|
View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by NASA Technical Reports Server

UNIVERSITY OF SOUTHERN CALIFORNIA

SCHOOL OF ENGINEERING

ESTIMATES OF THE STATISTICS OF RANDOMLY
VARYING PARAMETERS OF LINEAR SYSTEMS

S. M. Brainin
G. A, Bekey

ELECTRONIC SCIENCES LABORATORY

n— GO L2
). N6/ 12087

(ACCESSION NUMBER)

CFSTI PRICE(S) $

~ Hard copy (He)

WWASES)

(CODE)

FACILITY FORM 602

‘Microfiche (MF) s7)

%653 July 65

(NASA GR OR TMX OR AD NUMBER) —

(CATEGORY)



https://core.ac.uk/display/85249463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

June 1966 USCEE Report 171

ESTIMATES OF THE STATISTICS OF RANDOMLY

VARYING PARAMETERS OF LINFAR SYSTEMS

S. M. Brainin

~, A, Bekey

Department of Electrical Engineering
University of Southern California
Los Angeles, California

This research was supported in part by the National Aeronautics and
Space Administration under Grant No. NGR-05-018-022,




BOw N e

TABLE OF CONTENTS

ABSTRACT. . . . . . v v v v v e v e u v 1
INTRODUCTION « « « « « « o & e e .2
THEORY + « + + + ¢ o s o o o o o o o o « . 4
IDENTIFICATION - « . . . . I .
EXPERIMENTAL RESULTS AND

ERROR ANALYSIS: - -« « = « ¢ « « « « .« . 14

4,1 ESTIMATION OF THE MEAN. . . .14
4,2 ESTIMATION OF THE

PARAMETER VARIANCE-. - - - - 17
REFERENCES » + « « = ¢ o ¢ ¢ ¢ o o o o 20
APPENDIX Ac « & o o o o o s o o o o o o 23

APPENDIX B. . . . . . e e e e e e e e 26

ii



ABSTRACT

This paper describes an approach to the identification of linear dynamic
systems with random parameters. A technique, based on the Fokker-Planck equation,
is developed for estimating the statistics of randomly varying parameters in
systems whose differential equation is known a priori. The resulting mathematical

model then applies to a family of similar systems rather than to an individual.

The Fokker-Planck equation is applied to a first order linear system with
a random (Gaussian) parameter. TFirst order differential equations for the moments
of the system output are generated and used to estimate the first and second moments
of the random parameters. The identification procedure is based on regression

techniques.

The results of an application of the technique to a specific first order
system are presented with a theoretical discussion of the accuracy of the identi-~
fication procedure. The concluding section of the paper discusses the extension

of the techniques to higher order linear and non-linear systems.




1. INTRODUCTION

The identification problem is concerned with the determination of a mathe~
matical relationship which describes the input-output behavior of an unknown
system. A large class of identification procedures is concerned with systems
where the form of the mathematical model is assumed to be known a priori and
only parameters values are unknown. In such cases, the identification is reduced
to finding the Values of the parameter set which minimize an appropriate function-
al of the difference in performance of the model and system. Typical of such
procedures are relaxation methods, gradient techniques and random search algo-
rithms [1, 2, 3]. Techniques of this type have been applied to such diverse
problems as identification of the response characteristics of a human operator
in a manual control task or the identification of the parameters of a malfunction-

ing system for diagnostic purposes.

However, it must be noted that the class of identification techniques out-
lined above is primarily suited to systems with deterministic parameters.
Uncertainties are normally assumed to be present only in the measurement of
system outputs. When, as in the case of the human operator modeling problem
cited above, it is suspected that the system has'randomly varying parameters the
identification concentrates on the mean values of the parameters and not on their
distribution. The randomness is accounted for by resort to Monte Carlo techniques,
involving a large number of repeated experiments. This paper presents an approach
to the extension of the present theory to the identification of the statistics of

random parameters in a single experiment.

