¥

FINAL REPORT

on

NULL GRAVITY SIMULATOR

NASA - NsG 533

by

Hsi-Fang Yuan Edward F. Byars Robert W. Shreeves

N67 12218

FACILITY FORM 602 (ACCESSION NUMBER) AD NUMBER)

<u>ا_</u>

(THRU) (CODE) CATE ORY)

GPO PRICE \$_		-
CFSTI PRICE(S) \$ _		-
Hard copy (HC) _	1.00	_
Microfiche (MF)		-
ff 853 July 85		

Final Report

Null Gravity Simulator

Hsi-Fang Yuan Edward F. Byars Robert W. Shreeves

As was pointed out in the proposal, a condition of zero gravity produced by mechanical means on the surface of the earth is impossible. The question arises as to whether or not one could approximate the condition of zero gravity by the utilization of some simple mechanism.

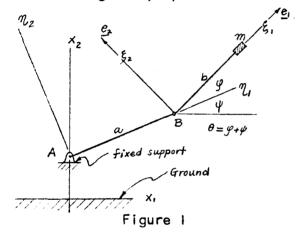


Figure I shows a coplanar two-bar mechanism with fixed cam at A and movable cam at B. From such a mechanism one hopes that the state of zero gravity can be approximated for mass m by appropriate prescriptions of the motions of the two bars. The kinematic con-

sideration of m leads to the expressions for the velocity

$$\overline{v}_{m} = a \psi \sin g \,\overline{e}_{1} + (a \psi \cos g + b \,\overline{\theta}_{2}) \,\overline{e}_{2} \tag{1}$$

and the acceleration

$$\bar{a}_{m} = (a\ddot{\psi} \sin g - a\dot{\psi}^{2} \cos g - b\dot{\theta}^{2}) \bar{e}_{1} + (a\ddot{\psi} \cos g + b\ddot{\theta} + a\dot{\psi}^{2} \sin g) \bar{e}_{1}^{(2)}$$

with Figure 2

$$a_{m_1} = a\ddot{\psi}sin\varphi - a\dot{\psi}^2cos\varphi - b\dot{\theta}^2$$
 and $a_{m_2} = a\ddot{\psi}cos\varphi + b\ddot{\theta} + a\dot{\psi}sin\varphi$ (3)

The dynamic equation of motion of m gives

$$R - mg \sin \theta = m a_{m_1}$$

$$T - mg \cos \theta = m a_{m_2}$$
(4)

The weightless state for m requires that no surface force, i.e., R and T acts on it and that the resultant inertial force acting on it balances that of the gravitational one.

Figure 2

Hence for total weightlessness equation (4) reduces to

$$a_{m_1} + g \sin \theta = 0$$

$$a_{m_2} + g \cos \theta = 0$$
(5)

or, after substituting a_{m1} and a_{m2} from equation (3)

$$a\ddot{\psi}\sin\varphi - a\dot{\psi}^{2}\cos\varphi - b\dot{\theta}^{2} + g\sin\theta = 0$$

$$a\ddot{\psi}\cos\varphi + a\dot{\psi}^{2}\sin\varphi + b\ddot{\theta} + g\cos\theta = 0$$
 (6)

which has also been confirmed by Hamilton's Principle. It can be shown from equation (6) that

$$(\ddot{\psi} + \frac{9}{a}\cos\psi)^{2} + (\dot{\psi}^{2} - \frac{9}{a}\sin\psi)^{2} = (\ddot{\theta} + \dot{\theta}^{4})^{\frac{5}{2}} / a^{2}$$
(7)

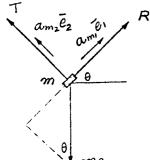
letting

$$\dot{\psi} = \sqrt{2q} \tag{8}$$

one has

$$\ddot{\psi} = \dot{\varphi}$$

⁰ mg



(9)

where

$$g' = \frac{dg}{d\psi}$$

Equation (7) can then be transformed to

$$q'^{2} + 2\frac{g}{h}(\cos\psi)q' + 4q^{2} - 4\frac{g}{h}q^{2}\sin\psi + \frac{q^{2}}{a^{2}} = (\ddot{o}^{2} + \dot{o}^{4})\frac{b^{2}}{a^{2}}$$
(10)

As no general solution for equations (6), (7), and (10) has been found, it is common to simplify equation (10) for certain particular cases of constant angular velocities.

