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A 

PREFACE 

" 

This  is the second technical repor t  p repa red  under NASA Grant  

NGR 44-012-048. The f i r s t  report  was  

"Estimating Refractive Index Spectra  in  Regions of Clear  
Air Turbulence,Il J. J. Stephens and E. R. Rei te r ,  Report  No. 
P-12, Antennas and Propagation Division, Elec t r ica l  Engineering 
Resea rch  Laboratory,  The University of Texas,  5 Oct. 1966. 

This  present  repor t  uses  available models of the c l ea r  air turbulence 

including that proposed in Report P-12 to es t imate  the backscat ter ing 

of microwaves f rom such turbulence.  

Other techniques for  c lear  air turbulence detection will be considered 

in  a l a t e r  repor t .  

A th i rd  r epor t  which is in  the p r o c e s s  of preparat ion will be con- 

cerned  with equipment for direct  measurement  of re f rac t ive  index differ-  

ences  and the examination of the init ial  data taken on a 270 foot tower.  The 

r e s u l t s  of these measurements  should shed considerable light on the nature 

of re f rac t ive  index anomalies  associated with refract ive index var ia t ion of 

the a tmosphere .  

A fourth aspect  of the r e s e a r c h  is concerned with the use of r ada r  fo r  

measur ing  the r e t u r n  f rom the re f rac t ive  index var ia t ion in the a tmosphere .  

Analysis of experimental  p rog rams  is  cur ren t ly  under way. P re l imina ry  

proposa ls  have been made to the Elec t ronics  Research  Center for  unique 

t e s t s  which would measu re  scattering f r o m  r a d a r  beams  and the assoc ia ted  

re f rac t ive  index anomalies .  It is hoped that this  p rogram can  be continued 

in  a n  extension of the gran t  period. 

A. W. Straiton 
Pr inc ipa l  Investigator 



CONCLUSIONS 

Calculations a r e  reported for the expected mean  re turned  power 

f rom c lear  air turbulence, relative to  the minimum detectable level, with 

the chosen values of the many contributing p a r a m e t e r s  carefully noted 

and discussed.  

constrained by reasonable l imits  on weight, size,  power, cost, etc, a r e  

not feasible.  On the other hand, research- type  ground-based sys tems 

should be capable of re l iable  detection of regions of CAT for  wavelengths 

f r o m  a few cent imeters  to a few m e t e r s .  

the- s ta te-of- the-ar t  performance a s sumed  for the ground-based sys tems,  

but favorable conditions generally were  assumed; including pointing at  

the zenith, a cloudless sky, pointing away f rom the galactic plane, e tc .  

It is found that operational sys tems for normal  je t  flights, 

However, not only was  near -  

iii 
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INTRODUCTION 

A wide var ie ty  of methods have been postulated as  having some 

promise  of being effective remote senso r s  of the presence  of CAT. 

the las t  few years ,  r e s e a r c h  groups with var ious affiliations and support 

have been engaged in trying to advance the state of the a r t  in the ins t ru-  

mentation and to  evaluate the future potential of a number of these pro-  

posed methods. Though it  is human nature for r e s e a r c h e r s  to be opti- 

mis t ic  concerning the prospect  of the eventual usefulness of their  own 

area of endeavor, a searching review of the published papers  in  the field 

r evea l s  that no method (with the present  instrumentation) comes  ve ry  

close to  providing a tool that would furnish the pilot of a je t  a i r c ra f t  with 

sufficient advanced notice and information to allow him to a l t e r  the flight 

path so as to  avoid regions of CAT. 

In 

The property of CAT of p r imary  concern is the wind-gust o r  turbulent-  

velocity field but most  of the remote detection methods r e ly  on sensing some 

o ther  physical pa rame te r ( such  a s  refract ive index, tempera ture ,  par t icu-  

la te  mat te r ,  ozone, e tc .  )which i t  is hoped can be cor re la ted  with CAT. 

Any effort t o  a r r i v e  a t  a qualitative evaluation of the potential of the 

different proposed schemes  is cri t ically l imited by a lack of re l iable  

knowledge of the overa l l  physical p roper t ies  of CAT. Nevertheless,  the 

objective of this  repor t  i s  to present  a c r i t i ca l  review of the different 

methods proposed for  the remote detection of CAT that appear  in  the 

1 
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published l i t e r a tu re  and to delineate, to  the extent that  i t  is possible  to  do 

so, the i r  potentiali t ies for  the foreseeable  future .  

The major i ty  of the pape r s  that  contain the most  up-to-date published 

information on detection of CAT are included in  the ION-SAE Conference 

Proceedings  of the National Ai r  Meeting on Clear  Air  Turbulence,  

Washington, D. C . ,  F e b r u a r y  23-24,  1966. This  collection includes a 

contribution f r o m  a ma jo r  investigator in a lmost  all of the m o r e  act ively 

r e s e a r c h e d  areas. Thus,  in a very  r e a l  sense,  this  r epor t  consti tutes a 

summar iza t ion  and mild cri t ique of the pape r s  in the middle section, 

1 "Detection of Clear  Ai r  Turbulence, I t  of that compilation. 