The function of identification takes on a broader aspect if the end result
represents a class of systems rather than an individual. Such is the case for
random parameters. By identifying the statistics of the parameters, the result-
ing model applies to a family of similar systems. Alternately, many individual
systems cannot be defined in terms of deterministic parameters. A case in point

is the biclogical system (e.g., the human operator) whose paramcters are not




constant when observed over any given period of time, but can be represented
to a closer degree of reality by means of statistical parameters. The research

reported here is devoted to the problem of random parameter identification.

In recent years two approaches to noise theory have developed. The first
method is heavily dependent on the concept of stationarity and the spectrum of
the random process. This technique has been employed by Rice and is known as
Rice's [4] method. The second method is the method of Fokker-Planck or the
diffusion process method [6]. Historically, this latter method is based on the
theory of Brownian motion where the path of a particle of colloidal size in a

viscous fluid is perturbed by molecular collisions.

In applying this latter technique we seek the probability distributions
for a random variable whose mean has a bandwidth very much smaller than the
disturbing and superimposed noise. So, if a process y(t) is defined as
y(t) = S(t) + n(t), the sum of signal and noise, then it can be shown for any
small interval of time At, the first moment, y(t) = S(t), the second moment
y2(t) = 0(At), and all higher moments vanish in the limit as the time increment
At approaches zero. Simply this means that in the time At, the noise can
fluctuate quite rapidly, but y(t) changes in the mean only as S(t), and only
small perturbations of y(t), about y(t) can occur in small intervals of time At.
The actual course which a Brownian particle will take depends only on the instan-
taneous values of its physical parameters‘and is entirely independent of its whole
previous history. Thus, the path of a Brownian particle falls in the classifica-

tion of a Markhoff process, with independent increments.

There are many noise processes which occur in nature, such as thermal and
shot noise, which when processed through a system, have the macroscopic properties
of the diffusion process. Thus, the method of Fokker-Planck can be abstracted
and applied in general to stochastic variables which fit this rather broad model.
In this paper the Fokker-Planck equation is derived for a one dimensional random
process. It is then applied to a system described by a linear differential equa-
tion containing a random parameter. As a result of*this application, first order
differential equations for the various moments of the system output are generated.

These are then used to identify the first and second moments of the random parameter.



2. THEORY

Let y(t) be a random Markhoff process and Wz(yoly, t) its second order
conditional probability density function, where Yo is the value of y at t = 0.
Then, for an incremental change in time At this density function can be

described as

00
W, (v, /y, £+ 4t) = Sm W, (y,/2, t) W, (z/y, at) dz (1)

where z = y - Ay and Ay is the increment in y(t). If only small changes in y
can occur in the time At this density function also satisfies the so-called

Fokker-Planck differential equation

oW 2
2 __90 2_
5t 5y [A1 (y) WZ] + 0y2 [Az(y) WZ] (2)

N

where the An(y) are the conditional moments of the variations about the expected

value of y(t) at any instant t, as defined by

s o]
A (y) = lm ZI'E S (oy)” Wy (yly + Ay, At) dy (3)

At—>0 =00
and An(y) = 0 for all n > 2.
A brief derivation of the Fokker-Planck equation is given in Appendix A.
Assume now that the system to be identified is defined by a first order
differential equation:
y(t) + B(t)y(t) = x(t) (4)

where x(t) is the driving function, B(t) is the random parameter, and y(t) is the
system output. It is assumed that B(t) = b + n(t) where b is a constant and n(t),

. . . . . . \ 2
is wide bandwidth Gaussian noise with zero mean and variance ¢ .

The coefficients of the Fokker-Planck equation Al(y), A2(y) defined in

equation (3) are derivable from equation (4). Taking a small increment in time At,



so that y(t) can be approximated by Ay/At, we obtain the approximate relations

h

Ly X At - By At

2,0 | 22 2, .2 ,2

Ay +By2At2-ZByx(t)At + x" At

Using the definition of the moments Al(y) and Az(y) from (3):

Al(y) = lim X Aot z;tBy At = by + x (5a)
At—>0
= . "1 2 1 2 2
A (y) = lim ~ (by At+ ny At)T - = (2byx At® + 2nyx At7)
At—>0
iz
+ = (x At) i
t+At
n(t.) n(t,) y(t,) y(t) 9
A (y) = lim XZAAt - 2bxyAt + bzy2 At + 1 2 1 2 dy.dy =y20
2 At 1772
At—=>0

since n(tl) n(tz) = 02 S(t2 - tl). See Reference 4.
It can also be shown that An = 0 for all n > 3. See Appendix B.

