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ABSTRACT

The reflection coefficient of a parallel-plate waveguide
operating in the TEM mode and illuminating a perfectly conducting
sheet is analyzed as a function of guide aperture to reflector dis-
tance by using wedge diffraction techniques. For the half-plane
guide, the reflection coefficient is easily obtained by integrating
the reflected field over the guide aperture. For guides with finite
wedge angles less than 90°, the reflection coefficient is found by
assuming that the interactions between the guide aperture and
reflecting sheet are bouncing plane waves and obtaining them
through the Higher-Order Diffraction Concept. For ground plane
mounted guides, the reflection coefficient is obtained through an

iterative process of successively bouncing cylindrical waves.

1ii




CONTENTS

Chapter Page
I INTRODUCTION.: « ¢ ¢ ¢ ¢ o ¢ o o o ¢ o o o o 1
A. Statement of the Problem 1
B. Wedge Diffraction Theory
C. TEM Waveguide Mode 7
D. Reflection Coefficient by Wedge
Diffraction 9
II PARALLEL-PLATE WAVEGUIDE
CHARACTERISTICS. . ¢« ¢« ¢« ¢« « « « « & . .. 10
A. Near-Zone Field 10
B. Response of a Guide to a Line Source 16
C. Self Reflection Coefficient 18
I APERTURE INTEGRATION APPROACH
FOR HALF-PLANE GUIDES. . . . . . . . . 23
A. Reflection Coefficient Analysis 23
B. Results 27
v PLANE WAVE APPROACH FOR GUIDES
WITH FINITE WEDGE ANGLES LESS
THAN 90°. . . v v v v e e e v e e e o e e s 30
A. Reflection Coefficient Analysis 30
l. First-bounce wave 32
2. Higher-order bounce wave 36

B. Results 43



Chapter
v CYLINDRICAL BOUNCE WAVE
APPROACH FOR GROUND-
PLANE MOUNTED GUIDES. . . . . . . . . .
A. Reflection Coefficient Analysis
1. First-bounce wave
2. Second-bounce wave
3. Multiple-bounce waves
B. Results
VI SUMMARY AND CONCLUSIONS. . . .. ..
APPENDIX A. . . . . . . .. o e e e e e e e e
REFERENCES . . ¢ ¢ 4 4 v v v i i e e v e o oo v o s s o

CONTENTS (Cont.)

Page

49
49
52
54

63
64

73

76

79



CHAPTER 1
INTRODUCTION

A. Statement of the Problem

Wedge diffraction theory is used in this analysis to calculate
the aperture admittance of a TEM parallel-plate waveguide illuminat-
ing an infinite perfectly reflecting sheet. The general geometry of

the problem is as shown in Fig. 1. The parallel-plate waveguide is
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Fig. 1. Parallel-plate waveguide illuminating
a reflecting sheet.



constructed from two perfectly conducting wedges of arbitrary wedge
angles WA, and WA; and separated by the guide width (a). For
simr.plicity of analysis, the guide truncation angle B8y is chosen to be
90° and the reflecting sheet is oriented perpendicular to the guide
axis. The reflection coefficient inside the parallel-plate waveguide
is then calculated as a function of the distance to the reflecting sheet
(r).

This analysis is the first step of an attempt to gain further
insight into the plasma measurement problem during space craft
re-entry. Although infinite parallel-plate waveguides are hardly
practical as space craft mounted antennas, this simplified analysis
does serve to demonstrate the basic diffraction mechanisms involved
between the critical layer of a reflecting plasma and the vehicle skin
in which a reflectometer system would be mounted. This basic two-
dimensional problem gives insight into the more practical three-

dimensional prcblem:.

B. Wedge Diffraction Theory

The principal method emn.ployed in this analysis is diffraction
by a conducting wedge. The diffraction of a plane wave by a wedge
was first solved by Sommerfeld.’! Pauli obtained a practical formu-
lation of the solution for a finite-angle conducting wedge.”

The total diffracted electromagnetic field from the wedge may

be treated as the superposition of the geometrical optics field and the




diffracted field which behaves as a cylindrical wave radiating from
the edge of the wedge. Therefore, the techniques of ray optics can
be used with which the field can be determined fromn. the diffracted
rays from the edge and the geomietrical optics rays. A diffraction
function, Vg, introduced by Pauli is employed in the analysis and
is given in Appendix A.

The diffraction of a plane wave by a wedge is shown in Fig. 2.
The solution to the plane wave diffraction problem may be expressed
in terms of a scalar function that represents the component of the

electromagnetic field normal to the plane of study in Fig. 2. The

INCIDENT REFLECTION
PLANE WAVE BOUNDARY

SHADOW BOUNDARY

Fig. 2. Geometry for wedge diffraction.



total field may be expressed as
(1) U= UO + Ug »

where U, is the geometrical optics field and Uy is the diffracted

field. The diffracted field is given by

(2) Uq = VB(E, ¥ -¥5, n) + Vg(r, ¢ +§o,n)

where the electric field polarization is perpendicular to the edge of
the wedge. The geometrical optics field is defined in three regions,
as shown in Fig. 3. For plane wave incidence, the geometrical

optics fields are
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Fig. 3. Geometrical optics regions.
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(3a) Uo = e Jkr cos{l-1o)

» incident region;

(3b) U

R Jkr cos(y -y 4 e Jkr cos(y+yg),
incident and reflected region; and

(3c) Uy = 0, shadow region.

The time dependence, ert, is used throughout this analysis.

The diffracted wave Ua may be represented as a cylindrical
wave radiating fromv the edge-(see Eq. (80) in Appendix A). In fact,
at large distances from the edge in regions removed from shadow
boundaries Ug has the radial dependence e-JKr Nxr. Because of this
cylindrical nature, subsequent diffraction of a diffracted wave may
be treated as the diffraction of a cylindrical wave by a wedge.