Most of the emphas is  has  been concentrated on p ro jec t s  whose ulti- 

ma te  goal is to devise instrumentation to be placed on j e t  passenger  t r a n s -  

p o r t  planes to  give warning of, and detailed information about, regions of 

CAT i n  the line of flight. To provide a net of ground-based s e n s o r s  that 

would provide anything near  complete coverage (assuming sat isfactory 

s e n s o r s  can  be developed) would be prohibitively expensive in  equipment 

c o s t s  and opera tor  manpower.  However, so l i t t le is known about the bas ic  

phys i c s  and meteorology of CAT that probably the most  press ing  need is 

to  accumulate  detailed data covering all the physical p a r a m e t e r s  assoc ia ted  

with this  phenomenon and ground-based s e n s o r s  may se rve  a v e r y  important  

function as a r e s e a r c h  tool t o  supplement our  basic knowledge of the topic. 

Therefore ,  a n  effort will be made to evaluate the potential of each  scheme 

as  a ground-based device as well as a n  "on board" instrument .  
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There  a r e  so many ill-defined constraints  imposed in a given situa- 

tion by such considerations a s  economics, operational conditions, funda- 

mental  objectives, e t c . ,  that i t  is not feasible to t r y  to give unqualified 

answers  to  que stions concerning optimum frequency, maximum range of 

detection, e tc .  Therefore ,  the assumptions made concerning each fac tor  

which contributes to the end resul t  will be c lear ly  noted so that when a 

specific problem is uniquely defined a minimum of effort will be requi red  

to extend the information presented he re  to  f o r m  the bas i s  of reasonable  

conclusions for the case  at  hand. 

The approaches to the detection of CAT will be grouped under the 

following headings according t o  the type of technique cen t r a l  to the method: 

(a) Back Scatter - including sonic, VLF, microwave, 
in f ra red  and optical devices.  

(b )  Forward  Scatter - again considering a wide range of 
pos sible frequencies.  

( c )  Radiometry - part icular ly  a t  microwave and inf ra red  
frequencies .  

(d)  Direct Measurements  - prope r t i e s  of the medium such 
as  temperature ,  e lec t ros ta t ic  field, ozone content, e tc .  
being measured a t  the position of the instrument  
(usually on a n  a i r c ra f t ) .  

Discussions of these four categories  of approaches to the detection of CAT 

wil l  now be presented  in  two par t s ;  namely, P a r t  I - Pulsed Microwave 

Rada r s ,  and P a r t  I1 - Other Sensing Methods. 
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EQUATIONS FOR BACK-SCATTER MEASUREMENTS 

The s tandard r ada r  equation is well known but the symbols will be 

carefully defined since,  f o r  the problem a t  hand, one is forced to  select  

representat ive values of each for each  sys t em analyzed. Considering a 

back-scat ter ing l lobjectl l  to  be a t  the point Q in space,  the following 

symbols  a r e  defined for the genera l  prototype of sys t ems  in  this  category: 

Pt' pr 

Gt, Gr 

At' Ar 

Rt, Rr 

h 

0 

the peak power radiated by the transmitt ing antenna 
and intercepted by the receiving antenna. The t r ans -  
mitted wave may be  ei ther  pulse modulated o r  CW, 
the r a t e  of energy radiation being constant (P ) during 
the I1on1l period t 

the power gains of the antennas (relat ive to a n  isotropic  
r ad ia to r )  for propagation in  the direct ions to  and f r o m  Q. 

the effective antenna a r e a s  for  t ransmiss ion  to  and 
reception from Q. 

the dis tances  f rom the antennas to  Q. 

the wavelength of the wave. 

the scat ter ing c r o s s  section p e r  unit scat ter ing volume; 
i. e. , the ra t io  of ( 4 ~  x the energy p e r  unit solid angle 
sca t te red  into the direct ion of the r ece ive r  pe r  unit 
volume) to  (the energy per  unit a r e a  in the wave incident  
upon the scattering volume). 
is seen  to equal the total  energy that would be sca t te red  
if i t  was scat tered in all direct ions a t  the same intensity 
as  in  the receiver  direction. 

The f i r s t  portion of th i s  r a t io  

F r o m  the l a s t  definition i t  is apparent  the scat ter ing is assumed to  

r e su l t  f r o m  random-type anomalies d i spersed  throughout the region of CAT. 

