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PREFACE

Due to the high degree of nonlinearity and complexity encountered

in many modern trajectory optimization problems, there has been a great

need for, and consequently, a great upsurge of interest in the development

and application of various numerical optimization techniques in recent

years. Utilization of the capabilities of high speed digital computers

has resulted in solutions to problems which a few short years ago were

considered too cumbersome or difficult to solve.

Although numerical techniques have been successfully applied in

solving a wide class of optimization problems, occasionally someone fails

to optimize a particular dynamical system by the use of a particular

optimization technique. This failure can occur in several ways depending

upon the technique used and the particular problem, but usually an investi-

gation of the failure is not attempted. As a result, there is very little

information presently available in the literature concerning ways in which

numerical optimization techniques can fail in application to dynamical

systems. The need for such information is obvious.

This thesis is a study of one particular numerical optimization

technique known as the Method of Adjoint Systems. This method is developed

and applied to a particular dynamical system in order to determine the effects

of incorrect problem formulation. Through the properties of adjoint systems,

a relationship between the effects of a conjugate point in the trajectory

and a failure in the method is derived.
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This thesis is concerned with the ways in which the Method of

Adjoint Systems can fail to determine optimal trajectories.

The Method of Adjoint Systems is developed and applied to the

solution of the two-point boundary value problem arising from the first

necessary conditions for _n optimal trajectory. A specific dyn_._cal

system is analyzed and various forms of incorrect problem formulation

are considered in order to investigate the effects on the Method of

Adj oint Systems.

The sufficiency conditions for a weak minimum are established and

the Matrix Riccati Equation is shown to evolve from the requirement that

the second variation be positive for a minimum. The effects of a conjugate

point in the nominal trajectory on the solution of the guidance optimization

problem are established through the solution to the Matrix Riccati Equation.

It is shown that the Matrix Riccati Equation can be solved by

reducing it to two linear systems of differential equations, which in

partitioned form are adjoint to a system of linear differential equations

used in the implementation of the computational algorithm of the Method of

Adjoint Systems. Through the properties of adjoint systems, a relationship

is established which indicates a connection between a breakdown in the

Method of Adjoint Systems due to the singularity of a matrix which must

be inverted and the presence of a conjugate point in the nominal trajectory

at the initial time.

V
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The following list tabulates all significant symbols used in the

main text. Each symbol is accompanied by a brief description and the

equation number where the symbol is first introduced.

Matrices:

The matrix size is indicated in the statement inmediatel y follow-

ing the symbol. The following specific indices are used.

n - the number of state varlables

m

m - the number of control variables

q - the number of terminal constraint
reiations

r - the number of initial constraint

relations

A 2n x 2n matrix of partial derivatives (3.12)

I n x n or 2n x 2n identity mtrix (3.21)

J n x n matrix of constants (5.69)

K n x n matrix Solution of the Matrix

Riccati Equation

n x n matrix used in solving the Matrix
Riccati Equation

n x n matrix used in solving the Matrix
Riccati Equation

n x n matrix of feed-back gains

n x n matrix solution of the Matrix

Riccati Equation

N

T

V

W

(s.ss)

(s.39)

(5.43)

(s.61)

(s.s)
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(CON'r'D)

Y
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Matrix Riccati Equation

n x n matrix used in solving the
Matrix Riccati Equation

2n x (n+l) matrix of partial derivatives
resulting from n+l backward integrations

of the 2n vector of adjoint equations

n x n matrix of partial derivatives of the

Hamiltonian with respect, to the control

n x n matrix used to require that the second
variation be positive

n x n matrix used to require that the second
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2n x 2n fundamental matrix of the adjoint
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(_'D)

Vectors :
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the symboI.
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variable derivatives
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u m vector of control variables

x n vector of state variables

X n vector of neighboring state variables

z 2n vector of state variables and
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¢ n arbitrary vector
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h 2n vector of adjoint variables
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The flight mechanics engineer today is often faced with the problem

of optimizing the dynamic performance of various vehicles and systems.

The optimization problem consists of two parts which are usually considered

as separate problems. The first is the trajectory optimization problem;

the second is the guidance optimization problem.

The trajectory optimization problem (or open-loop problem) consists

of determining certain input variables (controls) required to optimize

some index of performance of the system subject to (i) nonlinear differential

equations of state and (2) initial and terminal state constraints. The

problem may be formulated in Mayer form in which the differential equations

of state and the initial and terminal state constraints are adjoined to the

performance index by the use of Lagrange multipliers. This formulation

yields a functional which is to be optimized. This type of problem can be

readily handled by the techniques of the Calculus of Variations. The

variational approach to the optimization problem yields a two-point boundary

value problem whose solution is the solution to the trajectory optimization

problem.

Because of model inaccuracies, disturbances of the system, etc.,

the control (as computed from the two-point boundary value problem) may

not be optimal. Thus, a guidance optimization problem must be faced.

Many of the results obtained in the trajectory optimization problem have

direct counterparts in guidance optimization. The guidance optimization

problem consists of correcting the open-loop control to account for small



errors in the trajectory. Guidance optimization is usually achieved

by the use of a linear feed-back control system which continually

corrects the open-loop control program, ttowever, before a guidance

scheme can be devised, the trajectory optimization problem must be

solved. Therefore, the solution of the variational two-point boundary

value problem is the main topic considered in this thesis.

Numerical Tr__ajectory Optimization

The two-point boundary value problem resulting from the variational

approach to the trajectory optimization problem is characterized by

the Euler-Lagrange differential equations and the differential equations

of state (usually nonlinear). Analytic solutions to the boundary value

problem are in most cases impossible because of the nonlinearity of the

equations involved. Thus, in the course of solving many trajectory

optimization problems, it is necessary to use some type of numerical

technique which can be implemented on a diEital computer. Several numerical

techniques have been developed in recent years. These techniques, usually

classified by the approach taken to the optimization problem, are divided

into two groups. These groups are (i) direct methods and (2) indirect

methods. Direct methods employ gradient techniques which successively

improve non-optimal solutions, while indirect methods employ techniques

for solving the two-point boundary value problem arising from a calculus

of variations approach to the optimization problem.

The engineer, in seeking a numerical solution to a particular

optimization problem, must decide which of the various numerical techniques

•.. ,_ ,,,,_,,u_= mczv ,;,_ _._tU_,_IL W==.L_tJ. W.L_.L .i.¢tJI.J. L-U Upl...Lllti/-I_ _1. paI'E1L;UlSr



dynamic system. Many engineering man-hours and hours of computer tim

are wasted when a numerical technique is applied unsuccessfully to a

particular problem. There is a clear need for criteria by which a

specific optimization technique can be chosen for use in the solution

of a particular problem or class of problems. At the present time

such criteria do not exist. When an optimization scheme breaks down or

fails to solve a ,,,_4._,,1.... $.1..,w......... r...... _,,,,one of two procedures is usually

followed: (i) another numerical technique is tried or (2) the problem

is labeled "ill behaved" or "not correctly formulated" and is filed

away or forgotten. Usually no attempt is made to discover the reason

for the failure. Consequently, the reasons for breakdown in most numerical

optimization techniques are unknown.

Recently, studies of the failure of the Steepest Ascent Method

(a direct method) to optimize particular dynamical systems were under-

taken by Dr. W. T. Fowler and Mr. Gary J. Lastman at The University of

Texas. These studies have indicated that breakdown can occur in three

distinct ways which can be related to the way in which the problem was

formulated. The modes of failure in the method were found to involve

(i) constrained performance indices, (2) constrained uncontrollable

state variables, rand (3) performance indices which were uncontrollable

variables. In addition, it was found that the Steepest Ascent Method

would break down for certain dynamical systems due to certain guessed

control programs. This mode of failure, however, is believed to be

peculiar to the Steepest Ascent _ethod.
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Encouraged by the results of the analysis of failure of the Steepest

Ascent Method, it was decided that a similar analysis should be made of

other numerical optimization techniques. The technique chosen for study

in this thesis is an indirect method known as the Method of Adjoint Systems.

The method is an iterative technique used to solve the variational two-

point boundary value problem.

The Method of Adjoint Systems

In 1956, Goodman and Lance (Ref.1) proposed a numerical technique

for converting a two-point boundary value problem into an initial value

problem by the use of an adjoint system of differential equations. In

1962, Jurovics and McIntyre (Ref. 2) extended this earlier work to include

problems with one unknown boundary. The boundary value problem with one

unknown boundary is a form of the variational boundary value problem but

is quite restricted. In 1964, Jazwinski (Ref. 3) extended the scheme to

include problems in _ich the initial and terminal boundary conditions are

general functions of the problem variables and thus permitted the treat-

ment of a general Mayer form of the trajectory optimization problem.

Jazwinski's scheme will be referred to throughout this thesis as the

Method of Adjoint Systems.

In addition to the method for obtaining open-loop control programs,

Jazwinski proposed a feed-back control scheme to solve the guidance

optimization problem in which feed-back gains could be obtained from the

results of the open-loop control problem. This feed-back control scheme

is simpler and requires fewer integrations of an equivalent set of equations

.qnov_" __n.d r_^c Athan the method proposed by Breakwe11_ -r-,--, B_,son _.,_. ,_.
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In considering the guidance optimization problem, Jazwinski

mentions the fact that his feed-back control scheme can yield infinite

gains for certain systems which will cause the scheme to fail. Breakwell

(Ref. 4) points out that a conjugate point in the trajectory will result

in infinite gains in his guidance scheme. However, no explanation is

given of how the numerical trajectory optimization scheme used to obtain

the open-loop control could fail. A search of the literature on optimal

control theory reveals very little information concerning modes of failure

of the trajectory optimization schemes currently in use.

The Purpose of the Investigation

The purpose of this investigation is to determine the ways in

which the Method of Adjoint Systems can break down, and hence fail to

determine the open-loop control programs for particular dynamical systems.

In Chapter II the formulation of the trajectory optimization

problem will be reviewed. The first necessary conditions for an optimal

trajectory and the Legendre-Clebesch condition for a weak relative

minimum will be derived. The two-point variational boundary value problem

will be formed from the necessary conditions and the equations of state.

In Chapter III the Method of Adjoint Systems will be reviewed and a

discussion given of its application in the solution of the two-point

boundary value problem for the most general case in which some of the values

of the state variables and Lagrange multipliers are unknown initially and

the initial and terminal time are unknown. In Chapter IV areas of breakdown

and the computational algorithm due to incorrect problem fornu_lation will



be discussed with specific examples to illustrate each type of breakdown.

In Chapter V the effects of a conjugate point in the trajectory will be

investigated. Effects of a conjugate point on the guidance optimization

problem will be looked into with the purpose of gaining some insight

into the effects on the trajectory optimization problem and subsequently,

the Method of Adjoint Systems. It is hoped that the investigation will

provide, in some measure, usable criteria by which the Method of Adjoint

Systems can be chosen or rejected as an optimization scheme for specific

problems. It is also hoped that the investigation will provide guide-

lines by which studies of the failure of other numerical optimization

schemes can follow.



OIAIrrER II

THE TRAJECTORY OPTIMIZATION PROBLEM

Vector and Matrix Partial Derivative Notation

Extensive use will be made of vector and matrix forms of functions

and their partial derivatives throughout this thesis without special

mention, l-he £ullowing conventinn will be observed concerning partial

derivatives• The n-vector of partial derivatives of a quantity f(x,u,t)

af
with respect to a vector x is denoted by either fx or _-_ . If f is

an m-dimensional column vector, i.e. fT = [fl ... fm] then fx implies

the following matrix•

4_

X

i

_fl

l

_fl

axn
q

(2.1)

If f is a scalar function of the form

f is defined as
X

f(xl"" Xn' YI"" Ym) then

(2.2)

and f is defined as
xy

7



fxy - _y

_2f

_2f

m

_2f

• 8Xl_)Ym"

• _2f

_XnSY m

(2.3)

A row vector will be written as GT -- [gl " " " gn ] while a 1 x n

matrix will be written without the transpose sign, i.e., K = [kI ... kn]

Statement of the Problem

The problem to be considered is that of determining the m-vector

of nominal open-loop control variables

scalar performance index of the form

tf

I -- G(xf,tf) + it. Q(x,u,t) dt
v

to be an extremum in the time interval,

following constraints :

u (t) which will cause a general

(2.4)

to it !tf subject to the

(1) an r-vector of initial state constraints,

L(xo,to) -- 0 (2.5)

(2) a q-vector of terminal state constraints,

H(xf, tf) - 0 (2.6)

m_d
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(3) the n first order, nonlinear, ordinary differential equations of

state

x(t) -- f(x,u,t) (2.7)

It is required that r _n and q < 2n - r + 2

Assumptions

In considering the problem stated, the following assumptions will be

made.

(I) The problem is deterministic, i.e., the state variables are

known exactly at each point along the trajectory in the time interval

t0_ t i tf.

(21 The n-vector function, f(x,u,t), in Equation (2.7) is at least

twice differentiable with respect to the state and control variables.

(3) The time rate of change of the state variables, _(t), is

continuous in the interval of interest.

The Neces__sa_!y- Conditions fP_r_ a_n__OP.}_9! T_rgJ$$_2r__

The initial constraints in Equation (2.51, the terminal constraints

in Equation (2.6), and the differential equations of state in Equation (2.71

may be adjoined to the performance index in Equation (2.4) as follows

= + T L(x0 'G(xf,tf) 'F M(xf,tf) + t o ) +

tf

+ _(x,u,t) + if(t) [f(x,u,t) - x(t)_ dt

(2.s)
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here

constant multipliers, and

multipl lets,

The functional I

v is a q-vector of constant multipliers, u is an r-vector of

X(t) is an n-vector of time varying Lagrange

may be written in a n_re compact form by defining

the following scalar quantities

P C,(xf,tf) + "I' (2.9)= ,_l(xf, t f)

T
R = u L(x0,t 0) (2.10)

H = Q(x,u,t) + xT(t) f(x,u,t) (2.11)

where H is referred to as the Variational ttamiltonian. Thus, the

functional I may be written as

tf

I = P(xf,tf,,)+ R(x0,t0,u)+ft o (H(x,,,u,t) xT_) dt (2.12)

The problem written in this form is generally referred to in the literature

as the Bolza form of the optimization problem.

