9	0.461	14617.6
	4	39806.0	39139.5	39640.2	0.417	39943.8

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM					$\beta=-.75$	
α	Order	```Upper Bound by Rayleigh-Ritz```	```Lower Bound by Kato's Method```	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
10.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 530.922 \\ 3 & 917.96 \\ 14 & 864.1 \\ 40 & 371.8 \end{array}$	$\begin{array}{rl} & 529.723 \\ 3 & 915.17 \\ 14 & 859.8 \\ 40 & 366.3 \end{array}$	$\begin{array}{rl} & 530.701 \\ 3 & 916.53 \\ 14 & 857.6 \\ 40 & 355.9 \end{array}$	$\begin{aligned} & 0.042 \\ & 0.036 \\ & 0.043 \\ & 0.039 \end{aligned}$	$\begin{array}{rl} & 531.274 \\ 3 & 918.60 \\ 14 & 864.9 \\ 40 & 372.7 \end{array}$
20.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 560.511 \\ 4 & 030.98 \\ 15 & 108.8 \\ 40 & 798.1 \end{array}$	$\begin{array}{rl} & 555.692 \\ 4 & 020.35 \\ 15 & 091.5 \\ 40 & 768.6 \end{array}$	$\begin{array}{rl} & 560.062 \\ 4 & 028.28 \\ 15 & 096.1 \\ 40 & 768.9 \end{array}$	$\begin{aligned} & 0.080 \\ & 0.067 \\ & 0.084 \\ & 0.072 \end{aligned}$	$\begin{array}{rl} & 561.893 \\ 4 & 033.54 \\ 15 & 112.1 \\ 40 & 801.7 \end{array}$
40.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 617.532 \\ 4 & 252.96 \\ 15 & 593.4 \\ 41 & 645.3 \end{array}$	$\begin{array}{rl} & 599.287 \\ 4 & 212.01 \\ 15 & 523.6 \\ 41 & 566.3 \end{array}$	$\begin{array}{rl} & 616.673 \\ 4 & 247.82 \\ 15 & 568.6 \\ 41 & 585.6 \end{array}$	$\begin{aligned} & 0.139 \\ & 0.121 \\ & 0.158 \\ & 0.143 \end{aligned}$	$\begin{array}{rl} & 622.874 \\ 4 & 263.06 \\ 15 & 606.3 \\ 41 & 659.4 \end{array}$
60.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 67.1 .896 \\ 4 & 469.68 \\ 16 & 071.4 \\ 42 & 485.3 \end{array}$	$\begin{array}{rl} & 634.041 \\ 4 & 380.84 \\ 15 & 819.7 \\ 42 & 309.6 \end{array}$	$\begin{array}{rl} & 670.667 \\ 4 & 462: 22 \\ 16 & 035.1 \\ 42 & 399.3 \end{array}$	$\begin{aligned} & 0.183 \\ & 0.167 \\ & 0.225 \\ & 0.203 \end{aligned}$	$\begin{array}{rl} & 683.530 \\ 4 & 492.12 \\ 16 & 100.2 \\ 42 & 517.0 \end{array}$
80.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} & 723.829 \\ 4 & 681.35 \\ 16 & 542.9 \\ 43 & 318.2 \end{array}$	$\begin{array}{rl} & 655.591 \\ 4 & 521.11 \\ 16 & 294.4 \\ 43 & 016.2 \end{array}$	$\begin{array}{rl} & 722.256 \\ 4 & 671.69 \\ 16 & 495.6 \\ 43 & 203.9 \end{array}$	$\begin{aligned} & 0.217 \\ & 0.206 \\ & 0.286 \\ & 0.264 \end{aligned}$	$\begin{array}{rl} & 743.883 \\ 4 & 720.74 \\ 16 & 494.0 \\ 43 & 374.4 \end{array}$

