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1. Introduction

From the melting pot of relatively modest experiences in data processing
that, in most aspects, began little more than five years ago, the neurophysiologist
has progressed to substantial use of large computing systems, and has taken account
of his need for rapid processing of large amounts of data by comprehensive
computational techniques that go to the very fringes of the mathematical arts.
Granted that this rapid growth in analytic capabilities has not arisen de novo,
and that it has its origins in earlier methods of frequency analysis (Grey
Walter, 1950) and simple averaging and correlation analysis (Dawson, 1950;
Brazier and Barlow, 1956), the exponential growth in the armamentarium of the
neurophysiologist’s analytic capabilities represents a series of essentially
new developments. They rest upon a trinity that will be a recurring theme
in this paper: data acquisition systems using analog or digital magnetic tape
recording techniques, with appropriate coding for stimuli and epoch marking;
the use of statistically valid analytic techniques, that take account of un-
certainties inherent in limited epochs of physiological data; and automated
display techniques that achieve required degrees of compression of the primary
records to provide an overview of long and complex epochs of data, while retaining

fine resolution of subtle shifts in pattern within the epoch (Adey, 1965a,b).
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These exceptional requirements in neurophysiological analysis appear to
transcend by an order of magnitude the current needs in most other areas of
physiological research. 1t has become apparent that many vital bridges in
our understanding of cerebral functions will only be built on the basis of
carefully quantified analysis and detection of patterns that inherently
escape mere observational techniques. The urgent need and 'burning thorn of
discontent! so engendered have been powerful stimuli to the pioneering by the
neurophysiologist of new computational techniques and display methods, that
now also have application in other areas of physiological researcn.

In like fashion, improved analysis of both gross EEG and cellular wave
phenomena has provided the first firm basis for a series of realistic cerebral
models, concerned with the genesis of the gross EEG from a population of
neuronal generators (Elul, 1965, 1966) and also with the organization of
larger generators in systems subserving the cortical mantle as a whole
(Walter and Adey, 1965a,b; Adey, 1966).

This papér will describe essential aspects of computing systems currently
in use in our Brain Research Institute together with main computational methods
and associated display techniques. It will discuss their application to EEG
records in animals and man, and for the latter, in relation to baseline charac-
teristics of a population of individuals in a gamut of states in sleep and
wakefulness., 1t will describe simple automated pattern recognition techniques
applied to these records. Finally, it will describe computer applications to
impedance measurements and cellular wave phenomena, where computational
techniques have played a vital role in the formulation of physiological models,
having aspects of seeming realism in their exemplification of the uniqueness

of organization of cerebral tissue.




2. Computational techniques in neurophysiological research

Our analytic methods have involved digital computational techniques almost
exclusively, with evolution of a hierarchical organization, both in computational
devices and in analytic techniques, as reviewed in detail elsewhere (Adey, 1965a,b;
1966). Small special-purpose digital computers for averaging of evoked potentials
and EEG wave trains, and for estimation of interval histograms in unit firing
patterns, have been widely used in our laboratories. Their value is indubitable,
but the need for more comprehensive analyses has led to developments that are the

theme of this paper.

a. Data acquisition systems for computational analysis of EEG.

The laboratories of the Brain Research Institute share the facilities of
a central Data Processing Laboratory, organized to provide services for about
Lo 1aboratories, either through acceptance of data on-line in analog or digital
format, or as analog records on multi-channel magnetic tape, usually in 7 channel,
half inch, or 14 channel, one inch IRIG formats. These systems have been reviewed
elsewhere (Adey, 1964).

The cornerstone of this central processing laboratory is an SDS 930 computer
(Fig. 1), with 16,000 words of core memory, 16 priority interrupts, three time-

multiplexed communication channels (TMCC, 'C', 'W" and 'Y"), and one channel with

direct access to the computer memory (DACC, 'E'). 1In Fig. 1, those blocks enclosed

by dotted lines are system additions planned for operation within the year. A

remote console system with 64 keys has been developed as an input device to the

computer with a storage oscilloscope for display (Fig. 2).



