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Final Report

Null Gravity Simulator

Hsi=Fang Yuan
Edward F, Byars
Robert W, Shreeves

As was pointed out in the proposal, a condition of zero gravity pro=-
duced by mechanical means on the surface of the earth is impossible., The
question arises as to whether or not one could approximate the condition
of zero gravity by the utilization of some simple mechanism,

Lz g/g" Fi I sh ! two=b -
X & // , gure | shows a coplanar two-bar me
\ S "’

\

g

chanism with fixed cam at A and movable

n cam at B, From such a mechanism one

hopes that the state of zero gravity

can be approximated for mass m by ap~

Ground
,//:// propriate prescriptions of the motions
« Figure | of the two bars, The kinematic con=

sideration of m leads to the expressions for the velocity
v, = a,y;.s/'ngé, +(®¢'60$3J+bé)éz P
and the acceleration
@n= (af simg- a,yz'zcosy ~66°)8, + (afcosp+bltafsmglEl2)
with Figure 2

Xy = WY Sim - a«;ﬁ'zCo.cfvbéz and  @m,= ay casPrbi+ agSing (3



The dynamic equation of motion of m
gives

R“mg\smez ma/ml

.T~mgc059:ma,m2 (4)

The weightless state for m requires

that no surface force, i.e,, Rand T

S acts on it and that the resul!tant in-

mg ertial force acting on it balances
Figure 2 that of the gravitational one.

Hence for total weightlessness equation (4) reduces to

“Qp, T gsimg=o

(5)
Am, + g COS6 = 0
or, after substituting ay| and ap from equation (3)
a,{b'St}my - a,;izcos\tjv—béﬂjS&ma =0
.. 2, e _ (6)
ay cosy + ap Simy b +3gcosé =0
which has also been confirmed by Hamilton's Principle,
It can be shown from equation (6) that
- 2, .2 R IIRTE S A ‘
(¢ + Feosp)+ (§7-Lsmp)=(§+6") 42 7
letting
L/’=J2? (8)
one has

V=% ‘ (9)




where ;': -g—"%-

Equation (7) can then be tfransformed to
/2+2_%(60$¢) /+4 2—4_& SW$&+—‘ZZ_ w2 o4 62
f g reg-4ug 42 =(6+0)%4 o

As no general solution for equations (6}, (7), and (10) has been found,
it is common to simplify equation (10) for certain particular cases of
constant angular velocities,

Adopting the new initial configuration, + =0, ¢ =6 _=¢ =0

as shown in Figure 3, equation (10} becomes

2 9, . ' 2 92 L a b
e —2E<5my)3; + 49540/ coSytgn= (6 +06 )72 ()
The initial condition requires that
b . .
m
and (@-b)wf::g (12
Z%@77 For a= 2b equation (12) leads to
2 4
Figure 3 3 f— /92600 (|3)
Case A 6 = 0 = const,
Equation (11) is then reduced to
* L9 d 2 49q9cosy=
¥ -278mpre +42-42gC0S¢=0 (14)
from which
/ .
= KoSmp [ 1 £ [, 490G Fecos4)
?’ / KZ2SomP Y (15)

where K, =)?6€



One manages, first of all, to linearize it by assuming

42 {2 =K, 05 ¢ Z
K'z“ : 2¢ = (16)
whose validity will be verified with the solution one gets therefrom,

Equation (15) becomes, after linearization

9= KoSovp [ 1 5 [1- %vf,(fs’(;?;f? ]j an

The solution for the first branch has been obtained as

2= Ko | (18)
[cosy - sin®p logtanty - 215500 ]

where Y, is an arbitrary constant and evidently 2= Ko = Qéb
for t=0, Yy=o.

