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I. Experimental Progress 

A. Lithium Drifted Sil icon Semiconductor Detectors: 
1. Seventy different  detectors have been incorporated in to  

t h i s  study. 
devices ranging i n  s ize  from 1 x 1 x 1 mm t o  7 x 7 x 150 mm. 
Long detectors, i .e. ,  having proton path lengths i n  s i l i con  
of 10, 20, 30, 50, 70, 100, 120, 130 and 150 mm are being 
used t o  t o t a l l y  absorb high energy protons. Shorter path 
lengths are used t o  measure stopping power dE/pdX i n  s i l i con .  

2. Lithium-drifted detectors of special  shapes and s izes  are 
fabricated at SMU. New techniques of fabrication, mounting 
and encapsulation were developed. 
Combinations of detectors have been developed t o  permit 
simultaneous measurements of dE/dx and E with ident i f icat ion 
of both mass and energy of the incident pa r t i c l e  f o r  
t ranslat ion t o  a surface dose and depth dose dis t r ibut ion.  

They represent a family of various sized 

3. 

B. Charge-pulse response of s i l i con  detectors: 

The charge-pulse response of many of the detectors have been 
measured f o r  the proton energies l i s t e d  i n  D. as a function of 
proton energy, proton path length i n  s i l i con  and operating 
conditions of the detector. The average energy required t o  
produce an ion-electron pair  has been measured from both the  
stopping power measurements i n  s i l i con  and from the protons 
t o t a l l y  absorbed i n  s i l i con .  
t r ans l a t e  the current from each detector produced by a known 
radiat ion f lux  density and stored i n  a cal ibrated condenser 
i n t o  dose, i .e. ,  the  t o t a l  energy absorbed per u n i t  m a s s  of 
silicon . 

These data are required t o  

C. Detector Life-time Behavior Studies: 

The depletion depth, volume, noise level, charge pulse per MeV, 
dark current and capacitance are being measured f o r  each de- 
t ec to r  used i n  the study. 
obtained over the two year period w i l l  be used t o  a ) p r e d i c t  
the usable l i f e  of a detector and.bJ t o  pin-point and predict  
loss of re l iabi l i ty  of data produced by the  detector. 

The complete age-usage h is tory  thus 
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D. Stopping Power Measurements : 

Data has been taken using protons having energies of 5 ,  6, 8, 
10, 11, 12, 13, 14, 15, 16, 36, 37, 40, 100, 160, and 187 MeV. 
Absorbers were used i n  duplicate se t s  of three different  
thicknesses permitting measurements on s i x  d i f fe ren t  absorbers 
with each of two or  more detectors. 

a. Elements: ;$, Be, C, Cu, Fe, Pb, S i  
b. Plas t ics :  Nylon, plexiglass, polyethylene, t i s sue  

c. Tissue: Eone, muscle, fat .  
e quivalcnt . 

E. Field Trips: 
1. t o  the  University of Texas, Austin, Texas 

Iktes: October 10-11, 1964 
Accelerator time: 36 hours 
Proton Energies 5-14 MeV 

Dates: December 28-29, 1964 
Accelerator time: 36 hours 
Proton Energies 8-16 MeV 

2. O a k  Ridge National Laboratories, O a k  Ridge, Tennessee 
Dates: November 21-29, 1964 
Accelerator time: 80 hours 
Proton Energies: 36-40 MeV 

3. University of Uppsala, Uppsala, Sweden 
Bites: October 23-November 8, 1964 
Accelcrator time: 100 hours 
Proton Energy: 187 ~ e v  

4. University of Southern California, Los Angeles, California 
Eatest May 20-22, 1965 
Accelerator time: 24 hours 
Proton Energies: 21-30 MeV 

5. McGill University, Montreal, Canada 
Dates: llugust 4-15, 1965 
Accelerator time: 110 hours 
Proton Energy: 100 MeV 

r 
0. Harvard University, Cambridge, Mass. 

f a i l e d  j u s t  before SMU tu rn  t o  "go on the beam." 
major breakdown forced rescheduling f i e l d  t r i p  t o  

Dates: August 16-19, 1965 NOTE: Cyolotron main generator 
This 

Dsttes: January 18-24, 1966 
;Iccclcrator t i m e :  84 hours 
Proton Energy: 160 MeV 
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7. University of Uppsala, Uppsala, Sweden 
Dates: "lpril 20-May 4, 1966 
,kce l le ra tor  t i m e :  138 hours 
Proton Energies 185.6 MeV 

8. University of Uppsala, Uppsrtla, Sweden 
Dates: June 9-July 8, 1966 
Accelerator t i m e :  166 hours 
Proton Energies 185.6 MV. 

F. NASA Part ic ipat ion:  

Members of the NASA, Manned Space Center, Space Radiation and 
Fields Branch participated i n  the research e f f o r t  at the 
University of Uppsala, a t  O a k  Ridge National Laboratory, and at 
M c G i 1 1  University. A t  each f a c i l i t y  additional research of spec ia l  
i n t e r e s t  t o  t h i s  Branch were accomplished. These included exposure 
of nuclear t rack  p la te  emulsions and calibration of various dosimeters. 
The accelerator t i m e  made available t o  NAS12 at  no charge rmgcd from 
10 t o  24 hours a t  each f a c i l i t y .  

11. Theoretical Progress 

A. 

B. 

Linear Stopping Power Calculations: 

A program f o r  calculating l i nea r  stopping power, d E / p d x ;  based on 
the Bethe-Block equation 

including shell corrections has been completed, tested and used on 
the SMU, CCC-3400 computer t o  calculate the correct  thicknesses f o r  
the  pure elements. The mean ionization potent ia l ,  I, has been 
evaluated experimentally for each element. 

Monte Carlo Stopping Power Calculations: 

The l i nea r  stopping power program has been incorporated i n t o  a 
Monte Carlo transport  program which permits Coulomb in te rac t ion  with 
both the o r b i t a l  electrons and the nuclei .  This program has been 
used t o  verify the stopping power measurement and the energy straggle 
measured cxpcrimentally. 
pdx > 0.75 g/cm2,the difference between the l i nea r  value and the  
Monte Carlo values of the l o s s  of energy i s  given by 0.2555 p2(1 - p2) 
where f3 = v/c f o r  the proton. 

For porton energies below 200 Mev and 
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C. 

D. 

E. 

F. 

Determination of Zl.1 and I fo r  complex absorbers: 

The above programs are being used t o  determine effect ive Z, A, and 
I values fo r  water, bone, meat and f a t  based on the experimental 
stopping power measurements. 
which dose, i .e. ,  the t o t a l  energy absorbed per un i t  a s s  of the 
absorbing material, can be calculated as a function of f l u x  density, 
type and energy of the ionizing radiation. 

Calculation of Effective Z A, and I.: 

The effective values of Z 2 and I fo r  each of four p l a s t i c s  
studied are being used t o  obtain a mathematical model f o r  ca l -  
culating these quantit ies where the chemical composition and 
r e l a t ive  abundance of a heterogeneous material  i s  known. 
Cose Calculation 
The computer program i s  being writ ten t o  permit calculation of a 
depth dose dis t r ibut ion i n  a multilayer, i . e . ,  skin, muscle, bone 
fa t ,  e tc  . , absorbcr i n  a heterogeneous radiat ion environment. 
Other options permit a )  the p a t i c l e s  t o  enter  everywhere over 
the  surface of the "absorber"; b )determination of energy l o s t  
i n  transit through the absorber; c )  energy and angular dis t r ibut ion 
of secondary radiations (nuclear or o r b i t a l  e lectrons)  t o  permit 
study of reabsorption or escape from s i t e  of dose in t e re s t  and 
d )  the  absorber t o  have a complex geometry. 

The end r e s u l t  w i l l  be a program by 

1 
b 

Correlation Between Biological Respcnse and Cose Measurement: 

The f i n d  s t ep  i s  the determination of a biological  response of 
the  chosen subject t o  the actual ( i f  on a mission) or the predicted 
radiat ion environment. Indicative predictions are possible on 
the  basis of human cancer cases and animal i r radiat ions.  The 
biological  rcsponse i tself  i s  a medical study and the  responses 
used i n  t h i s  analysis w i l l  be from w e l l  qual i f ied sources. The 
precisc dctermination of the  radiation environment which produced 
the response i s  a physical study. Translating the  laboratory 
radiation environment in to  terms of a space radiat ion environment 
and correlat ing the biological response t o  the  space radiat ion 
exposure i s  one of the goals of t h i s  research e f for t .  

The main goal of t h i s  project i s  t o  provide the basic physical 
data  concerning s i l icon  detectors and the  t rue  mathematical path 
t o  permit the physical measurement or sequence of measurements 
made with a s i l i con  detector so  t h a t  the s i l i con  dose and U T  
measurements can be t ranslated d i rec t ly  i n t o  t i s sue  dose and 
depth dose distribution. It i s  from these t ranslat ions t h a t  
indicat ive predictions of the biological response can be made. 

The data  currently being used i s  t h a t  provided by Dr. Borje Larsson 
from h i s  studies based on h i s  treatment of human cancers using 
i r rad ia t ion  by 187 MeV protons fo r  treatment and the whole body 
i r radiat ions of primates by the Bionucleonics Division of the 
USAF School of Aerospace Ivedicine. 
when it i s  possible t o  obtain enough information concerning the  
laboratory radiation environment t o  permit a d i rec t  t rans la t ion  
of the  dosimetry in to  NASA-SMU dosimetry. 

Other s tudies  w i l l  be included 
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111. Funding: 

A. NASA 1964 -6 5 1965 -66 1966 -67 Total 
1. Direct Costs $71,262.00 $4- $3-0 $ 1 5 m . 3 4  

5 506 74 a 666 66 11 059.00 25 232.40 2. Overhead 
Total $5;?,000.00 $=%m$m%m 

The t o t a l  NASA contribution i s  $175,725.74. 