The corresponding Fokker-Planck equation is therefore, from equation (2):

Where W is understood to mean W, (yo/y, t).

The moments of y can now be defined in terms of W:




" =-g y'OW  dy (7

This equation can be differentiated with respect to time to yield

Q

W

ETY dy (7a)

00
n S )
aLat W dy + y

-00 =00

‘<:’I.
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[ |
8

n
Now 4 = nyn-1 g—% T lim nyn"1 ﬁ{-
At—>0

and the first integral on the right of e.g. (7a) can be written as

+.00
n ( 1
g{— Wdy = E ﬂny“'1 lim ﬁ% =n lim E<y" ﬁ‘%
%00 At—>0

The response in y is of the Brownian motion type and is a Markhoff process

with independent increments. Hence E(yk Ay) = 0 for any finite k. Thus

yh = S y & gy (8)

ot
- Q0D

We can substitute for LA from the Fokker-Planck equation (6), yielding

ot
oo
n n 3 2 2
y = y (-;3— (-by + x) W) + -%— :3_2 (yW) - dy
-co ay
. ©o ©
5 2 2 n 9% 2
y = 35 (yW-xwdy + 5 y (y" W) dy
“ ¥y 2 2
o -0 oy
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Let I = S v 5% (by W - x W) dy =y (by W - x W) -n S Y Lo by Weww) dy
- -0 -

s 0}

Now, by assumption W(+ oo) = 0 and g% (+ ®) = 0, and

1

I=nby . Reference 5 (9)

Similarly,

(e 3] (o o]

[e 0]
2
II = 8 y" -% (YZW) dy = y° a_b; (YZW)

-® oy -® )

which reduces to

——

n(n-1) y" (10)

L}

I1

Hence, the moments of the system output satisfy the differential equations

— — — 2 —
yn = -nb yn + nx yn-l + %r n(n-1) yn (11)

subject to the initial condition yn(O) for all n.

Therefore, the first two moment equations become

y +by = x (12)
y2 + (2b - 02) y2 = 2 x'§ ’ (13)

These are the first order differential equations for the first and second moments
of the system's output. In an actual application of the foregoing theory, a
mathematical model will be assumed which has the same differential equation as
the system (equation 4) but whose parametric values are unknown. In that case,

b and 02, the mean and variance of the random parameter are unknown. The identifi-

VACGWew W AL wmw - e aaW



3.. IDENTIFICATION

Since the model differential equation is assumed to have the same form as
the system, the differential equations for the moments of the model output
(derivable from the Fokker-Planék equation) must also have the same form as
equations (12) and (13). Therefore, let the identification model consist of .

the following differential equations:

+ ¢, m, = x (14)

m, + (2¢, - ¢C

9 = 2xm . (15)

where my is the estimator of ;, with assumed initial value m

m, is the estimator of y2, with assumed initial value My
C, is the estimator of b

and C., is the estimator of 02

The driving function x will be common to both the system and model equations.

The procedure consists of first identifying C1 in equation (14) by means of
a discrete regression technique, and then computing C2 from equation (15).
Questions of convergence for the regression identification algorithm are discussed

in Reference 7.

For the determination of C;, both the system (Equation 4) and model
(Equation 14) response functions were sampled with a sampling interval AT. This
was established by the time increment employed for the integration algorithm for

the differential equations.