The diffraction of a cylindrical wave by a wedge is illustrated

in Fig. 4. The geometrical optics field in this case is given by

(4a) U. = e-JkR _ e-jk[r? + ro? - 2rrg cos(ll!-‘llo)]%
° TWNR [1*+xo? - 2rrg cosly - o)l *

incident region;
e-JkR + e'ij'

VR VR' .
e-—jk[ 2+ ro? - 2rrg cos(P-go)] 2

(4b) U, =

(22 + 1,2 - 2rr, cos(b-$o)] *

o-IK r® + 152 - 2rrg cos( )] ?_
+ T )
[ % +ro% - 2rr, cos(+y,)] 2

incident and reflected region; and

(9;]
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Fig. 4. Line source near-field diffraction.

(4c) Uy = 0, shadow region,

where R and R' are the respective distances of the line source and its
image to the observation point. The regions for the geometrical
optics fields are the same as those shown in Fig. 3. The diffracted
field is obtained by modifying the solution given by Obha’ for the
diffraction of a half-plane illuminated by a dipole source. This

solution has been reduced to the two-dimensional form and extended




to wedge diffraction. The diffractéd wave is thus given by

e rrg
-jk(r+rg) J "

(5) Ug(r, ror Yoo n) = S — ¢ 77O
'\/r+rO

v rro _ rr, U+

Equation (1) then gives the total field.
The far-zone diffracted field of an incident cylindrical wave

(r >> r,) is given through Eq. (5) as

-jkr
(6) Uq = ‘ifj
I

[ Vp(rg, ¥ -dg,n) + Vp(r,, y+¢, n)] .

Equation (6) may also be obtained by applying reciprocity to Eq. (2) 2

Equati>n (5), an approximate solution to the line source dif-
fraction problem, was compared with an exact eigenfunction formu-
lation and demonstrated to be quite accurate in its regions of
applicability.5 The diffraction functions, Eqs. (2) and (5), have
been dem.onstrated to be quite useful through their applications in a

6, 7’839
number of antenna problems.

C. TEM Waveguide Mode

The TEM mode in the parallel-plate waveguide may be repre-
sented as a plane wave propagating in the guide as shown in Fig. 5.
For this mode the field distribution across the guide is uniform, with

the electric field polafization perpendicular to the guide walls. For



Fig. 5. TEM mode propagation.

a unit amplitude magnetic field parallel to the guide walls, integration
of the Poynting vector, which is uniform across the guide, over the
guide cross section yields a power flow per unit depth of the guide as
(Zoa), where (Z,) is the impedance of free space and (a) is the width
of the guide.

In conventional transmission line theory, power flow may be
represented in terms of circuit theory concepts as the product of
m.odal current and modal voltage. These modal quantities are
related by the transm.ission line impedance. For the TEM m.ode the
transmission line impedance is simply the ratio of the electric to the
magnetic fields, or in this case the impedance of free space (Zg).
The magnetic field for the TEM mode may be represented by a scalar
function. Therefore, for a guide operating in the TEM mode with a
guide width (a), in which the magnetic field has unit amplitude and

zero phase reference, the modal circuit quantities are given by




D. Reflection Coefficient by Wedge Diffraction

By wedge diffraction theory the near field of a TEM parallel-
plate waveguide may be readily determined. For the half-plane
guide, the reflection coefficient may be obtained by integrating
over the guide aperture the field reflected by the reflecting sheet.
For guides with finite wedge angles less than Y0°, interactions be-
tween the guide aperture and the reflecting sheet may be approxi-
mated by bouncing plane waves. Wedge diffraction theory is used
then to compute the coupling between these plane waves and the
guide, hence the reflection coefficient of the guide. For ground
plane mounted guides, the exact nature of the interactions between
the guide and the reflecting sheet may be taken into account in a
method of successively bouncing cylindrical waves. Wedge dif-
fraction theory then gives the coupling between these cylindrical
waves and the guide.

For each of the above cases, normalized admittances may be

readily obtained from the corresponding reflection coefficients.

O



CHAPTER 1II
PARALLEL-PLATE WAVEGUIDE CHARACTERISTICS

Some of the characteristics of the parallel-plate waveguide
pertinent to the reflection coefficient analysis is treated in this

chapter.

A. Near-Zone Field

The near-zone fields of the guide in Fig. 6 are discussed in
this section. The diffraction from the guide aperture is treated by
superimposing the diffracted fields from each of the wedges. The
singly diffracted fields are caused by the unit amplitude incident
plane wave inside the guide. In regions sufficiently removed from
the shadow boundaries of the incident wave, the singly diffracted
fields may be represented by rays that have only angular dependence
because the radial and angular dependences of these singly diffracted
fields are separable. The singly diffracted wave from edge 1,

1
represented by the ray Rl( ), is given through

(8) Rx(l)(e) =_1_ sin & ( 1 } ,

™ m+0

cos 7 - COs /
nj mn E

where the factor

10
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Fig. 6. TEM mode parallel-plate waveguide.
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is suppressed because only angular variations are of interest.
Superscripts denote the order of diffraction in this chapter. Similarly
(1)

the singly diffracted wave from edge 2, represented by the ray RZ1 s

is given through

(9) RiVo) = L sin T 1
n; n, T - 8
cos— - cos

np np

11




The relation between the ray and the magnetic field is given later
in Eq. (17).
The singly diffracted ray from edge 1 in the direction of edge 2

is given by

1
(10) Ry V6= - ) =3 sin ™ - - .
m i cOSs —n_l - COS8 ___g_TT -

m

Similarly the singly diffracted ray from edge 2 in the direction of

edge 1 is given by

n, n, g S
cos . - cos —
2 n

(11) R, (o= - 8g) = L sin T 1 )
2

These singly diffracted rays will be used in finding the doubly
diffracted fields from the edges.

