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1. Introduction

A spinning, axially symmetric, solar orbiting satellite
tends to be aligned with the solar radius vector when the cen-
troid of the solar radiation pressure is displaced from the
center of gravity of the satellite. If the only torque acting
on the satellite is that furnished by the radially directed-
radiation pressure, the motion of the satellite will be a pre-
cessional motion about the radial direction with a cone angle
determined by the initial conditions. To cause the spin axis
to become co-incident with the solar radius vector, i.e. to
reduce the cone angle, a torque orthogonal to the spin axes and
to the radiation-applied torque must be exerted on the precess-
ing vehicle. This may be accomplished either by active means
involving the use of microthrusters or the reradiation of thermal
energy in an orthogonal direction, or effectively by having a
loss mechanism in the system sensitive to the component of
angular velocity orthogonal to the spin axis, i.e. sensitive to
the rates of rotation and precession of the spin axis.

Microthruster methods have been investigated by H. Marchettal
and the thermal reradiation possibilities by C. A. Peterson?.

In an earlier study, J. L. Carroll and R. C. Limburg3



the comprehensive dynamical equations for a solar-pressure-
stabilized satellite on a computer and gave particular emphasis
to the librational motion of a nonspinning satellite about the
radius vector. G. Colombo" suggested that keeping the probe
spinning, possibly at a constant rate, would help the stabiliza-
tion problem. He analyzed the general behavior of the spinning
satellite to orthogonal-erecting torques and proposed maintain-
ing the spin of the satellite by the use of radial vanes acted
upon by the solar radiation pressure.

It is the purpose of this present notelio derive expressions
for the dynamical behavior of both spinning and nonspinning
radiation-torqued satellites when their motion is damped by a
loss mechanism, sensitive either to the precessional or libra-
tion motion of the satellite. The eguations of motion are formu-
lated by using the Euler-Lagrange equations with the rotational
and precessional losses represented by a Rayleigh dissipation
term. Explicit solutions are found for the rotation angle and
precession angle as functions of time. The coefficient of the
Rayleigh dissipation term is further related to the specific
measurable parameters of a vibrating viscous damper located on
the periphery of the spinning satellite and driven by accelera-
tion parallel to the spin axis. The slow rotation of the solar
radius vector corresponding to the orbital angular velocity of
the satellite prevents the spin axis from ever being completely
aligned with the radius vector and, for a constant angular velo-
city, will cause it to precess at some equilibrium cone angle

whose value is determined.




2, Basic Equations

We use the set of coordinates designated by the Euler angles:
6 (the rotation angle)
¢ (the precession angle)
and v (the spin angle)
The satellite is assumed to be axially symmetric and to have
the general shape shown in Figure 1 such that its moments of
inertia are:

I, =I,=24; I3=C (1)

The kinetic energy term may be written:

2 2
1/2 1) w3 + 1/2 I wy + 1/2 I3 w3 = T (2]

The angular velocity components about the body axes, written

in terms of the Euler angles, are:

wp = ¢ sin @ sin v + & cos y (3]
wy = $ sin 8 cos ¢ ~ 8 sin ¥
wz = @ + 5 cos 8 = Q

The kinetic energy may then be expressed as:

T =1/2 A [(8)2 + ¢23in? @] +

1/2 C [y + ¢ cos 6]2 (4]
In general, the Rayleigh dissipation term is given by:

2
1/2 Fiu; + 1/2 Faul + 1/2 Fub = £y (5]

We shall assume negligible damping about the spin axis so that

F3 = 0, and we shall assume axial symmetry so that F; = Fj;, in



which case the effective Rayleigh damping term expressed in

Euler angles is given by:

£y = 1/2 F [(8)2 + ¢2 sin? o] 61

The potential energy term for the satellite is that due to

the solar radiation pressure and is simply given by:
V = -npSL cos 8 (71

where p is the incident pressure of radiation, S is the effec-
tive area of the vane and 2 is the moment arm measured from the
center of pressure of the vane to the center of gravity of the
satellite and n is a coefficient having a value between 0 and 2,
depending upon the manner in which the incident energy is re-
flected, absorbed, and reradiated. 1In our work we shall assume
n = 1, corresponding to a nonspectrally reflecting vane surface
with isotropic reradiation of the absorbed or scattered energy.
By minimizing the energy given by [4], [6], and [7] through appli-
cation of the Euler~-Lagrange equations, we find the following
three fundamental differential equations governing the dynamical
behavior of the spinning satellite. The equations are similar

to those for the spinning top in a gravity field.