This remote console system, or Shared Labqratory Interpretive Processor
éystem (SLi1P), has been designed by L. Rovner, L. Betyar and R. T. Kado, to
function on a time-shared basis involving five simultaneous users. A separate
computer interface has been installed on each floor of the Institute building
to provide analog-to-digital conversion, relay drivers and sense lines to the
user's laboratory. The system enables the experimenter to convert analog data
in real time and operate upon it w}th several standard analytic programs, or
programs which he himself generates by use of the console, A system interface
unit incorporates 24 bits of parallel input (PIN) and output (POT) from the
computer memory, character buffer and address matrix for the console system,
digital-to-analog converter, and analog-to-digital converter.

Two of the time-multiplexed channels (W and Y) serve as the input/output
communication path for the standard computer peripheral equipment. The re-
maining channel (C) serves the analog-to-digital converter, accepting digitized
information and storing it in memory under/co?n:tg?rgggtggléss channel E services
the digital-to-analog converter, and provides a terminal for an interface with
the main data processor (currently an IBM 7094) in the adjacent Health Sciences
Computer Facility (Fig. 3).

The digital-to-analog converter accepts the 24 bit output from the computer
E channel and provides X, Y and Z analog output signals to the SLIP console, and
other oscilloscope display functions. The analog-to-digital conversion system
provides 16 analog inputs to the computer at sampling rates up to 30,000 con-

versions per second.




The relay drivers enable transmission of switchable control functions
to any remote laboratory, under program control. In addition to serving the
relay drivers, the 24 POT lines are used by the address matrix of the SLIP
console to establish communication between remote locations and the computer.
The basic time-sharing system involves two computer program functions, a
commutator and the interrupt processors. Activation of the system causes the
commutator to scan a number of memory cells, equal to the number of consoles
sharing the computer. On finding a cell bearing a zero, machine control is
transferred to the associated program until service is completed. With
console-generated interrupts, the interrupt processor causes the input
character to be stored in memory, and resets the console. By adequate
buffering, additional interrupts, arriving before storage of the first
character is completed, are ultimately stored in memory,

Unlike a typewriter keyboard, where the keys are of a fixed context,
those of the console have entirely variable upper and lower case meanings.
Each set of 64 upper and lower case key definitions is referred to as a
'context level,' and there are 6L such levels. Generally, the upper case
meanings are interpreted as an action (operator), with the lower case forming
the object of that action (operand). A comprehensive set of mathematical and
control functions are provided as a basic set of ''operators,” from which more
specific ones may be synthesized by the user.

Development of this console has greatly facilitated utilization of the
SDS 930 computer by operators in the computer room, and by the investigator.
in his laboratory. In summary, the combined system has proved a thoroughly
feasible method fo} preparation of data for subsequent more extensive analysis
on the larger I1BM 7094 computer, and provides appropriate displays of computed

outputs from that computer.
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b. Time series analyses of EEG data; correlation functions, digital filtering

and spectral analysis.

Extraction of periodic signals in noise has been a lasting requirement
for the communications engineer (Lee, 1950). Baffled by the complexity and
apparently random character of the EEG, the neurophysiologist applied it
similarly in his search for concealed rhythms (Brazier and Barlow, 1956;

Rosenblith et al.,1959). Essentially the product of the epoch of record

multiplied by itself and progressively shifted in time, an autocorrelation
function contains all the frequencies present in the original function.
This function and the Fourier power spectrum are transforms of each other
(Wienér, 1958). Cross-correlation of pa;rs of simultaneous EEG records
during training provided the first opportunities to examine aspects of
pattern between different brain regions (Adey, Walter and Hendrix, 1961).

Yet there are serious practical and theoretical difficulties in extended
use of correlation functions in EEG analysis (Adey, 19652), relating fo
errors arising in use of truncated series (Bendat, 1958) which do not fulfill
the mathematical constraints of an infinitely long series. Although some phase
information can be extracted, for practical purposes this is limited to phase
relations at the dominant frequency of the cross-correlogram. A much broader
window on the interrelations between different brain regions in the degree of
sharing of a broad spectrum of frequencies can be obtained by cross-spectral
analysis (Walter, 1963). Blackman and Tukey (1959) have emphasized that
estimates of functions of lag, such as autocorrelations or autocovariances
have fluctuations that are so far from independence as to frequently fool

almost anyone who examines tables or graphs of their values', and they advise

’

the use of the autocorrelogram merely as an intermediate step in spectral analysis.