The singly diffracted wave from each edge may be again
diffracted by the other wedge producing doubly diffracted rays. The
doubly diffracted rays may be diffracted again by the edges and so
on producing higher-order interactions between the wedges.

Inclusion of contributions by higher-order diffractions may be

achieved by applying the '""Higher-Order Diffraction Concept”.6' !

However, for eg = 90°, the singly diffracted wave Rl(l)

radiating in
the direction of edge 2 has a reflection shadow boundary back in the

direction of interest as shown in Fig. 7. The doubly diffracted wave
2
Rz( from edge 2 in the direction of edge 1 is not representable as a

12
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Fig. 7. Shadow boundary of aperture diffracted wave.

cylindrical wave near the shadow boundary of Rl(l). Thus the third

order diffracted wave R1(3) from edge 1 cannot be accurately described
by the uniform cylindrical wave diffraction relationship of Eg. (6). The

(2)

same relationship holds between R; ° and Rz(?’) . Similar shadow
boundaries for subsequent diffractions then render higher order wedge
interactions inaccurate for eg = 90° by the uniform wave diffraction
functions. For guide widths larger than A/4, however, inclusion of

no higher than the doubly diffracted contributions gives quite accurate

results everywhere except near the guide aperture plane.® 1°

13



The near-zone magnetic field plot is obtained for the geometry
of Fig. 8 in the following manner: The origin of the x-y coordinates is

assigned to edge 1, with r; and r, denoting the distances from the

|
i
I

|FIELD

6, POINT

n : P(x,y)
ﬁ_—"1 ™" ; X r |
o _ INCIDENT 26 |
PLANE WAVE t |
¢R|G |
|
8, !
|

FIELD PLOT
PLANE

Fig. 8. Near-zone field plot geom.etry.

field point P(x, y) to edges 1 and 2, respectively. The angles b and

8, are defined with respect to the guide axis, with

8, =tan"! ¥ and 6 = tan-! yta
X x

Assuming a unit amplitude magnetic field incident inside
the waveguide, the singly diffracted magnetic field from edge 1

at the field point P(x, y) is given by

(12) m(P) = Vplr1, 746, ny)

14




The singly diffracted field from edge 2 is given by
1
(13) Hz( )(P)=VB(I‘2,1T—92,1’12) .

The doubly diffracted field from edge 1 results from the singly
diffracted ray RZG(I) from edge 2 and is given by the line source

field diffraction relationship of Eq. (5) as

(2) 1 e e .
14 H P)= R e X
(14) 1 (P) 2G N -2

. . 3w
x |vp (22,6 + L, +vp (22, 2T +g,n
[B(r1+a ! an B atry; 2 % m
. . 1) . .
The doubly diffracted field from edge 2 results from R;é; and is given
by

-Ji J t+ a4 - r a
e 2 o o lTztaiTETE

(2)
15
( ) Hz (P) RiG \/2—1rT< x r; +a

{r2 *a T
X |V = .
[Bkrz +a’ 2 92,n7_>
r *a 3w
+ V y ST > .
B(rz +a 2 92 nz)]

Since the incident wave from within the guide is plane, the

geometrical optics field is given by

(16) Hg = e & La<y<0

0 otherwise

L5




The total field H(P) at P(x,y) is then obtained through super-

position as
(17) Ho(P) = 1, (e) + 1,®(p) + VP + B P) + Hg -

B. Response of a Guide to a Line Source

Equivalent line sources with omni-directional patterns are
employed in the subsequent analyses. The modal current I of an
equivalent line source is related to its radiated magnetic field H

and ray R by

gk 5 T -j ke +%\
(18) 1e T o pg=& R .
@;_1'_ NZT kr

The response of a guide to an equivalent line source is obtained

by reciprocity. As depicted in Fig. 9 the response of a guide to a

2 e
@ : I (D r
———— ﬁ\r\i" @ F;;-————)- V \OISR
P UIVALENT
® T FAULY ®
RECIPROCITY

o047

(a) LINE SOURCE TRANSMITTING (b) GUIDE TRANSMITTING

Fig. 9. Application of reciprocity to find the response
of a guide to a line source.
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line source is equal to the responbe of that line source to the guide
by reciprocity. In Fig. 9a a line source located a distance r away
from the guide transmits a power per unit length PT, with associated
modal current IT. The guide receives a power per unit length PR
with associated modal current IR from the line source. In the
reciprocal situation in Fig. 9b, the guide transmits the power PT
with associated modal current IT. The line source receives the

power PR with an associated modal current IR. The power received

by the line source in Fig. 9b is given by
(19) PR=2 |Hp(r,0)]® Zo
2w

where A\/2w is the effective aperture of the line source and HT(r,e)

is the field from the guide at the line source. Hence the modal

current received by the line source is given by

(20) Ig = |X Hp(r,0) ,
2w

where the characteristic impedance of the line source is Z,. The
modal current of the transm.itting guide is Na if the magnetic field

in the guide is of unit amplitude and the guide width is (a). The
response of the line source to the guide in Fig. 9b is then expressible

in terms of the modal current ratio

I_R'. = l)\_ HT(r:e)
It

(21) 2T a

17




By reciprocity, Eq. (21) gives the response IR of a guide to a line

source with a transmitting modal current IT as depicted in Fig. 9a.

