

$$
0 \times ?
$$

NBS REPORT

9258

FORTRAN PACKAGE FOR LEAST SQUARES CURVE FITTING AND THE SOLUTTON OF SIMULTANEOUS EQUATIONS

J. G. Hust and R. D. McCarty

U. S. DEPARTMENT OF COMMERCE
 NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.
Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Physics. Radio Standards Laboratory:* Radio Standards Physics; Radio Standards Engineering. Office of Standard Reference Data.
Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics." Materials Evaluation Laboratory. Office of Standard Reference Materials.
Institute for Applied Technology. Building Research. Information Technology. Performance Test Development. Electronic Instrumentation. Textile and Apparel Technology Center. Technical Analysis. Office of Weights and Measures. Office of Engineering Standards. Office of Invention and Innovation. Office of Technical Resources. Clearinghouse for Federal Scientific and Technical Information.**
Central Radio Propagation Laboratory.* Ionospheric Telecommunications. Tropospheric Telecommunications. Space Environment Forecasting. Aeronomy.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 31502-40-3150422
 October 10, 1966
 9258

FORIRAN PACKAGE FOR LFAST SQUARES CURVE FITIIING
AND THE SOLUTION OF SIMULTANEOUS EQUATIONS

J. G. Hust and R. D. McCarty
Cryogenics Division
Institute for Materials Research
Boulder Laboratories
Boulder, Colorado

IMPORTANT NOTICE
NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting documents intended for use within the Government. Before materia! in the reperts is forma!!y published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reproduction, or open-literature listing of this Report, either in whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington, D.C. 20234. Such permission is not needed, however, by the Government agency for which the Report has beeri specifically prepared if that agency wishes to reproduce additional copies tor its own use.

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

CONIENTS

Page
Abstract 1

1. Introduction 1
2. Normal Equations 2
3. Constraints 3
4. Matrix Inversion 3
5. Sample Problem 4
6. References 5
7. Appendix - Computer Code Listings 6

FORTRAN PACKAGE FOR LEAST SQUARES CURVE FITTING AND THE SOLUTION OF SIMULTANEOUS EQUATIONS

J. G. Hist and R. D. McCarty

FORIRAN subroutines are described for the solution of a least squares problem. Three subroutines are listed which: (1) establish the normal equations, (2) constrain the normal equation, and (3) perform matrix inversion by the Gauss-Jordan method. Subroutine (3) may also be used for the simultaneous solution of any set of linear equations.

1. INTRODUCTI ON

Many mathematical techniques are presented in the literature for representing data. Of these methods, the most popular seems to be the method of least squares, not necessarily because it is the best, but because it is relatively simple and also because of the ease with which statistical information can be extracted from the data. The solution of the least squares problem, although mathematically unique, can be programme in many ways. This report describes how this problem has been handled in the Evaluation Unit of the Cryogenic Data Center.

The package consists of three double precision subroutines. The first, DSUMUP, is used to establish the normal equation; the second, CONLSQ, is used to apply constraints if desired; the third, DGJFIT, is a Gauss-Jordan with pivotal condensation matrix inversion routine which computes and prints out statistical information along with the parameters. The third routine can also be used to solve any set of n linear aquations for n linear coefficients. The computer codes for these subroutines are listed in the Appendix.

2. NORMAL EQUATIONS

We will consider only linear equations of the form

$$
\begin{equation*}
y=\sum_{i=1}^{m} a_{1} f_{i} \tag{1}
\end{equation*}
$$

where a_{1} are the parameters and f_{1} and y are functions of the measured variables. Since often it is impossible to attach any significance to "dependent" and "independent" variables, this terminology is not used here. If an equation is non-linear in the parameters, it must be linearized before this package can be used.

Upon applying the least squares condition, i.e., minimize the weighted sum of the squared deviations of y, the normal equations (2) are obtained:

$$
\begin{equation*}
[F]\{a\}=\{B\} \tag{2}
\end{equation*}
$$

where [F] is a square array and $\{B\}$ is a column array of values dependent upon the f_{i} and y evaluated at each data point. This is described in more detail by Hust and McCarty [I].

