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Let us consider the system N:
X' = AX + IJ'S J E CCLEsS U ER) (THRW)
s

po= /Qf(o’) ’ E pkcéj (t{7
: - /9
c=<¢, X> s * T%ﬂ% (CATEGORY)

where X = (Xg(t>) is a variable n vector, § = (Sj) and C = (cj) are

constant n vectors, A = (aij) is a constant n x n matrix, o is a

n
scafler, <C, X>= Z cjxj , and @(o) is in general a nonlinear

J=1
function of 0. We set our problem in an appropriate /&p space with
Pvp norm. Multiplication by A is then a bounded transformation with
suitable norm. We assume that the norm of § is 1 in 4 P and that the

rorm of € 1is also 1 in the dual space. We dencte all these norms by

| l °

For a system such as N, stability means that X remains bounded for
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all t > 0, and asymptotic stability means that X approaches zero as t
approaches infinity. We wish to impose conditions on @ so that the
system will be stable or asymptotically stable.

We assume that the linear system L:

Y' = AY + uS,
4 =ho,
c=<¢ Y> ,

is stable whenever kl <h< k2. Note that this system can be written

as Y' = BY where the matrix B = (b,.) = (a,. + hs.c.).
ij ij i’

Lemma. Consider the matrix solution of Y' =BY, Y(o) =TI as an

operator on {P to {P. If all of the characteristic roots of B 1lie

in the left half of the complex plane, then there exist constants a > 0

and b > 0 such that H Y “ < ae-bt.

If all of the characteristic roots of B 1lie in the left half of the

complex plane or as simple roots on the imaginary axis, then there exists

a constant a > O such that H Y‘H < a.

See Bellman [2; p.36].
Let us now approximate the nonlinearity @(o) by oo + V(o) , where
kl <a< k2.
Note that the linear system I with h = O is asymptotically stable,
and that by the lemma, there exist constants a >0 and b > 0 such that
Y(t), the solution of L with h = & satisfying Y(o) = I, satisfies

I v(t) || < ae™®*.



Theorem. If @(o) satisfies
b b
(a—g) <¢(0)/0<(05+;) ’

then N is asymptotically stable.

If @(og) satisfies

(@-2) < #o)fog (@+2)

then N is stable.

Proof. N is equivalent to

X' = BX + uS ,

b= W(U) s

c=<¢C, X>,
Thus

t

X(6) = (t) x(0) + J' Y(t-m)¥(< ¢, X(1) >) 5 ar.

By the lemma,
t
wuwgaamnm@n+j ae (5 |y(<0,x(1)>) | lsllar.

Now if @(o) satisfies the hypothesis of the theorem, then

W (a)| <B lc|, where B < E . Thus

|¢(<C; X(T)>)| § B |<C: X(T)>l)

[W(-c, x(m)> < sl ¢l IF x()

Since H S “ =1, H C ” = 1, multiplying by ebt, we have



T

t
3tHﬂﬂH§aHﬂ®H+_Ia%MHXh)HM-

(e]

By Gronwall s inequalibty [2; p. 35],

™ x(e)l < all x(0) I| &, ana
I x(¢) I <all x(o) |l J(aB0)t 1o g <§ , I x(£)l| approaches zero
b

exponentially. If B =-—, | x(t) | is bounded.

Remarks. 1. A can have characteristic values in the right half plane. Thkat
1s, the system with no fegpack ¢ may be unstable.

2, a and b depend upon . As O approaches k1 or k2,

b/a must approach zero. Further, o - k 2 b/a and ky, - a2 b/a.
k2-1<1>29.
= a
3. Pliss [6] has shown by example that one cannot expect the

interval of stability [a - b/a , @ + b/a]l to entirely $ill the interval

[kl, k2]. (See also Aizermsn and Gantmacher [1].)

4, The optimal choice of & has not yet been determined.
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