C. Self Reflection Coefficient

The reflection coefficient of the waveguide aperture with the
waveguide radiating into free space is denoted as the ''self reflection
coefficient' of the waveguide. Extensive derivation of the self
reflection coefficient is given for both TEM and TE, parallel-plate
waveguide apertures in Reference 10. The formulation of the TEM
waveguide aperture admittance is based upon the symmetry of half-
plane diffraction as shown in Fig. 10. Because of the symmetry of
half-plane diffraction, the diffracted field distributions of Fig. 10a
and b are identical except for sign. Therefore the power reflected

back into the guide by aperture mismatch (Fig. 10a) is the same as

. @ . e,
Ip 1e i E'Cp:o) 61 P D,(p=2m)
_ e 2($=0) 1 0 #°27)
® le°

Fig. 10. Plane wave incidence from inside
and outside the guide.
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that received by the guide for a plane wave incident outside the guide
from the 6 = 180° direction (Fig. 10b). In order to determine the
response of the guide to plane wave incidence, the effective aperture
of the guide must be considered.

For the TEM mode guide the magnetic field intensity in the

far-field region is accurately given by

-j (kr +£)
(22) Hp(r,0)= £ -~ Rq(0) =£
NZT ke Nr

-jkr

DT(®) ,

where Hp(0) is the field, R7(8) the ray, and DT(0) the diffraction
coefficient associated with the guide. The antenna gain of the
parallel-plate waveguide may be calculated from the conventional

formula for two-dimensional gain,

(23) G = ZTI'I'S ,

P,

where S is the radiated power density at radius r and P, is the total
power per unit length incident in the transmitting guide. The power

density is related to the radiated field of the guide by

z z
(24) s =2z, |Hpl? =TO IDTIZ :’2‘170?5 IRT|Z

where Z, is the free-space impedance. Since the power incident
in the TEM guide with a unit amplitude incident magnetic field is

(aZ,) where (a) is the guide width, the gain of the guide is given by

ot
(N



(25) G=21 |rpl2 =27 |pp|2 |
ka a

{

where Rp and Dt are evaluated for the direction in which gain is to
be determined. The effective aperture of the TEM parallel-plate
waveguide is then given by
(26) We=2X g=— |Rpl?2 =} [Dpl% .
2w k2a a
From Eqgs. (22) and (25), the response of the guide to a plane

wave of magnetic field intensity Hj is

m
x g

(27) I=F DT H; e ,
\a

where DT is directly related to Hy from Eq. (17) in the far-field by
Eq. (22). Equation (27) may also be obtained from Eq. (21). Thus
the induced modal current in the guide corresponding to the reflected
power caused by aperture mismatch in Fig. 10a is obtained from
Eq. (27) as

™

_JZ
[Di(¢ =27 + D (v = 2m)] e ,

p ]

_ o1
(28) I"E]

where the factor 1/2 results from plane wave grazing incidence
(where Hij = 1/2).% The minus sign results fron. the difference
between Figs. 10a and b. Superposition is used to find the responses
of the guide, Dy and D;, to the incident plane wave from outside the

guide in Fig. 10b. The angle ¢ is used in the same convention as in

20




the diffraction function Vg(r, ¢, n). The induced modal current may

also be expressed as
j ™
1Y e
(29) I=EE[DI(¢=0)+D2(¢=O)]G :
The self reflection coefficient, or reflection due to aperture
mismatch for the TEM, parallel-plate, half-plane waveguide is
given by

L

-i g
(30) Fo=—1=%%[D1(¢=0)+Dz(¢=0)]e .

It should be noted that Eq. (30) may be obtained by simply considering

the rays propagating back into the guide as shown in Fig. 11.

1e9°

\

1e°

Fig. 11. Self-reflection coefficient ray diagram.

Normalized aperture admittance may then be obtained from the

conventional relationship

21




Yo, T+r,

Y 1 -r
(31) A o

Equation (30) is believed to be valid for guides composed of

wedges with arbitrary wedge angles. Comparison between measured

and calculated data has shown Eq. (30) to be correct in predicting the

reflection coefficient due to aperture mismatch for guides of all

wedge angles. 1

22




CHAPTER III
APERTURE INTEGRATION APPROACH FOR
HALF-PLANE GUIDES

A. Reflection Coefficient Analysis

The reflection coefficient of a normally truncated half-plane
guide illuminating a reflecting sheet is discussed in this section.

Figure 12 shows the half-plane guide with a reflecting sheet located

A |
' |
y I
|
] |
|
- - @ —_—X |
[ =y
| IPROJECTED
a A |  GUIDE
L | 9g§9°' | CROSS SECTION
- . B l_¥
® !
‘u— { ———— e [ ————>
i
]
¥ !
REFLECTING FIELD PLOT
SHEET PLANE

Fig. 12. Half-plane guide illuminating a
reflecting sheet.
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a distance (r) away from the aperture. The near-zone field plot
according to Section IIA was calculated for various guide widths,
with the distance (2r) ranging from 0.1 XA to 10.0X . Table I gives
the total magnetic field plot for a half-plane guide of 0.278\ guide
width at field plot planes of 0.4\, 2.0\, and 5.0\ away from: the
guide aperture.

The magnetic field values in Table I indicate that the near
field of the half-plane guide in the aperture cross section can be
adequately represented as a plane wave because of its essentially
uniform amplitude distribution and shallow phase curvature.

For the geometry of Fig. 12 the field plot of the free-space
guide at x = 2r is used to represent the reflected field from a
reflecting sheet at x = r incident on the guide aperture in the -x
direction as shown in Fig. 13. In cases where the reflected wave
Hy of Fig. 13a is plane, no further diffraction will occur because
of its incidence on the aperture. Integration of the reflected field
Hr at the guide aperture plane over the guide cross section yields
the power received by the guide due to reflection at the reflecting
sheet. Since Hy = Hj in Fig. 13, the average field in the projected
guide cross section in the field plot plane at (2r) in Fig. 13b, denoted
by H; (average), approximates the plane wave propagating back into

the guide due to the reflection in Fig. 13a, Hy (average).
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Fig. 13. Reflected wave and equivalent free space wave
for a half-plane guide.

