

National Aeronautics and Space Administration Goddard Space Flight Center Contract No.NAS-5-12487

$$
S T-M A T-10523
$$

REPRESENTATION OF SPINORS IN THE n - DIMENS IONAL

SPACE BY A SYSTEM OF TENSORS

by
V. A. Zhelnorovich

(USSR)
GPO PRICE $\$$ \qquad
CFSTI PRICE(S) $\$$ \qquad Hard copy $(H C) \xrightarrow{\text { Microfiche }(M F)}$ 4653 July 65

[^0]
REPRESENTATION OF SPINORS IN THE n-DIMENSIONAL

SPACE BY A SYSTEM OF TENSORS

Doklady AN.SSSR,
Matematika
Tom 169, No. 2, 255-258
Izdatel'stvo "NAUKA", 1966

1. BASIC DETERMINATIONS.

Let us consider at the outset a four-dimensional complex Euclidean space $R_{n}{ }^{+}, n=2 v$, referred to the orthonormalized base e e_{i}. Let $\gamma_{i}, \gamma_{2}, \ldots, \gamma_{2 v}$ be the dimensionality matrices 2^{ν}, satisfying by definition the equation

$$
\begin{equation*}
\gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=2 \delta_{i j} I, \tag{1}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker symbol, I is the unitary dimensionality matrix 2^{v}. We shall introduce the denotation $\gamma_{i, i}, \ldots i_{k}=i^{k(h-1) / 2} \gamma_{i}, \gamma_{i_{2}} \ldots \gamma_{i_{k}}, i_{1}<i_{2}<\ldots<i_{k}$. The matrices $I, \gamma_{i}, \gamma_{i} \gamma_{i}, \ldots, \gamma_{i}, \gamma_{i_{2}} \ldots i_{n}$ are linearly independent and form a group of elements. As is well known, any two solutions γ_{i}, γ_{i} of Eq. (1) are linked by the equality $\bar{\gamma}_{i}=T \gamma_{i} T^{-1}$, $\operatorname{det} T \neq 0_{1}$ whereupon matrices γ_{i} may be chosen Hermitian, and in such a fashion that $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{v}$ be symmetrical, and $\gamma_{v+1}, \gamma_{v+2}, \ldots, \gamma_{2 v}$ antisymmetrical [1].

Let $L=\left\|l_{q}{ }^{p}\right\|$ be the orthogonal transformation of the space $R_{2 v}{ }^{+}$. The multiplicity of unimodular matrices S, determined from the equation

$$
\begin{equation*}
\gamma_{p}=l_{p}^{q} S \gamma_{q} S^{-1}, \tag{2}
\end{equation*}
$$

form a group materializing the representation of the group L, called spinor representation.

The object $\psi=\left\{\psi^{i}\right\}$ with components ψ^{i} determined with a precision to the sign transforming according to the representation of S, is called the first rank spinor in the space $R_{2 v}{ }^{+}$.

If γ_{i} is the solution of (1), it is obvious that $\gamma_{i}{ }^{T}\left(\gamma_{i}{ }^{\top}\right.$ being the trans. posed γ_{i}) is also a solution of (1); this is why there exists a matrix C such that $\gamma_{i}{ }^{\mathrm{T}}=C \gamma_{i} C^{-1}, \operatorname{det} C=1$.

If v is odd, it is easy to see that $C=\gamma \gamma_{v-1} \ldots \gamma_{i} ;$ if γ is even, then $C=\gamma_{2 v} \ldots \gamma_{v+1}$ in the case when $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{v}$ are symmetrical, but $\gamma_{v+1,} \gamma_{v+2}, \ldots, \gamma_{2 v}$ are asymmetrical. Hence it follows that $\left.C^{r}=(-1)\right)^{(r-17} C$. If ψ_{i} are the cova. riant components of the spinor ψ, then we have by definition $\psi_{i}=e_{i j} \psi^{j}$, where $E=\left\|c_{i j}\right\|=i^{n(n-1) / 2} \gamma_{n} \gamma_{n-1} \ldots \gamma_{1} C$.

We shall outline in the space R_{n}^{+}the pseudo-Euclidean space $R_{n}(s)$ index \underline{s}, upon fixing the base $i e_{1} \ldots i e_{s} e_{s+1} \ldots c_{n}$. We shall introduce the Hermitian matrix if determined from the equations
where the sign minus is for $1=1, \ldots, s$ and the sign plus is for $i=s+1, \ldots$.., $2 v$. The dot above the letter denotes the complex mating. The spinor $\psi=\Pi \psi$ is called conjugate relative to ψ.

