https://ntrs.nasa.gov/search.jsp?R=19670002876 2020-03-16T16:58:21+00:00Z

Sill

National Aeronautics and Space Administration Goddard Space Flight Center Contract No.NAS-5-12487

ST - ACH - CR - 10 513

DETERMINATION OF ABOVE-ATMOSPHERE DIMENSIONS OF METEORITES

by

A.K. Lavrukhina

(USSR)

N 67 12205 (THRU) 602 (ACCESSION NUMBER) PACILITY FORM CODE (PAGE (CATEGORY) AD NUMBER) (NASA

GPO PRICE \$_____

CFSTI PRICE(S) \$ _____

Hard copy (H	(1,00)
	50
Microfiche (M	F)

ff 653 July 65

26 SEPTEMBER 1966

ST- ACH - CR- 10 513

DETERMINATION OF ABOVE-ATMOSPHERE DIMENSIONS OF METEORITES

by A. K . Lavrukhina

Doklady A.N.SSSR Astronomiya Tom 168, No.6, 1275-8, Izdatel'stvo "NAUKA", 1966

SUMMARY

The absence of data on above-atmosphere dimensions of meteoritic bodies and the position of those specimens having fallen on Earth constitutes one of the most essential gaps in our knowledge of meteorites. The only method allowing to evaluate the above-atmosphere dimensions of meteorites is the study of the depth dsitribution of the formation rate of cosmogenous isotopes arising in nuclear interactions of cosmic rays with the meteoritic matter. The accuracy of the assumed method resides mainly in the precision of radiometric methods and the correctness of the adopted hypothesis on the constancy of spatial distribution of cosmic rays in the solar systems. The method is practically applied in the case of the Yardymlin iron shower.

The basic source of cosmic matter is in meteorites. The matter of meteorites and of their parent bodies, i.e. the asteroids, varied in the course of the time of their existence (nearly 4.5 billion years) to a substantially lesser degree than the substance of the Earth. This is why meteorites constitute the most important source of information about the early stages of formation of solar system's bodies. Moreover, they are the only source of knowledge on temporal and spatial variations of cosmic rays, for the meteoritic matter stores the products of nuclear interactions.

One of the most essential gaps in our knowledge of meteorites is the lack of data on above-atmosphere (or pre-atmosphere) dimensions of meteoritic bodies, and the position of the specimens of these bodies having fallen on Earth. It is known only that a substantial part of meteoritic body invading the terrestrial atmosphere is lost at the expense of the ablation process.

The only method to determine the above_atmosphere dimensions of meteorites is the study of the distribution in depth of the formation rate of cosmogenous isotopes emerging in nuclear interactions of cosmic rays with the meteoritic matter. The foundation of this method lies in the existence of differences in the excitation functions, i.e., the dependence of formation cross sections on the particle energy $\delta_{Ai} = f(E_{part})$ for the various groups of products of nuclear reactions.

^{*} OPREDELENIYE DOATMOSFERNYKH RAZMEROV METEORITOV

As follows from experiments on irradiation of iron targets by protons of various energies from 0.1 to 2.5 giga ev [1-5], all products of nuclear reactions may be divided into two groups:

1) isotopes with $\Delta A = A_{target} - A_{prod} \leq 10$; for them σ_{A_i} is constant in the indicated proton energy range (see curve 1 in Fig. 1);

2) isotopes with $\Delta A > 10$; for them there is observed a sharp increase of \mathfrak{S}_{Ai} in the region $\mathbb{E}_p < 1$ giga ev and a small variation for $\mathbb{E}_p > 1$ giga ev, similarly to the curve 2, Fig.1).

The rate of formation of isotopes H_{A_i} at the i-th point, defined by the quantity r_i (distance from the surface) of the meteorite body of radius R_i , is a function of the intensity of primary cosmic radiation and secondary nucleo-active particles, which depend on r_i and R_i and on the quantities

$$\overline{\sigma}_{A_i} = \int_{E_{\bullet}}^{E_{\infty}} \sigma_{A_i}(E) F(E) dE / \int_{E_{\bullet}}^{E_{\infty}} F(E) dE; \qquad (1)$$

 σ_{A_i} depend on the form of the spectrum of nucleoactive particles and on the excitation functions of isotopes.