If the plane wave incident on the guide edges from within the
guide has a unit amplitude magnetic field, the value of Hy (average)
is the reflection coefficient 'y, of the guide due to the reflection by
the reflecting sheet. The total reflection coefficient is then the
phasor sum of the self reflection coefficient I'c from Eq. (30) and

rr; thus

(32) rp=Tg+ Ty o«
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I'T represents the total reflection coefficient of a normally truncated,

half-plane, parallel-plate waveguide illuminating a reflecting sheet

with the phase reference of I'T at the guide aperture plane.
Calculation of 'y consists of first calculating the fields Hj at

x = 2r according to the method in Section IIA. Then the fields

across the guide cross section are averaged to obtain H; (average),

and hence Hy (average).

B. Results

The computation of I'T is accomplished with the aid of a
Scatran program on the IBM 7094 digital computer. I'T is calculated
as a function of (r), the distance from the guide aperture to the
reflecting sheet.

The reflection coefficient magnitude may be measured with a
sectoral horn as shown in Fig. 14. The illustrated horn was con-
structed by flaring out one dimension of an X-band rectangular
waveguide and keeping the other dimension fixed. Horns of this type
have been found to simulate infinite parallel-plate waveguides quite
adequately for the purposes of measuring radiation patterns, "
coupling between parallel-plate waveguides, 8 and self reflection

coefficients.'® The reflecting sheet to waveguide aperture spacing

is made adjustable by using an optiéal bench as a track. The total
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Fig. 14. Half-plane guide illuminating a reflecting
plate experimental apparatus.

reflection coefficient magnitude of the half-plane horn is mieasured
with a slotted line.

Reflection coefficient magnitude m.easurements were made
for the case of guide width (a) equal to 0.278\ and reflection plate
distance (r) in the range of 0.25\ < r < 2.3\ . Comparisons between
calculated and measured reflection coefficient magnitudes are shown
in Fig. 15. It is to be noted that the apparent disagreement in the
curves (namely, a shift in (r) between the measured and calculated
curves) corresponds to an actual physical displacement of less than

2 mm and is well within experimental tolerances.
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CHAPTER IV
PLANE WAVE APPROACH FOR GUIDES WITH
FINITE WEDGE ANGLES LESS THAN 90°

A. Reflection Coefficient Analysis

By the analysis in Section IIA, the near-zone fields of a
normally truncated, symmetrical, TEM, parallel-plate wave-
guide are determined as basically those of a cylindrical wave.

For symmetrical guides with wedge angles significantly less than
90°, these near-iields may be approximated by plane waves in

the projected guide cross section. In this Chapter the reflection
coefficient is analyzed for a parallel-plate waveguide with wedge
angles less than 90° illuminating a conducting sheet by approxi-
mating the reflected field near the guide aperture by a plane wave.
The geometry of the problem is shown in Fig. 16. The guide is
composed of two wedges with equal wedge angles less than 90°.

The guide width is (a) and the separation between the conducting sheet
and the guide aperture is denoted as (r).

The situation depicted in Fig. 16 differs from that of Fig. 12
for the half-plane guide in the following way. Unlike the half-plane
guide case in which negligible diffraction occurs at the aperture for

the reflected (or image) wave, diffraction will occur at edges 1 and 2
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Fig. 16. Parallel-plate waveguide with WA < 90°
illuminating a reflecting sheet.

for this case. An outline of the analysis is as follows: The free
space wave of the guide that reflects off the reflecting sheet back
onto the guide aperture is denoted as the first-bounce wave or
reflection. The first-bounce wave in turn diffracts from the aperture
formed by the wedges, resulting in a second-bounce wave. The
second-bounce wave in turn reflects off the reflector back onto the
aperture, causing a third-bounce wave. This process continues
on indefinitely to higher-order bounces. In this analysis the wave

for each bounce is taken to be very nearly plane across the guide

L
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aperture. Since the diffraction from the aperture of each incident
bounce wave depends only on the fields of the incident wave near the
aperture, each diffraction is treated as that of a plane wave. The
first-bounce wave caused by the initial guide radiation will be
analyzed first. Higher-order bounce waves will then be solved by

using the Higher-Order Diffraction Approach.b’7

1. First-bounce wave

As shown in Fig. 17, the first-bounce wave incident on the
guide aperture may be obtained by considering the free-space guide
magnetic field incident on the image guide located at a distance of

2r. Hg(i) and H4(i) in Fig. 17b denote the magnetic fields incident

~ | A | IMAGE
e s 2r ——=4 GUIDE
A prad
w : ®| (i) (1}] WA| ) :@
- - -<--H| :H3 : . Hs—*‘l" Anul
g I (h le 0 1e’® i 1™ '
- H2 =H4 H4->:q(rrﬂm
wAzWA @) WA, @ N
| ' l
7 * |
REFLECTED REFLECTING IMAGE
WAVE SHEET WAVE
(0) REFLECTING WAVE (b) IMAGE WAVE

Fig. 17. First bounce reflected and equivalent
image wave.
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on the image edges 3 and 4, respectively. The first-bounce fields
incident on edges 1 and 2, Hl(i) and Hz(i) in Fig. 17a, are then
exactly the same as the fields incident on the image edges in
Fig. 17b. The slant distance from edge 1 to edge 4 and from edge
2 to edge 3 is denoted by (h) in Fig. 17b. The slant angle from 1
to 4 and 2 to 3 is denoted by (Q) in the same figure.