The subroutine DSUMUP establishes the arrays [F] and (B) in a summation fashion, i.e., DSUMUP is called for each data point and the appropriate additive change in $[F]$ and $\{B\}$ is accomplished. Since [F] and \{B\} depend upon the data in an accumulative fashion, it is important that [F] and (B) are zero at the outset. This can be accomplished by calling DSUMUP with the argument NCOF equal to zero. The argument list of DSUMUP is as follows: C is an array generated by DSUMUP, the first NCOF columns represent $[F]$ and the next column represents $[B$). G is an array representing $f_{i}(i=1,2$. . m) evaluated at the current data point. NCOF is the number of coefficients and thus, the order of $[F]$. Y is $y_{e x p}$ at the current data point. YY, WTSUM, and NPTSUM are generated by DSUMUP. YY is a quantity used to determine the sum of squares, WTSUM is the sum of the weights, and NPTSUM is the sum of points, i.e., the current number of points. WT is the weight assigned to the current point.
3. CONSTRAINTS

After having called DSUMUP for all data points, the constraints may be applied. It has been shown [I] that the constrained normal equations are given by

$$
\left[\begin{array}{l:c}
{[F]} & {[g]^{T}} \tag{3}\\
\hdashline[g] & 0
\end{array}\right]\left\{\begin{array}{l}
\{a\} \\
\hdashline\{\lambda\}
\end{array}\right\}=\left\{\begin{array}{c}
\{B\} \\
\hdashline\{c\}
\end{array}\right\}
$$

where $[g]\{a\}=\{c\}$ represents the constraints and $\{\lambda\}$ represents the Lagrangian multipliers.

The subroutine CONLSQ is used to modify (2) to obtain (3). CONLSQ is called once for each constraint and the arguments have the following meaning: C is the matrix generated by DSUMUP; G is the row of [g] corresponding to the constraint currently being added, while Y is the corresponding element of \{c\}; NCOF is the number of parameters, while NCON indicates which constraint is currently being added; NCON should start with one and should increase by one for each subsequent constraint.

4. MATTRIX INVERSION

The matrix inversion is accomplished by the Gauss-Jordan [2] reduction method. The Crout method has also been used by members of the Cryogenic Data Center and seems to be comparable in speed and yields results of comparable accuracy. The Gauss-Jordan method is used in the subroutine DGJFIT. The arguments are defined as follows:

DGJFIT
C is the augmented normal matrix as formed by DSUMUP and modifieả by CONLSQ upon entry and the variance - covariance matrix upon exit.

G is the coefficient array upon exit.
NCOF is the number of coefficients.
NCON is the number of constraints.
NPTS, YY, and WTSUM are input variables as generated by DSUMUP.

5. SAMPLE PROBLEM

An example of how these subroutines are used is included below.

Problem:

Fit the function: $Z=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ to 10 data points with equal weights and apply the constraints:
$z^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}=0$ at $x=2$, and
$z^{\prime \prime}=2 a_{2}+6 a_{3} x=0$ at $x=1$.
:
DIMENSION $X(10), Z(10), C(40,41), G(40)$
TYPE DOUBLE C,G,Y,YY,WTSUM
NOPTS $=10$
$\mathrm{NCOF}=4$
100 FORMAT (2F10.4)
DO 1 I = 1 , NOPTS
READ 100, X (I), Z(I)
DO $2 \mathrm{~J}=\mathrm{l}$, NCOF
$2 G(J)=X(I) * *(J-I)$
$\mathrm{WT}=1.0$
$Y=Z(I)$
1 CALL DSUMUP (C,G,NCOF,Y,YY,WTSUM NPTSUM)
$\mathrm{NCON}=1$
$G(1)=0.0$
$G(2)=1.0$
$G(3)=4.0$
$G(4)=12.0$
$Y=0.0$
CALL CONLSQ ($\mathrm{C}, \mathrm{G}, \mathrm{NCOF}, \mathrm{NCON}, \mathrm{Y}$)
$\mathrm{NCON}=2$
$G(1)=0.0$
$G(2)=0.0$
$G(3)=2.0$
$G(4)=6.0$

$$
\begin{aligned}
& Y=0.0 \\
& \text { CALL CONLSQ (C,G,NCOF,NCON,Y) } \\
& \text { CALL DGJFIT (C,G,NCOF,NCON,NOPTS,YY,WTSUM) } \\
& \text { DO } 3 I=1, \text { NOPIS } \\
& 3 \text { ZCALC }=G(I)+G(2) * X(I)+G(3) * X(I) * * 2+G(4) * X(I) * * 3 \\
& \vdots
\end{aligned}
$$

6. REFFRENCES

[I] Hust, J. G., and R. D. McCarty, Cryogenics (to be published).
[2] Golden, J. T., (1965), FORTRAN IV - Programming and Computing (Prentice Hall, Inc., Englewood Cliffs, N. J.).
7. APPENDIX - COMPUTER CODE LISTINGS

The computer codes for the subroutines described in this report are listed below. Duplicate decks of these subroutines may be obtained from the Cryogenic Data Center, Cryogenics Division, National Bureau of Standards, Boulder, Colorado.

```
    SUBROUTINE CONLSQ(C,G,NCOF,NCON,Y)
C C IS THE MATRIX BEING CONSTRAINED, G IS THE CURRENT ADDITION TO C,
C Y IS THE CURRENT AUGMENTING COMPONENT ,NCOF IS THE NUMBER OF
C COEFFICIENTS, NCON IS THE NUMBER OF THE CURRENT CONSTRAINT BEING
C
```