α	Order	$\begin{gathered} \text { Upper Bound } \\ \text { by } \\ \text { Rayleigh-Ritz } \end{gathered}$	$\begin{gathered} \text { Lower Bound } \\ \text { by } \\ \text { Kato's Method } \end{gathered}$	Lower Bound by Intermediate Problem	Gap/Aversge Per Cent.	Lumped Constant End Load
100.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} 1 & 074.33 \\ 6 & 027.13 \\ 19 & 474.6 \\ 48 & 429.6 \end{array}$	$\begin{array}{rl} & 917.851 \\ 5 & 637.97 \\ 18 & 929.7 \\ 47 & 680.0 \end{array}$	$\begin{array}{rl} 1 & 071.61 \\ 6 & 015.50 \\ 19 & 407.2 \\ 48 & 255.9 \end{array}$	$\begin{aligned} & 0.253 \\ & 0.193 \\ & 0.346 \\ & 0.359 \end{aligned}$	$\begin{array}{rl} 1 & 100.66 \\ 6 & 083.95 \\ 19 & 551.3 \\ 48 & 515.6 \end{array}$
125.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} 1 & 208.37 \\ 6 & 562.08 \\ 20 & 662.6 \\ 50 & 522.1 \end{array}$	$\begin{array}{rl} & 975.666 \\ 5 & 998.45 \\ 19 & 837.7 \\ 49 & 425.7 \end{array}$	$\begin{array}{rl} 1 & 204.80 \\ 6 & 548.45 \\ 20 & 578.1 \\ 50 & 209.0 \end{array}$	$\begin{aligned} & 0.29 \\ & 0.209 \\ & 0.411 \\ & 0.626 \end{aligned}$	$\begin{array}{rl} 1 & 247.09 \\ 6 & 648.11 \\ 20 & 780.8 \\ 50 & 655.8 \end{array}$
150.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} 1 & 339.76 \\ 7 & 090.13 \\ 21 & 881.0 \\ 52 & 603.5 \end{array}$	$\begin{array}{rl} 1 & 019.69 \\ 6 & 269.69 \\ 20 & 689.1 \\ 50 & 963.6 \end{array}$	$\begin{array}{rl} 1 & 336.44 \\ 7 & 075.31 \\ 21 & 763.0 \\ 52 & 352.5 \end{array}$	$\begin{aligned} & 0.249 \\ & 0.209 \\ & 0.358 \\ & 0.478 \end{aligned}$	$\begin{array}{rl} 1 & 392.44 \\ 7 & 210.27 \\ 22 & 008.6 \\ 52 & 794.9 \end{array}$
175.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} 1 & 468.84 \\ 7 & 611.88 \\ 23 & 010.1 \\ 54 & 673.8 \end{array}$	$\begin{array}{rl} 1 & 051.54 \\ 6 & 679.71 \\ 21 & 434.2 \\ 52 & 581.9 \end{array}$	$\begin{array}{rl} 1 & 464.90 \\ 7 & 594.8 \\ 22 & 919.3 \\ 54 & 546.7 \end{array}$	$\begin{aligned} & 0.269 \\ & 0.224 \\ & 0.396 \\ & 0.233 \end{aligned}$	$\begin{array}{rl} 1 & 536.86 \\ 7 & 770.58 \\ 23 & 234.9 \\ 54 & 9328 \end{array}$
200.0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{rl} 1 & 595.89 \\ 8 & 127.84 \\ 24 & 170.5 \\ 56 & 733.4 \end{array}$	$\begin{array}{rl} 1 & 072.52 \\ 6 & 940.16 \\ 22 & 240.3 \\ 54 & 163.9 \end{array}$	$\begin{array}{rl} 1 & 592.01 \\ 8 & 110.06 \\ 24 & 084.8 \\ 56 & 511.6 \end{array}$	$\begin{aligned} & 0.243 \\ & 0.219 \\ & 0.355 \\ & 0.392 \end{aligned}$	$\begin{array}{rl} 1 & 680.44 \\ 8 & 329.17 \\ 24 & 459.6 \\ 57 & 069.4 \end{array}$

[^0]: * This functional is known as Rayleigh's quotient.

[^1]: * See, for instance, references 17,18 , and 19.
 * The functions u_{i} are often called coordinate functions.

[^2]: *

 See, for instance, reference $21, \mathrm{p} .336$.