Following Bolza (Ref. 5), the functional I may be expmlded in a

Taylor's series about some nominal trajectory to yield

' 1 '' _. '''dI = d I + T['. d I + . d I + ... (2.13)

If deviations from the nominal trajectory are assumed to be small,

the Taylor's series expansion may be truncated after the first two terms,

and the total variation in i becomes



ii

' ½ "dI _d I + d I (2.14)

In order that I be an extremum in the interval of interest, it

t

is required that d I, the first variation of I, be equal to zero and

It

that d I, the second variation, be greater than zero for a minimum or

less than zero for a maximum. Thus for a minimum, the following conditions

arG i_Huli_u.

!

d I = 0 (.2.1.5)

! !

d I > 0 (2.16)

Equation (2.15) is referred to as the First Necessary Condition,

and Fquations (2.15) and (2.16) together are referred to as Sufficient

Conditions for a minimum. It is pointed out in Ref. 6 that in most

physical problems, the nature of the problem and the solution obtained leave

no doubt as to the nature of the extremum. Thus, consideration of the

full second variation, which is quite complex, is usually not necessary.

It must be mentioned, however, that as the problems considered become more

complex, it becomes difficult to rely upon the nature of the problem and

the type of solution obtained by the first variation alone to insure that

a maximum or a minimum performance index has been obtained. This point

will be discussed further in a later chapter dealing with conjugate points.

The full expansion of the first variation of the functional I in

Equation (2.12) is given in Appendix A. The resulting equation, given by

Equation (Ao20), is
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tf tf tf

+ f (Hx +_T)_xdt + f (llx-xT) 6_dt + f (4)_udt

t o t o t o

The vanishing of the first variation requires that if dxf, dt0,

dx0, dtf, d_, dr, 6x, 61, and 6u are independent variations, then

each term in Equation (2.17) must vanish separately. The conditions

which result from the vanishing of the terms outside the integrals in

Equation (2.17) containing initial and terminal variations in the state

and time are referred to as the transversality conditions. The trans-

versality conditions yield the following conditions which must be satis-

fied at the end points of the trajectory.

At the initial boundary

+xT)It° o)--o

(2) (Rt - H) to dt0 = 0

At the terminal boundary

(3) (Px - xT)[tf dx(tf) = 0

(4) (Pt + H)[tf dtf = 0

(2.17)

(2.19)

(2.20)

(2.21)

(2.18)
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The conditions which result from the vanishing of the terns

containing the variations in the constant multipliers v and v at the initial

and terminal time are referred to as the constraint conditions and are given

by the following relations.

At the initial boundary

(S) Ru[t0 d_ = 0 (2.22)

At the terminal boundary

(6) Pv[tf d_ = 0 (2.23)

In order that the integral quantities in Equation (2.17) vanish

along the trajectory, the fundamental Lemma of the calculus of variations,

(Ref. 7), requires that each of the coefficients of 6x, 6X, and 6u equal

zero. The vanishing of these coefficients yields the following equations

which must be satisfied at each point along the trajectory.

(Y) £(t) = HT(x,X,u,t) = f(x,u,t) (2.24)

This equation is the n-vector of differential equations of state

given in the statement of the problem.

(8) _(t) = -l_(x,_,u,t) (2.2S)

This is the classical set of Euler-Lagrange equations and x(t) is an

n-vector function of time.

(9) H_{x,X,u,t) = 0 (2.26)

This equation is known as the optimality condition and Hu is an

m-vector function of time.
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Equations (2.18) through (2.26) are known collectively as tile first

necessary conditions and must he satisfied in order that I be an extremum

iit the :interval ot: interest.

.'k>..e..__gen.dr_-c !__besch 5:on_(ttA0::.

In addition to the first necessary conditions for I to bc an extren_ml,

it .._-,1 ,........ __^._ _.. .,._ _,.... _..,,*,* .'_ ,_,t_* ..................... that the _x_*_r_mun_ be a weak r-'!ative

minimum throughout the interval of interest.

It is proved in Ref. S that if I is to take on a strong minimum value

in the interval of interest, the necessary, condition of Weierstrass must

be satisfied. "l]:is condition requires that if a trajectory x(t), where

x(t) is continuous in [to,tf], affords a minimum to I relative to all

neighboring trajectories X(t), where X(t) is piece-wise continuous in

[to,tf], joining its end points, the following inequality must be satisfied.

E(x,x,X,t) > 0 (2.27)

The function E(x,x,X,t) is called the Weierstrass E-function, and

is defined as

E(x,x,X,t) = FCx,X,t) - F(x,X,t) F½(X-_) (2.28)

r 4r*It may be sho_r, fimt for weak variations in _h..h IX-x Is- e,

where e is an arbitrarily small quantity, the E-function reduces to

I

E(x,_,x,t) = - _(_-_) (2.29)

The functions F(x,x,t) and F(x,X,t) are defined as

F(x,_,t) ; xT(t) (f(x,u,t) _(t)) ; 0, (2.30)
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and

FCx, ,t) =  Tct) CfCx,u,t) - xct)) = 0 (2.31)

From the definition of the Hamiltonian, Equation 42.29) may be written as

E(x,x,X,t) = H(x,X,U,t) - H(x,X,u,t) (2.32)

Letting U = u + 6u, H(x.X,U,t) may be expanded in a Taylor's series about

u and for small 6u, the series may be truncated after the first two

terms to yield

E(x,x,X,t) Z H + Hu 6u + ½ 6uT }tuu 6u - H 42.33)

Fulfillment of the optimality condition in Equation 42.26) reduces

Equation (2.33) to

1 6u T >0
Huu _u (2,34)

The quadratic form of Equation (2.54) requires that Huu be a nonsingular

positive definite matrix. The requirement that the relation

lluu > 0 (Positive definite) 42.35)

holds true in the interval of interest is referred to as the Legendre-

Clebesch condition. This condition is necessary in order that I be a weak

relative minimum in the interval of interest.

Th_eTwo_Point BotmdaryValue Problea

The differential equations of state (Equation (2.24)) and the Euler-

Lagrange equations (Equation (2,25)) constitute a set of first order,
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nonlinear, ordinary differential equations in terms of the variables x,

X,U, and t.

The optimality condition (Equation 2.26) may be used to solve for

the m optimal control variables in terms of the Lagrange multipliers and

the independent variable time yielding an m-vector equation of the form

u(t) = u(x,t) (2.36)

Equation (2.36) may be used to eliminate the control variables from

Equations (2.24) and (2.25) yielding

T X,t) (2.37)_;(t) = H_(X,

_Ct) = -_(x,x,t) (2.3s)

Equation (2.37) and (2.38) may be combined into an ordinary, first order,

nonlinear vector differential equation containing 2n elements by defi_aing

a new variable, z(t) such that xT(t)= [Zl... zn] and xT(t) - [Zn+l...Z2n 1.

The variable may be written as

zT-_ [x_ : xT] (2.39)

In view of Equation

tioned form i.e.,

(2.39), Equations (2.37) and (2.38) written in parti-

(2.40)

_COlRe
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_(t) : FCzCt),t)

where F(z(t),t) is defined as the right-hand side of Equation (2.40).

The boundary conditions imposed on Equation (2.41) are as follows:

(2.41)

1) r conditions arising at t o from Equation (2.22),i.e.,

Rult0 du = 0o From the definition of R in Equation (2.10)

this relation requires that L(x0,t0) du = 0 but L(x0,t0)= 0

from Equation (2.5), thus yielding r conditions on the state

variables at t0o Thus, du does not necessarily vanish

because the initial constraints must be satisfied.

2) n - r conditions arising at t o from Equation (2.18), i.e.,

(Rx + xT)it 0 dx(t0) = 0. There are r conditions specified

initially on the state variables, thus r of the dx(t0)

will equal zero leaving n - r unspecified state variations

which yield n - r initial conditions on the Lagrange

multipliers.

3) 1 condition arising at t o from Equation (2.19), i.e.,

(R t - H) lt 0 dt 0 : 0o If the initial time is specified,

the equation is identically satisfied° If the initial time

is unspecified, then the condition implies that the scalar

function (R t - H)It 0 is equal to zero resulting in one

initial condition on the Lagrange multipliers.

4) q conditions arising at tf from Equation (2.25), i.e.,

Pvltf d, : 0. From the definition of P, this condition

requires that M(xf,tf) d, : 0o But M(xf,tf) : 0 from

Equation (2°6) resulting in q terminal conditions on the

_t_t_ vnr_hle_ Th11_ du dnp.g nnt neceggnrilv vnni_h
............... : .................... r-_ .... • .......

because the terminal constraints must be satisfied.
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5) n - q conditions arising at tf from Bquation (2.20), i.e.,

(p _T) [tf dx(tf) = 0. The q terminal conditions

specified on the state variables require that q of the

dx(tf) equal zero thus leaving n - q unspecified state

variations yielding n - q terminal conditions on the

Lagrange multipliers.

6) 1 condition arising at tf from Equation (2.21), i.e.,

(Pt + H)It f dtf = 0. If the terminal time is known the

equation is identically satisfied. If the terminal time is

unspecified, then the scalar function (Pt + H)Itf must

equal zero resulting in one terminal condition on the Lagrange

multipliers.

Thus, there are n - r + 1 initial and n - q + 1 terminal conditions

resulting in 2n - q - r + 2 conditions imposed upon the Lagrange mltipliers.

There are r initial and q terminal conditions resulting in r + q conditions

imposed on the state variables. A total of 2n + 2 conditions are imposed

upon Equation (2.41). In the most general variational two-point boundary

value problem, there are 2n unknown variables to be determined and the

initial time and final time are unspecified, thus requiring 2n + 2 boundary

conditions to obtain a solution.

In the problems considered in this thesis, it will be assumed that

the initial time is known. The optimization problem, with the initial time

given, may thus be reduced to a two-point variational boundary value problem

with n boundary conditions at t O and n + 1 boundary conditions at tf. The

solution of this boundary value problem by the Method of Adjoint Systems

will be considered in Ch_apter !II_-



CHAPTER III

THE METHOD OF AIIJOINT SYSTI_IS

The solution o£ the two-point boundary value problem consisting of

2n first order ordinary nonlinear differential equations of the form

z(t) = P(z(t),t) (3.1)

subject to n initial boundary conditions at some unknown initial time,

t O , and n+l boundary conditions at some unknown terminal time, tf, is

often far from simple. Except for the simplest cases, an analytic solution

of the problem can not be obtained due to the nonlinearity of the

differential equations involved. Nt_erical integration also presents a

problem. In order to numerically integrate the 2n differential equations

in Equation (3.1), 2n values of the variables z(t) are required at some

time t in the interval [t0,tf]. However, in the variational two-point

boundary value problem, there are only n values of z(t) known at the

initial time. Thus, in order to obtain a solution to Equation (3.1), an

iterative technique must be employed.

The Method of Adjoint Systems, proposed by Jazwinski (Ref. 3)

is such an iterative technique. The procedure used in the method is as

follows. The n initial values of z(t), i.e. z(t0) , which are unknown

are guessed. These guessed values are used with the n specified values

of z(t0) to integrate Equation (3.1). A reference solution or nominal

trajectory is thus obtained. Linear perturbations about this nominal

trajectory are used in conjunction with an adjoint system of equations to

obtain a better estimate of the initial values of the n unknown variables.

•,,_ ,,_,,.,_uu xm u_v_u_ .,.,, ,.,,,,. .,.,.,.,..,.v,,.,.,,_ sectlons.
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The Nominal Tra_ector),

The n+l terminal boundary conditions arising from the trans-

versality conditions (Equations (2.20) and (2.21))and the terminal constraints

(Equation (2.23)),may be written as

h(zf,tf) -- 0 (3.2)

The n initial boundary conditions arising from the transversality

conditions (Equation (2.18)) and the initial constraints(Fxluation (2.22)) may

be written as

g(z0,t0) = 0 (3.3)

The n initial values of z(t) are guessed and used with Equation

(3.3) to numerically integrate Equation (3.I) from to to some guessed

terminal time tf . The nominal variables, z (t), may be stored at each

integration step.

The nominal trajectory thus obtained will approximate the true

trajectory if the n unknown values of z (t0) were guessed sufficiently

close to the true values of z(t0). The true trajectory is defined as

the trajectory which satisfied Equations (3.2) and (3.3) at the end points

and Equation (3.1) in the interval [t0,tf].

Linear Perturbations about the Nominal Tra_ector y

In general the nominal trajectory will not satisfy the terminal

boundary conditions in Equation (3.2), i.e. h(z (tf),tf) _ 0. However,

a sufficiently close guess of z(t0) will yield nominal variables , z (t),

which differ little from the true variables, z(t), along the trajectory.
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as

The difference between the true and nominal trajectories is defined

_zCt) = z(t) - z (t) (3.4)

The solution to the original differential equation, given by

;_[t) = _(z(t),t), (3.5}

will be assumed to have been obtained when 6z(t) is made as small as

desired.