The key to successful application of the digital computer in spectral
analysis lies in its ability torfunction as a narrow band filter, with precisely
specified characteristics, which can also be modified at will with respect to
flat-top, shoulder and skirt (Goodman, 1960). Problems of designing physical
filters with appropriately narrow skirt characteristics have led to the devel-
opmentrof these digital filters, in wnich the digital filter provides weighting
functions by which the time function is multiplied. The sum of these products
is taken as the output of the digital filter. The weighting functién can be
considered as having a narrow bandpéss,characteristic, as in an analog filter,
or the application of a set of digital filters to a function of time can ke
viewed as a discrete vérsion of a Fourier transform,

Tukey (1965), in a recent elegant review of the power of gpectral analysis
in solving geophysical problems, including the detection of long period ocean
waves coming 20,000 kilometers from the Indian Ocean to the coast of California,
has pointed out that just so long as the information needed about some phenomenon
is expressed, at any one time andrplace, in a distribution of activity or energy
or power over frequency, 'we have a hope of going from the there-and-then to the
here-and-now'’. In the frame of reference of the electroencephalographer, we can
expect to learn thereby the relations between simultaneous brain wave activity

in different brain regions, with precise preservation of information about shared
frequencies and phase relations, not merely at the dominant frequencies in a
spectrum of activ}ties, as in the cross-correlogram, but with equal clarity and

precision at each and every frequency in the cross-spectrum.



It is in our capacity to precisely specify the bandpass characteristics
of the digital filter, particularly in the low frequency range between 0.5
and 10 cycles per second, that has established its superiority over analog
methods. Since its phase shift is zero, it has become possible to measure for
the first time the phase relations between EEG wave trains at each frequency
across the spectrum, as well as shared amplitudes between them at each frequency.
From pioneering studies by our colléague D.0. Walter (Adey and Walter, 1963;
Walter and Adey, 1963; Walter, 1963), we have come to the routine calculation
of tﬁe coherence function, as a measure of statistical variability in linear
interrelationships between brain regions.

in our hands, the value of coherence calculations as a basis for sharp
delineation 6f shifting EEG patterns in specified states of sleep and wake-
fulness has been paramount. The magnitude of the coherence function may be

expressed:

Coh(Ff) = MAGSZ(F) /ASX(F)ASY (f)

where MAGS(f) is the mean cross-spectral magnitude at frequency f, and ASX(f)
is the autospectrum of X and ASY(f) is the autospectrum of Y, at the respective
frequencies. The coherence function is expressed between 0 and 1, and is a
measure of the linear predictability of activity in any area, on the basis of

knowing the activity in any other area, or series of areas.

3. Examples of spectral analyses of EEG data;

use of contour plots and three dimensional displays.

Continuous contour plots of spectral density and coherence have proved
most useful tools in compression of long epochs of data into a single plot,

while retaining all essential information relating to transitions occuring,




for example, during visual discriminations and auditory vigilance tasks,
In Fig. 4 are plotted autospectra from simultaneous scalp leads during these
performances, which covered a test period of approximately one hour, Differences
in densities at 1 to 2 cycles per second in left and right centroparietal. and
left parietooccipital leads were associated with substantially greater difficulty
of the task in the second performance. An even greater difference will be noted
in all leads between records during visual discrimination and during an auditory
viéilance task with eyes closed. These parameters form part of a scheme of
automated pattern recognition described below.

Similar plots of coherence from scalp leads during auditory vigilance
tasks (Fig. 5) provide a continuous measure of linear interrelationship between
pairs of leads at all frequencies from 0.5 to 15 cycles per second (Adey, 1965a).
Evidence from such plots suggests both longitudinal and transverse generators,
since a high coherence in the alpha band characterizes interrelations between
ail pairs of longitudinal leads, but very little coherence was found between
the bioccipital lead in any part of the spectrum, despite a powerful but
unchanging alpha activity throughout the test. This question of generator
function analysis on the basis of linear transfer functions has been discussed
in detail elsewhere (Walter and Adey, 1965a, b).

Different types of displays of autospectral densities and associated
coherence functions were used in studies in the monkey of the effects of
whole body vibration on the EEG in surface and deep brain structures (Adey,
Kado and Walter,11965).