2 . .
I, %E% - Ilsinecose(gg)z + I3 [y + ¢coss]
d¢ ] de —— - *
3¢ Sin o + F‘EE = -{pSg) sin ¢ (8]

0,

3T [Ilsinze%% + 13(@ + $cos6) cose]

+ Fy sinze%% = 0 (91



4 1T3 (v + 4cos 6)1 = 0 [10]

Since we had earlier taken F3; to be 0, we find that the momentum

about the spin axis is conserved and that

; + ¢ cos & = Q@ = constant [11]

If we further restrict our analysis tc the situation where the
spin is high compared to the precessional or rotational veloci-
ties, i.e. 8 = E >> ;, then we can safely neglect the higher
order derivatives in [8] and [9] and find the following two

relationships which describe the desired motion.

] g—i g-g- B e 3
Cosineg a F 3t (pSL) sin ¢ [12)
.. dé _ ,cq, de
siné 3¢ = () ¢ (13]

It is clear from [12] that the rotational (5) and preces-
sional (;) velocities are coupled through the loss mechanism
and that [12] and [13] may be solved to obtain a differential
equation in rotation only in which the effect of the precessional
motion is simply to augment the pure rotational damping by an

additional term, thus:
(2 + F) G2 = pst sin [14]

When the satellite is not spinning, @ = 0, we find from ([8] that:

2
I, %E% +F g% = - (pSt) sin @ [15]

This describes an oscillatory motion of the vehicle with a

libration frequency when 6 is small, given by:

= P

W

et ] D

5 _ pSi
I, A [16]

> N




The rotation rate [14] may then be written as:
2

Aw ,
de _ L sin o
&= @) @, (7l
F ca
and the precession rate [12] as:
2 ca
Aw =
ds - L3N —
gt~ ‘@) @, 18]
F ca .

[{17) may be integrated directly to obtain an exact solution for

the cone angle decay as a function of time.

tan g- ‘ Awi e
tan F cn)

The decay is nearly exponential and even for large initial
angles (Figure 2) is closely approximated by:

-8t

g = eoe [20]

For 6 < % the exponential approximation is quite accurate.
Minimum relaxation time or alignment time is obtained when
%? = 1 (Figure 3). Under these conditions, the rotation and
precession rates are approximately equal for large 6 and the
rate of precession is one-half of its low loss value.

A comparison of (18] and [19] will show that ; and 8 are
simply related by:

o= ($h s [21]

so that

(22}

A
]

i
e o=



For minimum relaxation time (gg) = 1 in which case:

= (23]

=1
T, =
¢

-

where

$r = [24]

] =
Q>

i €
Bijewn

If T, is to be small, the precession rate ¢ must be large, and
since this is proportional to wi a rather high libration rate

is very desirable.

3. Body Accelerations

In the preceding section we described the dynamic behavior
of the spinning vehicle in terms of an arbitrary damping factor
F. The next step is then to relate the magnitude of F to some
specific loss mechanism on the satellite so that a determination
of its magnitude from explicit or measurable parameters of the
damping mechanism may be made. Without appreciable loss of
generality, we can assume that the damping will be furnished by
the oscillations of a small mass elastically coupled to the
vehicle at some point displaced from its center of gravity. If
>

r is the position of the mass relative to the body axes (Figure

4), then the forces acting on the mass are:

-+ -+
:t [ L]
mr+f(r-rp>+k(§-}p)=o [25]

where rp is the position on the body to which the mass is elas-

tically attached. By rewriting [25] in the form

>

mé + £5 + k§ = - m;p



where

5§ = (F - fp)<<r [26)

it is made more evident that the driving force for the dissipa-
tive relative motion between the mass and the body is the accel-
eration of the point to which the mass is attached measured
relative to the body axes.