Fig.1. Excitation functions of V^{49} (curve 1) and Na^{22} (curve 2) in the reactions of protons with iron nuclei.

In the model proposed by us in [6, 7], the values of H_{A_i} (r_i, R_i) in iron meteorites are

$$H_{A_{i}}(r_{i}, R_{i}) = \frac{N}{A} \left[\overline{\sigma}_{A_{i}}^{\text{перв}} I_{\text{перв}} + \overline{\sigma}_{A_{i}}^{\text{ливн}} I_{\text{ливн}} + \overline{\sigma}_{A_{i}}^{\text{р}} I_{p} + \overline{\sigma}_{A_{i}}^{\pi} I_{\pi} + \overline{\sigma}_{A_{i}}^{n_{i}} I_{n_{i}} + \overline{\sigma}_{A_{i}}^{n_{i}} I_{n_{i}} \right], \qquad (2)$$

 σ_{A_i} is the mean non-weighted formation cross section of the isotope A; the indices "HOPB ", "HEBH ", p, π , n and n₂ are respectively related to the primary cosmic radiation, to shower particles (E_p>1 giga ev, to fast protons, mesons and neutrons (0.1 giga ev $\leq E_p \leq 1$ giga ev) and slow neutrons (0.001 giga ev $\leq E_p \leq 0.1$ giga ev).

The role of particles of each form in the formation of the Ai-isotope is determined by the form of the spectrum of particles and the function $A_1 = f(E)$. This is why the character of the depth distribution H_{A_1} in meteorites with different R_1 for the isotopes of the two above indicated groups is different. This is clearly seen from the curves of Fig.2 obtained by us for the following parameters: $I_0 = 0.23$ particle/cm² sec.ster = 0.386 nucleons/cm² sec.ster according to the spectrum of primary radiation for the solar activity minimum by the 1953-1956 data [8]; the spectrum form variation was taken into account for various r_i at the expense of ionization losses. The multiplicities of secondary mesons and protons were determined by their spectra obtained during photoplate exposure in the atmosphere [9]. In correspondence with these data it was admitted that the spectra of secondary particles are not dependent on either r_i or R_i . When determining $I_p(r_i, R_i)$ and $I_{\pi}(r_i, R_i)$, the ionization losses were taken into account. The multiplicity of neutrons was determined from the neutron spectrum in the atmosphere [10] at normalization to the value for R = 26 cm and r = 13 cm 11. The multiplicities are $\bar{S}_{\pi \text{HBH}} = 0,27, \ \bar{S}_{p} = 0,70, \ \bar{S}_{\pi} = 0,46, \ \bar{S}_{n_{1}} = 3,46, \ \bar{S}_{n_{1}} = 37,53.$ It was assumed that the excitation functions are identical for protons, mesons and neutrons, and that the meteorite body had a spherical shape before entering the Earth's atmosphere.

From the course of the curves in Fig.2 substantial differences result in the absolute formation rates of Na²² and V⁴⁹ and in their distribution in depth. It is most essential that the ratio $H_{V^{4}}/H_{Na^{2}}$ generally varies little on the surface of meteorites with various R₁ (for example, for R = 5 cm it is equal to 28, for R = 40 cm — to 25 and for R = 200 cm — to 19), whereas for the centers these variations are substantial (for R = 5 cm they are 36.7; for R = 40 cm they are 80 and fir R = 200 cm they are 44). As R₁ increases, there is observed a rise in the values of the ratio (H_{A1}) surf/(H_{A1})_{cent}; for example, if at R = 5 cm it is 0.85 for V⁴⁹ and 1.07 for Na²², we shall obtain at R = 100 cm respectively 11.4 for V⁴⁹ and 51 for Na²².