Adopting the new initial configuration, t = 0, $\psi_0 = \theta_0 = \mathcal{G}_0 = 0$ as shown in Figure 3, equation (10) becomes

$$g'^{2} - 2\frac{g}{a}(sin\psi)g' + 4g^{2} - 4g_{a}\cos\psi + \frac{g^{2}}{a^{2}} = (\ddot{\theta}^{2} + \dot{\theta}^{4})\frac{b^{2}}{a^{2}} \qquad (11)$$

The initial condition requires that

$$\dot{\theta} = \dot{\psi} = \omega_0$$

and $(a-b) \omega_0^2 = g$ (12)
For $a = 2b$ equation (12) leads to

Figure 3

$$g^2 = b^2 \omega_o^4 \tag{13}$$

 $\frac{\text{Case A}}{\text{Case A}} \quad \dot{\theta} = \omega_{0} = \text{const.}$

Equation (11) is then reduced to

$$q'^{2} - 2\frac{g}{a}(\sin\psi)q' + 4q^{2} - 4\frac{g}{a}q\cos\psi = 0$$
 (14)

from which

$$q' = K_{o} Sin \psi \left[1 \pm \sqrt{1 - \frac{4q(q - K_{o} cos \psi)}{K_{o}^{2} Sin^{2} \psi}} \right]$$
(15)

where

$$K_o = \mathcal{J}_a$$

One manages, first of all, to linearize it by assuming

$$\frac{4q(q-K_0\cos\psi)}{K_0^2\sin^2\psi} \leq 1$$
(16)

whose validity will be verified with the solution one gets therefrom. Equation (15) becomes, after linearization

$$q' = K_{o} \sin \psi \left\{ 1 \neq \sum_{j=1}^{2} \frac{2q(q-K_{o} \cos \psi)}{K_{o}^{2} \sin^{2} \psi} \right\}$$
(17)

The solution for the first branch has been obtained as

$$q = \frac{K_o}{\left[\cos\psi - \sin^2\psi \log \tan\frac{\psi}{2} - 2K_0 \sin^2\psi\right]}$$
(18)

where γ_0 is an arbitrary constant and evidently $q = K_0 = \frac{g}{a}$ for t = 0, $\psi = 0$.

A computer program has been set up to evaluate q for $\kappa_0 = 1$ and arbitrarily assigned γ_0 's under the condition of equation (16). It does not provide any output, because of the breakdown of the assumption. The second branch of equation (17) is also an equation of the Riccati type whose solution depends on the solution of

$$y'' - \frac{1}{4}(18 + 3\cot^2 \psi)y = 0$$
 (19)

The solution of this equation was not investigated because of the reason mentioned above.

$$\frac{\text{Case B}}{\dot{\theta}^{2} + \dot{\theta}^{4} = 5\omega_{o}^{4} - 4\omega_{o}^{4}\cos\omega_{o}t}$$
(20)

No solution to equation (20) has been found.

<u>Case C</u> Small angle changes. One tends to use Taylor's expansion to approximate equation (6) and (7). It does not, however, 4

appear to ease the non-linear situation of the equations. For example, linearization of equation (20) gives

$$\ddot{\theta} + \dot{\theta}^{4} = \omega_{0}^{4} - 2 \omega_{0}^{6} t^{2}$$
(21)

It is still non-linear and the solution of this equation is not expected to yield very practical information.

At this point one might feel that the reacting forces R and T could be minimized instead of requiring them to vanish. Such is not the case, in the classical sense, since the minimizing principles require R and T to vanish identically (this is not surprising).

Since the above approach fails to arrive at any fruitful result, a further investigation into the equation (14) is therefore necessary.