The  case  of reflections f rom surface discontinuities i n  the refract ive index 

wi l l  be considered l a t e r .  
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The fundamental r ada r  equation for  a single target  is 

P 
) (  ----$(Ar), 

PtGt P r =(y 
4nR 4nR 

p being the r a d a r  c r o s s  section for the ta rge t .  The f i r s t  factor  gives  the 

power pe r  unit a r e a  of the incident wavefront a t  the target ,  the f i r s t  two 

f ac to r s  then represent ing the power pe r  unit a r e a  in the wavefront of the 

sca t te red  wave a t  the rece iver .  F o r  a distributed scattering region, the 

mean received power is given by considering each dv of the region t o  have 

a scat ter ing c r o s s  section of cr .  That is, p in (1) is replaced b y  cr dv and 

the expression integrated over  the region of anomalous re f rac t ive  index, 
, 

G , A , cry as well as  R being functions of the position of dv. However, i f  t r  

cr is  essent ia l ly  uniform over the effective scattering volume (dependent 

on the region ' ' i lluminated11 by the t ransmit ted wave as well as the extent 

of the refract ive index anomalies),  and the rad ia l  dimension of th i s  volume 

is relat ively sma l l  compared with R, i t  is convenient to  wri te  

i n  which G A a r e  assigned the ' ' center-of- the-beamll  values,  V is the 

volume of the "effectivel' scattering region and R is the range to  the 

t' r 

cen te r  of th i s  volume. 

P r o b e r t -  JoneslS and Battan 

If the I'effective" scat ter ing volume is beam limited,  

4 
have each deduced that the l leffectivell  extent 

of the beam is somewhat l e s s  than that bounded by the "half-powerf1 

direct ions,  a cor rec t ion  factor  of roughly 4 / 9  being in o rde r  i f  the half-power 
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solid angle is taken as the effective extent of the beam. Delving into the 

fine points associated with eq. (2 )  is  hardly warran ted  h e r e  since uncer-  

tainties of considerably g r e a t e r  import  will be inter jected through the 

e s t ima tes  of values for  the basic  physical  p a r a m e t e r s  of CAT upon which 

e s t ima tes  of 0 a r e  based; nevertheless,  eq. ( 2 )  will be supplanted by 

- 
P =  r 

PtGtAro V 

2 4  
361-r R 

(3)  

i n  o r d e r  to be in  agreement  with the express ions  employed in  the pape r s  

2 5  2 
by Smith & R o g e r s  and by Atlas, Hardy & Naito . 

The relation between the gain, beam angle, and effective a r e a  of 

a n  antenna 

2 
G = 4nIR = 4 n A / h  , (4) 

62 denoting the solid angle Ilfilled" by the beam, allows one to convert  

eq. ( 3 )  into a number of equivalent fo rms .  

Since the back- sca t te red  signal f luctuates r a the r  randomly with t ime,  

i t  h a s  the same gene ra l  charac te r  as noise. Thus the output back-sca t te red  

s ignal  is recognizable in  the additive noise only i f  the ra t io  of signal power 

to noise power exceeds a minimum l imit .  The equivalent average  noise 

power a t  the receiving antenna te rmina ls  is 

P = k T  B F '  = k T  B n 0 e ( 5 )  

- 2 3  
i n  which k is  Boltzmann's constant = 1. 38(10) 

B i s  the rece iver  bandwidth and F1 is the noise figure of the receiving 

joules/deg.  k, T = 2 9 0 " K  
0 
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sys t em embodying the internal  rece iver  noise, the noise f rom externa l  

sou rces  picked up by the antenna and the effects of l o s s e s  in the antenna- 

to- rece iver  t ransmiss ion  system. 

the antenna te rmina ls ,  is equal to 

Te, the effective noise tempera ture  a t  

T e =  T 0 F' = T a t ( L - l ) T t t  LT r (G)  

in  which T is the apparent antenna noise tempera ture  (the integrated a 

equivalent noise tempera ture  of the region "viewed" by the antenna), L is 

the l o s s  factor  for  the t ransmiss ion  line f r o m  antenna to rece iver ,  

the tempera ture  of th i s  t ransmiss ion  system, and T 

rece iver  tempera ture  = ( F - l ) T  

alone. L = G , G being the 'lgain" for  the t ransmiss ion  sys tem which is 

T is  t 

is the effective r 

F being the noise figure for  the rece iver  
0' 

-1 

l e s s  than unity. 

Letting y denote the ra t io  of minimum detectable average signal 

(backsca t te red)  power to noise power; i. e . ,  

then 
- 
r P PtGtA, 0 V 

becomes  the bas ic  express ion  f o r  which s t imates  of th-  constituent fac tors  

m u s t  be obtained in  o r d e r  to predict  the observabili ty of the back-scat tered 

s ignal  f rom regions of CAT. A brief discussion of typical values  for  these 

p a r a m e t e r s  will  follow for  severa l  basic  c l a s s e s  of sys tems.  
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PARAMETER VALUES FOR MICROWAVE RADARS 

2 
The t e a m s  of Smith & Rogers” and Atlas, Hardy & Naito have 

each published the r e su l t s  of their  ana lyses  of th i s  problem, their  r e su l t s  

being essent ia l ly  i n  agreement  with each other and with the presentat ion to 

follow. 