B. Other Universities: 
The following cyclotron grants were made t o  SMU f o r  t h i s  project:  

Granting Univ. 
University of Texas 
O a k  Ridge- N a t  ' 1 Lab. 
McGill University 
Harvard University 
Uppsala University 

Tot a1 

Accelerator T i m e  
36 hours 
80 hours 

110 hours 
84 hours 

404 hours 

Estimated Cost 
$ 1,080. 

2,000. 
5,500. 
i, 400. 

24 220. 
$* 

The t o t a l  contribution i n  f r ee  accclerator t i m e  i s  about $34,200.00. 

C. Using Government guidelines, it was possible t o  show t h a t  SMU actually 
gave matching funds i n  terms of computer time and salary i n  the 
amount of $26,444.00 f o r  the  f i r s t  two years and so f a r  has given 
$9,300 i n  computer time i n  June, July, August, 1966. 

D. The t o t a l  f inanc ia l  support f o r  the en t i r e  three year 
period: $247,000.00. 

IV .  Personnel: No. employed each of the  Total No. of - 

three,  one-yeax periods. 
1964-65 1965-66 1966-67 

Faculty 1 2 3 
Non-Faculty 2 1 3 
Graduate Assistants 5 6 5 
Undergradmte A s s t s .  - 3 
Total 11 

3 
12 

1 
12 
- 

dif  f erent men. 

3 
3 
8 
6 

20 
- 

V. F'ublications 

A. The Following Technical Papers Were Given as Listed Below. 

1% the Sixty-Eighty Annual Meeting of the Texas Academy of Science, 
Abilene, Tcxas, Cccember, 1964. 

1. Cumins, J. R. Preliminary Report of the Experimental 

%ff, and %ff 
ktermination of I 
i n  the Bethe -B1oche%ppug Power 
Equation f o r  Four P las t ics .  

Stopping Power and Energy Straggle 

and Si  Using 36.1 MeV Protons. 

State Radiation Detectors. 

2. Crawford, G. W. Linear and Monte Carlo Calculations of 

3. Nipper, Daniel C. Stopping Power Measurements of Re, Cu, 

4. Snow, B. D. The Preparation of Lithium-Ikifted Solid 
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At the  American Physical Society Meeting, Honolulu, Hawaii, 
September, 1965. 

1. Crawford, G. W. Linea? and Monte Carlo Calculations 
of Stopping Power and Energy Straggle. 

A t  the  Sixty-Ninth Annual Meeting of the Texas Academy of Science, 
Dallas, Texas, December, 1965. 

1. Crawford, G. W. Operating Characterist ics of Very 

2. Snow, B. D. Fabrication of Very Long Sil icon 
Long Siiicon Detectors. 

Cetectors. 

Rc spcctf u l l y  submit t cd, 

George W. Crawford / 
Professor of Physics 
Southern Methodist University 
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INTRODUCTION 

The  process  for preparing lithium drifted Ilp-i-nl' detec-  

t o r s  was conc,eived and developed by E, M, Pell '  0; Genera l  

E lec t r i c  Research  Laboratory in 1959. 

was diffused into "p" type sil icon to f o r m  an I'n-plI junction diode. 

A r e v e r s e  bias was applied to  this diode which wae held a t  a suffi- 

ciently elevatc*cI tempera ture  to  give the  lithium donor ions apprecia-  

ble mobility but low enough to  prevent flooding. 

condition the lithium ions drifted under the influence of the e l ec t r i c  

field and diffusion cu r ren t  t o  compensate the boron ions in the "p" 

region. Thus ,  this  region became depleted of f r e e  c a r r i e r s  and 

the depletion continued to  sp read  aa long as the t empera tu re  and 

biasing voltage w e r e  maintained. Depletion widths as wide as 

5 mm w e r e  formed. 

By this  method lithium 

2' While in  th i s  

4 

5 

c o r  pract ical  purposes  this compensated region was in- 

t r i n s i c  in the sense  that the electron and hole concentration w e r e  

equal. Consequently, an "n-i-p" formation was accomplished 

with the  width of the intr insic  region depending upon the  dr i f t  para- 

m e t e r s ,  6 

During d&edor c p r a t i m  a bias ,  positive from "no t o  

1 

.+ 

I 



2 

"p,"  depleted the f ree  c a r r i e r s  from the compensated region. The 

resulting intrinsic region became the sensit ive region f o r  par t ic le  

detection. This  depleted layer  was, in effect, a layer  of ext remely  

high resis tance mater ia l  separating opposite e lectr ic  charges.  An 

appreciable capacitance resulted which var ied with depletion width 

and, consequently, voltage. 
7 

A particle incident on the sensitive region of the  biased 

detector  t ransfer red  i ts  energy t o  the si l icon by forming electron- 

hole pairs.  These c a r r i e r s  were  swept out of the intr insic  layer  

by the strong electr ic  field and collected by the "plates" of the diode 

capacitor. 

tute an  e lec t r ic  current .  A voltage pulse was produced when this  

cu r ren t  passed through a load res i s tor  in the applicable circuitry.  

Each pulse was s tored in electronic equipment to  give a measu re  of 

the energy lost by the incident particle. 

The flow of electrons and holes were  additive to  consti-  

8 

F o r  meaningful resolution of data s imi l a r  t o  those above, 

a low noise to  signal (pulsc) ratio must be maintained. A detec- 

t o r  capable of completely absorbing 200 Mev protons with a ve ry  

low noise to  signal ratio and good charge collection propert ies  was 

required for  the r e sea rch  project of which the work reported h e r e  

was a part ,  



I .  

THEORY 

The theory  associated with the preparat ion of l i thium drif ted 

s i l icon de tec tors  may be divided into five par t s :  

ma te r i a l ;  (2) Theory  of diffusions; (3) Theory  of "p-n" junctions; 

(4) Theory  of d r i f t ;  and ( 5 )  Theory of operation. 

(1)::Theory of basic 

Theory of Basic Mater ia l  

A semiconductor i s  defined by an  e l ec t r i ca l  conductivity 

, 

that  is intermediate  betwccn that of an insulator  and that of a metal, 

The  classification is a s  follows: 

Insulators  : 

Semiconductors:  l o m 9  to 10 mho-cm 

Conductors : 

When f r e e  electrons a r e  perturbed by a periodic potential 

10 -22  to  10-14 mho-cm- '  

2 -1  

10 5 mho-cm- '  and g rea t e r  

a r i s ing  f r o m  the periodic c rys t a l  lattice, it is shown by second o r d e r  

degenerate  perturbation theory that there  is a "gap" between adja-  

cent energy  levels. lo '  l 1  

. 
* 

There  can exis t  N energy levels ,  where  

N is the  number of unit cel ls  in a crystal ,  in each  energy  band. But 

two e lec t rons  can occupy each level if t he i r  sp ins  are ant i -paral le l ,  

Thus,  each  energy  band can hold 2 N electrons.  12 

, 

3 
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In  general  e lements  with an even number of e lec t rons  /unit 

ce l l  will not be conductors s ince  the energy bands would be full and 

additional energy would be required to excite them into the  next avai l -  

able  energy  band. 

t rone luni t  ce l l  would be conductors, . However, not all e lements  with 

Similar ly ,  elements with an odd number of e lec-  

an  even number of e lectroneluni t  cell are  poor conductors because  of 

band overlap. 

Silicon has four conduction electrons and the energy  gap, EG, 

is intermediate  between conductors and insulators  classifying it as a 

semiconductor.  The energy level diagram for  s i l icon is shown in 

F igure  1 with EG = 1.21 ev a t  0°K and conductivity d = 3.3 x 

lom6 mho c m  , -1 13 

The Fe rmi -Di rac  distribution function, f ( E  ), which gives 

the probabili ty that a quantum s ta te  with energy  E is occupied by 

an electron,  i s  given by the formula 
14 

where  EF i s  the F e r m i  emergy o r  band and -9 the energy  a t  which 

the probabili ty of a s t a t e  being filled is one-half, 
15 

k is Boltz- 

mann'e constant and T i s  the absolute tempera ture ,  Using f r e e  

e lec t ron  theory  the t empera tu re  dependency of E F  is given approxi-  

mately by  
16 
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C o n d u c t i o n  b a n d  

3 

E n e r g y  b a n d  g a p  

V a l e n c e  b a n d  

I 

Fig. I. Energy-level diagram for Silicon 



6 
0 , the  F e r m i  energy at 0 K, is (0) 

where  EF 

( 0 )  0 n is the charge  c a r r i e r  concentration at 0 K. Diagrams of 

t he  Fer mi -Dirac diet r ibution func tions superimposed on energy-  

band d i ag rama  a r e  shown in F igure  11. 17 

The  value of k T a t  T = 300°K is 0.026 e v  and the value 

of E G  at  300' K is 1.1 ev. l 7  

conduction band and the F e r m i  level ( E  c - E 

th is  si tuation, where E - EF>> kT, f ( E  ) may be expressed  as 

The energy difference between the  

) is 0,55 ev, F o r  

- ( E  - E F ) / k T  f ( E )  = e  ( 4 )  

Equation ( 4  ) givea the value of that fraction of the  quantum s t a t e s  

a t  energ ies  E occupied by a n  electron. Hence, 1 - f ( E  ) c o r r e s -  

ponds t o  the fract ion of s ta tes  left vacant when the  e lec t ron  en te r s  

the  conduction band that leaves behind a hole, F r o m  Equation ( 1 ) 

1 
l ; f ( E )  = 1 - ( E - E F ) / k T  ( 5 )  

l t e  

[E - E F ) / k T  
l t e  - 1  

l t e  
1 - f ( E )  = ( E - E F ) / k T  

e 
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---&&I. 