Results presented elsewhere have indicated the presence of a 'driving"
in EEG records from cortical and subcortical structures during whole body
vibration, at certain frequencies in the test spectrum of 5 to 40 cycles per

second, and 2G peak-to-peak in the range from 13 to 40 cycles per second



-10-

(Adey, Kado, Winters and DeLucchi, 1963).

More recent studies with extensive computer analyses (Adey, Kado and
Walter, 1965) have shown little or no evidence of EEG driving below 9 cycles
per second despite powerful head movements. Driving at the shaking rate was
frequency selective and maxima].in the range 10 to 15 cycles per second._
However, fn many instances, maximum EEG energy peaks occurred at other than
shaking frequencies, and without harmonic relationship to shaking frequencies
(Fig. 6). Calculations of coherence, or linear predictability, were high
between cortical and subcortical leads at EEG frequencies unrelated to con-
current shaking frequencies, and absent from baseline records before or after
shaking (Fig. 7). Coherence between head and table accelerometers and cortical
and subcortical leads were below significant levels at fundamental driving
frequencies below 11 cycles per second, although significant coherence peaks
appeared at other EEG frequencies. Shaking in the raﬁge 11 to 17 cycles per
second produced many coherent relationships at fundamental driving frequencies,
end 2t harmonically related and unrelated EEG frequencies. These computed
analyses have provided evidence not available by other means that the effects
of vibration on concurrent EEG activity, including the frequency selective
driving, do not arise‘in simple electromechanical artifacts, but may have their
origins in physiological mechanisms. Much significance also attaches to the
use of display techniques that allow ready interpretation of multi-dimensional

data.

L. Applications of spectral methods in EEG baseline analysis;

the normative library

1t has long been a matter of concern that definition of EEG patterns has

rested, not only on the subjective opinion of the investigator, but also on wide
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individual variations in apparently norme]l subjects. We have, therefore,
sought to estsblish by computer analysis the presence of common EEG factors
in a significant population of astronaut candidates, both in relation to task
performances and in assessment of sleep states. A

In detailed studies to be reported elsewhere (Walter, Rhodes, Kado and
Adey, 1966), a series of 200 astronaut candidates were tested in a series of
perceptual and learning tasks, by means of a programming device, developed in

. :

our laboratofy by Raymond T. Kado, and using a magnetic tape command system
to ensure accurate timing in task presentation from one subject tc the next.
Subject testing and EEG recording were performed by Dr. P. Kellaway ard Dr.
R. Maulsby, at the Methodist Hospital, Houston. Physiological data was
recorded on magnetic tape, together with command signals, for subsequent computer
analysis. This data constitutes a normative library, and includes not only
18 EEG channels from all scalp areas, but also the electrooculogram (EOG),
electrocardiogram (EKG), galvanic skin responses (GSR) and respiration.

A series of 50 subjects were selected at random from the total of 200,
and intensive spectral analyses performed. Each hour of subject data required
25 hours of main computation time, wherein multiplications were performed at
approximately 500,000 per second. The scope of such an analysis appears to
have been justified, in that it has allowed selection of variables for a
possible on-line system that would be far less demanding in computer requirements.

To synthesize the data, an averaging procedure was adopted on the spectral
outputs, covering all 50 subjecfs in the various test situations, and in selected
sleep epochs. These averages were made for each scalp region, and are preéented

as a series of bar graphs'(Fig. 8), covering the spectrum from 0 to 25 cycles

per second. First, an average was prepared of spectral densities at each scalp
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recording site for all test epochs (Fig. 8, top left), including sitting with
eyes closed at rest, eyes closed during 1 per second flash stimuli, during an
auditory vigilance task, during visual discriminations at 3 second intervals,
and a similar series of more difficult discriminations at 1 second intervals.

The contours of these ''lumped!' spectra were then used as the mean for
comparison with the spectra for the individual situations. The subsequent
graphs in Fig. 8 thus show the vafiations about the mean established by the
average over 12 situations in the top left figure. Spectral densities above
the mean at any frequency have bars above the baseline, and vice versa, Lengths
of these bars are in units of the standard deviation at that frequency, so that
relative variation is emphasized by this presentation. 1t will be seen that
such a display clearly separates spectral density distributions for the 50
subjects in the five situations shown. |In particular, the distributions for
more difficult visual discriminations (Fig. 8, lower right) exemplify trends
that already characterize discriminations made in three seconds (Fig. 8, lower
middle). Pattern recognition techniques described below clarify differeﬁces
between records in these two tasks. It is also possible to compare an individual
with the mean for the group, or with his own mean, using a two-color display
technique.