Bandwidth and pulse duration. If the sys tem bandwidth is appreciably 

l e s s  than 1 / ~  ( T  denoting the pulse durat ion)  the rece iver  response is too 

sluggish to effectively respond to the pulse and i f  it is  appreciably g rea t e r  

than 1 / ~  it  al lows through a n  excessive amount of noise. Thus it is well 

known [see Lawson & Uhlenbeck, Section 8 .63  that for  optimum detection 

the bandwidth should be such that 

B T W  1, ( 9 )  

t h i s  condition therefore  being assumed.  

Since B appea r s  in  the denominator of eq. (8), it would appear  d e s i r -  

ab le  to  make B small and T large,  maintaining the relation of eq. (9).  

However, the rad ia l  resolution of the r a d a r  v a r i e s  inversely as  7, the region 

of sca t t e r  for  energy reaching the rece iver  a t  a given t ime having a radial  

dimension of 7c/2, c denoting the wave velocity = 3(10) 
8 

m e t e r s / s e c .  

Rather  a rb i t r a r i l y  setting the upper l imit  on th i s  range resolution a t  150 

m e t e r s  converts  to  

7 = l p s e c ,  and B = 1MHz. 
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Scattering volume. The scattering volume is confined by the 

antenna beam, half the space pulse length and the region occupied by 

CAT. 

in  which K denotes the portion of the beam-pulse defined volume occupied 

by CAT. For  ground-based r a d a r s  K can reasonably be set  equal to unity 

but for plane-borne s e t s  CAT may not f i l l  the ver t ica l  extent of the beam. 

Denoting the thickness of the CAT layer  by AH, then K for the la t te r  can 

be crudely est imated by 

(for K's < 1) 

in  which D denotes the diameter  (ver t ical  dimension) of the t ransmit t ing 

antenna. 

With the exception of the beam filling factor,  K, the above pa rame te r  

values  appear  to  be equally appropriate for the a i rborne  and ground-based 

sys tems,  the remaining f ac to r s  depending cr i t ical ly  on ei ther  the choice 

between these two types of operation o r  on the wavelength. 

assuming the s a m e  o r  equivalent antennas for t ransmiss ion  and reception 

and  incorporating eqs.  (4), (10) and (11) into eq. (8) gives  

Tentatively 

15 
P + A  CT K (1. 32)(10) 



10 

! -  

Range. CAT has  been observed to occur over  a wide range of 

26 
a l t i tudes but most  frequently a t  roughly 9 km [Stephens and Rei ter  3, 

th i s  being selected as the value of R for the ground-based system. Atlas, 

Hardy & Naito and Rosenberg" have selected 10 and 30 nautical  miles ,  

respectively,  a s  the des i r ed  minimum range for pilot warning systems,  

these  corresponding to 1 and 3 minute warning t i m e s  for  conventional j e t  

a i r c r a f t .  

se lec ted  for the present  consideration. That is, the r anges  

2 

Anticipating inability to achieve even the sho r t e r  range, it is 

R M 1 8 k m  and R M 9 k m  
a g 

wil l  be assumed,  subscr ip ts  l fa t l  and ltg' '  being 

"ai r bo r ne and 'g r o und - ba s e d I t  s y s t e m s . 

(14) 

introduced to distinguish 

Antenna s ize .  Both Smith and Rogers  and Atlas, Hardy & Naito 

a d d r e s s  themselves  to the consideration of r a d a r s  to possibly become 

s tandard  equipment on commerc ia l  j e t  a i r c r a f t  and select  1. 0 me te r  in  

d i ame te r  as the maximum feasible antenna s ize  for  such an  application, 

the effective a r e a  being taken a s  67 pe r  cent of the actual  a r e a .  F o r  an  

espec ia l ly  equipped r e s e a r c h  a i r c ra f t  somewhat l a r g e r  antennas could be 

envisioned while for  ground-based operation v e r y  extensive s t ruc tu res  

become a possibility. Diameters  of 120 ft.  a r e  considered in  the r e a l m  

of feasibil i ty for  the long wavelengths while for  the other end of the range 

a 30 ft.  d ish for  X = 1 c m  has  been chosen as reasonable .  L a r g e r  antennas 

are possible but a "feasible l imit" h a s  been r a t h e r  a r b i t r a r i l y  imposed. 
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Using an  effective to actual a r e a  ra t io  of 2 / 3  a d iameter  of 1. 0 m 

2 
c o r r e c t s  to a n  effective a r e a  of approximately 0. 5 m  , so  fo r  the evalua- 

t ions to follow the a i rborne  and ground-based effective antenna a r e a s  a r e  

taken to be as indicated in Fig.  1. 