The initial conditions at t = 0 . ($\psi_o = \theta_o = \varphi = 0$) require, from equations (12), (13), and (14), that

$$\begin{aligned} \hat{q}_{o} &= \frac{\dot{\psi}_{o}^{2}}{2} = \frac{\omega_{o}^{2}}{2} = \mathcal{K}_{o} \quad , \\ \ddot{\psi}_{o} &= \hat{q}_{o}^{\prime} = 0 \end{aligned}$$

$$(22)$$

and $q_0'' = indefinite.$

Solving q in terms of q' and assuming ψ being close to its initial value, the first two terms of equation (14) of second order of magnitude, can be neglected. Hence as a result of the approximation equation (14) becomes

$$q^2 - K_0 q \cos \psi = 0$$

or

$$q = K_o \cos \psi$$

(23)

$$f' = -K_o \sin \psi \tag{24}$$

substituting equation (24) into equation (14), one has, after linearization, the second iteration for q

$$\mathcal{G} = \frac{K_o}{2} \left[\cos \psi + \cos 2\psi \right] \tag{25}$$

The third iteration can be obtained following the same procedure as

$$q = \frac{K_0}{2} \left[1 + \cos \psi - \frac{1}{2} \left(\frac{2}{4} \sin^2 \psi + 3 \sin \psi \sin 2\psi + \sin^2 2\psi \right) \right]$$
(26)

Substitution of equations (23) and (24) into the left hand of equation (14) leaves $3\kappa_0^2 \sin^2 \psi$ which vanishes only at the initial position.

Though equation (23) does not satisfy equation (14) exactly, it does satisfy the condition of equation (16). Equations (25) and (26), nowever, are not as such, for equation (25) makes

$$\lim_{\psi \to 0} \left| \frac{4q(q-K_0\cos\psi)}{K_0^2\sin^2\psi} \right| = 3$$

Hence equation (23) should be the best approximation among all the solutions obtained by the above mentioned iteration procedure. To ascertain such a claim, numerical evaluations of R and T according to equations (23), (25), and (26) respectively are necessary.

The radial and tangential components of the surface force acting on the point mass are given respectively by

$$\frac{R}{m} = -a\ddot{\psi}\sin\varphi + a\dot{\psi}^{2}\cos\varphi - b\dot{\phi}^{2} - g\cos\theta \qquad (4)'$$

$$\frac{T}{m} = -a\ddot{\psi}\cos\varphi - a\dot{\psi}^{2}\sin\varphi + b\ddot{\theta} + g\sin\theta$$

and

For $\dot{\theta} = \omega_0 = \text{const.}, \ \theta = \omega_0 \pm \text{and}$

$$\frac{R}{m} = -a\ddot{\psi}\sin\varphi + a\dot{\psi}^{2}\cos\varphi - b\omega_{o}^{2} - g\cos\omega_{o}t$$

$$\frac{T}{m} = -a\ddot{\psi}\cos\varphi - a\dot{\psi}^{2}\sin\varphi + g\sin\omega_{o}t$$
(5)

or

$$RA = \frac{R}{mg} = -\frac{2}{\omega_0^2} \ddot{\psi} \sin(\omega_0 t - \psi) + \frac{2}{\omega_0^2} \dot{\psi}^2 \cos(\omega_0 t - \psi) - (1 + \cos \omega_0 t)$$

$$TA = \frac{T}{mg} = -\frac{2}{\omega_0^2} \ddot{\psi} \cos(\omega_0 t - \psi) - \frac{2}{\omega_0^2} \dot{\psi}^2 \sin(\omega_0 t - \psi) + \sin \omega_0 t$$
(6)

where the relations $b = \frac{g}{\omega_o^2}$, $a = \frac{2g}{\omega_o^2}$ and $K_o = \frac{1}{2} \omega_o^2$ due to equations (12) and (13) has been applied. Computer programs are then devised to evaluate the $\frac{R}{mg}$ and $\frac{T}{mg}$'s

from equation (6)'.

For the first iteration

$$\frac{\dot{\psi}^2}{2} = q = \kappa_0 \cos\psi$$
⁽⁷⁾

or

$$\frac{d\psi}{\sqrt{2\kappa_o\cos\psi}} = dt , \qquad f(\psi)d\psi = dt$$
(8)

where

$$f(\psi) = \frac{1}{\sqrt{2 \kappa_0 \cos \psi}}$$

or

$$t = \int_{0}^{\psi} f(\psi) d\psi = F(\psi)$$

then

 $\Psi = G(t)$

also

 $\ddot{\Psi} = -K_o \sin \Psi$ $\dot{\Psi} = \sqrt{2K_o \cos \Psi}$

(9)

(10)

The values of $\frac{R}{mg}$ and $\frac{T}{mg}$ are computed for a total range of 45° for the unit interval of 1°.