Similar averages were made for 30 subjects in various stages of sleep and
drowsiness (Figs. 9 and 10). Here, the mean was established by an average over
7 stages of presleep, sleep and postsleep, and thus became the baseline for
measurement of variance for individual sleep states. It will be noted that
states of drowsiness, and light, medium and deep sieep can be readily distin-
guished from each other, but that separation of deep ''slow wave'' sleep from

subarousal with 'K-complexes'' is less clear.
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5. Application of simple pattern recognition techniques

to spectral parameters for definition of states of attention

Discriminant analysis was applied to these spectral outputs in four subjects
(Walter, Rhodes and Adey, 1965) covering five situations: eyes closed at rest,
eyes open at rest, an auditory vigilance task, and the two visual discriminative
tasks described above. A computer program attempted to assign each segment to
the situation from which it came, using measurements derived from four EEG
channels: left and right parieto-occipital (P3-01 and P4-02), vertex (F2-C2),

and bioccipital (01-02). Each channel's activity was analyzed into 4 frequency

‘bands, corresponding to the classical delta (1.5 to 3.5 cycles per second), theta

(3.5 to 7.5 cycles per second), alpha (7.5 to 12.5 cycles per second) and beta
(12.5 to 25 cycles per second) bands. In each band, measurements were made of
the strength oanctivity in each channel, mean frequency within the band (the
dominant frequency when present), bandwidth within the band (an expression of the
regularity of the dominant frequency), and the coherence between pairs of channels,
This discriminant analysis program initially considers all the measurements
for all the segments, and selects that parameter which best discriminates segments
recorded in different situations. It then reexamines all measurements and chooses
the parameter which will add most to the discriminating power of the first measure-
ment. It calculates five linear functions of those two measurements whose values
differ as much as possible among the situations. The program continues this
iteration of selecting and calculating linear functions, until insufficient
improvement is made by adding another parameter.
The four variablies which best distinguish among the five situations are:
left parieto-occipital alpha intensity, the mean frequency of theta-band activity

in the vertex, the coherence in the theta band between left parieto-occipital
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and vertex, and coherence in the beta band between vertex and bioccipital
leads. A detailed account of the respective contributions of each of these
variables to the identification of each of these situations is given elsewhere
(Walter, Rhodes and Adey, 1966).

The separate analysis of each subject's records in the same way yielded a
higher proportion of correct classifications than the group analysis. With
his own best four measurements, between 62 and 69 per cent of a single subject's
samples were correctly classified, as contrasted with 51 per cent for the subjects
simultaneously (Fig. 11). An even greater disparity appeared after 15 measure-
ments were selected, Individually, 95, 93, 96 and 90 per cent were correct,
while for the subjects together, only 65 per cent were coffectly classified.
It would thus appear that each subject may have a spatially and numerically
characterized individual EEG ''signature,' as to which measurements are most

effective in distinguishing different situations,

6. Studies of the essential nature of the electroencephalogram:

its cellular origins, and possible role in information

transaction, storage and recall,

It would indeed be disappointing if application of these computational
techniques were confined to studies in grosser aspects of cerebral system
organization, useful though this might be., We have, therefore, sought evidence
for slow, wave-like processes at the level of single cells, occurring independ-
ently of actual neuronal discharge, and contributing to the process recorded

as the electroencephalogram from larger domains of tissue.
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Intracellular recording in unanesthetized ;orfical neurons in our
]aborat&ry (Elul, 1965; Adey and Elul, 1965) has revealed a large wave process,
from 5 to 15 millivolts in amplitude, which appears to arise in the dendritic
branches of the cell, rather than in the soma (Fig. 12). Spectral analysis
of this wave process has indicated that its density distribution closely follows
that of the EEG recorded grossly in the same domain of tissue. Despite this
similarity of density contours, calculations of coherence between the intra-
cellular and gross EEG records have shown that there is'virtually no linear
relationship between the two processes (Fig. 13), so that the population of
neuronal generators appear to be independent and nonlinearly related (Elul, 1965).
The wave process recorded extracellularly arises from generators no larger than
cellular dimensions (Elul, 1962), and has an amplitude less than one‘hundredth
of the intracellular wave process. Elul has suggested that the occurrence of
a Ehythmic EEG as the integral of activity in such a population of independent
and nonlinearly related generators may be mathematically modeled in terms of
the central limit theorem of Cramer (1955).