I 

-I---- 

92 ,Paad 

T = O°K T 

Fig, 11, Fermi-Dirac distribution functions superimposed on 
energy-band diagrams. 
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1 

l - f ( E )  = -+ 1 
e (E-EF)/kT 

1. 
l - f ( E )  = 

( E  - E F  YkT l t e  

making the  aame  approximation a s  in Equation ( 4 ) ;  ia  e, 

EF - EV>> kT yields 

( 9 )  

Defining g ( E  ) as the number of quantum e ta tes  p e r  unit 

energy  pe r  unit volume of the cryetal ,  the deneity of etatee N i n  a 

par t icu lar  energy  range E t d E  would be 

T h e r e f o r e ,  the density of free c a r r i e r s  would be  given by 

n = /EE2 f ( E )  g ( E )  d E ,  
1 

18 b y  Bril loqin-Zone analysis ,  the derived expression fo r  g (E ) i e  

2m 
g ( E )  =1 (- ( E - E 1 ) l l 2  

2r2 m 2  

The  denaity of e lectrons in the conduction band ie then 

00 - ( E - E F ) / ~ T  1 2 m e  3 / 2  
) ( E - E C ) l l 2 d E .  ( 1 4 )  

Integrating beyond the top of the conduction band causee v e r y  l i t t le 

e r r o r .  
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Letting E l  = E - E c, 

which yields 
I 

2Rm c k T  3/2, - ( E  - E ) / kT 
# 1 n = 2 (  h 2  

Defining 

2 R m e k T  3/2 
N C  = 2 (  I D  

h 2  

Similarly 

Defining 
I 

b 

m m h k T  3 / 2  
NV = 2( 1 8  

h 2  

Multiplying ( 18 ) by ( 21 ) yields 



1 0  

where  

It is the re fo re  evident that the product, np, is independent of the  

F e r m i  level,  EF. 

and is a constant for  any given temperature ,  

eurements  of high-quality si l icon crystale  have yielded the following 

Fur the rmore ,  it i s  dependent only on t empera tu re  
6 

Exper imenta l  mea- 

empi r i ca l  expression. 1 9 , 2 0  

32 3 -1,211kT 
n p  = 1 5 x 1 0  T e ( 2 4  1 

In  in t r ins ic  s i l icon c a r r i e r s  a r e  due to  t h e r m a l  excitation and n = p. 

"her ef o re ,  

( 2 5  1 2 -  2 ni - pi = n p  

Yhen electrons became thermally exc"ied and en te r  the 

conduction band, an equal number of holes a r e  left in the valence 

band f o r  conduction. Hence, conductivity inc reases  until the  c a r r i e r  

population is grea t  enough for lattice vibrations to  impede movement 

of the  c a r r i e r s .  

and e lec t rons  in intr insic  si l icon is t e r m e d  intr insic  conduction. 

The conductivity due t o  the rma l ly  generated holes  

, A two dimensional picture of a s i l icon c r y s t a l  showing only 
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the valence covalent bonding 

The Fe rmi -Di rac  distribution function superimposed on the energy- 

band diagrams f o r  this  cryetal  is given in  Fig. XI, 

i s  shown in F igure  IU, 

Suppose now a group III impurity is introduced and d is -  

places one of the si l icon atoms. 

ciency o r  a "hole" which acts  like a positive c h a r g l  t o  readily 

There will be an electron defi- 
\ 

accept a free electron f rom the  crystal. Consequently, group III 

impuri t ies  a r e  called acceptor impurities. 

If a silicon atom is displaced by a group V atom four  of 

the five valence electrons will satisfy the covalent bonding s t ructure .  

'However, the fifth electron ie relatively f r e e  to migra te  through the  

c rys ta l ,  F o r  this reason group V atoms a r e  t e rmed  donor impur i -  

ties. 

Each of the above "doping" atoms,  a s  they a r e  called, a r e  

defined a s  dieplacement atoms. An atom may be positioned in t e r -  

st i tually,  that i s ,  in the space between latt ice atoms. They a r e ,  

22,23 therefore ,  called inters t i t ia l  atoms. Li th ium is such an atom 
* 

and "gives up'' an electron to  the silicon c rys t a l  to  act  a s  a donor 

impuri ty  . 
The presence of impurities will modify slightly the d i s t r i -  

bution of quantum states  within the crystal .  At v e r y  low t empera -  

t u re s ,  where the excess  electrons a r e  bound to  the donor a toms,  

each donor a tom will remove a state f r o m  the conduction band and 



\' 
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Fig,  III. t 'lhodimeneional covalent bonding picture of a 
Silicon c rye t al. 
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es tabl ish it a s  an allowed s ta te  of lower energy. 

level is re fer red  to  a s  the donor impurity energy level, ED, and i m  

below the bottom of the conduction band by an amount equal to  the 

This lower energy 

donor ionization energy, Similarly,  for  an  acceptor impurity,  

each atom elevates a state  f rom the valence band to  an acceptor  

impuri ty  energy level, EA, just  equal t o  the acceptor ionization 

energy. 24 These  energy levels a r e  i l lustrated in  Fig. IV.  

Material  with an excess  of donor impurit ies (ND) NA) 

is called "n" type because conduction is due to  negative charge  

c a r r i e r s  o r  electrons in the conduction band. Similar ly ,  mater ia l  

with an excess  of acceptor impurities (NA> ND) ie called "p" type 

because conduction is due t o  an excess of hole c a r r i e r s  in  the 

valence band acting like positive charges. 

tion ie intrinsic,  and the c rys ta l  i s  said to be compensated. 

If ND = NA, the conduc- 

In an 

1ln'l type semiconductor,  the electrons a r e  called majori ty  c a r r i e r s  

and holee minority c a r r i e r s .  Likewise, in "p" type mater ia l ,  

the  holes a r e  the majority c a r r i e r s  and electrons minority c a r r i e r s .  

Conductio; due to  added impurit ies is  t e rmed  extrinsic conduction. 

When ND> NA at room temperature  the re  is a high occu- 

pancy of the allowed s ta tes  in the conduction band and a low occu- 

pancy of holes in the valence band. 

has  oppoeite effects.  

The conduction where NA) ND 

It is c lea r  that the Fermi level, which ie a 
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I 

Conductor band 

Valence band 

Fig. IV ,  Energy-level diagram for impurity semiconductor, 
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25 m e a s u r e  of the probability of occupancy of the allowed s t a t e s ,  

will  be affected. The positione of the Fermi level  for impuri ty  

semiconductors  a r e  shown i n  F ig .  V. 

It has been theorized, and demonstrated by experiment ,  

that  cer ta in  allowed energy s ta tes  can and do exis t  in the region 

of the forbidden-energy band. These s ta tes  a r e  called recombina-  

t ion cen te r s  and a r e  attributed to foreign impuri t ies  or  perhaps 

s t r u c t u r a l  defects i n  the crystal .  A s t a t e  of th i s  na ture  may ex is t  

anywhere in the forbidden region dependent on the impurity. 

action of the center  is to  capture  either a f r e e  electron f r o m  the  

The 

conduction band o r  a n  e lectron f rom the valence band, leaving a 

hole behind. Likewise,  the filled center  may be emptied by cap-  

tur ing a hole or  re leasing i ts  electron back t o  the  conduction band. 

Recombination occurs  when the center  cap tures  a f r e e  e lec t ron  and 

holds it until emptied by capturing a hole. Thus,  the recombina-  

t ion center  may be considered a "stepping stone' '  in the gap  between 

the  bands. 

be a foreign meta l  such as nickel or copper ,  the position of the 

If the imperfection that c r e a t e s  the cen te r s  happens to 
s 

cen te r  in the band gap would depend on the allowed energy level  

f o r  the  impur i ty  in question. This is s i m i l a r  t o  the situation of 

the  donor and acceptor  impur i t ies ,  except that  the  energy s t a t e s  for 

most metals  a r e  deeper  in the band gap. The  energy  levels f o r  

s o m e  of the common metals  of in te res t  in  s i l icon are given i n  
0 
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Fig,  V, Positions of Fermi level for impurity semiconductore, 
(a) Intrinsic; (b) n type; ( c )  p type. 
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It is apparent that  s eve ra l  factors determine the probability 

27 of carrier recombination a t  a recombination center.  They are 

( 1 ) the  concentration of recombination centers  in the c rys ta l ,  

( 2  ) the concentration of the f ree  c a r r i e r  in question,which is re lated 

* t o  res is t ivi ty ,  ( 3  ) the capture probability of the centers ,  and 

( 4  ) the concentration of centers  that are  normally filled under 

equilibrium conditions. The las t  factor is dependent on the position 

of the  centers  in the band gap with respect to  the F e r m i  level, s ince 

this  would determine the degree of occupancy of the centers .  

The beginning mater ia l  for solid s ta te  radiation detectors  

i e  "p" type with boron as the acceptor impurity. Fig. V ( c  ) c o r -  

responds qualitatively to  the Fermi level for this  crystal .  

vious that the actual position of the F e r m i  level is dependent on the  

It is ob- 

- 2  
boron concentration. 

evZ8 establishing the acceptor energy level just  above the valence 

The activation energy of boron is 4.5 x 10 

band. 
b 

It has  been established above that extr insic  conduction is 

the resul t  of added impurit ies to an intr insic  si l icon crystal .  A 

l a rge r  concentration of an impurity causes  more  conduction s ta tes  

t o  be filled and enhances the conduction of the crystal .  A graph 

showing resis t ivi ty  ae a function of acceptor and donor impurity con- 

centration is shown in Figure VII. 
e .  
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Obviously the movement of c a r r i e r s  is tempera ture  depcndent, 

A relationship can be derived beginning with the force  equation 

F = qE, and since F = m a ,  ( 2 6 )  

qE 
m 

a =  ( 2 7 )  

The average velocity of c a r r i e r s  through a c rys t a l  under the influ- 

ence of an e lec t r ic  field is given by 

VD = a t ,  where VD is the d r i f t  velocity, 

Substituting ( 2 7  ) into ( 2 8  ) yields 
I 

v,, = ( qt E = P E  c m l e e c ,  m 

where 

q t  
m / = - i s  termed drift mobility. 