The near-zone magnetic fields at the image edges (H3(i) and
SALU Fig. 17b) are accurately found by considering only the
singly and doubly diffracted contributions from the transmitting

guide. With unit amplitude magnetic fields inside the guide, the

singly diffracted field contribution to H3(i) from edge 1 is given by
(33) ng(l) = Vvg(2r, 7, n;) ,

where n; is defined by WA; = (2-n3)w. The subscript 13 denotes
the field at edge 3 caused by the diffracted wave from edge 1.
Similarly, the singly diffracted field component of Hg(i) from edge 2

is given by

(34) sV = vgh woa,n)

The doubly diffracted field contribution to Hg(i) from edge l is caused

by RzG(l) (Eq. (11)) and is found, using Egs. (5) and (18), to be

(PN
W
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The doubly diffracted contribution to H3(i) from edge 2 is given similarly
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H3(i) is then given by
(37) By = H13(1) + Hig® + B 4 Hp(?)

H4(i) may be obtained similarly. The singly diffracted field

components of H4(i) are

(38) Hi " = vg(h, m-a,n)
and
(39) H) = VB(2r, 7, ny)

The doubly diffracted field contributions are

.
(2) (1) e o
(40 His'"' = R X X Uqg
) 14 2G N/
i sin T_
- n; Iy
cos — = cos mie
ny n;
-J.T_r ah
e 4 -jk(a +h) Jka+h

and

W
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= ny ny
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n m
7 2
“Jz . ar
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€ eJ ( ) ka+2r

2ar ™ ’ 2ar 3w
X V y —3 n + V y =, Il
[B (a+2r 2 z) B(a+2r 2 2)}
H4(i) is then given by

(42) Y = 1) 4 1 ), )

The first-bounce fields reflected back onto edges 1 and 2
by the reflecting sheet, Hl(i) and Hz(i) in Fig. 17a, are then obtained

from Eqs. (37) and (42) by the following equivalence:

(43) (Y = g ()

2. Higher-order bounce wave

The first-bounce wave diffracts from the aperture of the guide

forming a second-bounce wave. This second-bounce wave reflects
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from the reflecting sheet back onto the guide aperture causing a
third-bounce wave. The continuation of this process then results
in the formation of all higher-order bounce waves. Since the wave
for each bounce is nearly plane, each bounce-wave diffraction may
be treated as that of a plane wave.

In this analysis, the contribution of all subsequent bounce
waves other than the first bounce is thought of as that of the higher-
order bounce wave. The fields of this higher-order bounce wave
are obtained through use of the ''self-consistency'' principle in the
Higher-Order Diffraction Method.

The total fields incident on edges 1 and 2 due to all the bounce

waves are denoted by H; and H, respectively with

(44) H; = Hl(i) + H,(h),
and
(45) H, = H{V + KD,

where Hj(h) and Hz(h) are the higher-order bounce fields incident

on the guide edges. H;, H;, Hl(h), and Hz(h) in Eqs. (44) and (45)
are, of course, still unknown. H; and H; incident on edges 1 and 2
cause the higher-order bounce fields Hs(h) and H4(h) to be incident
on the image edges 3 and 4 as shown in Fig. 18. But by image theory

the field incident on the image edges are precisely those incident on
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Fig. 18. Higher-order bounce fields incident
on the guide edges.

the guide edges. Hence the higher-order bounce wave fields incident

on edges | and 2 are given by

(46) H,(h) = Hy(h)
and
(47) 1P = g h)

where H3(h) and H4(h) are still unknown.
H, and H, incident on edges 1 and 2, respectively, also cause
the rays RlG(r) and ch,(r) to propagate in the directions of the cor-

respondingly opposite edges as shown in Fig. 19. The superscripts
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Fig. 19. Effect of the total reflected wave
incident on the guide aperture.

(r) indicate that RlG(r) and ch,(r) are caused by reflection at the

reflecting sheet. These rays are respectively given by

. T . m
— sin — — sin —
n
(48) R\ =y | B2 L +o A
cos —— - cos /2 cos —— - cos 3T/2
ni nj ny nj
!
and
1 sin ™ 1 sin ®
o
(49) Reg\™) = B, |22 T2 ot =
cos - - cos =T Z cos — - Cosﬁr_/_2
n2 nz nz n,
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Applying the Higher-Order Diffraction Method, H;, the total
magnetic field incident on edge 1 due to reflection by the reflecting

sheet, is given by

(50) 1, = 1,V + 1,(h)

Lm G 2ar
J 7z e-jk(a+Zr) Ko a42r

2ar L 2ar 3w \
X A\ , —, N1 +V , —» Ny
[ B(a+2r 2 ) B(a+2r 2 ']

+ Hy x[VB(2r,0,n;) + VB(2r, 2w, ny )]

+ Hz )\[VB(h, —G,nz) + VB(h, 2m-Q, n; )]

— ah
- — . 'k ett—
73 e-jklath) JX Fm

NZTk Na+h

ah m [ah 3
ah mw ah 2T g,
* [VB <a+h’ z " O"“Z\, tVB Zin 2 nz)]

H,, the total magnetic field incident on edge 2 from outside the guide

is similarly given by
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(51) H, = 1,1 + g,(b)

] 2ar
o-Jklat2r) Jk Tion
e

. iy
= Hz(l) + RIG(r) e 4
N2k Na+2r

2ar w 2ar 3w
X |V , =, + Vv ,y ——, 1
[B(a+2r ) nz) B(a-l-Zr z 2)]

+ H, X [VB(Zr, 0,np) + V(2r, 27, n; )]

+ Hi x [Vg(h, -@,n1) + Vg(h, 27 -0, n; )]

LT
T jk(a+h) jk 2P
jkla jk
+R2G(r)x € e e a+h
N2wk Na+h
J

h =« ah 37 .
vp (2B T _q, + LY )
% [ B (a+h 2 nl) VB (a+h P nl]

Solving Eqgs. (50) and (51) simultaneously with the parametric Eqs.
(48) and (49), H; and H; may be obtained. Rlc(r) and Rz(}(r) are
then obtained from Eqs. (48) and (49).