The components of angular velocity about the body axes were
given earlier as equation [3]. The corresponding component of
angular acceleration, when 3 and ; are negligible, are given by:

w; = $dcosssing + ppsinocosy - Bysiny

wp = ¢dcos@cosy - ¢ysindsiny - Bycosy [27]

w3 =

}
QS O

These may also be written:

wp = —w @ + Ep (82,$2,89) [28)

where © signifies terms of the order of ¢%, etc. in magnitude.
If we can neglect the orbital accelerations applied to the center
of gravity of the spinning satellite, then the acceleration at
a vector distance T from the center of gravity is given by

+ > > <> e -+
a=uwx (WXL +wXCX (29]

- -+ >

(Thompson, page 216)3. If we take r = ri + r3k, then by direct
substitution of [3] and (28] in [29], we find that the accelera-
tion vector is given Dby:

-5

<> . . LN Y
a=1i [-r)(ws+ 02) + r3Ey3(02,42,40)]

.) L L[] . e
+ j [riwjuy - r331(920¢2l¢e)]

+

+ k [r; (2018 + 23) = r3(w? + wi)] [30]



Recalling that
Q= \L + ; cos 8
then for the important case when
b >> 4,0
it follows that
g =y
and

¢y = gt

The angular velocity components w;,w,; as given by [3] have mag-
nitudes proportional to ; and é and fluctuate at the spin rate
Q. Examination of {[30] reveals that the dominant oscillatory
term is:

2r1 w19

pE Y

k
k [2r19(;sinesin9t + écosat)] [31

~

and is a single frequency term directed along the spin axis.
If r, is taken equal to zero and r3 is large (corresponding to
the excitation of a damping mechanism at the end of the boom
supporting the sail), the principal fluctuating acceleration
components are in the i and j directions and are much smaller

than [31] by the ratio of 6 or ¢ to Q.

4, Damper Dynamics

If we then return to the case of a small mass m constrained
to move parallel to the spin (k) axis and located a distance r;
from that axis, we find, using ([31] as the value of rp in [26],

that the displacement Gk of the mass will be given by:



- 16 -

A_ sin (9t + 1)
o

b = 7(937: aZ)? + 4 claln? [32]
where

R [33]
and

A, = 29 V(82 + ¢2 sin? @) {34)

The power dissipated by the damper is given by f(ék)2. Since
§, is oscillatory, it is also equal to £02(s,)2. The expression
for the average power loss in the damper is then:

ariah
lg T (62 + $2sin2e] [35]
P =
D 2 T - a2+ 4;203921

which, by comparison with [6]}, the Rayleigh dissipation term,
shows F to be:
4frf a4

F= [36)
(e} - 25)% + 4czn§573

or )
8r19“;9dm

F = Ty = a0z ¥ 4c2aga?]

Hence we have found an expression for the precession and rotation
damping factor in terms of the measurable parameters of the peri-
pherally mounted linear vibrator.

While [36) was derived for the case of a single vibrator,
if a number of identical vibrators are symmetrically spaced around

the periphery as regquired for dynamic balance, then the same
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relationship holds with m in [33] being interpreted as the sum
of the individual damper masses.
The spin-to~dissipation ratio (%?) which appears in {19]

is found to be:

I3+ I a2 02
9.l m8 : [(5 - L2 + 4;25%1 (37
I, a
where
Imamr% I3+Im=C

This expression is nondimensional and indicates that the effec-
tive damping of the rotational motion of the satellite depends
on three ratios: the ratio of the moment of inertia of the
satellite to that of the damper about the spin axis, the ratio
of the spin angular velocity relative to the resonant frequency
of the damper, and finally the damping ratio g for the damper
itself,

The expression [37] for (%?) may be simplified in three

important situations for @ at, well above, or well below, reso-

nance.

I. For 9 = a4
ce_1lc
c@_1lc [38]
F-2T,

II. For g »>»> Qd

47292
G538 @D i+ —9 (39]
m d



where fﬁif = % = 14 is the damper relaxation time in the situa-

tion where k = 0.