T ransmi t t e r  peak power. State-of-the-art  but commercial ly  ava i l -  

3 12 able tube output powers,  as indicated in Fig.  1 [ see  B a r t o n ,  Hull ,] a r e  

a s sumed  for the ground stations.  

radiated powers  possible but is  not considered h e r e .  

P a r a l l e l  operation would make l a r g e r  

F o r  the operat ional  

a i rborne  systems,  somewhat more conventional values a r e  indicated. 

Beam filling fac tor .  A s  already indicated, values  for  K - -  the 

port ion of the beam and pulse l imited volume filled by the CAT region - -  

a r e  taken as 

K = l  and K =  ( A H ) D  (for K e 1 ) .  g a RA 

A r a t h e r  nebulous situation exis ts  f rom which to select  a representat ive 

value for  AH. 

appear  to l ie between 500 to 3000 ft .  [Stephens and Rei ter ,  1966 ] so  a 

The average  ver t ical  thicknesses  of the turbulent l a y e r s  

26 

midrange value of 500 m e t e r s  s eems  a reasonable  choice for  AH. F o r  

t h i s  AH and the choices of D = l m  and R = 19 k m  indicated above in  

eq. (12’) l eads  to  

a a 

25 K = -  25  for  A in c m  and A >  - 
a 9 1  9 ’  

t h i s  factor  being shown in  Fig.  1; a n  additional rounding of the co rne r  

is introduced for  aesthet ic  reasons.  
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Scattering c r o s s -  section or reflectivity.  The refract ive- index 

s t ruc tu re  function, D (r) ,  is  defined such that fo r  a locally homogeneous n 

and isotropic  region 

2 
i n  which (An) is the mean square of the refract ive- index deviations f r o m  

a mean  distribution and p ( r )  is the normalized space autocorrelat ion of 

these  refract ive- index deviations [ see  Ta ta r  ski] .  

and the scale lengths of in te res t  fall in  the iner t ia l  subrange [inherent i n  

If the region is turbulent 

Kolmogoroff's universal  equilibrium theory of homogeneous turbulence]  

and the re f rac t ive  index is taken to be a conservative passive additive, 

18 27 then dimensional  considerat ions indicate that [see Obukhov , Tata r  ski  , 

and Stephens and Rei te r  ] 26 

D ( r )  = Cn r 213 
n 

2 
n in  which C is a p a r a m e t e r  indicative of the s t rength of the turbulence 

and depending upon the physical p rope r t i e s  of the medium and i t s  s ta te .  

F o r  the f o r m  of D ( r )  indicated in  eq.  (17), s ingle-scat ter ing theory n 
6 22  

[ see  Booker and G o r d o n ,  Silverman and Ta ta r sk iZ7]  l eads  to the r a d a r  

sca t te r ing  c r o s s -  sect ion being given by 

i n  which k=2rr/X, o r  
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. 

Thus, assuming the validity of the iner t ia l  subrange model, only a n  appro-  

pr ia te  value for the p a r a m e t e r  C 
2 
n fo r  regions of CAT needs to  be de t e r -  

mined to  complete our  e s t ima te  of the r a d a r  c ros s - sec t ion  as  a function 

27 
of wavelength. Ta ta r sk i  deduced that 

2 2 4/3 M2 
C = a L  n 0 

2 
in  which a is a p a r a m e t e r  which, for  stable stratif ication, depends on 

the Richardson number;  L 

M is the mean ver t ica l  gradient  of (potential)  re f rac t ive  index. 

Hardy & Naito es t imated  typical values  of C by assigning values  to the 

is the outer  scale  ( la rges t  s ized eddies)  and 
0 

Atlas, 

2 2 
n 

p a r a m e t e r s  in eq. (20) as deduced f r o m  a n  analysis  of data repor ted  by 

va r ious  invest igators  indicative of magnitudes of re la ted  physical quan- 

2 - 16 - 2/3 t i t ies .  They deduced that C ranges  roughly f r o m  10 to 10d4cm n 
26 

f o r  weak to  seve re  CAT. Subsequently, Stephens and Rei te r  have 

analyzed two ve r t i ca l  prof i les  through regions of modera te  CAT f r o m  

da ta  repor ted  by Endlich 

zones  that i n  the neighborhood of 10 c m  , roughly two o r d e r s  of mag-  

nitude below the Atlas,  Hardy & Naito es t imates .  

8 2 
and a r r i v e  a t  va lues  of C n 

for  the turbulent 

-17 -2/3 

Stephens and Rei te r  

a t t r ibute  this  var iance  to  the contention that Atlas, e t  al. overes t imated  

a 
2 

b y  a fac tor  of approximately 24. 