The noise component of the parameter B was generated by a digital Gaussian
random number generator, whose samples are mutually independent. However, an

effective bandwidth (2W cps) was superimposed on the noise samples .



by the sampling interval. Since the total noise power is 02, the time duration

of the sampled signal is T seconds, and the bandwidth is 2W, then from sampling
theory

WT
2 1 2
o = W :/;1 0 (16)

where the n, are the noise samples. Thus 2WT = N where N is the number of samples,

and the effective sampling rate is 2W = N/T = %E samples/second. The total noise

power is distributed over the bandwidth of 2W cps. Hence, the spectral density
in this region is 02/2W.* Since 2W is

2
* The estimator for %ﬁ will be denoted by 021 in the rest of the paper, to

distinguish it from C2 (the estimator of 02 alone).




‘much larger than b/2x, this noise looks like white noise* to the system with a

correlation function.

2
R(1) = %ﬁ 5 (tr). See Reference 8.

The identification was based on the following criterion function:

| N N

| -. _ =\2 _ 2
| . OG5 €)= ) ) (myy - Ty ) e,
' i=1 i=1

where ;i and m,,; are the corresponding samples of the system's sliding average

response and the first moment model equation response, equation (14).

* The white noise character of the multiplicative noise, as experienced by the

system can be described in the following heuristic way:

The differential equation of the system can be written in the following form:

y + (b+n)y=x

where n is the wide band additive noise. Now transposing the product ny to

the right hand side of this equation

y + by = x -ny

If for the moment x is considered zero, ny is the driving function to a first
order linear differential equation. The bandwidth of ny 1s the convolution

in frequency of the bandwidth of n, and the bandwidth of'y.

The bandwidth of y is restricted to b/2n. The bandwidth of ny is thus slightly
larger than the bandwidth of n. 1In passing through the first order differential
equation, the bandwidth of ny is reduced to the bandwidth of y again. Thus, if
the bandwidth of n >> b/2x the bandwidth of ny >> b/2n and ny is effectively

white noise to the system.

-10-




The change of ¢ with respect to Cl’ is given by

N .

C’ ' oe, om

D DI D DR )
i= ’

i=1 i

since only the model equation is sensitive to changes in Cl.__In order to find
stationary point for @, with respect to Cl’ an increment Acl.must be found to

reduce éﬁ%— to zero., Let the incremented value 011 = C10 +‘AC1 and the correspond-

ing model output be approximated as
amy
myy = Mo + AC1 ac——l

where C10 and m, , are the initial value of C1 and my respectively. Now substituting

these expressions into (18), and equating it zero, the parameter increment AC can

N - ‘
, oy - om,
0 = § :(’“1i+AC1 (56;) - yi) (é‘cI) (19)
. n i

be found:

and

Due to the first order approximations employed, this process does not lead to
a minimum ¢ in a single trial and must be repeated several times, so that after

the j-th iteration

o D (D)

) P race W

The partial derivative of my with respect to CI is a sensitivity coefficient
or influence coefficient (9) derived in the following manner. Differentiate
equation (14) with respect to ¢y ' '

<11~



Q9 9o = 2
ac, (m) + 3¢ ¢ym g ¥

and let the sensitivity function Xl be defined by

A

Q@

7L

¢

X

Q

Then, assuming that my is continuous in both C1 and t1 the order of differentia~

tion can be interchanged and

X, + bX;, = -m, X/ (0)=0 (20)
This equation was programmed with the system equation (4) and regression equations
(17), (19) in order to compute the increments Ac(j). The computation procedure

consisted of the following steps:

1. For a given péir of values of b and 02 a set of k system response samples

are derived from the system equation. In addition. the mean and variance
2 .

y
2. For an estimated value of Cl’ the first moment my is generated by means of the

of this data is computed, i.e., ;, o

first model equation, equation (1l4).
3. Simultaneously, the sensitivity factor X, is generated by means of equation (20).

4. The incrementﬁAGl(J) is then computed so as to reduce the criterion function,
equation (19).

5. This process is repeated until the criterion function is minimized.

6. The second moment 02 is then computed from equation (15), in steady state

knowing, Cl’ cyz; ; and 2W, as follows: In steady state, for a step function
input '

2 A ml

= —= t
2 ZCl (1 02/201}

and

«12-



ml';'A/Cl, where x(t) = A

Further, 02/2C1 >> 1, so that the expression for m, can be written as

o 2 '
m, = my 1+ Cé/ZCl).