Equation (3.4) may be differentiated to obtain

dCt) = _(t) - _*(t) (3.6)

In view of Equation (3.5), Equation (3.6) becomes

_{(t) = F(z(t),t) - z (t) (3.7)

Equations (3.4) and (3.5) may be combined to yield

z(t) = FCz(t),t) = F(z (t) + 6z(t),t) (3.8)

The function F(z (t) + 6z(t),t) may be expanded in a Taylor's series

,
about the nominal trajectory, z (t), at each point in time, and assuming

that 6z(t) is small, the series may be truncated after the linear terms

yielding

* * F 6z(t) (5.9)
F(z (t) + _z(t),t) Z F(z (t),t) +L_E]

In view of Equation (3.5), the differential equation of the nominal

trajectory is
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_*(t) -- F(z*(t),t) (3.10)

Thus, from Equations (5.7), (3.8), (3.9), and (3.10), the linear pertur-

bation equation becomes

[ T_.(t) --- _ _z(t)
Bz

whe re

: F%" rcq'
L"hJ " L"-_.j

Letting A(t)= _l"_zJ , Equation (3.11) may be written as

6z(t) = A(t) 6z(t)

(3.11)

(3.12)

where 6Z(to) is given by

_z(t o) =

i

_x(t 0)

It is shown in Ref. 3 that if Huu is nonsingular, the 2n + 2n

matrix, A(t) can be expressed as

A(t)

- I

I

I
I

_-3x, ' ,,,:,i,.,-H.,..÷H..,, ,.- , -Hv_ ÷H ,_........ i .... _a ..... .
L J.

w

(3.13)
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Defining

= H-IHu x ,All Hxx " Hxu uu

__ H-I
AI2 -Hxu uu HuX '

A21 = -Hxx + Hxu Hu1 Hux ,

T= H-1

and

the linear perturbation equation (Equation (3.12)) may be expressed as

6_-(t)

-- I

All I AI2
I

I

' Ii_ A1A21 I
I

_z(t) (3.14)

The requirement that H u be nonsingular is the Legendre-Clebesch

Condition derived in Chapter II. It should be noted that this condition

eliminates from consideration dynamical systems in which H is linear

in control.

The Adjoint System

A system of differential equations adjoint to Equation (5.14) may

be defined as

A(t) = - AT(t) A(t) (3.15)

Premultiplying Equation (3.14) by AT(t) and postmultiplying the transpose

of Equation (3.15) by 6z(t) and adding the resulting equations yields

the following important relationship between a linear system and its

- ,0 ° .

aU 3olIIL system.
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ATct) 6zCt)+ ATct) 6z(t) = 0 (3.16)

Noting that

d (ATct) azCt))B[ : ATct) 6zCt) + ATct) 6zCt), (3.17)

the following relation exists from Equation (3.16)

d
[AT(t) az(t)] : 0BY (3.18)

From Equation (3.18), it is evident that

AT(t) 6z(t) = AT(t0 ) 6z(t0) = AT(tf) az(tf) (3.19)

Equation (3.18) is one of the several important relationships between

a linear system and its adjoint developed in Ref. 8.

The solution of the adjoint system, given in Equation (3.15), may be

expressed in terms of the fundamental matrix of the system, $1(t,tf), as

A(t) : _l(t,t£) A(tf) (3.20)

The 2nx2n fundamental matrix is the solution of the matrix differential

equation

$1(t,tf) : AT(t) ¢l(t,tf) (3.21)

with the initial condition @l(tf,tf) = I where I is the 2nx2n identity

matrix (Ref. 8). From Equation (3.18) and the transpose of Equation (3.20),

it is seen that

hT(tf) [_l(t,tf) 6z(t) - az(tf)] = 0 (3.22)
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It is noted that the vector AT(t) can not identically vanish in [t0,tf]

because if this occurs, the trivial solution is obtained in view of the

linear vector equation (Equation (5.20)). Zero is a trivial solution and

thus it must be required that AT(t) _ 0 for all to<_ t _f.

requirement, Equation (3.22) becomes

az(tf) = _iT(t,tf) _z(t)

It was noted earlier that the nominal solution of Equation (3.1)

in general fails to satisfy the terminal boundary conditions h(zf,tf! = 0.

The dissatisfaction in the terminal boundary conditions is given by

[h(z(tf),tf) - h(z (tf),tf)] = Ah

4

In order to obtain a solution to the boundary value problem, it is

necessary to drive this dissatisfaction to zero. The dissatisfaction

would not exist if the true initial values of the n unknown z(t) variables

were known. Thus, driving the terminal dissatisfaction to zero amounts

to improving the guessed z (tO) until 6z(t0) = 0. The relationship

which exists between the linear perturbation equations and the adjoint

system of equations provides the components necessary to construct a

computational algorithm for successively improving the guessed initial

values of z(t).

In view of this

(3.23)

Th__e_eComputational Algorithm

The terminal boundary conditions in Equation (3.2) may be perturbed

about the nominal terminal botmdary conditions to obtain

Idnl_-"- "*_ d t_u,t_ k_))t ) = A_ rtA + I °'' !

tf

[3.241)
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where

of the terminal boundary conditions.

of partial derivatives, and _I'_I

tf
tives.

dh is an n+l vector of the change in the dissatisfaction

_h is an (n+l)x2n matrix

tf
is an n+l vector of partial deriva-

In the problem being considered, the terminal time is unknown

and allowance must be made for possible variations in z(t) due to terminal

time variations. A first order approximation of the variation in z(t)

due to variations of the terminal time, (Ref. 9),is given as

* * o *

6z (tf) = dz (tf) + z(tf) dtf (3.25)

Substitution of Equation (3.25) into Fquation (3.24) yields

+___h]* dp4* * 5h_* *
(if) b_Ejtf tfdtf +  fjtfdtf

(3.26)

However, the time rate of change in the terminal boundary conditions is

and Equation (3.26) becomes

* _h * *

dh = _z (tf) + N)tf dtf (3.27)
tf

Substitution of Equation (3.23) into Equation (3.27) yields

* _h T * *

dh = _1(t,tf) 6z(t) + (I_)_f dtf (3.28)

Now the fundamental matrix differential equation (Equation (3.21))

may be postmultiplied by I to yield

U-Jtf
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T

_l(t,t)) ah

tf

T

AT(t) ¢l(t'tf)

tf

(3.29)

¢l(tf' tf)

T T

* _ aE_z_ *

tf tf

If O(t) is defined as
T

O(t) _- ¢l(t,tf* ) [ .a__h-]*
az-I tf

where e(t) is a 2nx(n+l) matrix, Equation (3.29) may be replaced by

(3.30)

_(t) = - ATct) oct),
(3.31)

EqLlation (3.31) is integrated from tf to t o to obtain 0(t0).

Substitution of Equation (3.30) into the perturbed equations for the

change in the dissatisfaction in h i.e., Equation (3.28), yields

dh = eT(t) _z(t) + (l_)tf dtf
(3.32)

At the initial time, Equation (3.32) becomes

* eT(to) (h) tf *dh = _Z(to) + dtf (3.33)

Letting ( ) 1 denote the known variables and ( ) 2 the unknown variables,

the matrix 0(t0) may be partitioned as

eT(to ) = [o_ (to): oT (to)] (3.34)
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The 2n 6z(t) vector may be partitioned as

6z(t 0)
(3.3s)

Thus, Equation {3.33) may be written as

+ + dtfdh* = OT{to) 8Zl(tO) O_(to) 6zz(to) (h)tf

Rearranging, Equation (3.36) becomes

(3.36)

[dh*- oT(to) 6zl(to) ]

where [O (to) ; ] is an (n+ 1)x (n+ 1)matrix, _- -)_

* Tan (n + 1) x 1 vector, and [dh - 0 (to) 6Zl(tO) ] is an

(n + 1) x 1 vector. Provided that [o (to) " ] is nonsingular,

Equation (3.37) yields

(3.37)

is

- eT(t0) 6Zl(t0) ] (3.38)

The desired changes in the terminal boundary conditions may be

specified as the terminal boundary conditions multiplied by a scaling

constant given as
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dhi(z (tf),tf) = k hi(z tf) ,tf*) where

0 <k. <i (i = I, . .., n + i)

(3.39)

where the ki are scaling constants. With the desired changes thus

specified, Equation (5.58) may be solved for the n initial variations

6z2(t0) and the variation in the terminal time, dtf . An improved nominal

trajectory is obtained by _-_,,4_.v ....ng the guessed variables z (t0) and

guessed terminal time tf as

* new * old * calculated
tf = tf + dtf (5.40)

, new , old calculated

z (to) = z (to) + 6z(tO) (5.41)

Equation (5.38), resulting from the preceding development of

the computational algorithm, was derived for the two-point boundary value

problem in which the terminal time was unknown and r of the n state

variables were specified by L(x0,t0) = 0. For r < n, the guessed

z (t0) consists of guessed initial state variables and Lagrange multipliers.

6z2(t 0) is composed of r initial state variations and 2n-r variations

of the initial values of the Lagrange multipliers.

There are less general cases of the two-point boundary value

problem which result in a simplified version of Equation (3.38). These are:

Case I: n Initial State Constraints Specified

In this case, n initial state constraints are specified

in Equation (2.5), i.e. L(x0,t0) consists of n equations in n

values of the elements of the x(t0) vector, and Equations (5.34) and (5.35)

may be written as
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eTCt0) = [eT(t0 ) " eT(t 0) ] (3.4z)

x(t0)__z(t0) = ..... (3.43)

L X(to)J

Equation (3.38) becomes

: (]_)tf 1-1 [dh*] (3.44)

The unknown initial variables which must be guessed consists entirely

of the Lagrange multipliers X (to).

Cas____e_: Final Time Specified

If the final time is specified, Equation (3.27) becomes

* = [--_ah * *
dh L--jIEIt _z

(tf)

f ,

,o  a,o,
U _t£

derivatives. For fixed final

(3.45)

is an (nx2n) matrix of partial

time problems, Equation (3.38)

reduces to

6zz(to) = [O_(to)] -1 [dh*- OT(t O) _Zl(t O) ]

where 6z2(t 0) is an nxl vector, O_(t O) is an nxn matrix,

and [dh o (to) 6Zl(t O) ] is an nxl vector.

(3.46)
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Case 3: Fixed Final Time and n State Constraints Specified

This case is a combination of the first two cases.

this case,Fxtuation (3.46) becomes

-1 *

 x(t o) = [o (t o) ] [ dh]

In

(3.47)

For the general case of Equation (3.38), it is pointed out in

Ref. 3 that the improved nominai trajectoryobtained by the computational

algorithm presented will come closer to satisfying the terminal boundary

conditions in Equation (3.2) than the old solution. The improved values

of the unknown variables z (to) and the unknown terminal time from

Equations(3.40) and (3.41) are used as new guessed values of these variables

and the process is repeated until the dissatisfaction in the terminal

constraints can be made as small as desired, i.e. [ah[ ! ¢ •

If for any given iteration Ah increases, the scaling constants,

k i , are reduced until a new nominal trajectory is obtained which is

better than the old one. It is pointed out in Ref. 3 that the convergence

characteristics of the Method of Adjoint Systems are extremely good for

sufficiently good guesses of the initial values of the unknown variables.

There are conditions under which the Method of hdjoint Systems

will break down in application. An examination of Equation (3.38)

reveals that if the matrix which must be inverted is singular the method

will fail. Another trouble spot exists if the guessed values of the

unknown variables are not sufficiently close to the true values. The

linear perturbation assumptions made in deriving the computational algorithm

would not be valid if this were to happen. These and other areas of break-

down in the Method of Adjoint Systems -"" ..vw±_ be _wv,_^_l_"'_ in" th_ following

chapters.



C_iAPTER IV

BREAKIX)WNS IN THE METtIOD OF AIIlOINT SYSTEMS DUE TO

INCORRECT PROBLEM FORMULATION

The Method of Adjoint Systems, derived in Chapter III, has proven

in application to be a powerful numerical technique for solving a wide

class of optimization problems which were considered too difficult or

cumbersome prior to the development of the high speed digital computer.

However, as in any numerical technique, the method can fail when applied

to certain problems. In some cases, the failure is due to the singularity

of the matrix which must be inverted in Equation (3.38). This matrix

should be nonsingular on each iteration in the iteration sequence. If the

matrix becomes singular, the problem is usually labeled as not correctly

formulated. What constitutes an ill-behaved or incorrectly formulated

two-point boundary value problem and how it relates to a failure of the

Method of Adjoint Systems is not clear. Clarification of what constitutes

an incorrectly formulated problem will be explored in the following sections.

Conditions for a Well Posed Variational Boundary Value Problem

In any boundary value problem, the boundary conditions imposed upon

the system must be attainable by the system. In some boundary value

problems, the desired boundary conditions may arise by choice or by some

mission specifications which are desired. However, in the case of the

variational two-point boundary value problem, part of the boundary

conditions are specified at the initial and final time on the state

variables and the remaining ones arise from the transversality conditions.

32
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The transversality conditions, as shown in Chapter II, yield constraints

on the initial and terminal values of the Lagrange multipliers. The

constraints on the Lagrange multipliers are a direct result of the

performance index chosen and the initial and terminal state constraints.

Thus the choice of the performance index, initial state constraints,

and terminal state constraints will determine whether or not the problem is

well posed or correctly fon.ulated. State constraints which are _mattain-

able by the system or which when considered with the performance index

result in constraints on the Lagrange multipliers which are unattainable,

are usually labeled illegitimate constraints° A well posed boundary value

problem must have legitimate constraints which are comparable with the

performance index.

Investigation Procedure

In order to investigate the effects of incorrect problem formulation

on the Method of Adjoint Systems, the following procedure will be used.

(i) A particular dynamical system wili be chosen and n initial

state constraints and the initial and final time will be

specified.

(2) The first necessary conditions will be applied to the system

in order to obtain the boundary value problem, but the

performance index and terminal state constraints will be left

in a general unspecified form°

(3) Various legitimate and illegitimate performance indices and

terminal state constraints will be imposed on the system,

and the boundary value problem will be solved analytically.