These peculiarities of H_{A_1} distribution in depth for isotopes with various excitation functions are still more clearly revealed in the graphs of Fig.3 in the coordinates H_A and H_{A_1}/H_{A_2} , which represents a nomogram from mutually intersecting parallel lines corresponding to $R_1 = \text{const}$ and $r_1 / R_1 = \text{const}$.

Such a nomogram allows to determine the above-4tmosphere radius of the meteoritic body and the distance of the sample investigated from its surface or center according to the activity of the respective isotopes in the given sample of iron meteorite. In order to exclude the possible temporal intensity variation of cosmic rays, isotope pairs with close decay periods should be chosen. Such are Na²² (T = 2.58 years) and $\sqrt{49}$ (T = 330 days) or Mn^{54} (T = 291 days) for freshly fallen meteorites and Be^{10} $(T = 2.5 \cdot 10^6 \text{ years or } A12^6(T = 7.4 \cdot 10^7 \text{ years}) * for meteor$ ites having fallen five or more years back. According to the maximum value of $Na²² activity and the average activity of <math>V^{49}$ in the Arus Yardymlin iron shower [12] (point in Fig. 3), we determined the above-atmosphere radius and the weight of the meteoritic body having started that shower (see Table 1). Had the fallen body had the shape of a sphere of radius Raft. atm. = 15.6 cm, its weight would

* also Mn^{53} (T $\ge 2 \cdot 10^6$ years)

5

have been equal to 550 kg, value close to that of open specimens (150 kg). The difference between these weights is explained by the irregularity of melted layer's blowing off the surface of the body moving at cosmic velocity. The value of <u>r</u> for the specimen investigated was found to be 10.4 cm.

Fig. 3. Dependence of H_V49 on $H_V49 / H_{Na}22$ for various ri and ri / Ri

TABLE 1

in	the	form	of	Yardymlin iron shower

Above-atmosphere dimensions of a meteoritic body fallen

R, cm	r / R	r, cm	R - r , cm	General weight, kg	Degree of ablation, %	Source
26 39	0.4 0.6 <u> </u>	10.4 23.4 - 15.6	15.6 15.6_ 23.4	550 1850	75 92	present work 13

Our estimates of dimensions and weight of the meteortic body having fallen in the form of the Yardymlin iron shower differ from the data of [13], obtained on the basis of analysis of the dependences of ratios of He³ / Ne²¹ and He³ / He⁴ contents on H_{Ar}³⁸. in the Arus specimen. The nomograms were constructed according to data on depth distribution of these isotopes in the Grant meteorite, whose cosmic age was, according to the Ai³⁶ / Cl³⁶ method, equal to 600 million years. However, subtantial discrepancies were revealed in [14] in the dependence of Cl³⁶ and Ar³⁶ on depth and in the values of cosmic ages for various areas of the Grant meteorite, apparently on account of spatial erosion which may distort to pattern of distribution in depth of stable isotopes. Nor can be excluded the possibility of temporal variation of cosmic rays which will lead to various effects on stable and radioactive isotopes. The method proposed by us is devoid of these uncertainties. Its precision is determined mainly by the precision of radiometric determinations of low activities and the correctness of the adopted opinion on the constance of spatial distribution of cosmic rays in the solar system.

I wish to express my gratitude to L.D. Revina, T. A. Ibrayev and T. I. Kholodkovskaya for their assistance in the completion of the work.

**** THE END ****

Institute of Geochemistry and Analytical Chemistry in the name of V.I.Vernadskiy, of the USSR Academy of Sciences Manuscript received on 25 August 1065

Contract No. NAS - 5 - 12487 VOLT TECHNICAL CORPORATION 1145 19th st. NW WASHINGTON D.C. 20036 Telephone: 223 - 6700

.