2

However, when ¢ is minimum ml’g ;, and the condition required to yield Cé is

m, g'y2‘ Hence
1
3 =2, S
y = v Ty 3¢
1
yielding
2
\ o C
= J_ = .2
¢, = 2, =5 oW
y
orY
2
g
c, = 4we¢, =+ (21)
y4 i yL

. . . 2
where 02 estimates the noise variance of the parameter B, i.e. ¢ .

Ordinarily, x(t) need not be a step but can be a stationary random process. In

this case it can be shown (10) that the equivalent driving function is x(t), the

mean value of the sample function of the ensemble exciting the model. x(t) is a

step function and the preceding analysis applies.

-13-




\ 4, EXPERIMENTAL RESULTS AND ERROR ANALYSIS

4.1 ESTIMATION OF THE MEAN

The error in identifying b, the average value of the unknown parameter,
consists of a precision error that is due to the experiment and a bias error, due
to the noise. The latter is due to the statistical fluctuation of the disturbing

noise, resulting in a non-zero mean for a finite sample space.

After the transient has become negligible the criterion function employed

| for the regression can be approximated in the steady state by

T - Zk: (’c:_? . (—%—))2 (22)

L =1
where the term under the summation sign is independent of the index j and

A is the magnitude of the step input

Cy is the estimated value of b

B = b+n
and n is the additive Gaussian noise with zero mean and variance 02 and k noise
samples were employed.

(A/B) can be considered as B—%—%:. For an infinite sample space E(n) = 0, but
for a finite sample populatiafﬁ’has some non-zero value. Hence,hihe effective
b is the algebraic sum of the actual parameter value and the sample mean of the

noise.

let b'=b+n

For any one run, all the terms under the summation are constant; hence,

- 1
T \b c, c,

~14-



[ N
where e1 b Cl

k

total number of error samples

st measured value of the criterion function

The value of e = C1 -b= -el' + 10 can be found from equation (23) where

y = A/b',

C )
=5 . L || =ss
e, n = = (24)
y
c - c [}
1 n L1 1}
ad g sl m % - VX
y
Thus
c - 7] - ) |
L e 142 o1 s o B (oS8 (25)
b b - k - k
y - by

Experimental results of Cllbbare plotted in Figuré 1, as a function of g2, the

actual noise variance. For small values of k, the precision error

1S

Zss
N Tk

<P

is predominant. This can be observed from the negative slope of the curves for

k = 89 points, since ﬁés will increase with increasing noise. However, as k
increases the error terms are reduced, as is apparent from Figure 1. The cross-
coupling term is small relative to the other terms and can be neglected. The
variance of the error between the actual and estimated values of the first moment
can be found from equation (24). Since these errors can be considered independent,

the variance of ey is expressed by:

, c IE 1
Var e; = Var n+ Var (:]-‘-\l-%-s-)
y

]
14—
Lo

1




where

Var n = cz/k

2 2 2
C o] c™, 9 o C
y k (y)

and c§? = the variance of @ and dyz = the variance of y.
2 2
2 C ® o lof
Var e. = & + L ss_ .y . 2_ (27)
1 k k k§4 4(p:ss ’

From equation (27) it is seen that this variation becomes small as k increases.

The largest experimental confidence interval for C1 thgs'occurred for

62 = 20, b= 50 and k = 89. This represents an extreme case for the observed
data.
Where c, = 49.33
2
o} = ,00352
y
. 2
estimated (cx:(E ) = .5
:gss = ,05
v = 1.01l16

The Var ey 2'.294,its standard deviation is 543 and the 95 percent.confidence
interval for Cl/b is therefore (C1/b + .022). Thus the number of required obser-

vations 1lies between 89 and 489.