IXI. For Q << Qd
Q

a 1
(—?2—)3 T [40]

ca 1
F 8

aHuﬁ

If we recall from the discussion on page 6 that the minimum
rotation time will be obtained when %? = 1, we observe that this
is only achievable in cases I and II and not in III where the
value of Sg will be very much greater than unity. It is a
practical possibility for the moment of inertia of the damper
to be made to be one-fourth of the major moment of inertia C and
for the linear vibrator to be underdamped such that ¢ = 0.5. At
resonance gg will then be equal to unity and will produce the
minimum rotational relaxation time.

Case II pertains to the important situation where the damper
motion is highly viscous rather than resonant. Equation [39]
implies that 9% will be a minimum when nqd= 1, i.e. when the
relaxation time of the viscous damper is chosen to be f% times
the spin period. For tq much larger than this, the large viscous
drag does not allow sufficient motion of the small mass to pro-
duce much energy loss per cycle. Conversely, for Lg << % the
small mass simply oscillates at the spin frequency against a
viscous drag too small to affect its motion significantly.

Thus for a viscous damper

(gg) = % % when Q;d = 1 [41]
m

min
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which is numerically identical to the case I value for g = 1.

The use of a resonant damper, particularly at ¢ << 1, will lead
to a minimum weight damper but one effective over a narrow range
of spin rates. The viscous damper on the other hand is effective

over a broad spin interval.

S. Effect of An Orbital Angular Velocity

The earlier results indicate that with a sun line stationary
in inertial space, the spinning satellite with ; and ; damping
will come to equilibrium aligned with the sun 1line, i.e. with
6 = ¢, In fact, of course, the orbital angular velocity produces
in effect a rotation of the sun line in inertial space and the
consequences of this rotation on the alignment of the spacecraft
with the moving sun line are of interest. The detailed analysis
of the motion of a spinning vehicle relative to a moving coordi-
nate system is at best a complicated process but in this special
situation is susceptible to a simpler treatment.

If the satellite is precessing at constant angular velocity
about the sun line, its instantaneous angular velocity in the
direction perpendicular to the orbital plane at the point of

maximum displacement from this plane is:

If this velocity is just equal to the orbital angular velocity,

w an equilibrium condition results in which the spinning satel-

o'
lite will, in fact, continue to precess about the sun line but
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will appear to orbit the sun with its spin axis slightly inclined*

by an angle eo to the orbital plane such that:

w, = ¢ tan 8 _ {43]
If the spin momentum vector is directed away from the sun, the
inclination will be above the orbit plane and the reverse will

be true for the opposite direction of spin. Since

¢ o w: o %2 [44]

and from Kepler's second law

worz = H = constant
then

Yo
tan 6 = — {45]
° %

is independent of r and the inclination angle will be constant

throughout an eccentric heliocentric orbit.

6. Application to Sunblazer Vehicle

For a short, axially symmetric body, the ratio of the moment
about a diameter to that about the axis of symmetry is %. As
the body is lengthened along the spin axis, the ratio increases
toward unity. In moment-free precession stability considerations,
i.e. the prevention of tumbling or spin conversion, require

I; >> I. While this is not necessarily the case when solar

* This possibility was first suggested to me by Professor
Leverett Davis.
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pressure torques are present, it would still seem prudent to
require the major moment of inertia to be about the spin axis

so that a practical and acceptable value for the moment ratio

is:
;7 2 [46)

The minimum relaxation time [23] may then be written:
2
2

Tspin

T

[471]

= [5]

The importance of a short libration period is again evident
but the practicalities of achieving large vane areas without re-
sorting to difficult unfolding structures which are light enough
to avoid substantial increases in I, mitigate against T, being
much less than 103 sec. For example, the design of Figure 1,
weighing 10 kg with an 0.2m radius of gyration, having a sail
area of 1 m2 and a moment arm of 1 m will have a libration fre-

quency of:

W

-5 ’
,/%_"s'i = £0.5:20 ) (W () _ 51073 ;aa/sec

L 10(0,.2)2
Ainsl
or
t.o=2" 2 1.2 x 103 sec
L wz

If the satellite spin rate is the 1 rps imparted during launch,

then:

4(1.2)2106

= = . 6 =
T T 5.7 10° sec 66 days
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which would be unacceptably long so that some degree of despin-
ning is indicated.