The patterns of EEG waves described above, and the indubitable evidence
of comparable processes at the cellular level have suggested that they are
- concerned in the transaction of information. The evidence further suggests
that, at the level of the individual neuron, the cell may function as a phase
comparator for patterns of waves sweeping its dendritic surface in space and
time, Moreover, the wave process may underlie the lasting physico-chemical
changes assqciated with storage of information in cerebral tissue. In such a
scheme, recall of information would depend on the reestablishment in that
domain of tissue of wave patterns that resembled, but were not necessarily

identical with, those associated with the initial experience (Adey and Walter, 1963) .
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The threshold for firing of the individual néuron would be critically dependent
on computed evaluation of stochastic modes of operation in sizable populations
of neurons, as well as at the level of the single cell. We are thus already

far removed from simple concepts of pulse-coded nerve nets, or connectivity
diagrams of intrinsic cerebral organization. A specific model of these processes
is discussed elsewhere in terms of single, or limited numbers of generation
processes, spatially organized and characteristically shared between different
domains of cortical tissue (Walter and Adey, 1963; 1965b).

Yet even here, let us beware of any comfortable notion that storage of
information in cerebral tissue, its unique and most characteristic function,
occurs exclusively within its neuronal compartment. Our measurement of
electrical impedance in small volumes of cerebral tissue in the course of
alerting, orienting and discriminative stimuli, has revealed, with the aid of
computational techniques, regional differences in 'fevoked' impedance responses
accompanying learned responses; and their dependence on levels of learning in
training and extinction trials. The extraneuronal course of the bulk of the
impedance measuring current, presumably through extracellular fluid character-
ized by a substantial content of macromolecules and susceptibility to divalent
cations, such as calcium, ér through neuroglial elements surrounding nerve cells,
has seriously implicated these two perineuronal compartments in the transaction
and storage of information in brain tissue (Adey, Kado, Didio and Schindler,
1963; Adey, Kado, Mcllwain and Walter, 1966).

What, then, of the future of computational applfcations in neurophysiological
research? Our studies have emphasized the continuing role and still evolving
power of spectral analysis to detect aspects of pattern in the seemingly

random processes of the EEG, particularly when coupled with pattern recognition
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techniques. Much remains to be done in this area of pattern recognition,

and in display techniques arising therefrom. Only through diligent and
challenging developments in these areas can we hope to see full consummation

of the appl}cat}ons of spectral analysis to neurophysiological problems,-and
come within sight of Tukey's goal of passing 'from the then-and-there to the
here-and-now'. Yet we may ask more fundamental questions about the precise
nature of the physiological processes revealed by linear time series analyses
of the spectral type. The evidence suggests that organization at the level

of cellular domains involves essentially nonlinear processes, ana that in
broader aspects of cerebral system interrelations, nonlinear transfer functions
may be of vital importance, and would tend to escape us completely with current
férms of spectral analysis. _

It is here that the physiologist comes face to face with the fringes of
current arts in applied mafhematics, for there are currently few techniques
that offer even modest prospects of success in dealing effectively with non-
linear systems in massive data analysis. In seeking possible solutions to
what promises to be a major confrontation in the progressive evolution of our
analytic techniques, we may well ask whether to pursue further time series
analysis in its current form, or whether, as recently suggested by Svoboda
(1964), we would do better to consider analyses based on logical statements,
and applied at the level of the simplest transforms of EEG data, as, for
example, to the outputs of digital filters, proceeding thereby to develop a

matrix that might uniquely describe a unique physiological situation, and one

so complex as to not readily reveal its pattern in linear time series anmalysis.
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Clearly, the optimal methods of data analysis for electrophysiological records
remain for future devising, based on appropriate consideration of the unique
complexities of cerebral organization. Nevertheless, we may reasonably claim
to have taken the first halting steps in computer applications that have_
revealed novel aspects of central nervous organization, and which have, in
turn, suggested new experimental designs and needs for new and different
computational methods, wherein the flexibility of the general purpose digital

computer, in minor sorties or major confrontations, is paramount (Adey, 1965a).