-16-




4.2 ESTIMATION OF THE PARAMETER VARIANCE

The estimation error for 02 can be determined with the aid of equation (21),

which can be rewritten as

2
2C, ¢
e S
& ° & = @
y
where AT is the sampling interval, AT = %% .

From the differential calculus the experimental fluctuation of C, can be expressed

2
in terms of the fluctuations of Cl, cyz and y2 to a first order of approximation:

ocC ¢ a¢C
2 2 2 2 =
AC = ——= AC. + —~—== Aoq¢g + —_— Ay

2 go, T T8y 55

y .
Then
w2c‘2 2¢, g 401 o 2 -
¢ =8 T D > 2 Ay #* T =2 &yt AT =3 &y (29)

The increments in AE'and Aayz will be in error due to statistical fluctuation,‘
with equal likelihood of either sign. Furthermore, the errors due to Aayz and
Ay are due to the same source. This is also true for Acl, as k gets large.
Thus, a conservative estimate of the error C2 is made by assuming the three

contributing errors to be dependent. ‘Where

[
sl

= = W o=
AC, = e n 3

g

g
=

Thus




Proof: That Aay =

2 _ 1 =2
a, o” ot (Yj y)
k k
Var ¢ 2 . Var % Z (yj - ;)2 = -% Z Var (y = ;)2
v j=1 k© =1

Var (y; = y)2 = E (yj - Y)4 =3 [E(yj - y)Z] = 3cy4, by the

gaussian assumption.

2 3 4
\ = = g .E.D.
ar 9 k Ty Q
Now
2
e o =-C 2
EQ = __E___z = %_ -1 . (30)
2 2 2
or
2 e - , o
9—=1+-E-2-=1+[%--l g—-;—s-+\l%+-2-'-1:|
¢ 2 1y y (&

22 0 ;. E .01 | 3.2 %
5 1 o + = M o = (31
o 1 y y ,d k

Equation (32) gives the expression for Cz/czmax’ the estimated variance

- normalized with the maximum 02.

C . o
2 . (1_£_+l‘|§._5;8.-|..3..203)02 (32)
o_z. c]_ - k k A .}-"{? 0'2

max




Figure 2 illustrates some of the experimental results for C The improvement

9
with an increased number of sample points is again apparent. For large Kk,

Thus, the error in C. varies directly as n and inversely as C

2 1°

The variance of the estimated error for 02 can be found from equation (31).

% 20

Var e, = Var |- ‘3— + é —li’s- - % - :—y—' 02
1 y YJ k
2 2 2
2 \l © + 20 ) 3o
Var (ez/cz) = < 02 +( iZ 5 1) + 32 + _zy 2> (33)
C1 k vy k 4k y Pes v k

For the extreme case used to illustrate the confidence interval for ey, we find
the standard deviation from equation 30, for e2/20 to be .04. Hence the 95 percent
confidence limits for e2/20 are (e2/20 + .08) for 02 = 20, and the number of observa-

tions should be slightly greater than 489.

Conclusion

By means of a model derived from the Fokker-Planck differential equation, it
was possible to set up a computation algorithm for the identification of the second
order statistics of a random parameter. This was done for a first order linear system.
However, the method is applicable in principle to any order liﬁéar system containing a
finite number of finite parameters. It may also be possible to extend the method to
certain classes of nonlinear systems by using approximation techniques to represent
probability density and correlation functions. More work will be required to examine

this hypothesis.

Although the identification technique employed herein was by means of regression,
this is arbitrary. The method can be employed with any identification procedure,

provided only that the model moment equations exist and are known.

Once the first moment or the average parameter value has been established, the
method can be used to estimate any required number of the moments of the system's

output, assuming only that the input process is stationary.

-19-
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APPENDIX A

The development of the Fokker<Planck follows essentially the development of
Reference 5.