Let us consider now the odd-dimensional spaces $R_{n}{ }^{+}, n=2 v+1$, We shall de. note $\gamma_{2 v+1}=i \gamma_{1,2, \ldots, 2 v .}$ The matrices with an even number of indices $I, \gamma_{i, i}, \ldots$., $\gamma_{i_{1} i_{2} \ldots i_{0}}\left(i_{n}=1,2, \ldots .2+1\right)$ are linearly independent. The spinor representa. tion of the intrinsic orthogonal group L of space $R_{2 v+1}^{(s)}$, transformation is given by the group of matrices S determined from Eq. (2), In which the indices p, q acquire values from 1 to $2 \nu+1$. The covariant components of spinor $\psi 1$ are determined by the matrix E :

$$
(-1)^{v} \gamma_{i}^{T}=E \gamma_{i} E^{-1}
$$

The conjugate spinor ψ in space $R_{2 v+1}^{(8)}$ is determined by the matrix Π

$$
\pm \gamma_{i}=(-1)^{v-\delta} \Pi \dot{\gamma}_{i} \Pi^{-1}
$$

where the sign minus is for $1=1,2, \ldots, s$.

2. REPRESENTATION OF SPINORS BY COMPLEX TENSOR SYSTEM

Let us consider a complex matrix $\Psi=\left\{\psi^{i j}\right\}$ of dimensionality \underline{r}. If $\psi^{i j}=$ $=\psi^{i} \psi^{j}, \psi^{i j}$ must satisfy the equalities

$$
\begin{equation*}
\psi^{i j} \psi^{h \prime}=\psi^{(h} \psi^{j l}=\psi^{i l} \psi^{h j}, \quad \psi^{i j}=\psi^{j i} \tag{4}
\end{equation*}
$$

among which $r(r+1) / 2-r$ equations $\psi^{v v} \psi^{i j}=\psi^{v i} \psi^{v j}\left(i, j \neq v, \psi^{v v} \neq 0\right)$ and $1 / 2 r(r-1)$ equations $\psi^{i j}=\psi^{i} \psi^{j}$, are independent. There are in all ($r^{2}-r$) independent equa. tions. Reciprocally, it follows from (4) that there exists a system of \underline{r} com. ponents ψ^{μ}, determined with a precision to signs such that $\psi^{i j}=\psi^{i} \psi^{j}$. In reality, if $\psi^{v v}=0$ for all v, it follows from (4) that $\psi^{i j}=0$ for all values of indices i. … If $\psi^{v v} \neq 0$, we postulate

$$
\begin{equation*}
\psi^{h}=\psi^{v /} / \pm \sqrt{\psi^{v v}} \tag{5}
\end{equation*}
$$

By the strength of (4) such a definition of ψ^{k} does not depend on the value of the index v. Let us now assume that $\psi^{i j}$ are components of the object Ψ, trans. forming according to the representation $S \times S$, where S is any representation of a certain group, and let Eqs. (4) be invariant relative to the group $S X S$. Then the components ψ^{h}, determined according to (5) will be transformed according to the representation S. Indeed, it follows from (5) that the transformation of ψ^{k} is determined by the transformation of $\psi^{i j}$ in a single fashion. Evidently, the identity (4) invariantness is maintained if ψ^{k} is transformed according to the representation S, consequently, by the strength of the uniqueness, ψ^{H} may be trans. formed only by the representation S. Thus the object $\psi^{i j}$, satisfying the identities (4) is equivalent to the object ψ^{k}.

Let s be the spinor representation of a $2 v$-dimensional orthogonal group. It is well known that

$$
S \times S \sim \sum_{k=0}^{2 v} D^{k}
$$

where D^{k} is a representation by which a tensor of rank \underline{k}, asymmetrical by all indices, is transformed. This means that in this case the object $\psi^{i j}$ is equiva. lent to the tensor aggregate $\Lambda=\left\{c_{0}, c_{i}, c_{i_{1} i 2}, \ldots, c_{i_{1} i_{2}} \ldots i_{2 v}\right\}$. If S is the spinor representation of a $(2 v+1)$-dimensional group

$$
S \times S \sim \sum_{k=0}^{v} D^{2 k}
$$

and consequently, the object $\psi^{i j}$ is equivalent to the tensor aggregate consisting of even rank tensors. The components of the antisymmetrical tensors $C_{i, i_{2}} \ldots i_{k}$ may be determined as follows:

$$
\begin{equation*}
c_{i_{1} i_{2} \cdots i_{k}}=\left(A_{i_{1} i_{2} \cdots i_{i}}\right)_{\alpha:} \psi^{a 3}, \quad \dot{A}_{i_{1} i_{2} \cdots i_{k}}=E \gamma_{i_{1} \gamma_{i_{2}}} \cdots \gamma_{i_{k}} \tag{6}
\end{equation*}
$$

Inasmuch as det $E \neq 0$ and $\gamma_{i_{1} i_{2} \ldots i_{k}}$ are ilnearly independent, $A_{i_{1} i_{2} \ldots i_{k}}$ are also linearly independent and consequently, the aggregates Λ are really equivalent to objects $\psi^{i j}$.