The computations for the second and third iterations are carried out in a similar way using IBM 7040 computer.

Their results follow from Table 1:

TABLE I

ψ́(°)	R/mg		T/mg				
	First	Second	Third	First	Second	Third	
0	0	С	0	0	0	0	
1	000154	000615	001884	.035063	.061354	.133637	
2	000614	002456	-,007535	.070111	122646	.266934	
3	001381	005520	016953	.105131	183819	.399544	
4	002453	009796	030134	.140109	244816	.531118	
5	003827	015274	047070	.175032	.305579	.661313	
6	005502	021939	-,067749	.209886	.366052	.789784	
7	007476	029772	092155	.244658	.426179	.916193	
8	009744	038754	120268	,279336	.485904	1.040203	
9	012303	048858	-,152062	.313905	.545173	1.161483	
10	015149	060059	187506	. 348352	.603932	1.279707	
11	018278	072326	226563	.382665	.662130	1,394553	
12	021683	085626	269188	.416830	.719715	1.505707	
13	025361	099922	-,315329	,450835	,776638	1.612863	
14	029303	- .115175	364924	.484667	.832848	1.715719	
15	- .033506	131343	417905	.518312	.888301	1.813986	
16	037960	148380	474192	. 551759	,942949	1.907381	
17	- .042659	166239	- •533694	. 584995	. 996750	1.995632	
18	- .047595	184868	596312	.618007	1.049661	2,078476	
19	- .052759	204214	661931	.650784	1.101642	2.155662	
20	058142	224219	730427	.683314	1.152655	2,226951	
21	063736	244825	801662	.715583	1.202664	2,292117	
22	069531	265968	875483	.747582	1.251633	2.350944	
23	075516	287584	951726	.779297	1.299532	2.403233	
24	081680	309603	-1.030213	.810718	1.346329	2.448797	
25	088012	331955	-1.110749	.841833	1.391997	2.487466	
26	094501	354564	-1.193131	.872632	1.436510	2.519081	
27	101134	377355	-1.277138	.903102	1.479844	2.543503	
28	107899	400245	-1.362540	.933234	1.521978	2,560605	
29 70	114783	423152	-1.449094	.963017	1.562893	2.570278	
30	121772	445986	-1.536549	.992439	1.602572	2,572425 2,566964	
31	128851	468658	-1.624648	1.021492	1.640999	-	
32	136007	491071	-1.713133	1.050164 1.078446	1.678163 1.714052	2.553823 2.532934	
33	143223	513125	-1.801752 -1.890276	1.106328	1.748657	2.504228	
34	150486	-,534717 -,555735	-1.978523	1.133800	1.781972	2.476607	
35 36	157777 165081	-,576064	-2.066441	1.160853	1.813990	2.422903	
37	172379	-,595581	-2.154395	1.187476	1.844707	2.369692	
38	 179656	614155	-2.174797	1.213662	1.874119	2.307072	
39	 186890	 631647		1,239400	1,902225		
40	194065	647907		1.264682	1,929021		
40	201160	-,662773		1.289499	1.954504		
42	208154	676066		1.313841	1.978671		
43	215027	687593		1.337701	2.001513		
44	221757	697136		1.361068	2.023021		
45	228322	704452	1	1.383934	2.043179		
	•					• '	

9

It is obvious then that the first iteration gives the best fit for weightless state for m as predicted.

Conclusion

- 1. Exact polution of the null gravity state for m has not been found except at its initial configuration shown in Figure 3. It is unlikely that a prolonged exact solution for null gravity exists for the simple mechanism shown in Figure 1 or, possible, any mechanism one can construct on the earth's surface. It is possible only when m happens either to be a satellite of the earth or to be subjected to a free falling condition.
- 2. No minimization of either R or T of the surface force is possible.
- 3. An approximate solution for the motion of the mechanism close to its initial configuration (Figure 3) has been found in the form of equation (10)¹. The angular displacement as a function of time t can be found, numerically, using a digital computer. The deviations of this equation from the ideal null gravity state are listed in Table I. It can be seen that the deviation will reach about one-g after the motion carries on for 0.5 seconds from its initial configuration or for a corresponding angular displacement $\psi = 30^{\circ}$.
- 4. No better approximate methods have been found.

4.