The contributions of H; and H, to the reflection coefficient are
computed by considering the rays Rl(r) and Rz(r) propagating back
into the guide from the edges as shown in Fig. 19. Rl(r) and Rz(r)

represent the total rays from edges 1 and 2, respectively, propagating

Ha
[



back into the waveguide due to the reflection by the conducting sheet

]

+ RzG(r) X [VB(a,--g—,nl) + VB( , ;,nl)] ,

and are given by

e
[aS]
:|
oy

(52) R,(*) = 1, [ej

and

w3

j
(53) R,{*) = H, [e NZTR “

The reflection coefficient of the waveguide due to the conductor-

sheet reflection is then given by
L

_ ST
(54) Tﬁ% vaka [Rl(r)+Rz(r)] 2

The total reflection coefficient I'p is obtained by summing the

guide self reflection coefficient 'y given by Eq. (30) and the reflection

coefficient I'. due to the reflecting sheet as given by Eq. (54). Thus

(55) Tp=Tg+ Ty .
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B. Results

The reflection coefficients of symmetrical guides with wedge
angles less than 90° illuminating a reflecting sheet were calculated
by the ''plane wave approach'' with the aid of a Scatran program on
an IBM 7094 digital computer. A statement listing for the Vg sub-
routine used may be found in Reference [7] .

Measurement of the total reflection coefficient was made with
essentially the same experimental apparatus as shown in Fig. 14
except that conducting plates were attached to the sectoral horn
aperture to simulate conducting wedges. Calculated and measured
total reflection coefficient magnitudes are presented in Figs. 20
and 21. Figure 20 shows the result for a TEM parallel-plate
waveguide of 0.278\ guide width with 60° wedges. Figure 21 shows
the result for the same guide with 75° wedges. Besides the total
reflection coefficient magnitudes calculated by the ''plane wave
higher order' method in this chapter, Figs. 20 and 21 also show
the reflection coefficient magnitudes for the same guides not
including the higher-order bounces. It should be noted that although
seemingly good agreement is achieved between theoretical and
measured results by the method outlined in this section, the verifi-
cation cannot be termed conclusive because the ''plane wave reflection"
higher-order contributions are small compared to the single bounce

reflection coefficient.



Figure 22 presents the phase of the total reflection coefficient
for the guide with 75° wedge angles and 0.278\ guide width. The
calculated I'T magnitude for a guide of 0.7\ guide width and 75°

wedge angle is shown in Figs. 23 and 24.
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CHAP

TER V

CYLINDRICAL BOUNCE WAVE APPROACH FOR
GROUND-PLANE MOUNTED GUIDES

A'

Reflection Coefficient Analysis

The problem of analyzing the reflection coefficient of a TEM

parallel-plate waveguide mounted in a ground-plane and illuminating

a perfectly reflecting sheet perpendicular to the guide axis is

treated in this section.

in Fig. 25.
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Fig. 25. Ground-plane mounted parallel-plate waveguide

The geometry of the problem is as shown

illuminating a reflecting sheet.

o
Nz




For this problem, the plane wave analysis of Chapter IV is not
valid because the reflected wave fields from the reflecting sheet
incident on the guide have reflection boundaries from the wedges as

shown in Fig. 26. The diffracted wave depends on the incident wave

_REFLECTING
SHEET

PLANE WAVE
' REFLECTION
 { BOUNDARIES

Fig. 26. Reflection boundaries for the plane reflection
waves predicted by Chapter IV.

over a wide region near the shadow boundaries. The first-bounce
wavefront incident on the guide, represented by Hl(i) and Hy{1), is
actually cylindrical but assumed plane to a good approximation in the
analysis of Chapter IV. The assumption that the diffracted fields
caused by the first-bounce wave are accurately given by plane wave
diffraction is not valid near the shadow boundaries of the incident

wave. For this problem the exact nature of each bounce wave is
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taken into account in an iterative method of ''successively bouncing
cylindrical waves."

An outline of the analysis is as follows: The magnetic field
plot for the ground-plane mounted guide obtained by the method
given in Section IIA indicates that the field of the guide in the near
zone is cylindrical. This cylindrical magnetic field plot, taken at
a distance (2r) from the guide aperture, represents the reflected
wave from the conducting sheet, located at a distance (r) from the
aperture, incident on the ground-plane mounted guide aperture.
This reflected wave is called the first-bounce wave. Because the
first-bounce wave is cylindrical, an equivalent line source is
introduced to compute the first-bounce wave contribution to the
reflection coefficient by the line source to waveguide coupling
expression in Section IIB.

The first-bounce wave, incident on the guide aperture in the
ground-plane, causes a second-bounce wave. In view of the
cylindrical nature of the first-bounce wave, the second-bounce
diffracted wave can be treated as the result of the diffraction of a
cylindrical wave from the ground-plane mounted guide aperture.
Unlike the first-bounce wave, the second-bounce wave is not
cylindrical. However, by referring to Fig. 29, it appears that the
nature of the second-bounce wave may be represented in terms of

the superposition of two cylindrical waves: the geometrical optics

(9]
—



component of the first-bounce wave, and the diffracted wave of the
first-bounce wave by a rectangular wall. Thus the second-bounce
wave has been separated into these two components which were
indeed found to be close to cylindrical waves. Since it can be
assumed that two cylindrical components result for the second
bounce wave, two equivalent line sources and hence two reflection
coefficient components will result for the second-bounce wave.
Like the first-bounce wave, the two cylindrical components
of the second-bounce wave will each cause two diffracted cylindrical
components which constitute the third-bounce wave. The four
cylindrical components of the third-bounce wave then require four
equivalent line sources to compute the third-bounce reflection
coefficient contribution. The same relationship applies to suc-
cessive bounce waves. More specifically, the fourth-bounce wave
will have eight components and the fifth-bounce wave sixteen com-

ponents.