34

Effects of the choice of the performance index and terminal

constraints on the analytical solution will be noted in each

case and will be summarized in tabular form.

(4) Using the results of the analytical solution for each case

as the true solution or converged solution, the Method of

Adjoint Systems will be applied to each case, and the results

presented in tabular form.

(5) Using the analytical solution as a basis for comparison,

the effects of correct and/or incorrect problem formulation on

the Method of Adjoint Systems will be discussed.

S__ecific Dxnamical System to be ___a_zed

In order to investigate areas of breakdown in the computational

algorithm of the Method of Adjoint Systems, the following system will be

analyzed.

Xl(t) = u 2(t)

_2(t) = Xl(t) + u(t)

x3(t) : C

The system was chosen for the following reasons:

(1) Analytic solutions for the system are attainable.

(2) The system is such that it is easy to set up optimization

problems which are clearly incorrectly formulated.

(3) The third state variable is uncontrollable, i.e., it is

not linked to the other state variables or the control. The

presence of this variable in the system should in some cases

cause the optimization technique to fail (if, for example:

such a variable is constrained).

(4.1)
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The state variables are x(t), the control variable is u(t), and C

is a constant. It will be noticed that the state variables Xl(t ) and

x2(t) are linked together in the system through the contrel variable.

It is required to minimize the terminal value of the scalar performance

index, G(xf,tf), subject to the terminal constraints, M(xf,tf). It will

be assumed that the initial and final time are known i.e., (tO = 0 sec.,

tf = i sec.)_, it will also be assumed that the initial values of the

state variables are given by

Xl(t0) -- 0

xz(t0) = 0

x3(t 0) = 0

Following the procedure in Chapter II, the state variables and

terminal constraints may be adjoined to the performance index to yield

the following functional quantity. /41 _ u2 - Xl _

I = G(xf,tf) + vTM(xf,tf) +/ [kl kz k3] ,/ xl +.u - jJo [_C - x3

(4.2)

dt (4.3)

Let P and F be defined as

F

G(xf,tf) + vTM(xf,tf) (4.4)

Xl u2 + X2(x 1 + u) + X3C - (XlX 1 + X2x 2 + X3x 3) (4.5)

The variational Hamiltonian, H, for the system is given by
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thus

H = F+ ATx

H = AlU2 + A2(x 1 + u) + A3C

In order that I be a weak relative minimum, the following

(4.6)

conditions must be met at each point along the trajectory.

The Necessary _ondition_ are"

T
1 The Equations of State x = HA

2 The Euler-Lagrange Equations _ = - H_

3 The Optimality Condition H= 0

(4.7)

(4.8)

(4.9)

(4.10)

4 The Legendre-Clebesch Condition H u >0 (positive definite) (4.11)

In this particular problem in which n state constraints are specified

initially and the initial and terminal time are known, the following

conditions must be satisfied at the terminal time.

The Boundary Conditions are:

5 The Terminal Constraints

6 The Transversalitg Conditions

M(xf,tf) = 0

(Px AT)tf dx(tf) -- 0

Equation (4.9) yields the following Euler-Lagrange equations.

[l(t) = -Xz(t )

 z(t) = 0

 3(t)= o

(4.12)

(4.13)

(4.14)

The initial values of the Lagrange multipliers are unknown. Let their

values he given by the following relations.
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_l(t0) = a

_2(t0) = b

x3(t0)= c

(4.15)

where a, b, and c ate arbitrary constants. These constants will be

determined later. With the initial values thus defined, the Euler-Lagrange

equations (Equation (4.14)), may be integrated from to to t to yield

_l(t) = a - bt

_2(t) = b (4.16)

x3(t) = c

The Optimality Condition (Equation (4.10)) yields the control variable as

a function of the Lagrange multipliers given as

I _2 (t)
u(t) = - _ (4.17)

_1 (t)

Substituting the values for _(t) from Equation (4.16) into Equation

(4.17), the control variable may be written as

1 b (4.18)u(t) = - _

The Legendre-Clebesch condition (Equation (4.ii)) requires that

for a weak minimum

Huu : 2}, l(t) : 2(a - bt) >0 (4.19)

Equation (4.19) imposes the following conditions on the initial values

of the Lagrange multipliers a and b.
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a-bt>0

At the initial time, t = 0

(4.20)

a>0 (4.21)

At the final time, t = 1 sec.,

a>b (4.22)

The optimal control may be substituted into Equation (4.1) to

yield the state variables as functions of time. Assuming that b

equal to zero, integration of the state equations yields

Eb 1
Xl(t) = T a---G_-

i bt) lb
x2(t) = $ £n (i _ - Tat

is not

(4.23)

x3(t ) = Ct

If b is equal to zero, integration of the state equations yields

Xl(t) -- 0

Xz(t) = 0

x3(t ) : Ct

(4.24)

The boundary value problem formed by the equations of state and

the Euler-Lagrange equations with boundary conditions given by the

initial values of the state variables (Equation (4.2)), the terminal values

of the state variables (Equation (4.12)), and the terminal values of the
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Lagrange multipliers (Equation (4.13)), may be solved after specification

of the performance index and terminal state constraints. In considering

the following examples of correct and incorrect problem formulation which

occur for various performance indices and terminal constraints, it should

be pointed out that while some of the conditions imposed seem absurd in

this particular problem, in a more complex problem, such conditions might

be _iatentionally i_oscd. The conditions imposed in the followin_ cases

were purposely chosen to illustrate the effects of incorrect problem

formulation and should be considered in this respect.

Analytical Solutions of the Two-Point Boundary Value Problem

Case 1

G(xf,tf) -- xl(tf)

M(xf,tf) = Xl(tf) - K = 0 K = constant

In this case, the performance index is terminally constrained,

which is equivalent to trying to minimize a constant. The scalar P

may be formed as

(4.2s)

(4.26)

P = Xl(t f)(l + _) - _K (4.27)

The transversality conditions (Equation (4.13)) yields

E°l[ (1+_"_1) (0-'_2) (0-'_3) ]tf dxzf

dx3f

= o (4.28)
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For arbitrary values of x2f and x3f , Equations (4.25) and (4.28) yield

the following terminal constraints

Xl(tf) = K

k2(tf) = 0 (4.29)

X3ft f) = 0

From Equations (4.16) and (4.29), two of the initial values of the Lagrange

multipliers are found to be

b = 0 (4.30)

c = 0 (4.31)

Because b is equal to zero, the integrated state equations (Equation

(4.24)) must be used. The equation for xl(t) evaluated at tf, in view of

Equation (4.29),reveals the requirement that the terminal constraint K

be equal to zero. Thus, the terminal state constraints may not be chosen

freely in this case, but must be chosen such that the equations of state

at the final time are satisfied. The problem has terminal constraints

which are unattainable by the system unless Equation (4.26) is

M(xf,tf) = Xl(tf) - 0 = 0 . The transversality conditions yield no

conditions with which a may be evaluated. For b equal to zero, the

Legendre-Clebesch condition simply requires that a be greater than zero.

Thus_ it appears that it is possible to satisfy the necessary conditions

for a minimum performance index for certain choices of Xl(tf) namely

K = 0. But the performance index is a constant and a constant can not be

ml_i,_l.,_l _ .... hl_m " o_*,,_11V nnt an nntimization oroblem, but
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simply a boundaryvalue problem. If xl(t f) equals zero, there is no

performance index in this case. It can be shownthat by considering the

equation of state, Xl = u2(t)' the initial constraints, xl(t 0) = 0 , and

the terminal constraints, xl(t f) = 0, that the problem is not an optimal

control problem. Integration of the state equation from t o to tf

yields tf

xl(tf) - x2(tf) = 0 =ft u2(t) dt

0

It follows that

u(t) = 0 (the trivial solution)

Thus only one control exists which satisfies the initial and terminal

constraints and the concept of a maximum or minimum is meaningless.

Case 2

G(xf,tf) = x l(tf)

M(xf,tf) = x2(tf) K = 0

(4.32)

(4.33)

In this case the performance index and terminal constraints appear

to be legitimate. The scalar P may be formed as

p : xl(tf) + v(x2(tf) - K)
(4.34)

The transversality condition requires that

[(I-X!) (v-X?) (O-Xs)]tf I I

0 (4.35)
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For arbitrary values of Xlf and x2f , Equations (4.33) and (4.35) yield

Xz(tf) = K

_l(tf) = 1

X3(tf) = 0

(4.36)

From Equations (4.16) and (4.36) the following relations are found to exist

(4.37)

(4.38)

between the initial values of the Lagrange multipliers.

b = a-i

c = 0

From Equation (4.33) and the integrated state equation for x2(t) (Equation

(4.23)) the following relationship occurs between the initial values of

the Lagrange multipliers and the terminal value of x2(tf).

i £n(l b 1 b (4.39)
K = 2[ -a ) -2[_

Substitution of Equation (4.37) into Equation (4.39) yields

4K + 1 = £n f±_t+ _i (4.40)
a

The Legendre-Clebesch condition requires that

Xl(t ) = a - a(a - l)t >0, a >0 at to
(4.41)

From Equation (4.40), a may be solved for various values of K. The

following is a short table of values for a corresponding to specific

values of K.
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K

o_

.423

a

0

1

1

2

b

-I

1
---2-

0

1

2

(4.42)

The constraints and the performance index in this case yield an

optimal control given as

1 a 1

u(t) -- --2" ii'-(a - 1) t

The performance index and terminal constraints stipulated in this case are

noted to be legitimate and attainable. It is interesting to note the

dependence of a on b given by Equation (4.37). If a = 1 then b = 0 and

the trivial solution is obtained.

(4.43)

Case 3

G(xf,tf) : Xl(tf) (4.4ai

M(xf,tf) : x3(tf) - K : 0 (4.45)

In this case the variable being terminally constrained is uncontrollable

in the system and P maybe formed as

P : xl(tf) + v(x 3(tf) - K) (4.46)

The transversality conditions require that

. _ o" -tel xz I - "....

"1_o_1
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For arbitrary values of Xlf and x2f , Equations (4.45) and (4.47) yield

x3(tf) = K

kl(tf) = 1

k2(tf) = 0

(4.48)

From Equations (4.16) and (4.48), two of the initial values of Lagrange

multipliers are found to be

b = 0 (4.49)

a = 1 (4.50)

From the integrated state equation (Equation (4.24)) for

seen that

c = K

x3(t) , it is

(4.51)

The Legendre-Clebesch condition in view of Equations (4.49) and (4.50) is

satisfied, _.e.,

Xl(t) = a - bt > O, a > 0 (4.52)

Case 4

G(xf,tf) = x2(tf) (4.53)

M(xf,tf) = Xl(tf) K = 0 (4.54)

In this case the performance index and terminal constraints

appear to be legitimate and P may be formed as

P = x2(tf) + v(xl(tf) - K) (4.55)
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The transversality condition requires that

[&-_l ) (1-_ 23 (0-_33 ]tf [o]dx2f

dx3£

= 0 (4.56)

For arbitrary values of x2f and xsf , Equations (4.54) and (4.56) yield

Xl(tf) : K

Xz(tf) = 1

x3(tf) : 0

(4.57)

From Equations (4.16) and (4.57), two of the initial values of Lagrange

multipliers are found to be

b = 1 (4.58)

c : 0 (4.59)

From the integrated state equation (Equation (4.23)) for Xl(t), and from

Equation (4.54), it is seen that at the final time

1 1 1
K -- T a---r-I" -g (4.60)

Equation (4.60) yields

2 1
a - a - _l[ = 0 (4.61)

This is a quadratic equation in a , and'the value of a depends upon

the constraint K. Equation (4.61) may be solved to yield

1
=a (4.62)
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Equation (4.62) yields two solutions for a. In view of Equation (4.58),

the iegendre-Clebesch condition requires that at the initial time a > 0

and at the final time a > I. The correct solution to Equation (4.62) is

the one which satisfies these conditions. It should be noted that the

terminal constraint K can not be equal to zero.

control is given by

1 1
u(t) = -_ a- t

where a is the solution of Equation (4.62).

For Case 4, the optimal

(4.63)

Case 5

G(xf,tf) : x2(t f)

M(x.f,tf) = Xz(t f) - K = 0

In this case it is noted tha,t the performance index is being

terminally constrained and P may be formed as

(4.64)

(4.65)

P : x 2(tf) + _(x 2(tf) - K)

Application: of the transversality equations yield

['JdXlf

[ (0-Xl) (_-X2) (0-X3) ] t f 0 = 0

dx3f

For arbitrary values of Xlf and x3f , Equations (4.65) and (4.67)

require that

xz(tf) : K

Xl(tf) : 0

^3 _._.F) = 0

(4.66)

(4.67)

(4.68)
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From Equations (4.16) and (4.68), it is seen that

a-b = 0 (4.69)

c = 0 (4.70)

Thus Case S requires that

a b (4.71)

There are no conditions available with which a and b may be

evaluated. The Legendre-Clebesch condition in view of Equation (4.71)

requires that

a(1 - t) > 0 (4.72)

In the prob]em under consideration tf = 1 sec.. Thus it is seen that the

Legendre-Clebesch condition is violated at the final time. Assuming

that a _ 0, the control for this case becomes

1 b 1 1
- (4.73)u = Z Z t

At the final time, division by zero occurs and the control becomes

infinite. From the integrated state equations (Equation (4.23)) for

x2(t), and the constraint equation (Equation (4.65)), it is seen that at

the final time

1 b 1 b (4.74)
K = T_,n (1 - _-) - ga"

If a = b, Equation (4.74) requires that K = -®. Even if the terminal

constraint was so chosen, the violation of the necessary Legendre-Clebesch

.._ --_ _h i_ incorrectly formulated.c_dition at th_ final time yields a pLuL,*.............
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Case 6

G(xf,tf) --x2(tf) (4.75)

M(xf,tf) --x3(tf) - K = 0 (4.76)

It is noted that the uncontrollable state variable, x3(t), is being

terminally constrained and P is formed as

P = x2(tf) + vtx3(tf) - K) (4.77)

Application of the transversality conditions requires that

[(0-hi) (I-_2) (v-X3)]tf _2 : 0

For arbitrary values of Xlf and x2f , Equations (4.76) and (4.78)

yield

(4.78)

x3(tf) = K

Xl(tf) = 0

k2(tf) = 1

(4.79)

From Equations (4.16) and (4.79), two of the initial values of Lagrange

multipliers are found to be

b=l

a=l

(4.80)

(4.81)

The integrated state equation (Equation (4.23)) for x3(t ) and the

terminal constraint equation (Equation (4.76)) require that

c K (4.82)
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As in Case 5, the Legendre-Clebesch condition is violated at the final time,

and the control given by

1 1
u -- -_ _ (4.83)

becomes infinite at tf because of division by zero.