Taking advantage of symmetry properties of C, it may be shown that matrices $A_{i_{1} i_{2}} \ldots$ ik have the following symmetry properties:

$$
\left(A_{i_{1} i_{2} \ldots i_{k}}\right)^{\top}=(-1)^{(v(\nu+1)+/(i+1)) / 2} A_{i_{1} i_{2} \ldots i_{k}}
$$

This is why, so long as $\psi^{i j}$ satisfies the identities (4), part of tensors $c_{i_{1} i_{2} \ldots i_{k}}\left([v(v+1)+k(k+1)] / 2\right.$ being odd) become zero. If $\psi^{i j}$ satisfy the iden. tities (4), tensors $c_{i_{1} i 2} \ldots i_{k}$ satisfy $1 / 2^{v}\left(2^{v}-1\right)$ independent bilinear identities, all of which are included in the generalization of the pauli identity for the case of a n-dimensional space, (See [2])

$$
\begin{aligned}
2^{\nu}\left(\psi^{+} \theta \psi\right)\left(\psi^{+} \theta^{\prime} \psi\right)= & \sum_{k=1}^{2 v} \sum_{i_{1}<i_{2}<\ldots<i_{k}}^{2 v}\left(\psi^{+} \gamma_{i_{1} i_{2} \ldots i_{k}} \psi\right)\left(\psi^{+} \theta^{\prime} \gamma_{i_{1} i_{2} \ldots i_{k}} \theta \psi\right)+ \\
& +\left(\psi^{+} \psi\right)\left(\psi^{+} \theta^{\prime} \theta \psi\right), \quad n=2 v . \\
2^{\nu}\left(\psi^{+} € \psi\right)\left(\psi^{+} \theta^{\prime} \psi\right)= & \sum_{k=1}^{2 v} \sum_{i_{1}<i_{2}<\cdots<i_{k}}^{2 v-1}\left(\psi^{+} \gamma_{i_{1} i_{2} \ldots i_{2 k}} \psi\right)\left(\psi^{+} \theta^{\prime} \gamma_{i_{1} i_{2} \ldots i_{2 k}} \theta \psi\right)+ \\
& +\left(\psi^{+} \psi\right)\left(\psi^{+} \theta^{\prime} \theta \psi\right), \quad n=2 v+1,
\end{aligned}
$$

where $\theta^{\prime}, 0$ are arbitrary matrices of dimensionality $2^{v} ; \psi^{+}, \psi$ are covariant and contravariant component of the spinor.

Therefore, spinor ψ^{h} in the space $R_{n}{ }^{+}, n=2 v, 2 v+1$ is equivalent to the tensor aggregate Λ, consisting of complex antisymmetrical tensors satisfying $1 / 2^{v}\left(2^{v}-1\right)$ bilinear identities (7). By virtue of this, any spinor equation may be written

Note that formula (3) determines the components ψ^{k} in any system of coordinates, but the transformation of components ψ^{h} to curvilinear coordinates is found to be nonlinear relative to ψ^{h}.

3. REPRESENTATION OF SPINORS BY A SYSTEM OF REAL TENSORS

Then $\psi \dot{p} q$ will satisfy the identities

$$
\begin{equation*}
\psi^{\dot{i q}}=\left(\psi^{\dot{q} p}\right)^{\cdot}, \quad \psi^{\dot{m} n} \psi^{\dot{p}} q=\psi^{\dot{n}} \dot{\eta} \eta, \dot{p} n \tag{8}
\end{equation*}
$$

among which $(r-1)$ real equations $\psi^{\nu v} \psi^{\dot{p q}}=\psi^{i q} \psi^{\dot{p} \nu}\left(p, q \neq v, \psi^{i v} \neq 0\right)$ and r^{2} real equa. tions $\psi^{1 q}=\left(\psi^{\text {ap }}\right)^{\dot{p}}$ are independent. Obviously. if the components ψ^{k} determine the matrix $\psi^{\dot{p}_{q}}$ the components $\psi^{k} e^{i \varphi}$, and only they, determine the same matrix $\psi^{\mu q}$.

