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PURPOSE: To describe mathematically a specific method for allocating time and 

frequency in communication satellite systems that use time-frequency multi- 

plexing for random multiple access. 

SCOPE: Algorithms are shown for constructing low-interference address codes for 

such systems, for various sizes of time-frequency matrices and address lengths. 

In these codes, the number of addresses, o r  code words, containing a given 

chip is KM/N, where K is the number of words, M is the number of chips in an 
address, and N is the number of chips in the time-frequency matrix. The ratio 

can be made as large as desired while, at the same time, M remains fixed. 

This is done by increasing N, which amounts to an increase in system bandwidth, 
and/or an increase in the time length of the matrix. As N increases, the maxi- 

mum number of addresses also rises. Hence, since N is a measure of the total 
data rate of the system, the increase in size of the time-frequency matrix does 

not necessarily cause wasted bandwidth. 

In practice, KM/N will be limited by considerations entirely divorced from 
the mathematics of code construction. 

cycle of an address, system noise, and the manner of detecting a message. Thus 

the requirement that any two addresses have, at most, one common chip (which 

drastically curbs the incidence of serious interference) will not usually be 

the factor that limits the number of system users. 

Some of these factors include the duty 

Because consideration is confined to the mathematics of time and frequency 

assignments, no attempt has been made to extend the discussion to problems of 

establishing and monitoring circuits or of actual system design. 

BACKGROUND: This is part of RAND'S research for the National Aeronautics and Space 

Administration on communication satellite multiple-access techniques. See also 

RM-4298-NASA7 Multiple-Access Techniques for Communication Satellites: I. Sur- 

vey of the Problem, September 1964. 
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PREFACE 

. 

This Memorandum is part of RAND'S continuing study of multiple- 

access techniques for communications satellites for the National 

Aeronautics and Space Administration. 

cating time and frequency in systems employing time-frequency 

multiplexing which may prove useful for systems in which a user can 

transmit at any time without consulting a central controller-- 

so-called random access systems. 

It presents a method of allo- 

Only the mathematics of time and frequency assignments are 

discussed in this Memorandum. It is not concerned with problems of 

establishing and monitoring circuits or of actual system design. 
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SUMMARY 

I n  r ecen t  years t he  problem of providing mul t ip le  access t o  a 

communication s a t e l l i t e  has been ex tens ive ly  s tud ied ,  and var ious 

modulation methods have been proposed t o  f i t  d i f f e r e n t  system require-  

ments. One a t t r a c t i v e  method for  random mult iple  access i s  time-frequency 

mult iplexing.  Large numbers of u se r s  a r e  accommodated by allowing t i m e -  

frequency assignments t o  overlap. However, i t  i s  a l s o  necessary t o  

l i m i t  in te r fe rence  l e v e l s  i n  any p r a c t i c a l  system. 

I n  t h i s  Memorandum, a s p e c i f i c  method of cons t ruc t ing  addresses from 

a time-frequency matr ix  i s  developed which a p p l i e s  t o  many matr ix  s i z e s  

and many address  lengths .  As many addresses a s  poss ib le  a r e  constructed 

so  t h a t  no two of them have more than one ch ip  i n  common. A t  t h e  same 

t i m e ,  f o r  a f ixed  address length, t he  number of addresses containing a 

given ch ip  can be made a r b i t r a r i l y  l a r g e  and w i l l ,  i n  f a c t ,  be almost 

e x a c t l y  proport ional  t o  the  number of chips  i n  t h e  time-frequency matrix.  

The e f f e c t  of requi r ing  tha t  any address contain a t  most one chip 

from each column of t he  matr ix  i s  examined. When the  number of columns 

i s  equal  t o  the  address length each address has e x a c t l y  one ch ip  from 

any column. This requirement reduces t h e  number of a l lowable addresses ,  

bu t  t he  reduct ion has no p r a c t i c a l  s ign i f i cance .  
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I. INTRODUCTION 

In recent years the problem of providing multiple access to a 

( l - 3 )  and communication satellite has been extensively studied, 

various modulation schemes have been advanced to fit varying system 

requirements. One modulation method which has been proposed is time- 

frequency which appears especially attractive for 

random multiple access. 

an area in time-frequency space is divided into contiguous equidimensional 

rectangular segments comprising the elements of a matrix (see Fig. 1). 