I t  is apparent that  as  the  number of c a r r i e r  collisions per  unit t ime  

inc reases  the d r i f t  mobility will decrease.  The drift  mobilities a r e  

s 

influenced by the two principal collision mechanisms, (1) impuri ty-  

a tom scat ter ing and (2)  lattice-vibration scattering. If I( I is 

designated as the mobility due to impurit ies alone, and fl  

mobility, it is a f a i r  approximation to wri te  

is lattice 

29  

1 1 1 
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The theory of impurity scattering mobility was investigated by 

Conwell and Weisekopf and their  analysis gives the following formu- 

la: 3 0 , 3 1  
. '  I 

, ... 
where  K = dielectr ic  constant, 

0 T = t empera ture  K, 

NI = total  density of a l l  ionized impuri t ies ,  

= effective mass  of electron o r  hole. "eff 

Actual measurements  of drift  mobility in  high-quality c rys ta l s  of 

si l icon, where the impurity concentrations were  so small  that only 

latt ice mobility would be predominant, give the following relation- 

ships fo r  lattice mobility: 32  

9 - 2 . 5  M- = 2 . 1 x  10 T ( 3 3  1 

The composite effects of both impurity and latt ice mobilities a r e  

shown in the curves of Fig. VIII. These curves give the 

values of minority c a r r i e r  dr i f t  mobility a s  a function of impuri ty  

concentration at  room tempera ture  for silicon. 

effect of impurity scattering becomes predominant at impuri ty  

33,34,35 

As is seen,  the 
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15 -3 . 
concentrations of 10 c m  o r  more. The mobilities have been 

reported by D ~ n l a p ~ ~  to vary a s  

Mn = 4.0 x lo9 T12*6 cm2/volt  s e c  and ( 34 1 
I 

-2.3 2 = 2 . 5 ~  1 0 8 T  c m  /volt s e c  
MP 

Pea r son  and Bardeen found a T -3'2 law dependence of mobility /' 

upon temperature .  37 Regardless of which is co r rec t ,  it  is seen  

that the constant b defined a a p , , / p  

s i lic on, 

approaches 3 in high resis t ivi ty  P: 
38 

Elec t r ic  cur ren t  i s  defined as the flow of a total  amount of 

charge per  unit t ime within an electric field. If a voltage ie 

impressed  on a semiconductor of length 1 and cross-sec t iona l  area A, 

the  cu r ren t  density J for  electrons would be 

The cur ren t  density for  holes would likewise be 

T 
'P 2 

J' = A  = q p V D  amps /cm , 
P P 

where in (35  ) and ( 3 6  ) "n" and "p" a r e  the electron and hole con- 

centrations,  respectively. Since the two in a c rys t a l  are additive, 
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Substituting ( 2 9  ) into ( 36a ) 

I 
I pert ies  of a semiconductor surface differ f r o m  those of the bulk 

( 3 7 )  

( 3 8 )  

Using Ohm's law, 

( 4 0 )  
v 1  1 R = - = -  
I A q W n n  + / / p ~ )  

1 
A 

Since this  is thc f o r m  of R = p -  , w h e r e p i e  the resist ivity,  

o h m - c m ,  1 

b n n  + ~p P 
P =  

o r ,  letting* be the conductivity, 

( 4 2 )  
-1  * = q w n n  t/ p )  mho-cm 

P 

8 

The curves in Figure VI1 show resist ivity as  a function of impuri ty  

c once nt r at  i on. 

The t reatment  of semiconductor c rys ta l s  would be 

par t ly  incomplete without discussing the surface.  It has been well  

established without adequate understanding that the e lec t r ica l  pro- 

I 
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inter ior .  

which will disrupt the ordcr ly  energy distribution in the region, 

the sur faces  art! ncver perfect, 

and f o r m  oxide layers  readily. 

gas  a toms,  dependent on the ambient, may be absorbed by these 

layers .  

Also the  su r face  exhibits a recombination r a t e  for  carriers which 

An abrupt boundary exists fo r  the layer  of surface atoms 

Also 

The atoms a r e  ve ry  active in a i r  

Chemical ions, water  a toms,  and 

Considerable experimental work has  shown this t o  be t rue,  

is usually different f rom the lifetime of the bulk material .  

It is generally accepted from the ear ly  work of J. Bardeen, 

that at the surface there  exist  a number of sur face  energy s ta tes  

leaving energies  that fall  within the forbidden band gap  of the s e m i -  

conductor. 3 9 s 4 0  

(1) layer  s ta tes  and, (2) interface s ta tes .  The layer  s ta tes  a r e  

gene ra l ly  believed to  be due to  the charac te r i s t ics  of the oxide layer  

ar is ing f rom absorbed ions and a r e  ve ry  sensit ive to  the ambient which 

the sur face  is exposed to. 

gested by Brattain and Bardeen 

These s ta tes  have been categorized into two types: 

The interface s ta tes ,  a s  originally sug- 

4 1  
act ve ry  s imi l a r  t o  the recombina- 

tion centers  of the Shockley-Read-Hall theory, 42,43 ,44 ,45  These 

s ta tes  a r e  found to  be independent of ambient, but dependent on the  

quality of the initial surface treatment by chemical etches before 

oxide formation, 

interface s ta tes  . 
The number of layer s ta tes  is usually g rea t e r  than 

. 
‘ 1  
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Suppose the total ionic charge absorbed by the oxide layer  

on high resis t ivi ty  "p" type mater ia l  giving rise to  layer  s t a t e s  is 

positive. T o  maintain charge neutrality, electrons are  at t racted 

t o  the surface.  This added concentration of electrons in the bulk 

region adjacent to  the interface affects the F e r m i  level. It is 
I 

cuetornary to  keep the F e r m i  energy ae a constant reference and 

let the energy bands bend. 

ie  now c loser  to the conduction band, indicating that  the conductivity 

of the sur face  r eve r ses  f rom "p" type to "n" type. The amount 

of the energy bands bend i s  a function of the density and energy 

distribution of the layer  s ta tes ,  which is direct ly  affected by the  am- 

bient. This conductivity r eve r sa l  ie called inversion and the layers  

thus formed a r e  called inversion layers. 

F igure  IX i l lustrates  that the F e r m i  level  

Since the density of interface s ta tes  is sma l l e r  than that of 

the layer  s ta tes ,  they do not appreciably affect  inversion. However, 

the interface s ta tes  have capture probabilities many o rde r s  of magni- 

tude g rea t e r  than the layer states.  46 

combination of c a r r i e r s  at the surface is attributed mainly to  r ecom-  

Therefore ,  any observed re- 

bination a t  the interface centers.  Surface recombination is expressed  

in t e r m s  of a surface recombination velocity, S, in cent imeters  p e r  

second. This is defined a s  the number of c a r r i e r s  recombining per 

second per  unit a r e a  divided by the excess  concentration over  the 

equilibrium value a t  the Burface. 
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It can be stated in conclusion that the density and energy levels 

of the interface s ta tes  a r e  determined by the method of init ial  sur face  

t rea tment  and a r e  independent of a n y  ambient effects. 

affects the nature of the ionic charge i n  the oxide layer s ta tes ,  which 

in turn  a l t e r s  the conductivity and type of the bulk layer just  beneath 

The ambient 

the surface.  

c rye ta l  lifetime according to  

Interface layers  have the effect of lowering the effective 

1 - 
Tef f  

1 
3GG- + 1 

Zinter face  ( 4 3  1 

Theory of Diffusions 

In addition to motion by drift in an electr ic  field, c a r r i e r s  

may dr i f t  in a semiconductor crystal  by diffusion in the absence of an 

e lec t r ic  field. 

excess  of holes o r  electrons in a localized region of a c rys t a l  at  

equilibrium. 

observed. The ra te  of diffusion would be dependent on the concentra- 

tion gradient. 

This may be visualized by the consideration of an 

A spreading o r  diffusion in a l l  directions would be 

An analogy can be made to  the flow of heat in  a rod with 

,,/’ 

a tempera ture  gradient between the two ends. 

is a l so  applied, a drift  motion is  superimposed on the diffusion. 

If an e lec t r ic  field 

47 

F o r  simplicity consider a one dimensional ca se  of 
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* 

diffusion. Let the distribution of injected electron concentration 

be  given by 

n = n ( x ) .  ( 4 4 )  

The concentrqtion gradient is then - d n  , It may, t$ue, be wri t ten 
d x  

where  c is a constant. 

charge - q. Therefore ,  

Consequently, c must  include the electron 

d n  J =  n qDn  I 

where  D, is the diffusion constant for electron8 in p-type ma te r i a l  

in c m  2 /sec .  Also, 

- * .  J P  - ' q D P  d x  ( 4 7  1 

Equations ( 4 6  ) and ( 4 7  ) fo rm Fickle f i r s t  law of diffusion, 48 o r )  

IL L 

J, = - q D V n .  

Substituting ( 4 6  ) and ( 4 7  ) into ( 36 ) yields 

a$ 
In a cubic latt ice,  such as sil icon, symmetry  requi res  an 

See, isotropic ra te  of diffusion making t h e  diffusion r a t e  a sca la r .  
f o r  inf tance,  Kittel, Chapter I. 
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I n  t h ree  dimensions this becomee 

6 A A 
J = q ( D n V n - D P V p ) .  ( 4 9 )  

The diffusion constants a r e  related to  the mobility by the 

Einstein relationship 49 

kT 2 D =p- c m  / sec  , 
q 

where 

k = Boltzmann’s constant, 

T = absolute temperature ,  

An important property of c a r r i e r s ,  related to l ifetime, * 
50 is diffusion length which is defined by the equation 

L =  67 ( 5 1 )  

where ‘c i s  the c a r r i e r  lifetime. When a sma l l  density of c a r r i e r e  

is injected into a semiconductc-r, the density will dec rease  propor-  

t i o n a l l y  a s  e 7  . When t = T, the density has  decreased  to  

l/e of the original value. 

of the  recombination rate. 