Reciprocally, it follows from (8) that there exists a system of component determined with a precision to the ohase $e^{i \varphi}$, such that $\psi^{\boldsymbol{p}_{i}}=\psi^{p} \psi^{q}$. In reality if $\psi^{\nu \nu}=0$ for all v, it will follow from (8) that $\psi^{p \bar{q}}=0$ for all p. q. In this case we postulate $\psi^{k}=0$. If $\psi^{\nu \nu} \neq 0$, we postulate

$$
\begin{equation*}
\psi^{k}=\frac{\psi^{\dot{\nu k}}}{ \pm \sqrt{\psi^{\dot{v}}}} e^{i \varphi} \tag{9}
\end{equation*}
$$

where φ is an arbitrary real number.
By virtue of (8) such a determination of ψ^{k} multiplicity does not depend on the value of v. It may be shown that only the components ψ^{k}, determined accord. ing to (9) satisfy the equation $\psi^{\dot{p} q}=\psi^{p} \psi^{q}$.

Assume that $\psi^{p q}$ are components of an object transforming according to the re. presentation $S \times S$, where S is any representation of a certain group, and let the equalities (8) be invariant relative to the group $S x S$. Then, we may evidently point to such a law of transformation of φ that the components ψ^{k} trans. form according to the representation S.

In this way the assignment of the object $\psi^{\dot{m}} \mathbf{~ s a t i s f y i n g ~ t h e ~ i d e n t i t i e s ~ (8) ~}$ and of the argument φ of one of the components ψ^{k} fully determine the object Let S be the spinor representation of $2 \boldsymbol{\nu}$-dimensional orthogonal group of trans. rmations of the space $R_{2 v^{(s)}}$. It is well known that

$$
S^{\cdot} \times S \sim \sum_{k=0}^{2 v} D^{k}
$$

This means that the object $\psi^{p q}$ is equivalent to the tensor aggregate $\Omega=\left\{\Omega_{0} \Omega_{i} \ldots\right.$ $\left.\ldots \Omega_{i_{1} i_{2} \ldots i_{2 v}}\right\}$, consisting of antisymmetrical tensors.

If S is a spinor representation in the space $H_{2 v+1}^{(9)}, S \times S \sim \sum_{k=0}^{2} D^{2 k}$, and in
 consisting of antisymmetrical tensor of even rank.

The components of these tensors my be determined as follows:

$$
\Omega_{i_{1} i_{2} \ldots i_{k}}=\left(J{i_{1} i_{2} \ldots i_{k}}\right)_{\dot{\alpha} J} \psi^{\dot{a} \beta}, \quad D_{i_{1} i_{2} \ldots i_{k}}=E \Pi \gamma_{i_{1} \gamma_{i_{2}}} \cdots \gamma_{i_{k}} i^{k(k+1) 2}
$$

Utilizing (3), we may show that matrices $D_{i_{1} i_{i} \ldots i_{k}}$ are Hermitian.
This is why, the components $U_{i_{1} i_{2} \ldots i_{k}}$ are real if $\psi^{p} y$ satisfy the identity $\psi^{p q}=\left(\psi^{, i_{p}}\right)$. If $\psi^{p q}$ satisfy the identities (8), the components of tensors $\Omega_{i_{1} i_{2}} \ldots i_{i}$ satisfy $\left(2^{\nu}-1\right)^{2}$ bilinear identities, of which everyone is contained in the identity (7).

Therefore, the assignment of the aggregate Ω and of argument φ of one of the components fuly determines the spinor. This means that the spinor equations
may be written in an equivalent manner in components of the aggregate Ω and φ. Then, eliminating from such equations the argument φ, it is possible to obtain a closed system of equations in components of aggregate Ω.

I wish to express my gratitude to L. I. Sedov for his valuable indications in the course of the work on the paper.

Moscow State University in the name of M. V. Lomonosov

Manuscriot received on 24 February 1966

Contract No.NAS-5-12487
VOLT TECHNICAL CORPORATION
1145, 19th st NW
WASHINGTON D.C. 20036
Tel: 223-6700
REFERENCES

1. J. A. SHOUTEN. Indag. Math, 11, 3, 4, 5 (1949)
2. K. M. CASE. Phys. Rev., 97, 3, 810, 1955.

DISTRIBUTION

[^0]: 5 OCTOBER 1966