Each element is occupied by a basic waveform, e.g., a sinusoidal 

pulse, in such a way that the waveforms (commonly called the chips of 

the matrix) are pairwise orthogonal. Also, each chip will usually 

have the same energy. 

In a system employing this type of modulation, 

In a given system addresses will be formed from the chips of the 

matrix and each address w i l l  consist of the same number of chips. The 

various transmitter-receiver pairs using the satellite will each be 

assigned one or more of these addresses. A given chip will, in general, 

appear in many addresses, but much of the utility of this type of 

multiple access depends upon constructing the addresses in such a way 

as to minimize interference, and to allow a large number of system 

users. In some cases it i s  desirable to transmit continuously; this 

requires an address having exactly one chip f r m  each column of the 

matrix and poses an additional constraint. 

This Memorandum describes a method of constructing sets of addresses 

for a time-frequency multiplex system which exhibits many desirable 

properties. Minimal interference is guaranteed by demanding that any 
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t 

Fig.1-A time frequency matrix for r = 4, s -8  
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two addresses have at most one cannon chip, and by the symmetry of the 

construction to facilitate analysis of system performance. 

it is also possible to satisfy the requirement of continuous transmission 

In addition, 

without losing the ability to accommodate large numbers of users. 1 
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11. LATIN SQUARES 

The construct ion of t h e  codes i n  t h i s  Memorandum is based upon 

the  theory of  La t in  squares.  A La t in  square of order  n i s  an n x n 

mat r ix  of n symbols, e.g. ,  the  in t ege r s  between 1 and n arranged so t h a t  

each of them appears once i n  each row and once i n  each column. Thus, 

s =  

i s  a Lat in  square of order 5. Given two La t in  squares  S and S' of 

order  n ,  the a r r a y  of t h e i r  ordered p a i r s  can be formed 

r 1 

(S,S') = 

2 The squares a r e  s a i d  t o  be orthogonal i f  each of t he  n poss ib l e  

ordered pa i r s  appears exac t ly  once i n  t h e  array.  For example, i f  

[i 2: 11 

- 
1 2 3 4 5  

5 1 2 3 4  

4 5 1 2 3  

3 4 5 1 2  

2 3 4 5 1  - 
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and 

1 then 

I 

S ”  
j 

so S and S’ are orthogonal. 

theory(6) i s  t h a t  i f  n i s  a power of a prime, then the re  is a s e t  

of  n - 1 pairwise orthogonal Lat in  squares  of order  n. (7) 

them f o r  GF(p ), t he  f i e l d  of pk elements, l e t  

A well-known f a c t  based on Galois  f i e l d  

TO cons t ruc t  

k 

k GF(p ) = {fo = 0,  fl = 1, f 2 ,  ..., f I) 
(Pk- 1) 

where 0 is  the  add i t ive  i d e n t i t y  and 1 i s  the  m u l t i p l i c a t i v e  iden t i ty .  

The jth La t in  square w i l l  be ( 8 )  

1 

f +1 
j 

f f +1 
j 2  

. .  

f . f  +1 
J (pk-ij 

. 

. 

. 

. 

f +f 
j 2  

. 

. 

. 

. 
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To observe that any two of them, for instance S and S are orthogonal, 

assume that an ordered pair (fr,f ) occurs twice in ( S  ,Sm), e.g., in 

the crth row and the Pth column and in the yth row and the Sth column. 
Then 

j m’ 

S j 

Thus 

But, since j f m,  this means that CY = y ,  which in turn implies that 

= 6.  Thus the squares are orthogonal. The application of these 

ideas to the construction of actual codes will be illustrated in the 

next section. 
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111. A CLASS OF CmES 

Recal l  t h a t  a t ime-frequencymatrix is an r by s matr ix  of con- 

t iguous rec tangular  c e l l s  i n  time-frequency space, each having the  same 

dimensions (see Fig. 1). The c e l l s  a r e  numbered from 1 t o  N, where 

N = rs 

It is  desired t o  form a code i n  which each word cons i s t s  of M out of 

t h e  N c e l l s  and i n  which the re  are  K words. Each code word w i l l  be 

an address of a system user. 

many d i f f e r e n t  addresses. Thus 

In general ,  each c e l l  w i l l  appear i n  

It is  des i r ab le  t h a t  ava i l ab le  time-frequency space be shared by as 

many users  as possible ,  i .e. , tha t  

be la rge ,  while a t  the  same time it i s  des i r ab le  t h a t  any two 

addresses have minimal overlap. I f ,  i n  addi t ion ,  each c e l l  i s  used i n  

the  same number of addresses,  then the  ca l cu la t ion  of system performance 

i s  g r e a t l y  s implif ied.  

coding problem and the  c l a s s  of codes constructed w i l l  allow a r b i t r a r i l y  

high r a t i o s  of KM t o  N. 