1

Translated by ANDRE L. BRICHANT

on 21 - 22 September 1966

REFERENCES

1. 2.	A. P. VINOGRADOV, A. K. LAVRUKHINA, L. D. REVINA Geokhimiya, 11, 955, 1961. A. K. LAVRUKHINA, L. D. REVINA, et AL Radiokhimiya, 5, v.6, 721, 1963.
. .	A. K. LAVROKHINA, L. D. REVINA 2 LEIP , 44, V.5, 1429, 1905.
4.	P. S. ESTRUP Geochi, et Comsochim. acta, 27, 8, 391, 1963.
5.	<u>M. HONDA</u> J. Geophys, Res., 67, No.9, 3566, 1962.
6.	A. K. LAVRUKHINA, L. D. REVINA, Tezisy dokl. na II meteoritn. konf. 26-30 Maya 1964
	Rotaprint AN SSSR, p.4, 1964.
7.	A. K. LAVRUKHINA, L. D. REVINA, T. A. IBRAYEV Tezisy dokl.predst.na XX Mexhdunar.
	komgress po teoret, i prikl, khimii, 12-18 Jul. 1965
	Sektsii S i D "NAUKA" n 47 1965
0	E B MODONATE Obve Port 100 No 4 1367 1058
0.	r. b. McDonald. Phys. Rev. 109, 1044, 1507, 1930.
0.	S. POWELL, P. FOWLER, D. PERKINS Issi. element. chastits fotografich.metodom.
	(Invset. of element, particles by photographic method).
	IL (For.Lit.), p.261, 1962.
10.	W. N. HESS. E. H. CANFIELD, R. E. LINGENFELTEN. J. Geophys. Res., 66, 3, 665, 1961.
11	L. R. ARNOLD M. HONDA D. LALAS J. Geophs. Res. 66, No. 9, 3519, 1961.
10	A HONDA I DANGIN COORDINATION OF A CONTRACTOR 23 NO 3 4 210 1061
12.	M. HUNDA, J. R. ARNOLD Geochim, et cosmochin. acta, 23, No.3-4, 219, 1901.
13.	<u>P. SIGNER, Q. A. NIER</u> , Rare G ^A SES IN Iron Meteorites, N. Y., 7, 1962.
14.	P. S. GOEL. T. P. KOHMAN. Cosmic Ray. Exposure History of Meteorites from Comsog.
-	$C1^{36}$ p.413, 1963

DISTRIBUTION

GODDARD SPACE F.C.

- . -

.

5

NASA HQS

100	CLARK, TOWNSEND
110	STROUD
400	BOURDEAU
601	FAVA
610	MERED ITH
611	McDONALD (6)
612	HEPPNER (3)
613	KUPPERIAN (3)
	McCRACKEN
	HALLAM
	DONN
614	WHITE
	BEHR ING
	KASTNER
615	BAUER
	GOLDBERG
	HERMAN
	MAIER
	STONE
640	HESS (3)
	O'KEEFE
641	MEAD_MAEDA
	HARRIS
	CAMERON
	LOWMAN
	FRENCH
620	SPENCER
	NEWTON
630	GI for SS (3)
252	LIBRARY
2 56	FREAS

- -

SS	NEWELL, NAUGLE	AMES R.C.
SG	MITCHELL SMITH	0.011777 (0)
	SCHARDT	SONETT (3)
	SCHMERLING	LIB.
	DUBIN	
SL	WILMARTH	LANGLEY R.C.
	BRUNK	
	FELLOWS	160 ADAMSON
	HIPSHER	116 KATZOFF
	HOROWITZ	213 DAVIS
SM	FOSTER	242 GARRICK
	GILL	185 WEATHERWAX
SC	LIDDEL	
SA	JAFFE	JPL
SAR	BADGLEY	
RR	KURZWEG	LOOMIS 183-501
RV-1	PEARSON	CONEL 183-501
RTR	NEILL	SP.SC. 186-133
USS	WHITING	WYCKOFF Vis_Lab.
WX	SWEET	T-122 LPS
		LIBRARY 111-113
		U.CAL BERKELEY
		WILCOX

plus the perm.addressees

186.133 (3)

OTHER CENTERS