ADDED.

```
DIMENSION G(40), \(\mathrm{C}(40,41)\)
TYPE DOUBLE \(C, G, Y\)
\(N N=N C O F+N C O N+1\)
\(M M=N N-1\)
\(J J=N N-2\)
II \(=N C O F+1\)
DO \(15 \quad \mathrm{I}=1\), J J
\(15 C(I, N N)=C(1, M M)\)
DO \(50 \mathrm{I}=1\), NCOF
\(C(I, M M)=G(I)\)
\(C(M M, I)=G(I)\)
50 CONTINUE
DO 60 I=II,JJ
\(C(I, M M)=0.0 D\)
60 CONT INUE
\(C(M M, N N)=Y\)
RETURN
END
```

```
    SUBROUTINE DGJFIT(C,G,NCOF,NCON,NPTS,YY,WTSUM)
C NCOF IS THE NUMBER OF COEFFICIENTS. NCON IS THE NUMBER OF
C CONSTRAINTS.
C
C
    DIMENSION:IPIVOT(40),INDEX(40,2)
    DIMENSION B(40),PIVOT(40),C(40,41),G(40)
    TYPE DOUBLE B,PIVOT,C,G,DETERM,AMAX,SWAP,T,RI,YY,FPTS,FN,VARFIT,
    1 SDG,WTSUM
C SAVE NORMAL MATRIX
    N=NCOF + NCON
    NN=N+1
    DO 6 I=1,N
    6 B(I)=C(I,NN)
        WRITE OUTPUT TAPE 61,101
        WRITE OUTPUT TAPE 61.201
        DO 851 I=1,N
    851 WRITE OUTPUT TAPE 61,301.(C(1,J),J=1,NN)
    INITIALIZATION
C
    10 DETERM=1.00
    15 DO 20 J=1,N
    20 IPIVOT(J)=0
    30 DO 550 I=1,N
C
C
    40 AMAX =0.OD
    4 5 ~ D O ~ 1 0 5 ~ J = 1 , N
    50 IF (IPIVOT(J)-1) 60, 105, 60
    6 0 ~ D O ~ 1 0 0 ~ K = 1 , N
    70 IF (IPIVOT(K)-1) 80, 100, 740
    80 IF (ABSF(AMAX)-ABSF(C(J,K))) 85, 100, 100
    85 IROW=J
    90 I COLUM=K
    9 5 ~ A M A X = ( I J , K )
    100 CONTINUE
    105 CONTINUE
    110 1PIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
C
C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
    130 IF (IROW-ICOLUM) 140. 260, 140
    140 DETERM=-CIETERM
    150 DO 200 L=1,N
    160 SWAP=CIIROW,L)
    170 C(IROW.L)=CIICOLUM,L)
    200 C(ICOLUM,L)=SWAP
    205 CONTINUE
```

```
    210 CONTINUE
    220 SWAP=B(IROW)
    230 B(IROW)=B(ICOLUM)
    250 B(ICOLUM)=SWAP
    260 INDEX(I,1)=IROW
    270 INDEX(I,2)=ICOLUM
    310 PIVOT(I)=C(ICOLUM,ICOLUM)
    320 DETERM=DETERM*PIVOT(I)
C
C DIVIDE PIVOT ROW BY PIVOT ELEMENT
C
    330 ( (ICOLUM, I COLUM)=1.OD
    340 DO 350 L=1,N
    350 C(ICOLUM,L)=C(ICOLUM,L)/PIVOT(I)
    355 CONTINUE
    360 CONTINUE
    370 B(ICOLUM)=B(ICOLUM)/PIVOT(I)
C
C REDUCE NON-PIVOT ROWS
C
    380 DO 550 L1=1,N
    390 IF(LI-ICOLUM) 400, 550,400
    400 T=C(Ll,ICOLUM)
    4 2 0 ~ ( ( L I , I C O L U M ) = 0 . O D ~
    4 3 0 ~ D O ~ 4 5 0 ~ L = 1 , N
    450 C(Ll,L)=C(Ll,L)-C(ICOLUM,L)*T
    455 CONTINUE
    460 CONT INUE
    500 B(Ll)=B(LI)-B(ICOLUM)*T
    550 CONTINUE
C
C
    600 DO 710 I=1,N
    610L=N+1-1
    620 IF (INDEX(L,1)-INDEX(L,2)) 630, 710,630
    630 JROW=INDEX(L,1)
    640 JCOLUM=INDEX(L,2)
    6 5 0 ~ D O ~ 7 0 5 ~ K = 1 , N
    660 SWAP =C (K,JROW)
    670 C(K,JROW)=C{K;JCOLUM:
    700 C(K,JCOLUM)=SWAP
    7 0 5 ~ C O N T I N U E
    710 CONTINUE
    740 CONTINUE
        PLACE SOLUTION MATRIX INTO G