One Dimensional Case

The basic starting point is the Smolukowski equation. See Reference 5. Let
y(t) be a random Markhoff process, and Wz(yo/y, t) its second order conditional
density function. Where Yo is the value of y at time O. Then for an incremental

change in time this density function can be described as

®
W, (v /v, t+ A) =g W,(y,/2, t) Wy(zly, ac) de (A-1)
-0
z -y - Ay
Consider
@®
I= Q) T dy (A-2)
=00

where Q(y) and all its derivatives Q(n)(y) exist, and vanish as y—> + o sufficiently

rapidly for the convergence of all integrals in the following derivation, but is
otherwise an arbitrary function of y. Replace 6W2/0t by its limit form, use
equation (A-1) and substitute in equation (A-2).

@ ®
o
I = 1lim v dy Q(y) S dz W,(y /z, t) W (z/y, At) (A-3)
At—>0 At «00 =00 270 2

oY)
- 5ﬂ dz Q (x) W, (yO/z, ti]
-0

All integrals in this development are to be considered as Stieljis integrals.
Interchanging the order of integration and expanding Q(y) in a Taylor series about

the point z then gives for the double integral in equation (A=3).
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o0 ©
(n)
S dz Wz(yo/z, t) ZE:: Q—;ngl S (Y-z)nwz(z/y, At) dy.

0 n=1 =00

For n = 0, this term cancels the second term in equation (A-3) and

0 )
1 - }: L S a () Q™ (@) W,(y /2, t) az (a-3)
n=1 -0
where by definition
Q0
X 1
A (2z) = lim = S -z) "W, (z/y, At) d (A-4)
R g0 OF -m(yz 2= ’

The coefficients An(z) are the limits of the spatial moments of the increments

in z, occurring during the interval At, given the present value z(t), (i.e. the value

of y(t=At)). 1In other words the An(z) are conditional moments of the variations about

the sliding average of z(t)¥*, at any instant t.

It is assumed that all the coefficients An(z) exist and are at most finite so
that the series of equation (A-3) coverages. If equation (A-3) is now integrated by
parts, and we employ the assumption that Q(n)(z)—4>0, as z—>+ o sufficiently

rapidly such that

Q(n) An(z) W2 = 0, for all n, we find that in changing the

-0

variable of integration from z to y that

\S‘m Q c9W2 Z‘o g-l)n an ~
- | 5= - 2 =4 o (An(Y) wz) dy = 0 (A-6)

* The sliding avérage is defined as the expectation of z(t), which for the non-

stationary case, can be a function of time.
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Since Q(y) is otherwise an arbitrary function

aW (y /y, t) n
Z CHl L (o wo. )) -7
¥

n=1

where Wz(yo/y’ 0) = 8(y - yo). This is the series expression for the

Smolukowski equation.

When the first and second moments An(y) are non-zero and finite and all higher
moments go to zero as At—=0, this equation reduces to the Fokker-Planck partial

diifferential equation, i.e., if only small changes in y can occur in small changes

of time.
oW 2
°2 .2 1
, 5 £ a3 53;—2 (A,(y) W)

’ with the initial condition
W, (y,/y, 00 = 8 (y-y)
and the boundary conditions

oW, ( @) =0
Wy ko) = 0, =T—

oy
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APPENDIX B

The purpose of this appendix is to prove that

An =0 for allmn = 3, in equation (3)
p= Mmoo L @y
n At~>0 At
t+ALt t+At
Let Ay" = C - F(e) F(E. . . F(t) dt, dt, . L Lde
t t
where F(t) = x(t) - (b + n(t)) y(t)

Since the incremental statistics are conditional on the present value of y,
F(t) is conditionally a linear function of n(t). Thus, F(t) is a Gaussian random

variable, and therefore

for n 2 3 and odd, Ayn = 0.

For n = 4 and even, F(tl) F(t2) e F(tn) is equal to the sum of

)
——nr;'—-—~ terms each of which is a product of n/2 pairs. Reference 4.
(2)

o,
2
n/2
. [ st

= n!: (At) . oecee———
A = 1lim et F(t,) F(t,) dt, dt
n At —»0 % 1 2(n/2) St 1 2 1 72

= n. (XZA At2 + c_zy_z At:)n/2
An lim o myE 70) = 0 Q.E.D,

At—»0 (5) vo2
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