These l a s t  two requirements a r e  s t a t e d  as a 

Problem: Assume the re  a r e  N elements from which i t  is des i red  t o  

form a code cons is t ing  of K code words, each formed from M elements out 

of the  N. It i s  fu r the r  required tha t :  
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1. Each of the N elements appears i n  the  same number of 
code words. 

2. No two code words contain more than one common element. 

Then f o r  given values of M and N, what values  of K a r e  poss ib le?  I n  

p a r t i c u l a r ,  what i s  the l a r g e s t  poss ib le  value of K? The s i z e  of t h i s  

maximal code w i l l  be denoted by Kmax(N,M). 

above two requirements w i l l  be ca l l ed  acceptable.  

Any code s a t i s f y i n g  the  

Two important s p e c i a l  cases of acceptable  codes w i l l  be those with 

words which have a t  most one element from each column of the  t i m e -  

frequency matrix, and those with words which have exac t ly  one element 

from each column of the  matrix. This l a t t e r  w i l l  be continuous 

transmission or cw codes, which g r e a t l y  s impl i fy  system implementation. 

k I n  the  next sec t ion ,  i t  w i l l  be shown i f  p - q , where q i s  the  

n prime > 1 and k 2 1, and i f  M = p and N = p , where n 2 1, tha t :  

1. 

n-k k 2. I f  the  t ime-frequencymatr ix  i s  of t he  s i z e  p x p , f o r  

0 5 k 5 n, then an acceptable  code of size 

can be found, the  words of which have a t  m o s t  one element 

from any given column of the  matrix. 

matrix is of s i z e  pn" x p, t he re  is a cw code i n  which each 

word has exac t ly  one element from each column of s i z e  

I n  p a r t i c u l a r ,  i f  the  
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3. I f  

and 

a = O o r l  

b * 0, 1 ,  ..., p 

then acceptable codes e x i s t  for 

n-1 n-2 - 1 
K = ap + bp"" 

P - 1  

4 .  Acceptable codes can be found for 

n-1 K = cp + dp" 

where a and b are as before and 

c = O o r l  

The proofs are rigorous but are a l so  algorithmic. In addition, concrete 

examples of code construction are provided. 
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- 
11 a 

21 a 

a 
PI  - 

IV.  EXISTENCE AND CONSTRUCTION OF ACCEPTABLE CODES 

Now t h e  ex is tence  of acceptab le  codes f o r  t he  previously enumer- 

a t ed  values o f  K w i l l  b e  demonstrated and exemplary codes w i l l  be  con- 

s t r u c  ted , 

k Remark: I f  q i s  a prime and p = q f o r  k 2 1, then 

2 Proof: Arrange the  p elements i n  a p x p matrix 

A =  

... 12 a 

. . . . .  
. . . . . . . . 
. . . . .  

a 
2P 1 

a 
PP 

Enumerate a s e t  of p - 1 pairwise orthogonal La t in  squares  of order p, 

composed of i n t ege r s  1, 2, * * a ,  p. Pick any of the  La t in  squares ,  

e.g., S, where 

s -  
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and form code words W 1, W2, * * - ,  Wp, each word being a s e t  of p 

elements of S according t o  the rule:  

i f  and only i f  s i j  = m a i j  e 'm 

i. e., the  mth word contains  the  elements of A which a r e  i n  the  same 

loca t ion  of the  matrix A as m is i n  the  Lat in  square S. 

r e s u l t  i n  p code words which w i l l  be d i s j o i n t  s e t s  of p elements each. 

Now the same i s  done f o r  each of the  p - 1 La t in  squares obtaining 

p(p-1) words. 

same square are d i s j o i n t .  Now consider two words derived f r a n  d i f f e r e n t  

squares,  e.g., Wu f r a n  S and Wv from SI. They w i l l  have exac t ly  one 

element of A i n  common, s ince  the ordered p a i r  (u, v) w i l l  appear i n  

one place of (S, S'), the  a r r a y  of ordered p a i r s  defined i n  Sect ion 11. 