        MM=NCOF
        DO 749 I=1,MM
    749 G(I)=B(I)
    NOW CALCULATE THE SUM OF SQUARES
        RI=O.OD
```

```
    DO 752 17=1,N
    752 R1=R1- C(IT,NN)*B(I7)
    Rl=R1+YY
    WRITE OUTPUT TAPE 61,1100,DETERM
    WRITE OUTPUT TAPE 61,401,R1
C CALCULATE THE VARIATION OF THE FIT AND THE RMS DEVIATION
    FPTS=NPTS
    FN=N
    VARFIT=R1/(FPTS-NCOF+NCON)
    WMSDEV=R1/WTSUM
    WRITE OUTPUT TAPE 61,1001,VARFIT
    WRITE OUTPUT TAPE 61,701,WMSDEV
    WRITE OUTPUT TAPE 61.1201,NPTS
        WRITE OUTPUT TAPE 61,1301,WTSUM
    WRITE OUTPUT TAPE 61,801
    DO 742 I=1,N
    WRITE OUTPUT TAPE 61,301,(CII,J),J=1,N)
    742 CONTINUE
C CALCULATE VARIANCE-COVARIANCE MATRIX
    DO 743 I=1,N
    DO 743 J=1,N
    C(I,J)=VARFIT*C(I,J)
    743 CONTINUE
    WRITE OUTPUT TAPE 61.901
    DO }744\textrm{I}=1,
    WRITE OUTPUT TAPE 61,301,(CII,J).J=1,N)
    744 CONTINUE
    WRITE OUTPUT TAPE 61,501
    DO }852 I=1,M
C CALCULATE THE STANDARD DEVIATION OF THE COEFFICIENTS
    SDG=(C(1,I))**0.5
    RSDG=ABSF(SDG/G(I) )
    WRITE OUTPUT TAPE 61,301,G(I),SDG,RSDG
    852 CONTINUE
    101 FORMAT(31H1 AUGMENTED MATRIX TO BE SOLVED)
    201 FORMAT(1HO)
    301 FORMAT(8E16.8)
    4 0 1 ~ F O R M A T ~ ( 3 8 H O W E I G H T E D ~ S U M ~ O F ~ S Q U A R E D ~ D E V I A T I O N S ~ = ~ E l 6 . 8 ) , ~
    501 FORMATI *ICOEFFICIENTS, STANDARD DEVIATIONS AND RELATIVE STANDARD
    1 DEVIATIONS OF INPUT TERMS IN SAME ORDER*I
    601 FORMAT(1H1)
    701 FORMAT(43HOWEIGHTED MEAN OF THE SQUARED DEVIATIONS F .El6.8)
    801 FORMAT(25H1INVERSE MATRIX )
    901 FORMAT(43HIVARIANCE-COVARIANCE MATRIX OF COEFFICIENTS)
1001 FORMAT (23HOVARIANCE OF THE FIT = PEl6.8)
1100 FORMAT(4OH1THE DETERMINANT OF THE NORMAL MATRIX = ,E16.8)
1201 FORMAT(27HONUMBER OF POINTS FITTED = .16)
1301 FORMAT (18HOSUM OF WEIGHTS = E16.8)
    RETURN
    END
```

```
    SUBROUTINE DSUMUPIC,G,NCOF,Y,YY,WT,WTSUM,NPTSUM)
c
C IF DIMENSION CARD IS CHANGED CHANGE CARD 2O ALSO
    DIMENSION C(40,41),G(40),GWT(40)
    TYPE DOUBLE C,G,Y,YY ,WT ,GWT,YWT,WTSUM
    IF(NCOF)20,20,3
    3 CONTINUE
    N=NCOF
    NN=N+1
    NPTSUM=NPTSUM+1
    WTSUM=WTSUM+WT
    DO 5 I=1,N
    GWT(I)=G(I)*WT**0.5
    5 \mp@code { C O N T I N U E }
    YWT=Y*WT**0.5
10 DO 2 I=1,N
    DO 1 J J I,N
    1 C(I,J)=C(I,J)+GWT(I)*GWT(J)
    2 C(I,NN)=C(I,NN)+YWT*GWT(I)
    YY=YY+YWT**2
    RETURN
20 M=40
    NN=M+1
    DO 30 I =1,M
    DO 30 J=1,NN
30 (1I,J)=0.OD
    NPTSUM=0
    WTSUM=0.0
    YY=0.OD
    RETURN
    END
```


U.S. DEPARTMENT OF COMMERCE

WASHINGTON, D.C. 20230
U.8. DEPARTMENT OF COMMERCE

OFFICIAL BUSINESS

[^0]: * Located at Boulder, Colorado 80301.
 ** Located at 5285 Port Royal Road, Springfield, Virginia 22171.