Summary

A data acquisition, analysis and display system for time-shared use by a
group of neurophysiological investigators is described. Applications of
spectral analysis to a normative library of EEG data in states of sleep and
wakefulness is described, with establishment of baselines for adult males in
the course of simple alerting, vigilance task performance and in visual
discriminations of increasing difficulty, Simple pattern recognition techniques
were applied to such data from individual subjects, with good accuracy in auto-
mated recognition of EEG states accompanying different levels of focused
attention. The use of computer analysis in analysis of intraneuronal wave
records is described, and a physiological model of genesis of the EEG in a
population of neuronal wave generators having independent and nonlinear
characteristics is discussed. Possible future trends in electrophysiological

data analysis are reviewed,
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Legends to Figures

Fig. 1. A general schema of the system used in the Data Processing Laboratory
of the Brain Research Institute, University of California at Los Angeles.
Abbreviations: HSCF, Health Sciences Computing Facility, equipped with
IBM 7094 computer; MTU, magnetic tape unit; TMCC,_time-multiplexed control
channel; DACC, direct access control channel; A/D, analog-to-digital
converter; D/A, digital-to-analog converter.
Fig. 2. SLIP console for time-shared remote operation of SDS-930 computer.
(See text).
Fig. 3. General arrangement of the system interrelations in the SDS 330 -
{BM 7040 - IBM 7094 computers, showing main streams of data flow.
Fig. 4. Contour plots of autospectral density in six EEG channels recorded
simultaneously during performance of visual discrimination tasks in
3 seconds (epochs 60 through 79), followed by more difficult visual
discriminations each performed in 1 second (epochs 100-119), and
‘ leading to an auditory vigilance task presented at 5 second intervals
! (epoch 56). This condensed presentation covers an elapsed time of
‘ many minutes.
! Fig. 5. Plots of contours of coherence between pairs of tracings taken from
‘ scalp locations indicated. Longitudinally oriented leads showed high
coherences between all pairs, particularly in the alpha band at 10-11
cycles per second, but coherence between a bioccipital lead and all

others remained low throughout the test. (From Adey, 1965a).
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Fig. 7.

Fig. 8.
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Models of autospectral contours in normal monkey before and during
shaking at decreasing frequencies from 17 to 5 cycles per second.

EEG spectrum depicted on abscissae, vibration spectrum on ordinates,
and spectral power on 2-axis (in microvolts squared per cycle per
second) for visual cortex (A), amygdala (B), nucleus centrum medi-
anum (C), midbrain reticular formation (D), and head accelerometer (E).
(From Adey, Kado and Walter, 1965).

Plots of coherence (linear predictability) between centrum medianum
and visual cortex (A), vertical head accelerometer (B), and table
accelerometer (C) during vibration. Similar plots are shown between
visual cortex and midbrain reticular formation (D), head accelerometer
(E) and table accelerometer (F). Abscissae show EEG spectrum, ordinates
the vibration spectrum, and Z-axis the level of coherence, With 12
degrees of freedom, coherence levels were significant above 0.516.
Significant coherence levels at the shaking frequency are shown in
solid black, and at points away from the shaking frequency in stipple.
(From Adey, Kado and Walter, 1965).

Averaged spectral densities over the range 0 to 25 cycles per second
for a population of 50 subjects, with each spectrum presented as a
series of bars at | cycle per second intervals, and located at the
appropriate location on the scalp. The top left figure is an average
for all subjects across 12 situations (See text). The contour of

this average was then used as the mean against which to measure
deviations in the succeeding five situations, with powers at any
frequency above the mean shown as a bar above the baseline and

vice versa. TCalibrations for average over 12 situations in microvolts
squared per second per cycle; for the separate situations, in

standard deviations. (From Walter, Rhodes, Kado and Adey, 1966).
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Fig. 9. Averages prepared as in Fig. 8 for a population of 30 subjects in
7 stages of presleep, sleep and postsleep, and the separate averages,
with display of deviation from the mean developed in Fig. 9A, in the
succeeding heads for eyes closed awake, drowsy and light sleep records.
(From Walter, Rhodes, Kado and Adey, 1966).