Case 7

G(xf,tf) --x3(tf) (4.84)

M(xf,tf) -- Xl(tf) K = 0 (4.85)

In this case, the uncontrollable state variable is the performance

index. P may be formed as

P = x3(tf) + V(Xl(tf) - K)

The transversality condition requires that at the final time

[°1[ (v-X1) (O-X2) (1-_,3) ] tf dx2f = 0

dx3f]

For arbitrary values of x2f and x3f , Equation (4.87) requires that

(4.85)

(4.87)

xl(tf) = K

k2(tf) = 0

k3(tf) = 1

(4.88)

Equations (4.16) and (4.88) yield the following initial values of the

Lagrange multipliers.

b = 0

c = 1

(4,a_)

(4.90)
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From the terminal state constraint of Equation (4.85) and the integrated

state equations(Equation (4.24))for Xl(t), it is seen that

K = 0 (4.91)

There are no conditions available with which a can be evaluated,

however, in view of Equation (4.89), the Legendre-Clebesch condition requires

that

a > 0 (4.92)

As in Case I, Case 7 is not an optimal control problem because of the

fact that in view of Equation (4.91), K = 0, which requires that Xlf = 0.

The initial value of Xl(t0) given in Equation (4.2) is Xl(t0) = 0.

Thus, the equation of state E1 = u2 may be integrated from tO to tf

to yield

tf

u (t) dt =

It. follows that

u(t) = o

whid_ is the trivial solution.

0
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Case 8

G(xf,tf) -- x3(tf) (4.93)

M(xf,tf) = xz(tf) - K -- 0

In this case, the performance index is an uncontrellable variable.

be formed as

(4.94)

P may

P = x 3(tf) + v(x 2(tf) - K)

The transversality condition requires that at the terminal time

:o
dx3fJ

For arbitrary values of xlfand x3f , Equations (4.94) and (4.96)

yield

(4.95)

(4.96)

xz(t _) - K =

_if = 0

_3f = 1

(4.97)

From Equations (4.16) and (4.97) it is seen that

c : 1 (4.98)

a : b (4.99)

Case 8 is exactly the same as Case S except for the value of c which

does not effect the control.
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Case 9

G(xf,tf) = xs(tf)

M(xf,tf) = x3(t f) - K = 0

In this case the performance index is the uncontrollable variable of

the system and the uncontrollable variable is terminally constrained.

P may he formed as

(4.100)

(4.101)

P = x3(t f) + v(x3(tf) - K)

The transversality conditions require that

[(0-kl) (0-X2) (v-k3)]tf 2 = 0

For arbitrary values of Xlf and x2f , Equations (4.101) and (4.103)

require that

x3(tf) = K

Xl(tf) = 0

_2(tf) = 0

From Equations (4.16) and (4.104)

a = 0

b = 0

The Legendre_Clebesch condition, which requires that a - bt > 0,

is violated at each point in the trajectory. In view of Equations (4.105)

and (4.106), the control equation yields zero divided by zero which is

meaningless.

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)
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The results of the preceding nine cases are su_arized in

tabular form in Table 1.
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Solution by the Method of Ad_0int Systems

The solution of the two-point boundary value problem by the Method

of Adjoint System will be considered for the nine cases of performance

indices and terminal constraints considered in the preceding section.

The improved guess of the initial values of the Lagrange multipliers is

found by adding a _x (t0) i to the guessed value of x(t0) i. For the problem

under consideration, the 6X(t0) are found from Equation (3.47) in which

the final time is known and n initial state constraints are specified. The

relation is given by

_x (to) eT(t0 )-1 *= [dh(tf) ] (4.107)

Let the guessed values of the x(t0) be denoted by a , b , and c .

Thus Equation (4.107) becomes

= 0T(t0)'l[-kb*(tf) ] (4.108)

It was shown in Chapter III that 0(t)

equation (Equation (3.33)) which is

was the solution of the 2nxn matrix

In the problem under consideration n = 3, thus 0(t) is a 6x3 matrix,

- AT(t) is a 6x6 matrix, and h is the terminal constraints specified on

the state variables and found from the transversality conditions on the

Lagrange multipliers.

T

_(t) - AT(t) 0(t), 0(tf) = a_t (4.109)

f
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In the particular problem under consideration, the -AT(t)

is given by

matrix

-AT(t) =

0 -1 0 I 0 0 0
I

0 0 0 J 0 0 0
I

i
0 0 0 j 0 0 0

t

- , -_- ..................

1 z5 1 z5

o
I z5 i I

-_---Z Y _4 0
z4

0 0 0

0 0 0

1 0 0

0 0 0
u

(4.110)

where z4(t) = a - bt

Zs(t ) = b

z6(t) = c

Equation (4.109) becomes

m

011 012 013
• • •

t • •

061 062 063
B

e(tf)

m

ahI

_h.
I

az6

ah 2

az 1

az 6

ell

e61

ah 3

az 1

az 6

012

062

013

e63

, (4.111)
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Equation (4.111) yields the following eighteen first order nonlinear ordinary

differential equations.

_ll(t) = -ez1(t)

_12(t) ---ezz(t)

_13 - -ezs(t)

021(t) : 0

o22(t) -- 0

o23(t) = 0

_31(t) = o

§32(t) = o

_33(t) = o

1
B41{t} =

1
o42(t) =

,1
o43(t) =

b 2 1 b

(a_bt)5 °ll(t)- _ (a_bt)2 °21(t)

b 2 1 b

(a-bt) 3 O12(t) _r .(a,-bt)2 o22(t)

b 2 1 b

(a_bt)3 O13{t) Z (a_bt)2 032(t)

1
051 = 2"

1
_s2 = 2-

1
_s3 = Z

o61(t) = 0

o62(t) : 0

o63(t) = 0

b Oll't't) + I i2 _ a-bt
(a-bt)

b

(a-bt)

b

(a-bt) 2

021(t) + 041(t)

1 1
2 °12(t). + _ a-bt o22(t) + o42(t)

i I (t) +Ol3(t) + _ _ 032 843(t)
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These eighteen differential equations are ntmerically integrated from

tf = 1 sec. to to = 0 sec. in the Method of Adjoint Systems to form

the eT(t0 ) -- [eT(t0)! exT(t011 required in Equation (4.107) to obtain

abetter guess of a , b , and c .

The integration will be performed ana1)rtically in this section.

It will be assumed that the values of a , b , and c have been guessed

sufficiently close to the true values _nd have, after a number of iterations,

converged to the true values of a, b, and c given in Table 1. It will be

assumed that the values of a, b, and c obtained by the analytic solution

to the two-point boundary value problem are the true values.
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Case 1

b = 0

c - 0

a > 0

From Equation (4.30)

From Equation (4.51)

From Legendre's Condition

(4.112)

From Equation (4.29)

The partial derivatives of h

h 1 - Xl(tf) - K = Zlf - K = 0

h 2 = X2(tf) - 0 = zsf - 0 = 0

h3 = 13(tf) - 0 = z6f - 0 = 0

may be formed to yield O(tf) as

e(tf) :

m

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 1

(4.113)

(4.114)

The quantity e(tf) is used as the boundary condition withwhich the

eighteen differential equations (Equation (4.111)) are integrated from

tf to t o . The values of a, b, and c from Equation (4.112) are used

as converged values of the Lagrange multipliers. The integration of the

differential equations yields the following value of 0(t0).

o(t o) :

m u

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

¢% #%

m U %3 _A

(4.115)
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It is noted that e (tf) is the same as e (t O) due to the fact that b = O.

Thus, it is seen that

eT(t0) -- 0 1
0 0

(4.116)

T
The converged value of e_(to) is singular and can not be inverted in

Equation [4.108). Thus,the Method of Adjoint Systems fails for Case I

in which the performance index is terminally constrained.

Case 2

b = a - 1 From Equation (4.37)

c = 0 From Equation (4.38)

4K + 1 = _n (1) + la Equation (4'.40)

From Equation (4.36), h may be formed as

(4.117)

hI = x2f - K = z2f - K = 0

h2 = Xlf - 1 = z4f - 1 = 0

h3 = X3f - 0 = z6f - 0 = 0

(4.118)

From Equation (4.118), e(tf) may be shown to be

e (tf)

0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

(4.119)
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Integration of Equation (4.111) yields

o(t o)

1 0 0

1 0 0

0 0 0

a I 1 0

a 2 -1 0
n ¢_ 1

l u v

(4.120)

where a 1 and a 2 are given as

1 1 1 1

al = 4a--_2- + -2--_ - -$_" - "_"

1

(a-b) 2

1 1

i i _2_ I aa2 - a -'2 "+ +7r5"-_" + _n(a)

1 1 _ 1 a-a-:F -_+ + _-'_- + _n(a-b)
1 1

+ •.,

T(
ox,to) may be formed as

exT(to )
I a a 2 0 1

1 -1 0

0 0 1

that

0_(t 0) is nonsingular and my be inverted, however, if a = 1

b = 0, then 0_(t 0) becomes singular and the Method of Adjoint

(4.121)

SO

Systems fails.
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Case 3

b--O

a=l

c-K

From Equation (4.49)

From Equation (4.50)

From Equation (4.51)

(4.122)

From Equation (4.48) h becomes

h I = x3f - K = z3f K = 0

h2 = _If - 1 = z4f - 1 = 0

h3 = _2f - 0 = z5f - 0 = 0

From Equation (4.123)

o =

m

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

and integration of the Equation (4.111) yields

O(t O)

m

0 0 0

0 0 0

1 0 0

0 1 0

0 -1 1

0 0 0

ATrt-_ is seen to be
vh "-O"

(4.123)

(4.124)

(4.125)
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sT(to ) = (4.126)
1

Due to the fact that b -- 0, oT(t0 ) is singular and the Method of Adjoint

Systems fails for Case 3 in which the uncontrollable variable is constrained.

Case 4

b=l

c=O

½ 1a= *_ 41+( _T )

From Equation (4. S8)

From Equation (4.59)

From Equation (4.62)

(4.127)

h , given by Equation (4.57), is

hI = Xlf - K = Zlf K = 0

h2 = x2f - 1 = zsf 1 = 0 (4.128)

h3 = x3f - 0 = z6f - 0 = 0

The matrix of partial derivatives,

e (tf)

m

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 1

o(tf), is formed as

(4.129)

and integration of Equation (4.111) yields that the initial time
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o(t o)

m

1 0 0

0 0 0

0 0 0

1 1
_[-z z ]

a (a-b)

0 0

1 1 b
w=_÷ + 1 0

4(a-b) 4(a-b) z

0 0 1

(4.13o)

From Equation (4.130) eT(t0 ) may be formed as

exT(t0 )

1 1 ) ( ._a+ 1 b
_(a-2" (a.b)" 2" _'=b-'j -+ _ )4(a-b) 2

0 1 0

0 0 1

(4.131)

oT(t0 ) is not singular due to the fact that b = 1 and the a, given

by Equation (4.62),satisfies Legendre's condition. Thus, 0T(t0 ) may be

inverted and the Method of Adjoint Systems does not fail for Case 4.
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Case 5

a=b

c=O

h may be formed as

From Equation (4.69)

From Equation (4.70)
(4.132)

hI = x2f - K _ z2f - K = 0

h2 = Xlf 0 = z4f - 0 = 0

h3 = X3f - 0 = z6f - 0 = 0

and e(tf) is given by

e (tf) =

0

0

0

0 0 0

1 0 0

0 0 0

1 0

0 0

0 1

The integration of Equation (4.111) yields a

the fact that a = b, will have elements a 1

infinity at the converged values of a

-- m

1 0 0

1 0 0

0 0 0

a 1 1 0

a 2 -1 0

0 0 1

O(to) =

(4.133)

(4.134)

O(t O) matrix which because of

and a 2 which approach

and b. The matrix is found to be

(4.135)
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From Equation (4.135) 0T(t0 ) may be formed as

[ ]a 1 a 2 0

e_(t O) = 1 -1 0

0 0 1

(4.136)

Because of the fact that elements a 1 and a 2 approach infinity,

e_(t 0) matrix is ill-behaved and the Method of Adjoint Systems willthe

fail at the converged values of a and b.

Case 6

b= 1

a=l

c=K

h is given by

hI = x3f - K = z3f - K = 0

h 2 = Xlf - 0 = z4f - 0 = 0

h3 = >'2f - 1 = Zsf - 1 = 0

The O(tf) matrix may be formed as

0 0 0

0 0 0

_1_.... 0_.... 0__
e(tf) =

0 1 0

0 0 1

0 0 0

From Equation (4.80)

From Equation (4.81)

From Equation (4.82)

(4.137)

(4.138)

(4.139)
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Integration of Equation (4.111) yields a 0(t0) matrix given as

e(t O)

h

0 0 0

0 0 0

1 0 0

0 1 0

0 -i 1

0 0 0

The oT(to) matrix is seen to be

i

eT(to ) =

0 0 0

1 -i 0

0 0 1

The matrix is singular and the Method of Adjoint Systems fails.