In Table I the equilibrium inclination angle and the initial
alignment time have been calculated for an achievable range of

spin rates. It appears that despinning the vehicle to about
ca
F
to align itself within 0.5° of the sun line and would permit

6 rpm even for minimal damping = 10 (Table II) would allow it

alignment 24 days after injection., For more optimal damping,

sg = 1 (Table I), the inclination angle would still be less than

one degree but eguilibrium would be achieved 5 days after launch.
Recalling that for a uniformly loaded drum-shaped satellite

of radius R and mass M, the axial moment of inertia C is:

Further, since Im = mR2 for a peripherially mounted damper

(r; = R), then:

I m

C (M+2m)=%(%+2)
m

and at damper resonance {38] becomes:

Ca . 1 ML Zj

g )¢ [48]

For this to be unity we require:

4
1 4

{49]
L 4
1-% 1-%

=3
{

iy
ll
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The relative weight of the damper may be smaller as its
motion becomes more highly resonant (i.e. as ¢ <<l). Unfortu-
nately, this also reduces the range of spins over which %ﬁ = 1.
Using ¢ = 0.5 implies initial damping which is not difficult to
achieve; implies that the damper mass, if mounted at the satel-
lite periphery, must be about % of the satellite mass and will
provide effective damping over a 10:1 range of spin rates (Fig-
ure 4). If the damper is mounted further from the spin axis or,
even better, is incorporated in the antenna or vane assembly, a
smaller mass is usable. For a nominal spin rate of 2 rpm (0.03

rps), the resonant period of the damper must be 30 sec and is

achievable by simple mechanical means. For less than optimum

damping, such as when %g = 10 (Table II), the required damper
mass is considerably reduced and is only g% of the satellite

mass for the same (z = 0.5) damper bandwidth.

The question of the constancy of the spin rate is an impor-
tant one., It is difficult to envisage just what the dissipation
mechanism in @ could be that would produce appreciable spin decay.
The eddy current losses experienced by spinning satellites in
earth orbit are trivial beyond a few earth radii, and other body
force mechanisms only produce é and ; damping. As early experi-
mental proof of this assertion, Pioneer VI's spin rate has been
observed to decrease from 59 to about 58 rpm after two months
in interplanetary space. Even this small decrease may be attrib-

utable to some suspected minor gas leakage in the attitude control

system.
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Figure 1

Coordinate Axes



§ ,r? : : ;
i | ) 1
it w i
H il
5 JMJ. i
i § i i
i v T
O ; Ik i
+ B LT
et t Mttt 1]
U 7 : EXaEN :
— - i ElEse * 3s]
3 T : HE
+ 1 e SEREESEL B ©
eanl (1) P g
30l il i
i i ik
i) LT 41 B
= 35 S EES t JERRRas
= i [Eaplunps I E1H
18 i
B
B S BN

.

O

t

ion:

Pep gty

[

SRR

B o

oy
-

ot

i
faaden

\:f';

IS

By

ol

- .k
e

PO

[SSaPERe

R ‘0D ¥3s$s3 ¥ 134d4dN3AN
« ,, R RIEIT ‘WD s2Z X 8t
OlGl 9% YHILIWILNID FHL1 OL O X O}

=S




{ ¢ ‘OD UISST W 1AS4NIN {
' 2GR RITR-T0 SIT1ZAD 2 X 2 N?.f_
[eloY-FANe}Vd DUIWHILIUVYOHOT =X/



A
<

e i

5

5
H

elaxa

.

he)
-z

-

™
7

'

ion' o

~iat

Var

i

t
wy
™
. P
.
UISST A A0 0d0ad
» YAD L X Z FY,
‘ v o0cL SV i LIUvHOoT1 Y