Thus, the  s e t  of p(p-1) words has the  property t h a t  any two contain 

a t  most one common element. 

p columns of A, s ince  in no Lat in  square does any element appear twice 

i n  any row or  i n  any column. Thus, a m  acceptable  code of p(a+l) werds 

has been conetructed, showing t h a t  

This w i l l  

It has been seen t h a t  any two words derived f r a n  the  

To t h i s  s e t  can be added the  p rows and 

This w i l l  be proven t o  be an upper bound. I f  any element is chosen 

from A and i t  is des i red  t o  form as many words as poss ib le  using i t  

wi th  each o ther  element a t  most once, then, s ince  t h e r e  a r e  p - 1 
places  l e f t  t o  f i l l  and p2 - 1 elements l e f t  t o  f i l l  them with,  there  

are a t  most 
n 
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words containing the  given element. 

contained i n  t h i s  many words, then the sum of the  lengths  of a l l  

words i n  the code i s  

I f  each of t h e  p2 elements i s  

P2(P+U 

But s ince the re  a r e  p elements per word 

Kmax (P2, P) P(P+U 

Therefore 

To i l l u s t r a t e  t h i s  remark, a code having 20 words w i l l  be found 

for  

M = 4  

N = 16 

F i r s t  the th ree  orthogonal L a t i n  squares w i l l  be  found. The add i t ion  

and mul t ip l i ca t ion  t a b l e s  f o r  GF(4) are 

+ 
0 

1 

X 

l* 

0 1 x lsx 0 1 x lsx 

0 1 x lsx 0 

1 0 lsx x 1 

x lsx 0 1 X 

.sx x 1 0 l+X 

0 0 0 0 

0 1 x lsx 

0 x 14% 1 

0 lslc 1 X 

Using as a correspondence of GF(4) wi th  {l, 2, 3, 4') 
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4 

1 

3 

2 - 

t h e  Latin squares are 

0 1 X 

1 0 14% 

x lsX 0 

lsx x 1 

0 

X 

14% 

1 

0 

1-M 

1 

X 

1 

l* 

X 

0 

1 

X 

0 

1-k 

X 

0 

1 

li% 

X 

1 

lsX 

0 

l* 

X 

1 

0 

0 l l  X 

1 2 3 4 

2 1 4 3 

3 4 1 2 

4 3 2 1 
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L e t t ing 

A =  

1 

5 

9 I 13 2 

6 

10 

14 

3 

7 

11 

15 

12 

16 

This r e s u l t  i s  not  very usefu l  f o r  the  app l i ca t ion  proposed here,  but  

the  genera l iza t ion  provided by the  following theorem is. 

be noted t h a t  i t  is equivalent  t o  the  exis tence of an incomplete 

balanced block design with parameters 

It should 

v = pn 

n n-1 p - 1 
P - 1  

b = p  

Pn - 1 
P - 1  

r =  

k =  p 

x =  1 

Though t h i s  design i s  known,(9) the  following proof presupposes no 

knowledge of p ro jec t ive  geometry, while i l l u s t r a t i n g  a c t u a l  app l i ca t ion  

of the r e su l t .  
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k Theorem 1: L e t  q be a prime and p * q f o r  k 2 1, and l e t  

M -  P 

N =  pn 

Then 

Proof: 

remark. 

Induction on n w i l l  be used. For n = 2, apply the  preceding 

Now assume the  theorem i s  t r u e  for n 5 t - 1, i.e., assume 

t Now Kmax(p , p) w i l l  be determined. Se t  

Arrange the  elements i n  a pt" x p matrix 

A =  

all a 12 

21 a 

. .  . 
a ( p t - l ) l  

0 . .  

. 
. 
. 