Though eq. (19) is appropriate  for  the iner t ia l  subrange portion of 

the turbulence spec t rum,  fo r  (X/2) of the o r d e r  of magnitude of 4 .  ( 4 .  denot- 

ing the inner  scale  f o r  tempera ture  inhomogeneities, smaller eddies being 

rap id ly  diss ipated due to  viscous f o r c e s )  o r  less the resu l t  needs to be  

1 1  
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modified to  ref lect  the dissipation effect. Theoret ical  express ions  for  the 

I 

i .  

variat ion with wave number of the spec t r a l  density functions (and thus the 

r ada r  c ross -sec t ion  a l so )  for wavelengths in the neighborhood of 4,. a r e  

lacking but Gurvitch, Tsvang and Yaglom 

one-dimensional spec t rum obtained empir ical ly  b y  Gorshkov. Atlas, Hardy 

1 

10 
have repor ted  a f o r m  for the 

& Naito use this  f o r m  of wave number dependence to  extend their  reflectivity 

e s t ima tes  into the dissipation subrange. 

the i r  selection of 4,. = 0. 82 c m  f o r  CAT of moderate  intensity a l so  being 

Their  lead will be followed here ,  

1 

adopted since i t  s e e m s  in general  agreement  with other es t imates .  

-17 -2/3 (in accordance with Rei ter  and Stephens' 
2 

Taking C = 10 c m  n 

r e s u l t )  then r e su l t s  i n  the radar c ross -sec t ion  curve i n  Fig.  1 as being 

representat ive of moderately-intense CAT. 

Effective noise tempera ture .  The effective noise tempera ture  is 

h e r e  defined relat ive to  the antenna ( r a the r  than the rece iver  proper ) .  The 

attenuation due to l o s s e s  in  the t ransmit ter- to-antenna and antenna-to 

r ece ive r  t r ansmiss ion  networks and due to a tmospher ic  absorpt ion was  

not included in  eq. ( 2 )  because,  for the frequencies  for  which i t  is significant, 

the corresponding "black body" radiation noise is  the dominant effect. 

Equation (6) expres ses  the effective noise tempera ture  as  the sum 

of contributions f r o m  the region of space viewed by the antenna, f r o m  the 

a r e a s  of energy absorption (joule heat l o s s e s )  in the antenna and t r ansmiss ion  

l ine  system, and f rom the rece iver .  T encompasses  all sou rces  radiating 

noise  energy that is picked up  by the antenna, including a tmospher ic  noise 

a 
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I .  

(lightning, e tc .  ), cosmic  noise ( e x t r a t e r r e s t r i a l  sources) ,  a tmospher ic  

absorpt ion noise (black body radiation f r o m  a tmospher ic  consti tuents),  

man-made noise (ignition systems,  neon signs,  f luorescent  lights, e tc .  ) 

and t h e r m a l  radiat ion f r o m  surrounding objects.  

and man-made sources  a r e  not of concern  for  the range of f requencies  

being considered, though they both play significant r o l e s  a t  lower f requencies .  

The effective t empera tu re  of cosmic  noise falls off rapidly with i n c r e a s -  

Of these  the a tmospher ic  

14 13 9 ing frequency [Skolinik'? Kraus  , KO , G r e e n  and Benebaum ] but may 

contribute significantly a t  the low-frequency end of the band being consid- 

e r e d .  

h e r e  a s sumed  to not be in  the main b e a m  of the antenna receiving pa t te rn .  

Our galaxy (the Milky W a y )  a l s o  contr ibutes  s t rong noise signals,  the 

effective noise t empera tu re  in  the direct ion of the galact ic  center  being 

roughly 70 t i m e s  that i n  the vicinity of the galact ic  poles .  

twice the minimum, as indicated in  Fig.  2, a r e  a s sumed  fo r  the p re sen t  

calculat ions.  

The sun is a prol i f ic  producer  of radio-frequency energy but it is 

Values roughly 

The a tmospher ic  absorption noise ( so  called because a b s o r b e r s  of 

energy  a re  equally pro l i f ic  rad ia tors  of energy  a t  the same  frequency so 

absorp t ion  and emiss ion  proper t ies  can  be equated)  is given b y  

= T ( L - 1 ) / L  Tab m 

i n  which L is the l o s s  ( ra t io  of the ene rg ie s  in  the wave upon enter ing and 

upon leaving the absorbing medium) and T denotes  the t empera tu re  of the m 
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15 2 3  
absorbing medium. [See Lawson and Uhlenbeck , Skolnik , Hogg and 

Mumford ,  Greene and Lebenbaum 3. According to eq. (21), if 11 9 

T = 260°K and L = 0.1 db, then T = 5.9"  so that  re la t ively small 
m ab 

amounts  of absorpt ion can correspond to significant noise in  low-noise 

sys t ems .  

The a tmospher ic  absorption effect is naturally much more seve re  

when the antenna is pointed toward the horizon than when i t  is pointed toward 

the zenith. F o r  the ground-based sys tem,  it is a s sumed  the antenna will  

a lways be d i rec ted  ver t ical ly .  