- I  

b 

Therefore ,  the l i f e t imec  is a measu re  

Shockleylil showed that lifetime due to  

3: 
The lifetime of a c a r r i e r  is the  average t ime  between 

generation and recombination. 
mean f r e e  t ime associated with mobilities, s ince a carrier m a y  
experience many collisions before it recombines. 

I t  should not be confused with the 
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c a r r i e r  concentrations only is given by 

n i  2 - 
*c e ( p + n )  D 

where  e is the ra te  of thermal  emission of c a r r i e r s ,  

of the recombination centers  on the c a r r i e r  lifetimee is given 

by the Shockley-Read-Hall 42' 43D 44D 45 theory based on probabi- 

l i ty considerations employing Fermi-Dirac  statist ics.  By their 

analysis it was shown that lifetime depends inversely on the recom-  

The effect 

bination center concentration. Substituting Equation (50 ) into 

(51 ) yields 

By comparing Equation ( 5 3  ) with the published values fo r  mobility, 

it ie s een  that the diffusion length var ies  inversely with t empera -  

ture .  

52  The diffusion coefficient var ies  with tempera ture  ae 

A E a  - -  
a I? = D o e  k T  , (54 I 

,where 

AE = energy of activation a 

Do = apparent value of D at infinite temperature.  

The diffusion coefficient determined experimentally fo r  lithium in 

"p" type silicon is 53,54,55 
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( 5 5  1 2 ev c m  / s e c  kT D = 2.30 x l o e 3  exp ( -  

fo r  a t empera tu re  range of O°C t o  877'C. 

function of T is shown in Fig.  X 

A curve  ohowing D as a 

56 

The procese of diffusion of holes and e lec t rons  is descr ibed  

'by the  differential  equations (one-dimensional ca se )  

and 

assuming the diffusion coefficient not t o  be a function of concentra-  

tion. Equations ( 5 6  ) and ( 5 7  ) form Fick 's  second law of diffu- 

s ions. 

If an l'nl' type dopant such as lithium, which dopee in te r -  

s t i tua l ly ,  is deposited on the surface of "p" type ma te r i a l  such  

that the  sou rce  may be considered infinite o r  constant, the  solution 

57 
to equation ( 5 7 )  i s  . 

where  

N = su r face  concentration 
0 

N ( x  ) = concentration a t  a depth x 

t = t ime  
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and 

2 

Theory of "P-N" Junctions 

Assuming the donor concentration N D  is greate;  than the 

acceptor  concentration N A ( N  D> N A  ), there  will be  two regions 

with different type conduction. Thus, a )'p-nl' junction is formed. 

A typical impurity profile and energy diagrams9 for  a graded junc- 

58 

tion a r e  shown in F ig .  XI. 

At the transit ion region the holes in the "p" region will 

diffuse, because of the impurity gradient, ac ross  the junction into 

the "n'l region where the hole concentration is small. Likewise, 

e lectrons f rom the 'ln" region will diffuse into the "p" region 

where the electron concentration is small .  Since the impurity ions 

a r e  fixed i n  the lattice and a r e  not f r e e  to move, as  a resul t  of the 

diffusion, there  will be regions of unneutralized charge on both 
8 

sides  of the junction, Since t h e  bare charge on each s ide of the 

junction is opposite in polarity an electric field is established 

which, at  equilibrium, prevents majority c a r r i e r  diffusion. The  

depleted layer  is very  s imi la r  t o  a paral le l  plate capacitor and 

will  have a capacitance. 
0 
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Diffused junction 
(erf ,  gaussian, exp) 

t 
Z 

I 

approxi mat ion 

Fig.  XI ( a  ), Impurity profile and depletion-layer charac- 
teristics for diffused junctions. 



37 

’ 

Ac 

I I 

p region 1 4  I n region 
1 

. 

I 

Fig. XI ( b  ). Energy diagram for a p-n junction in equilibrium 
illustrating constant Fermi level. 



38 

If a supporting e lcc t r ic  field, r e v e r s e  bias ,  is applicd to  

this  'In-p" junction the daplction layer will widen. In the r e v e r s e  

biased condition there  will be a smal l  r e v e r s e  cu r ren t  due t o  the 

minori ty  c a r r i e r s  within one diffusion length of the junction that  

will diffuse to  the t ransi t ion region and dr i f t  a c r o s s  because  of the 

e l ec t r i c  field. 

i nc rease  in voltage until the c a r r i e r s  acqui re  sufficient energy  to  

b r e a k  additional valence bonds upon collision. 6o This  r e su l t s  in 

fu r the r  generation of electron-hole pairs ,  causing the r e v e r s e  c u r -  

r en t  t o  multiply. If this voltage is increased slightly, the process  

becomes  so cumulative that  a n  avalanche occurs  and the junction 

"breaks  down" completely. 

This cu r rcn t  remains f a i r ly  constant with an 

61 

An opposing field, forward bias,  will  cause  the depletion 

layer  t o  become nar row until the  internal field is exceeded. 

is then no potential "ba r r i e r "  and a fur ther  i nc rease  in voltage 

causes  a l a rge  flow of current .  

T h e r e  

Junctions formed by diffusion methods a r e  graded  s ince  the  

diffused region establ ishes  a gradual t rans i t ion  f r o m  one impur i ty  

type t o  the other. 

t o  a s s u m e  the g rade  to  be  l inear.  

In the depletion region it is a good approximation 

Therefore ,  

N ( x )  = a x  ( 5 9 )  

4 where  a is the g rade  constant in  a toms /cm . Because of the l i nea r  
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grade  of thc impurit ies,  the net charge density will a l so  be a l inear  

function, o r  

F o r  a distance x on either side of x = 0, the a r e a s  a r e  equal, 

which indicate6 that the depletion spreads equally in 'both directione,  

The total  depletion is then x,. F r o m  Poieson's equation, 

I 

it is ehown in the appendix that 

12k€,V 1 /3  
x =( 1 cm m 

q a  

and 

2 1 / 3  
2 

( k E o )  q a  
''I' = ( 1 f a rade /cm . 

12 v 
8 

Similar calculations for a s t ep  junction where 

reeul ts  in 

2 k 6 ,  V 1/2 
x m  = ( ) c m  for t 'p t t  type 

Q NA 
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and 

k fo r  s 

= T  

licon 2. Actual experimental  measurements  of capac i -  

dependence 
-1 /3  

'tance indicate that  diffused junctions do exhibit a V 

at low voltages . 62 
V 

made by Lawrence and Warner.  

At higher voltages, the dependency becomes 

. Extensive study of capacitance calculations have been 
-1 /2  6 3  

64 

Theorv  of Drift  

AS previously s ta ted lithium diffuses intersti tually.  When 

held at an  elevated tempera ture ,  the probability of a lithium a tom 

migrating through a sil icon c rys t a l  becomes higher. 

t r i c  field is superimposed on this sys tem,  the lithium ions will  dr i f t  

in  the  direction of the e lec t r ic  field and effect a v e r y  high degree  of 

boron ion compensation in the depletion region. provided that  t he  

iernperatuye is not high enough for  the intr insic  "n" 

t o  cause  flooding. 

If an  e l ec -  

6 5  

concent ra t ion 

.*. ?I 

As a resu l t  of this compensation, the depletion 

region must  sp read  more  into the "p" region. Assuming suffi- 

cient lithium, this process  will continue during the length of voltage 

I 

* Flooding is the t e r m  describing the condition of t he rma l ly  
generated c a r r i e r s  being equal t o  o r  g r e a t e r  than the diffused car- 
r i e r e .  
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I 
and tempera ture  application. 

is given by 

The  width of the compensated region 

66 

I 

1/2  1 / 2  w =  ( 2 P )  t 

I where 2,4V i s  defined a s  the drift  parameter  and t is time. A 
I 

lithium drift  parameter  nomograph for oxygen-free silicon and a 

family of curves  fo r  drift  depth as a function of t ime  for  var ious 
b 

I 67 
dr i f t  parameters  a r e  given by Blankenship and Barkowski. 

The minimum surface concentration of lithium atoms needed 

68 t o  compensate the drifted region is given by 

N S ( a t o m s / c m  2 ) = N H  W 

where N H  is the hole concentration in the s tar t ing silicon. 

1 Theory of Operation 

When a r eve r se  bias is  applied to  a compensated diode, the 

depletion layer  spreads  very  rapidly through the compensated region 

to  make it intrinsic.  The resulting device is 'IN-I-P" in s t ructure .  

Any f o r m  of radiation incident on the device will fo rm electron-hole 

pa i r s  in the si l icon by absorbing 3.6 ev69 of energy per  e lectron-  

hole pair. The c a r r i e r s  i n  the intrinsic region will be swept away by 

the e lec t r ic  field, This movement of charge  constitutes an e lec t r ic  

cu r ren t  which when passed through the c i rcu i t  shown i n  F igu re  XI1 
0 
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Fig. XII, Applicable circuit for nuclear particle detector. 
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I 

I 

develops a voltage pulse, Appropriate analyn i u  of this amplified 

I 
pulse gives a measure  of the incident radiation energy, I 

I I In the absence of radiation, there  will be a sma l l  "reverse 

current" under r cvc r se  biased conditions. This cu r ren t  has  

70 
1 three components : 

( 1 ) The dr i f t  cur ren t  due to diffusion of minority 
c a r r i e r s  into the depletion region; 

( 2  ) The c a r r i e r  generation cur ren t ,  due to  c a r r i e r s  
produced by the rma l  generation in the depletion 
region; 

( 3 ) The surface leakage. 