1P 
a 

2P 
a 

. 
a(Pt-l)P 

Since the re  a r e  pt" raws, t h e  induction hypothesis implies t h a t  they 

can be used t o  form Kma(p 

mat r ices  have more than one row i n  common, and such t h a t  each row is 

used i n  the  same nmber  of p x pmat r i ces .  Using the  same argument 

t-1 , p) p x p matrices such t h a t  no two 
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a s  before ,  from each of these  mat r ices ,  p2 code words can be con- 

s t ruc t ed  such t h a t  no two words have more than one element i n  common 

without using rows a s  words. Since no two p x p mat r ices  have more 

than one common row, any word from one matr ix  w i l l  have a t  most one 

element in common with any word from another matr ix .  Hence, t h i s  pro- 

cedure w i l l  y i e ld  

2 t-1 
P Kmax(P , P> 

t-1 t-1 
words. To these ,  add the  p rows of the p x p matr ix .  This w i l l  

y i e l d  an acceptable  code with 

t t-1 p - 1 
max 

words. Exactly the same reasoning used i n  the  proof of t he  remark 

shows t h i s  number t o  be an upper bound f o r  K (p , p).  Thus, the 

theorem is proved, Le., 

t 
max 

To i l l u s t r a t e  the  app l i ca t ion  of t he  theorem l e t  

P - 3  

n - 3  

There a r e  27 elements arranged as s h m  next: 



2 

5 

8 

11 

14 

17 

20 

23 

26 

3 

6 

9 

12 

15 

18 

21 

24 

27 

R1 
% 
R3 

R4 
Rs 

5 

R9 

R6 

R8 

To form the 3 x 3 matrices, treat the rows 

Two orthogonal Latin squares of  order three are 

as  elements of a 3 x 3 matrix 

S =  

and 

s ' =  r' 2 

1 3  

2 3 1  2 l  
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These d i c t a t e  t he  rows of s i x  of t h e  3 x 3 matrices. The rows and 

columns of R d i c t a t e  t h e  others .  Thus t h e r e  w i l l  be twelve 3 x 3 

squares w i l l  be (1,10,19), (2,11,20), (3,12,21), (1,11,21), (2,12,19), 

(3,10,20), (1,12,20), (2,10,21), and (3,11,19). The rest of t h e  3 x 3 

matrices a r e  t r e a t e d  s i m i l a r l y ,  and the  n ine  rows are added t o  t h e  code, 

y i e ld ing  

K (33, 3) = 117 m a x  

words . 
b 

n-k k Remark: I f  t h e  time-frequency mat r ix  i s  of s i z e  p x p , 
where 0 s k s n, then an acceptable  code of s i z e  

p- 1 n n-k) 
K =  p - l ( P  - p  

can be constructed,  and any given word of t h i s  code w i l l  have a t  most one 

element from any column of t he  matrix. I n  p a r t i c u l a r ,  f o r  k = 1, 

the re  is  a code of s i z e  

2n-2 
Kcw - 

i n  which every word has exac t ly  one element from each column. This  i s  

the  cw case. 



Proof: I f  k = 0, t h  m 

19 

t r i x  has one column, and n words can b 

This agrees  with the  above remark. I f  k = n, the  code having 

form a. 

n Km,(p , p) elements from Theorem 1 can be used, s ince  each column 

has only one element, and t h i s  is the  value given above i n  the  case 

k - n. 

pn- 1 

of a row. No other  words w i l l  have two elements f r a n  the  same column 

of t he  time-frequency matrix and there  w i l l  be 

I f  k = n - 1, l e t  each column correspond t o  a row of the  

x p matrix i n  the  proof of Theorem 1, and e l imina te  words cons is t ing  

n n-1 a n-1 p - p 
Kmax(Pn, P) - P p p - 1  

words l e f t .  

rows of t h e  p"" x p m a t r i x  in Theorem 1. 

Kmax 

words derived from these  matrices. Thus, s ince  the re  a r e  p rows, 

For 1 5; k 5 n - 2, l e t  each column correspond t o  p n-k-1 

Use these  rows t o  make 

Eliminate a l l  (Pn'k-l , p) of the  p x p matrices f r a n  before. 