5 Bean and Dutton give cu rves  of the gaseous  a tmospher ic  absorpt ion 

(in db /km)  as  a function of height above the sur face  fo r  mean  prof i les  a t  

Bismarck ,  N. D., and Washington, D. C., fo r  Februa ry  and August (4 c a s e s  

i n  all) for  seven  frequencies  between 100 MHz and 50 GHz. They a l s o  give 

c u r v e s  of net a tmospher ic  t he rma l  noise v e r s u s  frequency for  a n a r r o w  

b e a m  antenna pointed a t  six different angles  f r o m  the zenith for  the B i smarck  

s ta t ion in  Februa ry .  

which the a tmosphere  i s  quite cold and low in  mois ture  but the family of 

Unfortunately th i s  s i te -  season combination is one for  

c u r v e s  c lear ly  i l l u s t r a t e s  the severe  dependence of the total  path absorp-  

t ion on the elevation angle. The a tmospher ic  absorption equivalent t empera -  

t u r e s  chosen for the calculations h e r e  are  shown in Fig.  2 and were  obtained 

by c rude ly  integrating the absorption v e r s u s  altitude cu rves  given b y  Bean 

and Dutton as  representa t ive  of Washington, D. C,, in  August along a ve r t i ca l  

pa th  f r o m  ground leve l  and along a horizontally d i rec ted  path f r o m  9 k m  

al t i tude.  
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The noise power discussed in  the l a s t  two paragraphs  e n t e r s  the 

sys tem through the main  lobe of the antenna receiving pat tern.  

entering through the side lobes (including back lobes)  a l so  contributes to  

the equivalent noise tempera ture  of the antenna. 

Energy 

One can  write 

T = ( 1 - k ) T  t k T  = T t k(T - Ts) 
a S g S g 

in  which T 

entering f rom the direct ion of the sky and ground, respectively,  and k is 

the fraction of the total  power which is radiated i n  the direct ion of the 

"ground" (when the antenna is considered as transmitt ing,  this  being 

appropriate  because of the equivalence of the radiation and recept ion 

pa t te rns) .  

used, the power density impinging upon the antenna f r o m  that direct ion is 

determined by the t empera tu re  of the image r a the r  than the tempera ture  of 

the ref lector .  

and T 
S g 

a r e  the tempera ture  equivalents of the noise power 

If a given region is a good ref lector  for  the wavelength being 

F o r  the a i rbo rne  antenna k = 0.1  is a reasonable  value and k = 0.01 

is chosen for  the ground-based system, it being a s sumed  a Casseg ra in  

f eed  and /o r  side-lobe-reducing shields a r e  used in  the la t te r  case .  

Casseg ra in  feed would probably a l so  be used in the a i rborne  sys tem but 

the s ize  of the antenna, the rapid var ia t ion of apparent  tempera ture  with 

a spec t  in the forward  direct ion and radome l o s s e s  (lumped h e r e  for  con- 

venience)  lead to  the choice of k =  0.1. The value T =290° is assumed,  

the hypothetical contributions of the "ground-effect" t e r m  k(T - T ) being 

A 

g 

g s  
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shown in Fig.  2, i t  being taken as z e r o  when T > T . 
s g  

If a Cassegra in  feed is used, the R F  plumbing can be kept at  a 

minimum, and thus a l so  the R F  losses .  

to be negligible though this  is admittedly overly optimistic a t  the low cm 

and m m  wavelengths. 

important to leave the R F  plumbing lo s s  t e r m s  in  eq. (6)  because i f  special  

c a r e  is not taken to keep this  loss a t  a minimum it may contribute a ve ry  

significant effect . 

Here the R F  l o s s e s  a r e  a s sumed  

Though these lo s ses  a r e  neglected here ,  it  is 

It has  been seen  that f o r  a research-type,  ground-based sys tem the 

effective sky tempera ture  can be kept appreciably l e s s  than 10°K in the 

wavelength range 3 - 30 cm. 

be chosen for  such an  operation in the indicated wavelength range. 

for example, Matthei . ] At the present ,  30 GHz may be taken as the 

feasible upper frequency l imit  f o r  m a s e r  operation so i t  is a s sumed  a 

m a s e r  would be used up to this  frequency and a helium-cooled pa rame t r i c  

amplif ier  beyond th is  point (for ground-based operation).  

alent noise tempera ture  for  such devices  a r e  shown in Fig. 2, a smooth 

t rans i t ion  being shown for the mase r  -pa rame t r i c  amplifier transit ion.  

F o r  a n  operational a i rborne  system cost, reliabil i ty and maintenance must  

be considered. Since l i t t le i s  to be gained by reducing the rece iver  noise 

t empera tu re  below the effective sky tempera ture ,  a pa rame t r i c  amplifier 

employing a mechanically simple, oil-  lubricated re f r igera t ion  sys tem 

( such  as a Gifford-McMahon closed-cycle unit) would be the logical choice. 