(4.140)

(4.141)

Case 7

b=O

¢=1

a>O

From Equation (4.88),

hI = Xlf - K = Zlf - K = 0

h2 = X2f - 0 = Zsf - 0 = 0

h3 = X3f - 1 = z6f - 1 = 0

_-,,,v8"* _ ,,_,..'"+'¢v...rosy he formed as_f_ .....

From Equation (4.89)

From Equation (4.90)

From Equation (4.92)

(4.142)

(4.143)
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e(tf)

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0
m

Due to the fact that b = O, e(t O) = e(tf).

0 0 o

0 1 0

o o 1

e_(to) =

Thus, 8_[t0) is given by

The Method of Adjoint Systems fails in this case because 8T(to ) is a

(4.144)

singular matrix.

(4.145)

Case 8

a=b

c=l

From Equation (4.98)

From Equation (4.99)

From Equation (4.97) it is seen that h is given by

hI = x2f - K = z2f K = 0

h2 = Xlf - 0 = z4f - 0 = 0

h 3 = X3f - 1 = z6f - 1 = 0

(4.146)

(4.147)
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The o(tf)

e (tf)

matrix may be formed as

0 0 0

1 o o

0 0 0

0 1 0

0 0 0

0 0 1

Integration of Equation (4.111) yields

e(t 0)

1 0 0

1 0 0

0 0 0

aI 1 0

a2 -i 0

0 0 1

(4.148)

(4.149)

T
This

case is exactly the same as Case S and the o_(t 0)
matrix will have

elements aI and a2 which approach infinity at the converged values

of a and b. Thus the Method of Adjoint Systems fails because the matrix

contains unbounded elements.

Case 9

a=0

b=0

From Equation (4.105)

From Equation (4.106)

(4.150)

In this case Equation (4.111) can not be integrated because the -AT(t) matrix,

given by Equation (4.110),contains elements which involve zero divided by zero.

1--neresults of the ..... ;'-- n_ne _.v, p,-_ui,_ cases o_ s,,_-_...arizedin t_hular

form in Table 2.
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Discussion of Results

In considering the particular dynamical system and the nine cases

of performance indices and terminal constraints, two modes of breakdown

in the Method of Adjoint Systems have become apparent. The first occurred

when the sT(t0 ) matrix was singular and the second occurred when this

matrix contained elements which became infinite at the converged initial

values of the Lagrange multipliers. In Table II it is observed that the

sT(t0 ) matrix became singular in each case when b = 0. In the cases in

which b = 0, an examination of the analytical solutions reveals that the

performance index and terminal constraints resulted in transversality

conditions which led to the trivial solution of the problem. In the Method

of Adjoint Systems, the trivial solution leads to a singularity of the

sT(t0 ) matrix. Thus the Method of Adjoint Systems fails. It should be

noted that the trivial solution was obtained only in those cases in which

the optimization problem was incorrectly formulated.

It was observed that the sT(t0 ) matrix had elements which became

infinite when a = b, with the exception of Case 6. In the cases in which

a = b, the analytical solutions reveal that the performance index and ter-

minal constraints allowed transversality conditions which cause the

Legendre-Clebesch condition be violated at some time in the interval

[t0,tf]. In this particular example, when a = b the matrix of partial

derivatives, A(t), had elements which became infinite.

Of the nine cases of performance indices and terminal constraints

considered, only Cases 2 and 4 yielded two-point boundary value problems

which could be solved by the Method of Adjoint Systems. An examination

T

of the 8_(t0) matrix for these cases reveals that b_-%Iessthe initial
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values of the Lagrange _ultipliers were chosen carefully, the Method of

Adjoint Systems could fail to solve the boundary value problem. The

effects of the initial choice of the Lagrange multipliers on the Method

of Adjoint Systems will be considered in more detail in the following

section.

Effects of the Initial Choice of the Lagrange Multipliers on the Method

of Adjoint Systems

In developing the Method of Adjoint Systems, it was assumed that the

initial values of the z (to) variables could be guessed sufficiently

close to the true values so that the difference between the true and nominal

trajectories was small. With this assumption it was possible to consider

only linear perturbations about the nominal trajectory. The subsequent

development of the Method of Adjoint Systems depended upon the validity

of this assumption. If this assumption is not valid, then all of the

development leading to the computational algorithm is in error, and the

convergence properties of the method are destroyed.

A review of the literature reveals a lack of information concerning

how the initial unknown z (tO) are to be chosen. Apparently experience

in using the method and knowledge of the problem are the best tools with

which to make the choice.

In Ref. 4 it is pointed out that it is often quite difficult to

get a first trial solution to the problem where the person using the

method has had little previous experience. It is suggested that in some

cases a gradient method may have to be used in order to obtain beginning

estimates of thc missing bo,_m_daryconditions. In Ref. 3 it is pointed
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out that while gradient methods often yield control programs which

bear little resemblance to the true optimal control programs, they converge

nicely on the end conditions. In Ref. 10 it is stated that the Steepest-

Ascent Method, after only a few iterations, provides initial values of

,

the unknown z (to) variables which are well within the convergence

envelope of the Method of Adjoint Systems.

While the convergence characteristics of the Method of Adjoint

Systems may be destroyed if the initial values of the unknown variables

can not be guessed sufficiently close to the true values, this in itself

does not constitute a breakdown. The method, while possibly unable to

converge, will not fail due to division by zero or some other illegiti-

mate operation. A person, inexperienced in the use of the Method of

Adjoint Systems, may mistake the inability of the method to converge

for a breakdown.

,

While some choices of the unknown initial values of the z (to)

variables may destroy the convergence properties of the Method of Adjoint

Systems, other choices may actually cause a breakdown in the method when

applied to a legitimate problem. For example, it was found that Case 4

was a legitimate boundary value problem and could be solved by the Method

Systems. The O,T(to)^ matrix of Case 4 was found to beof Adj oint

where

T
ex(tO) =

b=l

w

__ 1 1 ) (____1 . 1__+ b ) 0
( a-2- (a-b)_ 4a 4(a-b) 4(a-b) 2

0 1 0

0 0 I
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If the terminal constraint, K, had been chosen as K = 1 then

b = 1.000, and a = 1.015. Had b been chosen to be zero, the exT(to )

matrix would have been singular, or had a been chosen to equal 1.000,

division by zero would have occurred. In each case, the Method of

Adjoint Systems would have failed for the legitimate problem due to the

choices of the initial values of the Lagrange multipliers and the failure

would have resembled that for an incorrectly formulated or i]legitimate

problem. Had the problem been more complex, an inexperienced user of the

Method of Adjoint Systems would have possibly concluded that the problem

was incorrectly formulated.

In this chapter the effects of incorrect problem formulation on

the Method of Adjoint Systems have been explored briefly and it has been

shown that in certain cases the method will fail, however, failure in the

Method of Adjoint Systems may occur due to other reasons. In Chapter V

the effects of a conjugate point in the trajectory will be investigated

with the purpose of determining the effects on the Method of Adjoint

Systems.



{HAP'rER V

THE CONJUGATE POINT: EFFECTS ON THE OPTIMAL TRAJECTORY

In the previous chapters dealing with the development and application

of the Method of Adjoint Systems, it was assumed that the First Necessary

Conditions for an extremum and the Legendre-Clebesch Condition for a weak

relative minimum could be used to determine the trajectory which caused

the performance index to be a weak minimum in the interval of interest.

While these conditions are necessary, they are not sufficient.

In many problems these conditions, when used with engineering judg-

ment and knowledge of the problem, are enough to determine the nature of the

extremum. This is not always the case. An example is when the trajectory

contains a conjugate point.

The classical problem illustrating the conjugate point is that of

determining the shortest distance (geodesics) between points on a sphere.

The classical development leads to the requirement that the second variation

of the functional I (See Appendix B) be positive in order to insure that

the trajectory contains no conjugate point.

In the simple problem of determining the geodesics on a sphere, it is

easy to pick the minimum path without requiring that the second variation

be positive. However, in complex, multi-variable trajectory optimization

problems, the first necessary conditions and knowledge of the problem may

not be enough to determine whether or not the trajectory leads to a mini-

mum or whether or not a conjugate point exists in the trajectory. Very

little is known about the effects of a conjugate point on the solution

to the optimization problem by a numerical technique. The remainder of

75
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this chapter will be devoted to consideration of various aspects of the

conjugate point condition with the purpose of establishing the effects

on the Method of Adjoint Systems.

The Sufficienc 7 Conditions for a Weak Minimum

The sufficiency conditions for the functional I to take on a weak

minimum value throughout the time interval to! t < tf are:

!

(I) d I = 0 (5.1)

The vanishing of the first variation yields the Euler-Lagrange

equations and transversality conditions.

I!

(2) d I>0 (5.2)

The requirement that the second variation is positive.

The conditions which result are to be developed.

If (1) is satisfied, the trajectory is an extremum. If (1) and

(2) are satisfied, the trajectory is a weak local minimum.

The second variation of the functional I is developed in Appendix

B for the case in which all of the initial values of the state variables

and the initial time are known. The second variation results in the

following equation.

I!

2d I

tf
P

= K +I [6xT Hxx 6x + _xT H 6u +

to

+ _uT Hux _x + 6uTHuu 6u] dt > 0

(s.3)

where K is a function of the terminal conditions. In order to keep the

analysis simple_ only fixed final time problems will be cor_idered. For

fixed final time problems, the value of K (in this case) is given by
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K = dxT Pxx &xItf • Thus Equation (5.3) may be expressed as

tf
t"

2d"
I = dxT Pxx dxlt f +..I [_xTHxx 6x +

to

_xT Hxu 6u + 6uT Hux 6x + 6uT Huu 6u] dt > 0

(s.4)

In order to insure that the inequality of Equation (5.4) is satisfied for

all 6x and 6u in [t0,tf] , it would be convenient to express the

quantity under the integral in a quadratic form which contains terms

involving products of 6x and 6u only. The reason for this will be

seen later. In order to achieve the desired quadratic form, it is

convenient to introduce a new variable W(t) where W(t) is an nxn

synmetric matrix. The following equation may be written for the variable

W(t) (Ref. 11).

tf

t fZ f _t_d (6xTw(t)6x) dt = 0 (S 5)
-6x W(t)_xJt 0'

t o

For fixed final time problems, the variation of x(t) outside the integral

of Equation (5.5) becomes dx (See Appendix A, Equation (A.8)). Thus,

for the case under consideration i.e., fixed final time, in which all of

the initial values of the state variables are known, Equation (5.5) becomes

.tf

-aJw(t)axltf+Ito ( xTw x)dt = 0 (5.6)

Addition of Equations (5.4) and (5.6) yields

2d"I = dxT (Pxx-W) _Ixlt0 + [ (6xTW6x) +

t o (s.?)
+ _xT Hxx_X+ _xT Hxu_U + 6uT Hux_X + _uT .uu_Ul dt
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Considering linear perturbations in the differential equations of state,

(Equation (2.Z4)) it is seen that

In examining Equation (5.6), it is noted that

(s.s)

d T
6_Tw 6xT_ 6xTw 6_(_x'w6x)= 6x+ _x+ (s.9)

In view of Equation (5.8), Equatlon (5.9) may be written as

d (6xTw 6x) = 6xT(HxxW) 6x + _uT (HuxW) 6x +_Y

+ 6xT(_/) 6x + 6xTcw HXx) _x + 6xT(w HXu) 6u

or

_t (_xTw_x)= 6xT0_ + Hx_W+ W H_x)_x+

+ _xT(WHxu)6u+ 6uT(HukW)8x

(5.i0)

Substitution of Equation (5.10) into Equation (5.7) yields

" dxT(Pxx_W)dx! + --Itf[6xT(_ + HxxW +
2d I = tf

J
to

+ W Hxx + Hxx) 6x + 6xT (WHku + Hxu) 6u + (5.11)

+ 6uT (Hux + HukW ) 6x + 6uT (Huu) 6u] dt



79

Defining the following quantities as

a = W + Hx_ W + W Hlx + Hxx

B = WH_u + Hxu

d: w+Hu,
y = H

UU

(5.12)

(5.13)

(5.14)

(5.15)

Fquation (5.11) becomes

tf

2d"I = dxT(Pxx-W ) dxltf + f [ _xTa 6x +

to
6xYB6u + _uTBT_x+ 6uTx 6u] dt

(5.16)

In order to assure that the quantity under the integral of Equation

(5.16) is always greater than zero, it would be desirable to express

it in the form of a dot product which separates _x and 6u, i.e.,

(¢_x + _u) T (¢_x + _6u) where ¢ is an mxn matrix, and _ is an

nxn matrix. All that remains is to determine the conditions which must

be satisfied in order that this can be done. These conditions may be

determined by requiring that

Noting that

(¢),Sx + _06u) T (¢)ax + _o6u) .=

_uT_oT¢) 6x + _uT_0T¢ 6u

= 6xTa _x + _xT8 _u +

6xT_T_ _x + _xT_T$ _u +

(5.17)

(5.18)
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and equating terms with like coefficients in Equations (5.17) and (5.18),

the following equations are obtained.

a = ¢T¢, (5.19)

B _ ¢r, (s.2o)

sT = ,T_ (5.21)

_- ,T, (s.22)

From Equations (5.15) and (5.22) it is noted that ¢ is of full rank

because Huu is of full rank. Thus Equation (5.22) may be inverted to

obtain

-i -I -I ,_T-IY = [,T¢] = _ (5.23)

-1
Postmultiplying Equation (5.20) by y yields

By-1 __- cT _¢-1 ,T-1 = cT $T-1 (5.24)