k 

e l imina te  
n-k-1 - k+2 (pn-k-l 

Kmax 

words from the  code of s i z e  Kmax(pn, p), and i n  add i t ion  el iminate  the  

pn" row words f r a n  the  pn'l x p matrix. There w i l l  be l e f t  a code of 

s i z e  

which proves the  remark. Se t t i ng  k = 1 demonstrates t he  ex is tence  of 

a code i n  which each word contains exac t ly  one element from each column 

of t he  time-frequency matrix of s i ze  

n 2n-2 
Km(P , P) a P 
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For t h e  example following the  proof of Theorem 1, i f  t h e  time- 

frequency mat r ix  is 

1 10 

2 11 

3 12 

4 13 

5 14 

6 15 

7 16 

8 17 

9 18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

then a cw code of s i z e  

34 - 81 

i s  obtained by e l imina t ing  the  n ine  o r i g i n a l  row words and t h e  words from 

matrices containing (R 1 3  '2, R3)> (R4, R5, Rg), and (R73 R8> Rs>* 
Remark: Acceptable codes can be found having s i z e  

n- 1 n-1 n-1 n-1 P ~ - ~  - 1 
P - 1  K = aP + bPKm,(P , P) =I aP + bP 

where 

a = O o r 1  

Proof: To cons t ruc t  such a code, i f  a = 0 do not  use the  rows of t h e  

pn-l x p matrix. 

squares  of order  p i n  determining words t o  be formed from t h e  p x p 

matrices. 

t h i s  procedure w i l l  y i e ld  the  bpKmU(pn-', p) words. 

use a l l  p - 1 L a t i n  squares,  and i n  add i t ion  form words from t h e  columns 

of each p x p matrix. 

I f  b < p, u se  only b of t h e  p - 1 orthogonal La t in  

n-1 Reca l l  that s ince  t h e r e  are K,,(p , p) of such matrices, 

I f  b = p, 
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There are a l s o  other  possible  s i z e s  of K, as the  following 

theorem shows: 

Theorem 2: Let p = qk, where q is  a prime, and k 2 1. Then 

acceptable  codes exist f o r  

n-1 K = cp + dpn 

where, as before ,  

M =  P 

N = pn 

Here 

c = O , l  

and a and b are as i n  the  preceding remark. 

Proof: n-1 As before,  arrange the  pn elements i n t o  a matrix having p 

rows of p elements. By the  l a s t  remark these rows can be used t o  form 

a set  of 

n-2 
aP + bPKmax(Pn-2, P) 

p x p mat r ices  such t h a t  each row i s  used i n  the  same number of mat r ices  

and no two matr ices  have more than one common row, where 

a = 0 , 1  

b = 0 ,  1, e * * ,  p 

From each of these  matr ices ,  p2 code words can be obtained using no 

words cons is t ing  of e n t i r e  rows. Hence, acceptable  codes e x i s t  f o r  

K = apn + b~~K-(p"-~ ,  p) 
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n-1 
The p 

(c  = 0 ) ,  prwing the theorem. 

rows can be added t o  these, if desired ( c  - l), or not included 



V. CONGLUSIQNS 

Algorithms have been shown f o r  cons t ruc t ing  low i n t e r f e r e n c e  

address codes f o r  a system employing time-frequency mul t ip lex ing  f o r  

var ious s i zes  of time-frequency mat r ices  and address  lengths.  I n  

KM these  codes t h e  number of addresses containing a given chip i s  yY 

which can be made as l a r g e  as des i red  while,  a t  the  same time, M ( the  

number of chips i n  an address) remains fixed. 

N ( t h e  number of chips i n  the  time-frequency matrix), which amounts 

t o  an increase i n  system bandwidth, and/or an increase  i n  the  t i m e  

l ength  of t h e  matrix. Note t h a t  as N is increased,  the  m a x i m u m  number 

of addresses a l s o  r i s e s .  I n  f a c t ,  f o r  f ixed  M 

This is done by increas ing  

almost exactly. Hence, s ince  N is  a measure of the  t o t a l  da t a  r a t e  of 

the system, t h e  increase  i n  s i z e  of the time-frequency mat r ix  does not  

r e s u l t  i n  wasted bandwidth. 

I n  prac t ice ,  w i l l  be l imi ted  by considerat ions e n t i r e l y  

divorced frm the  mathematics of code constructionb Some of these 

f a c t o r s  w i l l  be the  duty cycle  of an address ,  system noise ,  and the  

manner of de t ec t ing  a message. Thus, perhaps the  most important f a c t  

t o  note  i s  t h a t  t he  requirement t h a t  any two addresses have a t  most one 

carmuon chip, which d r a s t i c a l l y  curbs t h e  incidence of s e r ious  in te r fe rence ,  

w i l l  no t  usua l ly  be the  f a c t o r  which limits the number of system users.  
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