In pract ice  the f o r m e r  two components a r e  usually negligible com- 

pared with the surface leakage, This leakage cur ren t  is a source  

of diode noise and is the predominant noise generator.  Causes  71 i 
I 

of this  charge flow include ionic charges on the surface,  conducting 

1 

I 
films on the detector,  conducting ambients and inversion l aye r s  

a c r o s s  the diode surface. f 
I , Extensive s t ~ d i e s ' ~  made of e lec t r ica l  noise in s e m i -  

konductor ,devices show that t he re  a r e  th ree  types: 

( 1  ) Therma l  noise, often called Johnson noise, due 
to  fluctuations in the spatial  distribution of 
c a r r i e r s  arising f rom the rma l  diffusion; 

( 2  ) Current  noise, often called shot noise, due to  
s ta t is t ical  fluctuations in the number of c a r r i e r s  
leading to  changes in conductivity; 

.-.' 
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( 3 ) Flicker noise, often called 1 / f  noise, believed 
to originate at the surface and ie dependent 
on surface leakage and contact resistance. 

Good detector performance demands that the noiee to eignal ratio 

be low e o  that the resolution i e  not limited. , 

a 



PREPARATIONOFDETECTOR 

The beginning mater ia l  selected was Lopex* "p" type 

boron doped silicon with the following specifications : 

Lifetime > lOO#sec 

Dislocation density 4 3, O00/cm2 

Oxygen concentration C 10 atoms / c m  

Resistivity 300-500 A c m  

15 3 

Lopex mater ia l ,  ra ther  than melt grown o r  f loa t  zone, was 

chosen because it offers the advantages of low oxygen concentration 

and dislocation density. Melt grown sil icon has  extremely low d is -  

location density but high oxygen content. 

v e r y  low oxygen content but high dislocation density. 

Float zone mater ia l  has  

A minimum lifetime specification was imposed to  in su re  

the highest possible c a r r i e r  mobility. 

section, tbis is  extremely important fo r  good charge collection pro-  

As discussed in the theory  

per t ies  of the resulting detector. 

a l so  imposes a heavy metal concentration maximum. 

because the metals would effect a high recombination probability 

and, thus,  l imit  the lifetime. 

In an  implicit manner  this limit 

This is 

YP'"' "Lopex is Texas Instrument's t radename for  special1 
cessesl silicon crys ta l s  to  achieve extremely low, l e s s  than 10 
atoms /cm3, oxygen content and low dislocation density. 

45 
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The maximum dislocation density was specified to  lessen  

* 
the number of spikes 

vice noise,  and to  increase  the lifetime. 

quite unnecessary with the chosen material. However, sone pro- 

c e s s  abnormality may have existed during i t s  growth causing a 

flaw in  the material .  

detected, 

during diffusion, t o  lower the result ing de -  

This l imit  may  have been 

Without this specification the flaw may not be 

F r o m  elementary chemistry it is known that lithium and 

oxygen react  with extreme ease  to  form lithium oxide, This was the 

p r imary  reason for epecifying a maximum oxygen content in the sili- 

con crystal ,  

tion during the  following drift  process. 

/' 

The reaction could have caused v e r y  poor compensa- 

It is a l so  widely known that 

oxygen has a ve ry  unpredictable effect on the  c rys t a l  res is t ivi ty  

during heat treatments.  One hundred per  cent changes in res is t ivi ty  

a r e  not uncommon when a high concentration of oxygen is present. 

The 300-500 AAcm resist ivity range was a compromise be- 

tween the resulting diode avalanche breakdown and leakage. 

shown in the theory section that the "np" 

It was 
s 

product is a constant for 

a given temperature .  Also, the diode leakage is dependent on the 

* 
A spike is caused by an impurity diffusing in a localized 

area with a much higher diffusion coefficient than in the rest of the 
material. This causes  a much deeper penetration in this  area than 
elsewhere. Junctions of this nature usually exhibit extremely low 
avalanche breakdowns. 
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minority c a r r i e r  concentration. Lower resis t ivi ty  I1p1' type material 

would have lower lln" type concentration and, consequently, lower 

diode leakage, 

by the leakage current.  

This was desirable  eince detector noise is caused 

However, it was also dceirable  to have 

the avalanche breakdown high enough t o  allow 1500 volt operation of 

the  prepared detector. The chosen resist ivity allows the real izat ion 

of both of these parameters .  

13 c m  x 2 c m  x 1 c m  slabs were sawed f r o m  the grown c r y s -  

tals, The  1 3  cm length was necessary to  s top  200 Mev protons. T h e  

2 c m  width and 1 c m  thickness were  helpful in achieving a 1 cm2 c roas  

sectional area.  

After sawing, the s labs  were cleaned by ultrasonic vibration 

in trichloroethylene. The vibration freed loose impurity par t ic les  . 

lodged in the silicon surface during the sawing operation. Organic 

compounds on the surface were partially dissolved by  the t r ich loro-  

ethylene. This type cleaning process is considered an excellent one 

by  the semiconductor industry. 

removable by any other known method. 

Its use removes many par t ic les  not 

8 

F r o m  this point extreme 

caution was exercised to  not expose the ba r s  t o  a contaminated 

atmos phe re. 

Many detector fabr icators  etch the si l icon at this  point in  

* 
Bell  39A o r  some s imi la r  etch to  polish the surface.  This process  

I 

* Bell  3 9 A  is a silicon etch developed by  Bel l  Labora tor ies  
e 

consisting of hydrofluoric, ni t r ic ,  and acetic acid. 
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is advantageous i f  the lithium in  the  following diffusion s t e p  is deposited 

f r o m  a vapor s ta te  o r  is evaporated onto thc surface.  With the 

type lithium deposition used in t h i s  work, difficulty was encountered 

in achieving uniform impurity concentrations with polished sur faces ,  

In o r d e r  that the above etching s t ep  could be eliminated, the most  

e laborate  cleaning techniques known had t o  be used. 

The s labs  were  immersed  in 150' C concentrated sulfur ic  

acid f o r  fifteen minutes to  oxidize and remove any organics remain-  

ing on the surface. 

repeated. 

"strange" surface states in the silicon. N o  conclusive l i t e ra ture  

has yet been published on this subject. 

in  150 

remaining on the surface. 

acid became discolored. 

If the acid became discolored, this  s t e p  was 

This operation is presently suspected of inducing 

A fifteen-minute immers ion  

C n i t r ic  acid was then employed t o  dissolve any heavy metals  0 

As before, this s t e p  was repeated i f  the 

Two fifteen-minute deionized water  boile 

followed to  remove the ions remaining f r o m  the acid cleans. 

Lithium diffusion followed immediately before the s lice8 
* 

could be contaminated with impurities that would diffuse into the 

silicon. Three  par ts  of a viscous solution of five par t s  piecin wax, 

t h ree  par t s  bees  wax and benzene were mixed with five par t s  of a 

lithium in oil  suspension. The thick c r u s t  of lithium formed by 

letting a lithium in oil suspension sit  overnight was used fo r  the five 

parts lithium. The paste thus formed was sp read  on the  s l ab  
4 
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sur faces  by continuous c i rcu lar  motion of some clean wooden applica- 

tor.  A l a rge r  a r e a  than the des i red  junction a r e a  was coated. It 

was v e r y  necessary  that the surface be thoroughly wetted with the 

paste. 

in a d r y  nitrogen atmosphere on a hot plate previously stabil ized at 

400' C. A nitrogen atmosphere,  o r  any iner t  one, was necessa ry  

t o  prevent oxidation of the lithium. 

Lithium was then diffused into the si l icon for five minutes 

The s labs  w e r e  then slow cooled, 

a l s o  in a d r y  nitrogen atmosphere,  on a piece of quartz. 

helped to  increase  the c a r r i e r  lifetime in the bulk silicon. 

This 

Removal of the resulting lithium crus t  was accomplished by 

immers ing  the s lab  in benzene. 

then used to  thoroughly clean the surface. 

Trichloroethylene swabbing was 

A ten-second etch in a 

three par t s  n i t r ic  t o  one part hydrofluoric acid solution was 

employed to remove part  of the damaged surface.  

caused by the lithium alloying into the silicon. 

determine the quality of the diffusion by the uniformity of this damage, 

If it was felt that a poor diffusion, more accurately determined by a 

four  point probe, was achieved, the s lab  was lapped with 1800 ab ra -  

This damage was 

It was possible t o  

a 

s ive  t o  remove the lithium and reprocessed. 

A viscous solution of five parts piecin wax and three  pa r t s  

bees wax dissolved in benzene was used t o  mask  an a r e a  of the 

lithium diffused face 1.5 cm wide and 13 c m  long. This masking 

process  was performed under a heat lamp to boil off the benzene and 
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make the acid resis tant  coating adhere to  the sur face  better.  Much 

c a r e  was taken to mask  an a r e a  inside the preceeding lithium dif- 

fused a rea .  The unprotectcd sides and face were  etched twice f o r  

two minute intervals in a clean solution of t h ree  parte n i t r ic  and one 

part hydrofluoric acid. 
1 

The s labs  were  quenched in  clean room 

tempera tu re  deionized water  or dilute ni t r ic  acid to prevent s ta in-  

, 

ing. Boiling trichloroethylene was used t o  remove the wax coating. 

Two fifteen minute clean deionized water boils followed immediately 

t o  remove the remaining acid ions. 

By this manner,  a mesa  was formed which produces a 

clean well  defined "n-p" junction. It was necessary  t o  have a l a rge  

enough volume of etch to  prevent overheating of the solution. The 

etch rate was dependent on the etch temperature .  Consequently, 

i f  the solution became hotter,  the etching would progress  at a much 

higher rate. Utmost caution was exercised to  protect this exposed 

junction f r o m  any impurit ies that would cause junction leakage during 

the following drift  process.  
8 

At this point the junction leakage was measured while r e v e r s e  

biased with 300 volts. All reverse  cur ren ts  were  l e s s  than 10 m i c r o  

amperes .  This cur ren t  was indicative of the junction quality. 