Thus a m a s e r  preamplif ier  would cer ta inly 

[See, 

16 

Optimum equiv- 
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16 2 4  
[See Matthei o r  Slaughter, Cone, Miller . ] The effective noise t e m p e r -  

a tu re  curve representa t ive  of such devices  (with s ta te-of- the-ar t  engineering) 

is shown in Fig.  2. 

The net effective noise tempera ture ,  T of eq. (6), for  the t w o s y s t e m s  e 

is shown in  Fig.  2 .  

Minimum detectable signal-to-noise ra t io .  F o r  a single pulse,  a 

signal power-to-noise power ratio,  (S /N)  of the o r d e r  of 10 is needed for  

17 
rel iable  detection (90%).  [See Lawson and Uhlenbeck'? North . ]  With 

m o r e  than one pulse  to  base the decision upon, the requi red  signal-to-noise 

r a t i o  can be reduced. With ideal coherent (prede tec tor )  integration, the 

value of (S /N)  fo r  90% detection would d e c r e a s e  roughly as n - l ,  

the number of pu lses  integrated.  

integration, then ( S / N )  v a r i e s  approximately as n-'l2. The prede tec tor  

n denoting 

F o r  idea l  incoherent (postdetector)  

integrat ion obviously gives  superior  r e su l t s  but, since it r equ i r e s  phase 

coherence  between pulses ,  requi res  a m o r e  complex t r ansmi t t e r  as wel l  

as r ece ive r .  Also, the maximum effective integrat ion t ime would be se t  

by the coherence t ime  of the ref lected signal, t h i s  being of the o r d e r  of the 

wavelength divided by the gust  velocity for  th i s  application. 

20 - 35 f t / s e c .  as the range  of gust veloci t ies  for  modera te  CAT. 

a velocity of 10 m e t e r s / s e c .  and a wavelength of 10 cm, the maximum 

effect ive integrat ion t ime  would be of the o r d e r  of 10 sec.  Since the 

va lues  of t ransmi t ted  energy per  pulse have been  chosen to  r ep resen t  

7 
Colson l i s t s  

Selecting 

-2 

n e a r  maximum values  this  preempts  the use of unusually la rge  pulse 
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repeti t ion r a t e s .  Therefore ,  since only a relat ively small number of 

pulses  could be coherently integrated, one would undoubtedly choose a 

sys t em employing some type of postdetection integration but not prede tec-  

t ion integration. 

The s implest  and most  frequently used postdetection integration 

devices  a r e  the cathode-ray tube and film, both in  conjunction with the 

human eye. 

des i rab le  to have a n  operator  sit with an  eye constantly on a cathode-ray 

scope so a n  electronic  warning device would most  likely be devised. 

any case,  the maximum integration t ime could not be very  long. 

problem of estimating the minimum signal-to-noise ra t io  for  detection is 

fu r the r  complicated by the extended nature of the ta rge t .  

c a s e  a unity ( S / N )  for  detection seems  a reasonable  choice [ see  Lawson 

However, for operational use on a j e t  a i r l i ne r  it would not be 

In 

The 

F o r  the a i rbo rne  

17 and Uhlenbeck'? Skolnik'q North , etc .  ] while for  the ground-based 

sys t em it is anticipated that the use of film integration with side-by-side 

display of successive t r a c e s  (o r  m o r e  sophisticated schemes )  would make 

23 28 a n  added improvement of -10 db possible.  [See Skolnik , Tucker , 

Saxton et  al. , Watkins and SutchiffeZ9. ] 

values  

21 
That is, for  use in  eq. (13) the 

have  been selected.  
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PREDICTION O F  DETECTABILITY O F  CAT 

Using the choices indicated i n  the las t  few paragraphs  for the 

p a r a m e t e r s  involved, eq. (13) gives values of the received power relat ive 

to the minimum detectable level  a s  plotted in  Fig.  3.  Since in  this  f igure 

0 db cor responds  to the received signal being equal to the minimum detect-  

able  value, it is seen  that i f  the pa rame te r  values  selected a r e  indeed 

reasonably representat ive,  then moderate  CAT can  be detected (with some 

marg in )  by good r e s e a r c h - c l a s s  ground-based sys t ems  but not by sys t ems  

present ly  within the r e a l m  of pract ical i ty  for  operation on conventional jet  

a i r l ine  fl ights.  

ca se  than that obtained by Atlas,  Hardy and Naito is principally due to the 

The more  pess imis t ic  resu l t  ( 2  -24db)  for  the a i rborne  

sma l l e r  es t imate  of the scat ter ing c ross -sec t ion .  The more  rapid 

falloff a t  longer wavelengths is  due to the emergence of galact ic  noise as 

the dominant noise t e r m ,  a t e r m  evidently not included in  the e a r l i e r  

e valuation. 
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