Postmultiplying Equation (5.24) by 8T yields

8y-i 8T = cT CT-I ¢T@ = ¢T¢ (s.zs)

From Equations (5.19) and (5.25) the following equation may be formed.

a = 8y-i 82' (5.26)

Equation (5.26) represents the conditions which must be satisfied

in order to express the terms under the integral of Equation (5.16) in the

form of a positive scalar quantity. From Equation (5.26) and the

definitions of a, 8, and _ in Squations (5.12) through (5.15), the

£oll_wing equation results
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I_(t) : (-H_ + Hxu Huu -I HuX ) W(t) +

+ W(t) (-H_x + H_u Hu-1 Hux) + W(Hxu Huu-1 HuX) iV

-I
+ H Huu Hu ) (S.ZT)+ (-Hxx xu

In view of the definitions following Equation (3.13), Equation (5.27) may

be written as

= -W _1 + AZZW -W A12W + A21 (S.28)

Equation (5.28! is referred to in the literature as the Matrix

Riccati Equation. If Equation (5.28) holds true in the interval Of

interest, it is possible to express Equation (5.16) in the following form

tfI"

+ I (6xTcT + _uT_T) I (¢_x + @6u)] dt2d"I = dx T (Pxx-W) dxJt f
I#t 0

(5.29)

Consider the terms under the integral.

the terms under the integral become

Noting that _-1 = I

(6x]¢T + _T@T)¢T-1 cT¢#-I (¢6x + #_u) (s.3o)

01_

(axTcT$ T-1 + auT)$T_ (_-1@ 6x + au) (5.31)

But from Equations (5.22) and (5.24),
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_-i_ = -i 8T

Thus, Equation (5.31) becomes

T -1 T... (y-1 .T
[6x" _y - + 0u ) "uu _ _x + _u)

(5._2)

or

(-z 8T_x+ 6u)THuu(_-z J _x+ 6u)

T Huu¢ thus Equation (5.29)Now Equation (5.33) is of the form e

becomes

tfP

" + { eTHuue dtz di -- dxT (Pxx-W)_ltf
0

By requiring that

(5.33)

(5.3a)

drx (p=-w)dxlt f o (5.35)

it is seen that in order that the second variation of Equation (5.34) be

greater than zero, it is necessary that for any arbitrary vector ¢,

T (5.36)
¢ Huu e> 0

The requirement that Hut, be positive definite is a necessary
I | ||

condition in order that 2d I > 0, The conditions under which 2d I • 0,

are that Equation (5.36) hold true in the interval of interest which

is equivalent to requiring that the solution of the Matrix Riccati

Equation (Equation (5.28)) be finite in the interval of interest.



83

The Matrix Riccati Equation and the Conjugate Point

If at any point in the interval [t0,tf], W(t), the solution to the

Riccati Equation should become infinite, the matrix identity

= Sy-I 8T, i.e.,(Equation (5.26_) can not be maintained and the integral

expression of the second variation of I can not be expressed in the form

T
¢ Huuc. This is equivalent to saying that if W(t) becomes infinite,

I!

2d I , 0 c_n not be m_intained. The point at which W(t) becomes infinite

is referred to as a conjugate point (Ref. 12).

The Solution of the Matrix Riccati Equation

The Matrix Riccati Equation may be solved by reducing it to two

linear matrix equations. The boundary conditions on the Riccati Equation

are given by Equation (5.55) as

w(tf) = (Pxx)tf

The Riccati Equation (Equation (5.28))

= -W (All + AI2W) + AzzW+ A21

A system of equations adjoint to Equation

= N (All + AI2W) T

The transpose of Equation (5.59) is

_T = (All + Alzm NT

may be written as

(5.38) may be defined as

(5.37)

(5.38)

(5.39)

(5.40)
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Postmultiplying Equation (5.58) by NT, premultiplying Equation (5.40) by

W and adding the resulting equations yields

ON T + W_ T = A22 W NT + A21NT

d = @NTNoting that _- (WNT) + W_T , Equation (5.41) becomes

(.5.41)

c1_d(wNT_, -- A_W_, N? + A21 NT (5.42)

A new variable TT may be defined as

?T _- WN? (5.43)

so that Equation (5.42) maybe written as

_T = A21 NT + A22 TT (s.44)

Equations (5.40) and (5.44) may be combined to form

I

I AIAll , 2
I
I

I

A21 Ii A22
l

I

NT

T T

ACt)

D

NT

..... (5.45)

TT
D

NT

where A(t) is a 2nx2n matrix,and is a 2nm_ matrix.
T-

In view of Equations (5.37) and (5.43), the following relations

may be defined at the terminal time
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where I is the nxn

may be partitioned as

identity matrix. Equations (5.46) and (5.47)

(5.46)

(5.4?)

(5.48)

With Equation (5.48) as boundary conditions, Equation (5.45) may be

integrated from tf to t to obtain TT(t) and NT(t).

From Equation (5.43) if NT(t) is a nonsingular matrix, W(t)

given by

is

W(t) : TT(t) NT-l(t) (5.49)

Thus, the requirement that W(t) be finite in the interval of interest

may be replaced by the requirement that NT(t) be nonsingular and TT(t)

be finite in [t0,tf]. If NT(t) should become singular or TT(t)

become infinite, a conjugate point has been reached.

Effects of a Conjugate Point on the Guidance Optimization Problem

In much of the control literature, the conjugate point and its

effects upon optimal control are discussed in connection with the solution

to the guidance optimization problem. In Chapter I it was mentioned that

many of the results derived in connection with the trajectory optimization

problem are directly applicable to the s_._v-'<_-_ opt_miv...... zation urobiem..
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In the guidance optimization problem, it is required to construct

some type of correction procedure by which the nominal control program

is automatically corrected to produce an optimal control for small pertur-

bations in the initial and/or terminal state. This is usually accomp-

lished by a feed-back control system. In many guidance optimization

schemes such as the ones presented in References (4) and (13), it is

assumed that the changes in the boundary conditions are small and thus

only small changes are required in the nominal control to preserve opti-

mality. With this assumption the small deviations in the state are

given by

6x = x(t) - x (t) (S.50)

where x(t) is the true state and x (t) is the nominal state. The small

deviations in the control resulting from the small deviations in the

nominal control program are given as

 u(t) = u(t) - u (t) (S.Sl)

Linear perturbations in the state variables and Lagrange n_alti-

pliers result in the following linear differential equations developed

in Chapter III, i.e., Equation (3.14).

If linear perturbations are considered in the optimality condition, i.e.,

Equation (2.26), the results are
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-- ÷ ÷ -- o

or

_u(t) * - Huul [ Hux 6x + Huh 6X] (5.54)

In the guidance optimization problem, it is required to determine _u(t)

as a function of 6x(t). This is done in References (4) and (13) by

considering the second variation of I. The procedure is quite lengthy

and will not be repeated here. However, the same results may be

obtained by a simpler approach.

It can be shown (Ref. 14) that 6x(t) and a_(t) are related

by the expression

6X(t) = g(t) 6x(t) (5.55)

The conditions for which Equation (5.55) is valid are found to be

T
k : -FAll - All K - KAI2 K + A21 (5.56)

Noting that A22 : - All , it is seen that Equation (5.56) is the Matrix

Riccati Equation. A full second variation approach to the problem as

presented in Ref. 13 would have revealed that for fixed final time

problems, the terminal value of K(tf) is (Pxx)tf. Thus, it is possible

to relate small perturbations in the contrel to small perturbations in

the state by substituting Equation (5.55) into Equation (5.54) i.e.,

au(t) : - Huu 1 [ Hux * Flux K(t) ] ax(t) (5.57)
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It was shown in the previous section that the solution to the Riccati

Equation was given by

(s.s8)

where TT(t) and NT(t) are the solutions to EquatiDn (5.45).

Equations (5.57) and _o'_.o_c°_

From

(s.sg)

The solution to the guidance aptimization problem in view of Equations

(S.50), (5.51_ and (5.59) is given as

-I x*
u(t) = u*(t) - Huul [ Hux + HuX TTct) NT(t) ] (x(t) - (t))

(s.6o)

It is stated in References (4), (7), (12), and (13) that if the nominal

trajectory x (t) is not optimal but contains a conjugate point at

t = tc, then the solution to the Riccati Equation, W(t), becomes

unbounded at t - t c . The feed-back aspects of the linear guidance

optimization scheme are seen by defining

v(_) -- .A_ t _ +%_TT(_)NT(_I (S.61)

where V(t) is the feed-back g_in. If a conjugate point occurs, V(t)

becomes infinite and is not physically attainable.
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Thus, if the trajectory contains a conjugate point, it is

impossible to construct a linear guidance scheme relating _u and _x

and the guidance optimization problem can not be solved.

Through the second variation and the subsequent development of

the solution to the guidance optimization problem, the relationships

between the conjugate point, the Riccati variable, and the linear guidance

scheme have been established. The _aidance optimization problem may

be solved only after the trajectory optimization problem has been solved

and the existence of a conjugate point in the trajectory can be detected

if the solution to the Matrix Riccati Equation becomes infinite in the

interval of interest. However, it would be desirable to detect a conju-

gate point, if it existed, before the guidance scheme is constructed.

It would be quite costly in terms of engineering man-hours and computer

time to solve the trajectory optimization problem and construct a linear

guidance scheme only to discover that the trajectory contains a conjugate

point.

By considering the sufficiency conditions for a weak minimum

and the subsequent development of the relationship between the Matrix

Riccati Equation and the conjugate point, mathematical relationships

have been established which indicate a possible connection between the

existence of a conjugate point in the trajectory and a breakdown in the

Method of Adjoint Systems. This will be investigated in the following

section.
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Effects of a Conjugate Point on the Method of Adjoint Systems

In the Method of Adjoint Systems, it is required to integrate

Equation (3.31), i.e.,

01(t)

01(tf) = ah

02 (tf) tf

el(t)

e2(t)

in order to improve the initial guessed values of the unknown z(t0)

variables. The dissatisfaction in the terminal boundary conditions is

given by Equation (3.32), which for fixed final time problems becomes

65.62)

dh(tf) = 0T(t) *z(t)

or

dh(tf)

If oT(t)

variation

(s.63)

= O_(t) 6zl(t ) + O_(t) _z2(t) (5.64)

is nonsingular, Equation (5.64) may be solved for the unknown

*z2(t ) as

T-1
_z2(t ) = O2(t ) [ dh(tf) oT(t) *Zl(t) ] (S.6S)
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Equation (5.64) is evaluated at the initial time in the Method of Adjoint

Systems because it is required to determine 6z2(t0) , but it holds

true at any time in the interval [t0,tf] .

It was found that the Matrix Riccati Equation (Equation (5.28))

could be solved by reducing it to two linear systems of differential

equations (Equation (5.45)) with boundary conditions for fixed final time

problems given by Equation (5.43). These equations are

.... = A(t) - --

iT(t) IT(t) J

IN'I[' ]wW(tf)
tf

(5.66)

It is noted that Equation (5.62) is adjoint to Equation (5.66).

From the properties of the adjoint systems developed in Chapter III, it

is seen that

= o (5.67)

Equation (5.67) may be integrated from tf to t to yield



92

t 01ct i 1 T(tf)

= [ eI(tf) i oT(tf) l [TT(tf)J

(5.68)

or

tf tf

(5.69)

where JCtf) is an nxn constant matrix. Assuming that NT(t) is

nonsingular, Equation (5.69) may be postmultiplied by NT(t) 1 to yield

0_(t) TT(t) NTcti I = J(tf)NT(ti I 0Z(t) (5.70)

Assuming that 0T(t) is nonsingular, Equation (5.70) may be solved for

TT(t) NT(t} to yield

T -1 -1
TT(t) NTilt) = 02(t ) [ J(tf)NTct) - 0T(t) ] (5.71)

T
If it is assumed that [ J(tf) N ( ) - 01(t) ] is nonsingular,

-1

Equation (5.71) may be solved for 02T(t) to yield

-1 -1

oTilt) -- TT(t) NTilt) [ J(tf)NT(t) oT(t) ] (5.72)

Now the Method of Adjoint Systems requires that 0T(t) be inverted

at t o in Equation (5._v._. .at._ t0, Eouation. (5.72) becomes
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-i -i -I -I

oT(t0 ) = TT(t0 ) NT(t0) [ J(tf) NX(t0 ) - oT(t0 ) ] (s.73)

In examining Equation (5.73), it is seen that if TT(t0 )

NT (to)

time and

to fai I.

is infinite or

is singular at t 0, a conjugate point will exist at the initial

e_(t0) will be singular causing the Method of Adjoint Systems

If a coniugate point does not exist at the initial time, but the

problem is incorrectly formulated, it was found in Chapter IV that in some

cases e_(t0) was singular. From Equation (5.73) it is noted that the only

in which eT(t0). can be singular if no conjugate points exists is forway
-1

[ J (tf) NT(t0 ) - eT(t0 ) ] to be singular. Thus, it is highly probable

T-1
that a singularity in [ J(tf) N (to) eT(t0 ) ] can be attributed to

to incorrect problem formulation.

The Method of Adjoint Systems is an iterative process and will yield

the nominal trajectory for correctly formulated problems when the dis-

satisfaction in the terminal boundary conditions has been driven to zero.

If eT(t0 ) should become singular before the optimal trajectory has been

obtained, it is not known at this time what this would indicate. If this

condition occurs, however, the Method of Adjoint Systems fails. It is

clear that more investigation is needed in order to fully understand

all possible breakdowns in the Method of Adjoint Systems.
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_NCLUSI_S AND _MMENDATIONS

Summr y

The Method of Adjoint Systems was developed as a means of solving

the two-point boundary value problem arising from the first necessary

conditions for an optimal trajectory. A simple dynamical system was

used to investigate the ways in which illegitimate operations involving

the performance index and terminal constraints of the system could result

i_ incorrect problem formulation. The effects of incorrect problem

formulation on the Method of Adjoint Systems were considered to illustrate

how failure of the method could occur. Through the properties of adjoint

systems, it was shown that a relationship exists between a conjugate point

in the trajectory and a possible failure of the Method of Adjoint Systems.