Approximately 100 angstroms of pure aluminum were  evapo- 

ra ted onto the back s ide and a 1.0 c m  x 11.0 cm s t r ipe  inside the 

topside junction a r e a  of the slab to give good ohmic contact during 
0 
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the dr i f t  procedure,  No aluminum w a s  allowed to  overlap onto 

s ides  and ac ross  the 'In-p" junction t o  f o r m  a leakage path. 

the 

The drift  procedure was performed on a hot plate previouely 

stabil ized a t  135' G in an a i r  atmosphere. A r eve r se  bias  of 400 

volts was maintained with the current  l imited to  100 milliampere8 

with a constant cur ren t  power supply. An aluminum chamber was 

used in an attempt to attain a constant temperature .  

sary to  s top  the drift  once, when the leakage cur ren t  became exces-  

sive,  and reetch the mesa. The increased cur ren t  was caused by 

sur face  inversion when the silicon oxidized. Much l i te ra ture  has  

been published showing that the segregation coefficient of boron in 

si l icon and silicon dioxide favors silicon dioxide. Thus, as sil icon 

dioxide was grown, the boron was depleted f rom the si l icon surface.  

Since v e r y  high resis t ivi ty  mater ia l ,  low boron concentration, was 

used the  surface inverted to "nl' type v e r y  easily. This resul ted 

in  a thin conducting layer  on the surface for  leakage cur ren t  t o  flow. 

A shor t  etch removed this layer  and again extended the lIn-p" junc- 

tion to  the surface.  

oil  bath t o  prevent the growth of silicon dioxide and to  produce a 

constant temperature .  

used here.  

not be justif ied f o r  sma l l  volumes. 

tioned above excellent detectors  of various geometr ies  were  produced. 

It was neces-  

b 

Many detector fabricators drift  in a sil icone 

This is a much be t te r  process  than the one 

However, expensive equipment is necessa ry  which could 

By using the precautions men- 
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Using the nomograph of Blankenship and Barkowski, a drift  

2 parameter  (2/rV) of 6 x c m  /sec  was determined for  V = 

400 V and T 

fo r  a 4 mm. drift  depth was seventy-four hours. 

e a r l i e r  work where full s l ice  dr i f t  was performed that the equation8 

135' C. The calculated t ime, by equation (67  ), 

I t  was verified by 

derived by Blankenship and Barkowski were  extremely accurate.  

Consequently, the drift  was allowed to proceed for  forty-eight houre, 

at the above conditions and ninety hours at 250 V and 130' C. Thie 

was the  neares t  convenient t ime t o  the one calculated. 

Again, the mesa  was masked and the s ides  and aluminum 

back were  etched for  two two-minute intervals  in clean etch solu- 

tions. 

by boiling trichloroethylene and swabbing. 

Two clean watcr  r in ses  followed before the wax was removed 

The s labs  were  then 

cleaned with two fifteen-minute water boils and dr ied with methyl 

alcohol. Since this was the final cleaning process ,  eve ry  possible 

precaution was exercised to  keep from introducing any impurit ies.  

The detector was then passivated by coating a l l  of the 

si l icon except a 0.5 c m  wide strip on the "nl' and "p" faces  with 

Dow Corning 1440 varnish. Ca re  was taken to  thickly and evenly 

coat the  sur faces  immediately af ter  the final clean to  achieve the 

bes t  possible passivation. 

a d r y  dust f r e e  a tmosphere at  25O C. 

A twenty-four hour curing followed i n  

Its purpose was  to allow the 

varn ish  to  d r y  with v e r y  little ionic contamination. 



5 3  

A conducting epoxy" was used to  mount the completed 

detector  on a 1 c m  x 12  c m  b r a s e  strip. 

was sp read  over  the en t i re  

A thin layer  of the epoxy 

"p" face and placed down flat on the  

s t r ip .  This ' a l so  formed contact t o  the "p" mater ia l .  The 0.5 

c m  wide opening on t h e  lithium face was then coated with the 

epoxy. One end of a 10 c m  length of 8 mil  copper wire  was in se r t ed  

in  the coating. The whole sys t em was allowed to  d r y  for  twenty-four 

hours. 

ground s ide,  of a B&G connector. 

After this period the brass s t r i p  was mounted on the top, 

The copper wi re  was connected 

to  the  positive te rmina l  with conducting epoxy. A twenty-four hour  

drying cycle followed before the  detector assembly  was handled. 

F igure  XIII shows a photograph of the finished assembled  detector ,  

* 
E -Soldier 302 1 Silver  Epoxy manufactured by: Epoxy 

P roduc t s ,  Inc, , of Irvinton, New J e r s e y ,  was used. 
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Fig. XIII., Photograph of Assembled detector, 

t 

...- _.- 

a 

* 



EXPERIMENTAL RESULTS 

The r eve r se  bias leakage current  measured, a t  300 volts 

was 8 micro  amperes.  

culated. 

A depletion layer  width of 5.8 mm was cal- 

F igure  XIV shows a plot of the  device capacitance as a 
I' 

function of voltage. 

beyond 600 volts. 

proaches 90 pic0 f a rads  at  ve ry  high voltages. 

Capacitance measurements  could not be made  

However, i t  appears that  the capacitance ap- 

The  detector was used to measure the energy absorbed by 

various thicknesses of silicon bombarded with 159.75 Mev protons. 

A bias of 1500 volts was used to  achieve full charge collection. 

Following is a list of the sys tem equipmert used in conjunction with 

the detector:  

1. 

2. 

3, 

4. 

5 0  

6. 

7. 

Tennelec Model 90 power supply, 

Tennelec Model 1008 preamplifier,  

Hewlett Packard Model 120 B oscilloscope, 

Textronix Type 317 oscilloscope, 

RIDL Model 47-7 pulse generator,  

RIDL Model 23-3 display readout, 

RIDL Model 24-1 Thin Fi lm m e m o r y  channel analyzer.  

A block d iagram is shown in Figure XV. 

55 
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With the pulse generator,  an 80.49 sys t em amplification 

was determined and the voltage per  channel 0.02045. While biased 

a t  1500 volts,  the protons were  passed through a silicon abso rbe r  

and into the end of the detector parallel t o  the depletion region. The 

detector  voltage pulse was amplified and s tored  in the channel ana -  

lyzer  according to  its amplitude. An oscilloscope was used to ob- 

1 

s e r v e  the  amplified pulses. The signal t o  noise ra t io  was approxi- 

mately 40:l. Pulses  of this nature  were counted until the sample 

(approximately 1000) was valid statistically. This plot was recorded 

on an automatic typewriter. Proton energy was measured a f te r  

passing through approximately 10, 15, 20, 25, and 30 Mev absorbers .  

A most  probable channel to  the nearest  one hundredth was determined 

with the aid of a computor for each distribution. Table  1 lists the 

most  probable channel, the shift in channel number,  the energy lose,  

the  incident energy, and pdx of the silicon absorber .  The  energy 

lose is calculated by multiplying AV by 0.49055 Mev/channel, the 

previously determined energy per channel. 
8 73 According to  the Bethe-Block equation the stopping 

power of an absorber  is given by 
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0 

9. 996 

15.187 

20.520 

26.048 

TABLE 1 

159.75 

149.75 

144.56 

139 .23  

133.70 

DATA ON PROTON ENERGY AFTER VARIOUS ABSORPTION 

-1 
Most Probable 

Channel 

0 I 

I 
322.60  I 

I 

302.22 I 20 .28  

291 .64  30.86 
I 

280.77  41 .73  

269 .50  53 .00  
( 

257.88  64 .62  

A E  
E ai  
Mev P d x  

Grn/cm2 
~~ 

0 

2 .3287 

3.5033 

4 .6556  

5 .8195 

6 .9831  

p = density of absorber 
1 

I Z = Atomic number of absorbing material 
I 
I 

! 
A = Atomic weight of absorbing material in gms. 

# = v / c ,  velocity of the incident particle relative to the velocity 

of 11ght. 1 
I 
I 

I C. / Z = Shell  corrections of the i-th shell. 
I 1 

I = Average excitation potential per electron,of the stopping atom. 
I 

I, by definition, is a constant. , 

0 0  Letting F2 ( b )  = 
f 1 2  



5 9  

and 
TCi 

In I' = In I t  - 
Z 

may be defined as 
d E  The  measured  stopping power, - 

Qd* 

E 1 - E 2  - A E  s1 + s 2  - - =  

where S is the stopping power at the init ial  energy, E l ,  the proton 

has  ae it en ters  the abso rbe r , . pdx ,  and S2 is the stopping power at 

the emergent  energy of the proton. 

can be wri t ten for  2, 3,  o r  4 absorbers.  

1 

Thus, a eyetem of equations 

E l  - E  s1 t s  
2 -  - 2 

l T 2  = P O  xa 2 

- s2 + s3 - E2 - E 3  
T =  

3 P(Pxa - OXb) 2 

( 7 2 ) '  

(74 1 
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Solving as  a set  of 3 equations with 3 unknowne, 

I 

S1 t S 2  = 2 T and 
1 2  

S1 t S 3  = 2 1 T 3  

Adding ( 7 5 )  and ( 7 6 )  yields 

Ale 0,  

I S2 t S = 22T3.  
, 3 

I 
Subtracting ( 7 7 )  from ( 7 8 )  yields 

I 

I 2 s 1  = 2 ( l T 2 + 1 T 3 - 2  T 3 I* 

I = T t T - T  
s1 1 2  1 3  2 3  t 

~ Solving ( 7 5 )  for S gives 2 I 
I S, = 21T2 - S l .  

I 

Similarly, 

I 

S3 = 21T3  - S i ,  

(81  I 
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W e  now have values of the stopping power at specific proton ene r -  

gies. Since E is known, pa, F ( ) and F2 ( fla) can be  calcu- 
1 B, 

lated. 