A computer program has been set up to evaluate q for Ky = | and
arbitrarily assigned yo's under the condition of equation (i6), It does
not provide any output, because of fhe breakdown of the assumption, The
second branch of equation (17) is also an equation of the Riccati type

whose solution depends on the solution of

%"—ZL(/8+3C#Z¢)%=()_ (19)

The solution of this equation was not investigated because of the reason
mentioned above,

Case B ¢ = wo = const, Equation (7) becomes
o 2 '4 4 4
8 + 8 =5wW, — 4w, coswpt (20)

No solution to equation (20) has been found,
Case C Small angle changes. One tends to use Taylor's ex=-

pansion to approximate equation (6) and (7), It does not, however,




appear to ease the non-linear situation of the equations. For example,

linearization of equation (20) gives
6+ 6% = w0, 2wt 21)

¥ is still non=linear and the solution of this equation is not ex~-
pected to yield very practical information,

At this point one might feel that the reacting forces R and T could
be minimized instead of requiring them to vanish., Such is not the case,
in the classical sense, since the minimizing principles require Rand T
to vanish identically (this is not surprising).

Since the above approach fails to arrive at any fruitful result, a
further investigation into the equation (14) is therefore neceésary.

The initial conditions at t =0 . (y,= 6g==£f:=0) require, from

equations (i2), (13), and (14), that

-2
= i,," = u‘)":: e
=2 ° (22)

'

2
L‘bO: ?o = 0

"

and qo = indefinite,
Solving q in terms of q' and assuming ¥ being close to its initial

value, the first two terms of equation (14) of second order of magnitude,

can be neglected. Hence as a result of the approximation equation (14)

becomes

8,2_ K, g,cos%: 0

or

%,z K,cos ¢ (23)



and
§=—Ksiny (24)

substituting equation (24) into equation (14), one has, after lineari=-

zation, the second iteration for g
§ = Lel cosy s cos 24]
Tne third iteration can be obtained following the same procedure as
K g - . :
F=2[1+cosp-4 (%5'” s"+35w¢5wz%+swzzpj (26)

Substitution of equations (23) and (24) into the left hand of equation

(14) leaves 3Kozsin2w which vanishes only at the initial position,
Though equation (23) does not satisfy equation (14) exactly, it

does satisfy the condition of equation (16), Equations (25) and (26},

nowever, are not as such, for equation (25) makes

- 49(F-K,cos¢) —
Lin | .

y—-0
Hence equation (23) should be the best approximation among all the solu~
Tions obtained by the above mentioned iteration procedure, To ascertain
such a claim, numerical evaluations of R and T according to equations (23),
(25), and (26) respectively are necessary.
The radial and tangential components of the surface force acting on
the point mass are given respectively by

= —a,l}’.&'/wf'f‘ axfzzCOS‘jo“béz_jco‘sg (4)!

4 3o

::-wfcuf—a%%ﬂ&f+b§+36@$
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For & = w, = consff, & = wt and

7§: - a,y"smjp + aJ,sff'zcasf ~bu)f~gcosa},t

(51
Tr=-ap sy = aysing +9Sovi,t

or

CRA= -,%—: —f}} Y Son(Wot-9+ b—g—az}b'zcos(wot—%) = ( 14 C0S Wt )

(6)'

" 2 % .
TA= g = =52 ¥ 008 (Wot =)= 245 (Wit= ) + Sin 1t
4

- P — — 2
where the relations a»%oz ,a,—f%g and Ka——ZL Wy due to
equations (12) and (13) has been applied,
Computer programs are then devised to evaluate the —S- and I 7
g g
from equation (6)',
For the first iteration
.0 '
Y 2 0=y cogt (7)
- g Ko 7
or
dy _ A _ | '
f = dt (p)dy = dt (8)
J 2 K, cosy JC roay
where
f(sb): __.,-_-_/_,,A_____.
2 Kocosy
or
y ,
t :ff(‘i’)d}b: F(‘}') (9)!
[v]
then
Y =G (L) o
also . )
\f":: "/\/051/72/‘}’

g = [ 2K, cosy



The values of 7%%—and ;{;

lO

are computed for a total range of 45° for
the unit interval! of .
The computations for the second and third iterations are carried out

in a similar way using IBM 7040 computer, .