Conclusions

The following conclusions may be drawn from this investigation:

(1) If the terminal constraints and the performance index chosen

result in transversality conditions which lead to the trivial solution

of the optimization problem, the Method of Adjoint Systems will fail due

to the singularity of the 0_(t0) matrix. The cases in which this

occurred were incorrectly formulated. It should be noted, however, that

the trivial solution does not necessarily imply incorrect problem

formulation. The 0_(t0)_ matrix may be singular due to poor choices of

the initial values of the z (t0) variables.
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(2) If the terminal constraints or performance index chosen

result in transversality conditions which cause the e_(t0) matrix

to contain infinite elements at the converged values of the Lagrange

multipliers, the Method of Adjoint Systems will fail. In all cases

investigated, failure of this type could be traced to incorrect problem

formulation. It should be noted that infinite elements in the eT(t0 )

matrix does not insure incorrect problem fo.._._,!atinn.

(3) Unless the initial values of the unknown variables z (to) ,

(in the cases considered these variables were all Lagrange multipliers)

can be guessed sufficiently close to the true values, it is possible to

destroy the convergence characteristics of the Method of Adjoint Systems.

It is also possible to guess these initial values sufficiently close

to the true values and to cause the Method of Adjoint Systems to fail

due to the fact that certain choices may (1) result in the trivial

solution to the problem or (2) may cause division by zero. Clearly,

the choice of the unknown initial values of the z (to) variables is the

weakest part of the Method of Adjoint Systems.

(4) The analysis of the causes of a singularity in the e_(t0)

matrix of F_luation (5.73) leads to the conclusion that the Method of Adjoint

Systems can fail for problems which (I) contain a conjugate point in

the nominal trajectory at the initial time, and (2) are incorrectly

formulated.

The modes of breakdown in the Method of Adjoint Systems suggest

that the following procedures be used when considering the use of the

method on a specific problem.
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(I) Always carry out the analytical work as far as possible.

Relations concerning system behavior and functional dependence of the

optimal control and the initial values of the z (to) variables can

be of great importance in foreseeing trouble spots which could cause

failure of the Method of Adjoint Systems.

(2) The terminal constraints and performance index of the

system should be inspected closely prior to application of the numerical

technique. In more complex systems, it is sometimes difficult to determine

if conditions have been imposed which constitute incorrect problem formu-

lation. The system may be such that a subtle functional dependence could

exist between the performance index and terminal "constraints which would

escape detection unless careful inspection of these parameters was under-

taken. The performance index and terminal constraints should be independent

in order to insure that the Method of Adjoint Systems will work.

(3) A system to be optimized should be checked carefully for

uncontrollable state variables. In more complex systems it may be

difficult to determine these variables. Uncontrollable state variables

in the system may not cause trouble in the Method of Adjoint Systems

unless an attempt is made to constrain these variables or incorporate them

into the performance index on terminal constraints. Any relation which

exists between the uncontrollable state variables and the performance index

and/or terminal constraints should be noted and regarded as a possible

trouble spot.

(4) If the problem is determined to be correctly formulated and

yet the Method of Adjoint Systems fails, the following must be considered:
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(1) The guessed z (to) variables may have been such that they caused

a trivial solution to the problem to be obtained or caused division

by zero. Another set of these initial values should be guessed or

determined by a gradient method to determine if this has occurred. (2)

possibility exists of a conjugate point at the initial time.

The

R_e_mmendations for Further Study

(I) A more effective method for choosing the initial values of the

uDknown z (to) variables needs to be developed. The use of gradient

methods to obtain initial guesses of these variables is probably the best

solution to this problem at present.

(2) Analysis similar to the one presented here should be undertaken

on other optimization techniques in order to develop more usable criteria

by which a method could be chosen or rejected for a particular problem.

(5) An investigation of the controllability of the linearized

system of equations (Equation (5.14)) should be carried out. Although some

effects of an uncontrollable variable in the system were studied here,

no attempt was made to relate controllability, as defined by Kalman

(Ref. 15), to the problem formulation.

(4) _The analysis developed relating a conjugate point in the

trajectory at the initial time to a singularity in the sT(t0 ) matrix

should be pursued further. Also the effects of conjugate points should

be determined in other numerical optimization methods.
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APPENDIX A

THE FIRST VARIATION

It is required to determine the first variation of a functional

quantity I of the form

I = C(xf.tf) + vT M(xf,tf) + T L(xo,to) +

tf

+ /[ QCx,u,t) + kTct) (fCx,u,t) - k(t) )] dt
,I

t o

where the elements of I are defined as follows.

(A,1)

G +/Q dt -
,I

M -

L -

kCt) -

a scalar function called the Performance Index.

a q-vector of constant multipliers.

a q-vector of terminal constraints.

an r-vector of constant multipliers.

an r-vector of initial constraints.

ann-vector of time varying multipliers.

f(x,u,t) - an n-vector function.

x(t) - an n-vector of the time rate of change of the state variables.

Equation (A.1) may be written in a simpler form by defining the

following scalar functions.

P = G + vTM = P(xf,tf,v) (A.2)
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R = T L = R(x0,t0,v) (A.3)

H = xT(f(x,u,t) ) + Q(x,u,t) = H(x,X,u,t) (A.4)

In view of Equations (A. 2), (A. 3), and (A. 4), Equation (A. 1) may

be written as

t_

I : R + P + ft 0 ( H - xT _) dt (A.5)

!

Denoting the total variation in I as d I, an expansion of I in a

Taylor's series about a nominal trajectory yields

dI = d I + d I + d + • • • (A.6)

The first term of the series is designated the first variation,

the second term is designated the second variation, etc. The first

variation of I from Equation (A.5) is given as

, f tf( xTd I = dP + dR + d H - x) dt

_0

(A.7)

To the first order, the variation of a function G is given as

dG = _G + G dt (A.8)

If instead of being a function, G is a functional quantity, i.e.,
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tfG = Fdt

t o

then Leibnitz's Rule for differentiation under the integral sign

applied to Equation (A.8) for variable t o and tf yields

tf tf

d F dt ; F dt It 0 6F dt

t o t o

Thus, Leibnitz's Rule, applied to Equation (A.7) yields

tf f t£= + dRJ + (H- xTx) dt] + 6(H - xTx) dt

d'I  Jtf t o to to

The variation of (H - T_) in Equation (A.11) is given by

(A.9)

(A. 10)

(A.11)

6(H - A]x) = Hx _x + Hu _u + tIArA + Itt 6t - _T 6A- AT 6x (A. lZ)

It is noted that 6t = 0 because there is no variation of time along

the trajectory under the integral.

Integration of -XT 6_ by parts yields

I(-AT_x) dt = -A T _x + _T ,x dt

to to =i."0

From Equations (A.12) and (A.13), Equation (A.II) becomes

(A.13)
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d'I = [dP + (H XT x) dt xT 6x ]tf

[dR - (H - xT _) dt + XT _x ] to + (A.14)

t

f _ (Hx + i T) 6x + (Hu)_u + (tI x

t o

_T) ,x ] dt

For the variable end point problem, variations in the state

variables are, from Equation (A.8), given as

dxi = dxi -xi dti ' i = to,t f (A.15)

!

Thus, d I becomes

d'I = [ dP + (H - xTx) dt - XT dx + xTx dt ] tf

+ [ dR - (H - xT_) dt + XT dx - xT_¢ dt ] to

t£
#

+ / [ (Hx + _T) *x + (tI u) _u + (1tx - :_T) *X ] at
J

t o

The total differentials, dP and dR, in view of Equations (A.2) and

(A. 3), are

(A.16)

dP
_P @P _P

_xf dxf + _-[fdtf + --av d.
(A.17)

(A.18)
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In view of Equations (A.17) and (A.18), Equations (A.16) becomes

!

dl : [ P dx + Pt dt + Pv dv + (H- ATx) at +

AT dx + AT_ dt ]tf + [ Rx dx + Rt dt + Ru du (A.19)

(H - ATx) dt + XT dx - xTx dt ]to +

t

•It 0

Canceling the AT_ dt terms and regrouping, the final fore of the first

variation becomes

d'I = [ ( Px - AT) dx+ (Pt + H) dt + Pv dv ]tf

+ [ ( RX + xT) dx + (Rt H) dt + R du ] (A.20)
" u t o

tf tf tf

t o t o to
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THESECONDVARIATION

From Appendix A, the first variation of the functional

I = P+R+

tf

f ( H - kT_) at

t_
u

is given in Equation (A.20) as

d'I -- [ ( Px - XT) dx + ( Pt + H) dt + Pv d_ ]tf +

+ [ ( Rx + XT) dx + ( Rt - tl) dt + Rv d_ ]to +

tf

+ ft [ C Hx + _T) *x + C FIu ) 6u + (H X - _T) 6X ] dt

0

If it is assumed that n of the initial state variables,x(to),

I I :°,and the initial time tO are known, then dx tO = O, dt to

Ru = E(xo,to) = O, and Equation (B.1) becomes

(B.1)

d'I = [ ( Px " XT) dx + ( Pt + H) dt + P d_ ]tf
+

+ ft[f(Hx + _T)_x+ ([lu)6u+ (H- _T) 6X ] dt

t o

(B.2)

The second variation of I requires a variation of Equation (B.2)

which yields
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2d"I = [ d(P x dx) - d(A T dx) + d(P t dt) +

+ d(H dt) + d(P v d,) ]tf + (B.3)

t£P

+ d / [ ( Hx +_T) _x + (Hu) 6u + ( H A
_T) 6A I dt

t o

Let the terms outside the integral of Equation (B.3) be denoted by G£ .

By Leibnitz's Rule for differentiation under the integral for

fixed initial time, (See AppendixA, Equation (A.10)), Equation (B.3)

becomes

!I

2d I = Gf + [ (Hx + _T) 6x dt + (Hu) 6u dt: +

or

+ ( HA _ kT) ,.A dt ]tf +

tf

8 [ (H x + _T) _x +

t o

( nu) _u + ( HA - _T) 6A I

(B.4)

dt

2d"l = Gf + [ ( Hx + _T) 6x dt + ( Hu) 6u dt +

(HA _(T) a), dt+ - ]tf

tf#

J.
t o

÷ _uT ( "ux _x + _,,A_A + H. _u ) +

+ 6XT ( HAx 6x + HAu 6u + HXA 6A - 6x ) ] dt

(B.s)
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It is noted that HXX is zero because H is linear in _ . Integrating

ax TaX by parts yields

tf tf tf

t o t o t o

But ax(t0) = dx(t0) - (_)t 0 dt 0 = 0, thus Equation (B.5) becomes

(B.6)

I!

Zd I = Gf+ [ (H x+ i T) axdt + (Hu) 6udt +

+ (Hx _ _T) aX dt + aTax ]tf +

tf

÷ / [ aT (Hxx _x + tlxu au + HxX _X) _x _X + (B.7)

t o

÷ 62 ( Hux6x +"u_ ax +Huu6u) +

+ aXT ( tiXx ax + ltxu au - ax) ] dt

Let the terms outside the integral of Equations (B.7) be denoted by Gff.

(B.7) becomes

tf

Zd"I = Gff + ft0[ auTHxx ax + axTHxu au +

Regrouping terms, Equation

+ au T Hux ax + 6uTHuu 6U + (B.8)

+ (ax T HxX + au T ttuX ax T) 6X +

T

+ _x" ( HXx 6x + iixu _u - a') ]dt
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From Chapter II, Equation (2.24), it is required that _ = HxT .

Considering linear perturbations in the equation of state, it is seen that

6x - Hxx 6x + Hxu 6u = 0 (B. 9)

In view of Equation (B.9), Equation (B.8) becomes

! !

2d I =

tf
t*

Gff + 1 [ 6xT Hxx 6x + gx T Hxu gu +

t o

gu T Hux gx + guT Huu gu ] dt

(B.IO)

Now the Gff terms are found to be

Gff = [ dxT Pxx dx + d. T Px_ dx + Pxt dt + Px dxz +

+ - dXT dx - xT dx2 +idxT Ptx dt + dv T Pt, dt

+ Ptt dt dt + Pt d2t + Hx dx dt + Hu du dt + (B.I1)

+ Htdt dt + H d2t + dxT Pvx dv + dv T Pvv dv +

+ Pvt dv dt + Pv d2v + Hx gx dt + _T gx dt +

+ Hu gu dt + Hx gX dt - _T gX dt + gx T gX ]tf

From Appendix A, Equation (A.8), it is noted that
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6x(tf) = dx(tf) (_)tf dtf

6u(tf) = du(tf) (u)tf dtf = duf, i.e., _f = 0

6X(tf) = dx(tf) - (_)tf dtf

Thus, upon regrouping and canceling of appropriate terms, Gff becomes

Cff -- [ dxT Pxx dx + 2dx T Pvv dv + 2Pxt dx dt

+ 2 Pvt dv dt + Ptt dt dt + 2 Hx dx dt (B.12)

+ Ht dt dt ]tf

From Equations (B.10) and (B.12), the final form of the second variation

becomes

" 1 _T T

d I = L- -xx_rdx'r' d'x+2dx'P_,x dv + 2Pxt dx dt

2Pt dv dt +Ptt dt dt + 2H dx dt

t'+ Ht dt dt ]tf + "2" [ _x THxx 6x +

0

8x T Hxu 6u + _T Hux 6x + 8u T nuu _u ] dt

(B.13)
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