The re  was an energy uncertainty of 0.005 Mev and a p d x  un- 

2 cer ta inty of 0.001 g m / c m  . 
determined for  the  stopping powers. 

most probable and minimum values calculated by equations ( 80 ) 

through (85  ), A sample calculation is a s  follows: 

Channel number for  E 

Channel number fo r  E is 302.22. 

Then OV is 20.38. 

20.38 x 0.49055 Mev/channel gives AE = 9. 996 MeV. 

Coneequently, only a range can be 

TableII shows the maximum, 

is 322.60. 1 

2 

- 9*996  = 4.2925 
- bE 1T2 - - - 

Pd 2.3287 

Channel number for  E i s  291.64; A V  = 30.96. 
3 

30.96 x 0,49055 Mev/channel = bE = 15.187 

15,187 
1 3  F d x  3.5033 - = 4,3351 

- A E  T - - -  

S 1  = 1T2 t IT3  2T3 = 4.2925 t 4.3351 - 4.4185 
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S1 = 4.2091 

S2 = 21T2 - S I  = 2 x 4.2925 - 4.2091 = 4.3759 

These  experimentally determined values of stopping power and the 

calculated values a r e  shown at various energies  in Table XI. The  

stopping power calculations were  made using I = 165 ev. Accord- 

ing to  private communication Bichsel has  used a value of I = 175 

ev. 

by computor analysis. 

More precise  data points will be determined in the future 
74 

F r o m  equation (20) 

Ale o 

In la' = In I t Shell Corrections. a 

Thus , 

a - - Shell  Corrections. 
Z 

( 8 9 1  
In Ia = F1 ( f l a b  

=2 ( & I  
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E= 159.75 Mev E =  149.75Mev 

5.1273" 5.1688" 

5.0880 5,1185 

5.0474"" 5,0665*" 
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Since the re  i s  an uncertainty in S a'  

in I. Table 111 l is ts  the calculated values of In I at specific proton 

energies.  Calculated values75 of the s he 11 correct ions were  used. 

there  will  a l so  be an uncertainty 

TABLE ILZ 

VALUES OF THE LOGARITHM OF THE AVERAGE 
EXCITATION ENERGY OF SILICON AT 

VARIOUS PROTON ENERGIES 

1 I In I2 
In I 

3 

E= 144.56Mw 

5.1968* 

5.1505 

5.1058"" 

An I 
4 

t= 139.23M~~ 

5.1453* 

5,1027 

5.061 1"" 

In I 
5 

E= 133.'zoMev 

5.1309" 

5,0909 

5.0520** 

I 
'In I 

E=lZ8.00 
6 

I 
5.1482" 

5,1103 

5.0734 
w 

In I is plotted as a function of e n e r g y  in F igure  XVI. 

E 

V 

vV 

VV 

A 

c 

Q 

Let 

= Energy of proton in ev as  it enters  the absorber ,  

Channel in which the pulse i s  s tored,  = 

= Voitage per  channel = 0,02045 Volts# 

= Voltage of the pulse s tored  by the multichannel analyzer,  

= Amplification factor of the electronic sys tem,  

= Capacitance of detector ,  

= Charge of pulse created by total absorption of proton, 
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Fig. XVI. In I for silicon as a function of proton energy , , 
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= Average number of ion pa i rs  created by absorption of proton 

of energy E l ,  

-19 = 1.60206 X 10 coulombs, 
E 

= Average energy in e v  per ion pair = - . 
N 

A v = q-. 
V C 

e 
P 

q = Ne = E- 

Substituting ( 9 1  ) into ( 90 ) yields 

e E m A  
- CPm where m = 1, 2, 3 etc. 'mv 

A Assuming e - is constant, then 
C 

- 
P V E V  

1 -  1 -  - 1 2  0 - -  
p2 E2 E2Vl 

Letting 

v = v t + F ,  and 
m 

( 9 2 )  

(93  1 

(94 1 

( 9 5  1 

(96  1 
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- v  'm m t l  B =  
E r n - E m t l  

Case ( 1 , Z )  

322.60 - 302.22 = 2.0385 
f =  159.75 - 149.75 

Case ( 1 , 3 )  

Solving (95  ) for V, yields 

Vo = V - /Em.  m 

V = 322.60 - 2,0385 X 159.73 
0 

V = - 3.05 
0 

m t l  
v = v  - B E  

0 m t l  

Vo = 302.22 - 2,0385 X 149.75 

Vl0 = - 3.05 

( 97 1 

( 98 1 

(100  1 
6 159.75 X 10 X l.60206X10-19 X 80.49 

P =  
90X X 320.49 X . 02045 

p = 3.49 
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= 1.0000 159.75 X 305.19  
149.75 X 325.57 

- -  - 
p2 

- -  159.75 X 294.61 = 0.9999 
144.56 X 325.57 p3 

'1 - 159.75 X 283.74  = 0.9999 - -  
139.23 X 325.5'7 '4 

Aluminum calibration data w e r e  used for the calculation of pl' 

I 
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D IS C USS ION 

The inversion layer  formed during detector  dr i f t  was 

formed by boron depletion f rom the "p" type surface.  This  pheno- 

menon is well  understood. It could be eliminated in future work by 

diffusing an outer ring of high concentration boron completely 

around the proposed lithium diffused area.  A deep  diffusion would 

be necessa ry  in o r d e r  that it not be etched off during future mesa 

etching. Boron concentrations above 10l8  a toms /cm 3 effect a 

hole concentration high enough t o  prevent inversion. Thus, a guard 

ring is formed that would s top the inversion f rom spreading beyond . 

that  point. 

Cleaner junctions exhibiting lower r e v e r s e  leakage cu r ren t  

could be prepared by the planar technique. By this  method, a 

si l icon dioxide layer  is e i ther  thermally grown o r  vapor depoaited 

bn.the silicon. 

leaving the des i red  junction a r e a  uncoated. 

This oxide layer  could be masked by any means 

The sil icon dioxide 

could be removed with hydrofluoric acid. 

sion, the junction would be formed under the passivating layer  which 

During the lithium diffu- 

is ex t remely  clean. N o  mesa etching would be required before  or 

after the  dr i f t  process.  These two improvements would resu l t  in 

an  excellent detect or. 

69 
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Thc 8 microampere r eve r se  leakage cur ren t  in addition t o  

the 1500 volt operation with a 40:l s i g n a l  to noise ra t io  demonstrated 

the high quality of the mesa type detector. 

pa rame te r  is appreciable at  this voltage. 

However, the dr i f t  

Consequently, the device 

parameters  will .change with time. 

region over  a 12 c m  length forms  a very  s m a l l  solid angle for proton 

Also, the 5.8 m m  sensit ive 

incidence. A s e r i e s  of round detectors with a 3 o r  4 m m  depletion 

layers  could be stacked. 

smaller operation voltage could be used, and the detector versa t i l i ty  

would be great ly  increased. 

with this  geometry. 

The solid angle would be  la rger ,  a 

P rec i se  range studies could b e  made 

The  determined stopping power values,  with possibly one 

exception, ag ree  amazingly well  with the theoret ical  ones. 

with this  accuracy necessitated refined experimental  technique. 

reported values a r e  accurate  to  four significant figures. 

Data 

All  

t An average excitation energy of 166 - 4 ev was determined. 

This  differs slightly f rom the 175.0 ev calculated by Bichsel. 

cording to  the determinations it is, indeed, a constant. 

Ac- 
* 

Fair agreement was achieved with the accepted value of 3.6 ev 

electron-hole pair  formation energy widely used in the l i terature .  



CONCLUSION 

The preparation and use  of a lithium drifted semiconductor 

nuclear particle detector for total  energy absorption is both feasible 

and desirable.  

mental  and theoret ical  determinations of stopping power, average  

Excellent agreement  can be obtained between experi-  

1 excitation energy and electron-hole pair formation energy f o r  sili- 

con. These values can be measured with ex t reme accuracy. An 

improved wethod of fabricating detectors and the i r  use is proposed. 
I 
I 
I 

t This  device would be of higher quality and could be employed with 

r 
I m o r e  versat i l i ty  to make more  and better measurements .  

71 



'APPENDIX 

From equation ( 6 1  ) 

From equation ( 6 0  ) 

Substituting ( 6 0  ) into ( 6 1  ) yields 

-=qax d2 V 
d x 2  k f o  

Integration yields 

( 3 )  

8 

Integrating again, the voltage equation i s  obtained, 

3 * 
qax 

= 6 k C  t K 1 x t K 2  ( 5 )  
0 

To evaluate the constant K1, we make use of the assumption that al l  

the applied voltage i s  dropped across the depletion region. In 



/ .  

I 
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other  words,  the electr ic  field is zero outside thd junction. There-  

fore ,  with thc boundary conditions that E = 0 at x = - x  / 2 and 

x = t x ,  / 2 inscr ted into (4), K becomes 

m 

1 
n 

or 

Equation ( 7  ) represents  the way the e lec t r ic  field var ies  with d i s -  

tance through the depleti.on layer. 

at x = 0. 

Note that the field is maximum 

- q axm2 - - 
Emax  8 k 6 ,  

The applied voltage V is equal to the  potential Vn at - xm / 2 

less the potential V at  x / 2. 
P m 

+ = v  - v  
" P  

( 9 )  

Evaluating equation ( 5  ) at the appropriate boundaries t o  obtain 

Vn and V yields 
P 
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e 

and 

Substituting equations ( 1 0 )  and ( 11 ) into ( 9 )  results in 
b 

Substituting equation ( 6  ) into equation ( 12 ) yields 

Solving for xm, 

12ke0V 1/3 
x = [  1 q a  m 

For this .same linear geometry, the capacitance per unit area is 

derived by utilizing 
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which ia  the expression for the parallel-plate equivalent capaci- 

tance. Substituting equation ( 14 ) into equation ( 15 ) yields 

I 
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