Their results follow from Table I:



TABLE |
, : R/mg T/mg
(%
! First Second Third First Second Third
0 0 C 0 0 0 0
! -,000154 -,000615 -.001884 .035063 061354 . 133637
2 -,000614 ~-.002456 -,007535 070111 . 122646 .266934
3 -.,001381 -.005520 -,016953 . 105131 . 183819 . 399544
4 -.002453 -.009796 -,030134 . 140109 244816 531118
5 -.003827 -.015274 -,047070 . 175032 .305579 661313
6 -.005502 -.021939 -.067749 .209886 366052 . 789784
7 -,007476 -,029772 -,092155 .244658 426179 .916193
8 -.009744 -,038754 -, 120268 .279336 . 485904 1.,040203
9 -,012303 -.048858 -, 152062 .313905 545173 1.161483
10 -.015149 -.060059 -. 187506 348352 603932 1.279707
i -,018278 -.072326 -.226563 .382665 662130 }.394553
12 -,021683 -.085626 -,269188 .416830 .719715 1.505707
3 -,025361 -,099922 -.315329 .450835 . 776638 1,612863
14 -.029303 -. 115175 -,364924 . 484667 .832848 1.,715719
15 -.033506 -, 131343 -,417905 518312 .888301 }.813986
i6 ~-,037960 -. 148380 -.474192 .,551759 .942949 1.907381
17 -.042659 -, 166239 -.533%694 9584995 .996750 .995632
18 -,047595 -, 184868 -,596312 .618007 1.,049661 2.,078476
19 -.052759 -.204214 -,661931 .650784 1.101642 2.155662
20 -,058142 -.224219 -, 730427 .683314 1.152655 2.226951
21 -.063736 -.244825 -,801662 . 715583 !.202664 2,292117
22 -,06953| --,265968 -,875483 .747582 1.251633 2.350944
25 - 075516 -,287584 -.951726 . 779297 .299532 2,403233
24 -.081680 -.309603 -1,0302t3 810718 | 346329 2.448797
25 -,088012 -.331955 -1,110749 .841833 1.391997 2.487466
26 -,09450] -.354564 -1,193131 .872632 [.436510 2.51908\1
27 -, 101134 -,377355 -1.,277138 .903102 1.,479844 2.543503
28 -, 107899 -,400245 -1.362540 .933234 1.521978  2,560605
29 -, 114783 -,4231{52 -1.449094 .963017 1.,562893 2,570278
30 -. 121772 -.445986 -1.536549 .992439 1.602572 2.572425
34 -, 12885] -,468658 ~-1,624648 1.021492 | .640999 2.566964
32 -, 136007 -,491071 -1.713133 1.050164 1.678163 2.553823
33 -, 143223 -.513125 -1,801752 1 .,078446 i.714052 2.532934
34 -. 150486 -.,534717 -1.890276 1.106328 1.748657 2.504228
35 -, 157777 -.555735 -1,978523 1.133800 1.781972 2.476607
36 -, 165081 -,576064 -2,066441 1,160853 1.813990 2.422903
37 -, 172379 -,.595581 -2.154395 1.187476 1.844707 2.369692
38 -, 179656 -,614155 {.213662 1.,874119
39 -, 186890 -.631647 1.239400 1.,902225
40 -, 194065 ~-.647907 | . 264682 1,929021
4 -,201160 -,662773 | .289499 1.954504
42 -,208154 -,676066 1.313841 1.978671
43 -.215027 -,687593 1 .337701 2.001513
44 -,221757 -,697136 i.,361068 2.023021
45 -,228322 -,704452 - | , 383934 2.043179




It is obvious then that the first iteration gives the best fit for

weightless state for m as predicted,

Conclusion

Exact _otution of the null gravity state for m has not been found
except at its inifial configuration shown in Figure 3, It is un-
likely that a prolonged exact solution for null gravity exists for

the simple mechanism shown in Figure | or, possible, any mechanism

one can construct on the earth's surface, It is possible only when

m happens either to be a satellite of the earth or to be subjected

to a free falling condition,

No minimization of either R or T of the surface force is possible,

An approximate solution for the motion of the mechanism close to its
initial configuration (Figure 3) has been found in the form of equa-
tion (10)', The angular displacement as a function of time t can be Y
found, numerically, using a digital computer, The deviations of this
equation from the ideal null gravity state are listed in Table |, It
can be seen that the deviation will reach about one-g after the motion
carries on for 0.5 seconds from its initial configuration or for a
corresponding angular displacement y = 30°,

No better approximate methods have been found,