Fig. 10. Averages prepared as in Figs. 8 and 9 for medium sleep, deep sleep,
subarousal, and arousal to auditory stimuli. (From Waiter, Rhodes,
Kado and Adey, 1966).

Fig. 11, Pattern recognition techniques applied to spectral outputs from 4
subjects, separately and jointly, with development of a matrix display
of automated classifications for five situations: EC-R, eyes closed
resting; EO-R, eyes open resting; EC-T, eyes closed while performing
an auditory vigilance task; E0-T-3, performing moderately difficult
visual discriminations in 3 seconds; EO0-T-1, performing difficuit
visual discriminations in 1 second, (From Walter, Rhodes and Adey, 1966).

Fig. 12. Simultaneous records of EEG from cortical surface (top trace in each
pair) and intracellular wave activity (lower trace in each pair) in
unanesthetized cat cortex. Upper two sets of records show large slow
waves in both cortical and intracellular records during sleep, with
faster records in waking state in lowest set of tracings. The
depolarizing phase of the intracellular waves (upward) frequently
exceed level at which firing of the cell can occur, without initiation
of firing, Calibrations for EEG channel, 50 microvolts; for intra-

cellular records, 50 millivolts, (From Elul, 1965).
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Fig. 13. Plot of coherence over a 500 second epoch between intracellular
wave records and EEG from cortical surface in same domain of

tissue. Coherence levels are below statistically significant

levels at all frequencies for the major part of the analysis
epoch, and the incidence of significant levels of coherence (shown
in black) remains at around chance levels throughout the analysis.
The findings are interpreted as indicating origins of the EEG in

a population of independent neuronal generators. (See text),

(From Elutl, 1966).
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ASTRONAUT F.B.  NORMATIVE STUDY
VISUAL DISCRIMINATIVE and AUDITORY VIGILANCE TASKS
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AUTOSPECTRAL CONTOURS DURING VIBRATION
NORMAL MONKEY

Fig. 6




SHAKING FREQUENCIES
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PLOTS OF COHERENCES (LINEAR PREDICTABILITY)
DURING VIBRATION - NORMAL MONKEY
SIGNIFICANT LEVEL AT 0.516

A RCM/R VIS CX D RVISCX/L MBRF

EEG SPECTRUM
-SIGNIFICANT COHERENCE AT SHAKING FREQUENCY

SIGNIFICANT COHERENCE AWAY FROM SHAKING FREQUENCY

Fig. 7
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RESPONSES OF ELECTROENCEPHALOGRAM TO OIFFERING SITUATIONS

TOPO-SPECTROGRAPHIC VARIATIONS OF
AVERAGES OVER FIFTY ASTRONAUT CANDIDATES
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ELECTROENCEPHALOGRAPHIC CHARACTERISTICS OF SLEEP

TOPOSPECTROGRAPHIC VARIATIONS OF AVERAGES OVER 30  ASTRONAUT
CANDIDATES

A. AVERAGES OVER 7 STAGES B. SLEEP ¢ — EYES CLOSED, AWAKE
OF PRESLEEP, SLEEP & POSTSLEEP
WITHIN URR-NS

25 30
SV-CODE_ 124 1o 15 221
05 5D

SV- RUERAGE

1390
416
124 o -
; uY AV /el

O

OV ROl Ogy™oghMo
AT g

D. SLEEPII. LIGHT SLEEP—"PARIETAL HUMPS®

C. SLEEP I. "DRIFTING® OR DROWSY
WITHIN URR-NS

WITHIN URR-NS
Sv-COOE 126

Sv-CODE 125

o
we™ i | [ e e -
O Ortghe=Ortgh=Orgh-0

Fig. 9




’ -37-

El ECTROENCEPHALOGRAPHIC CHARACTERISTICS OF SLEEP

TOPOSPECTROGRAPHIC VARIATIONS OF AVERAGES OVER 30 ASTRONAUT

CANDIDATES
E. MEDIUM SLEEP — 14/SEC SPINDLES F DEEP SLEEP — HIGH VOLTAGE SLOW WAVES
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