1. First-bounce wave

The geometry for the equivalent line source determination is
shown in Fig. 27 for the first-bounce wave (the initial guide wave
reflected by the reflecting sheet). Figure 27 depicts the first-
bounce wavefront incident on the guide with a cylindrical phase
contour. An equivalent line source located at a distance p(l) from
the guide will generate this phase front if
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Fig. 27. Equivalent line source determination
for the first-bounce fields.

2
(56) p(l) = a - ﬁ »
8a0 2
where A¢ is the phase difference expressed in wavelengths between
the first-bounce magnetic fields at the center of the guide aperture,

HT(I) (center), and at one of the guide edges, HT(I) (

edge). Super-
scripts denote the bounce number in this chapter. The modal current

of the equivalent line source is related to the first-bounce magnetic

field at the center of the guide aperture by Eq. (18) and is given by
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e -5 2
(57) qu(l) = an(l) e 4 HT(I) (center),
where HT“) (center), the magnetic field at the center of the guide
aperture, is computed by Eq. (17).

The power flowing back into the guide caused by the first-
bounce wave may be related to the first-bounce equivalent line
source current, qu(l) of Eq. (57), by Eq. (21) and expressed in
terms of the modal current in the guide. Line source to waveguide

coupling yields the guide modal current as

58 ()., ()| A H (p(l)

( ) IR qu ma T )

HT(p(l)) is computed by Eq. (17) for the field point along the guide
axis at the distance of p(l) with the guide transmitting a modal
current equal to Na. The contribution to the reflection coefficient

by the first-bounce wave is thus given by

(59) R
1, NA
LY o
eq 1
=72 Jzw Hrle ) -

2. Second-bounce wave

The first-bounce wave incident on the waveguide aperture causes

a second-bounce wave that is mainly composed of the reflected
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geometrical optics field and to a lesser extent the other cylindrical
wave component which is analogous to the diffracted wave from a
rectangular wall. The second-bounce wave is reflected from the
reflecting sheet back onto the guide aperture. The fields of the
second-bounce wave incident on the guide aperture are, of course,
given by image theory as the fields of this wave at a distance (2r)
from the guide aperture. The geometry for the second-bounce
wave field plot is as shown in Fig. 28. The distances to the field
point P(x, y) from edges 1 and 2 are denoted by r; and r;, respec-

tively. The distance from the line source to either edge is denoted

The second-bounce fields along the field plot plane may then
be obtained by again considering only the singly and doubly dif-
fracted contributions. Singly diffracted contributions are given
by the diffraction of the cylindrical wave of the equivalent line source
by the individual wedges. The singly diffracted magnetic field at
P(x, y) from edge 1 is obtained from Eqs. (5) and (18) and is given

by

(W]
wn
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Similarly the singly diffracted field from edge 2 is given by
(1 —= .. (1)
(61) HD: )(P) = \"r(l) kT HT(I) (edge 2)

. (1)
e 2

Irz + 'r(l)

X

- (1) :
X [VB <_rLT—, a_ez,nz)

r, + 'r(l)

(1)
+ Vg (_L,ZW-BZ-Q, n> .
ry + T(l)

The doubly diffracted fields are caused by the singly diffracted
waves from the edges diffracting off their correspondingly opposite
edges. Because the singly diffracted waves in their directions of
interest are removed from shadow boundaries they may be treated
as cylindrical waves. Consequently the line source diffraction
formulation of Eq. (5) is used to give the doubly diffracted fields.

The doubly diffracted field from edge 1 is given by

wn
-J



(62) Hpp1 2 (P) = Dpac

x |vpf2: X1, T 46,n

l_ (r1+a 2 ! t

+ Vv ___a'rl,_3_1l+91,n1
B (r1+a 2

jk ———1- - (r1+aq

atr
x e ’
Vr1+a
where
() [T ik W
(63) DpG "= JT T HT'' (edge 2)

X [VB (—r(l), a-%,nz) + Vg (-r(l), 221 - Q, nz)] .
(1)

DD:G ' denotes the diffraction coefficient of the ray from edge 2
to edge 1 caused by the incidence of HT(I) (edge 2) on edge 2.
Similarly the doubly diffracted magnetic field at P(x, y) from edge 2

is given by

(64) Hpps 2(P) = Dpy &V

VB Z,E-Bl,nz>
a+rz 2

+ vy [RoTz, éz-ez,ng)]
a+tr; 2 -
jk[_————a'rz - (a+rz)} ’

a+rz
x & ,

"\]a+r2
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where

—
(65) DD]G(I) - »iT(l) eJkT HT(l)

X [VB {;T(l),a—%,nl) + VB (‘r(l),3—;-0., nl)] .

The total field at P(x, y) is given by

(edge 1)

(2 2
(66) HT'?\(P) = Hpt (P) + Hpp ™(P) + Hp, " (P) + HDDZ(Z)(P)
i . T B
-jkp't j =
(1) e 4
t | legg  S———— forf >aorf <a
2mp' X
L 0 otherwise ,
J

where the bracketed term is the reflected geometrical optics field
from the ground-plane guide aperture. It is to be noted that HT( 2)(P)
describes the second-bounce field plot as P varies.

The second-bounce wave field plot according to Eq. (66) does
not have a cylindrical wavefront like the first-bounce wave. Con-
sequently a single equivalent line source will not suffice to describe
its wavefront. Superposition is used to accurately describe the
second-bounce wave. As illustrated in Fig. 29, the diffraction of
a line source field (i.e., the first-bounce field) by a ground plane
guide consists of two components. The second-bounce field HT(Z)
may be thought of as composed of the sum of the ground-plane

reflected geometrical optics field HG(Z) and the diffracted field Hs(z)

(2) . .
from a rectangular wall of width (a). Hg ) is given by

-ik ,+j1r_
(2) eJP 2

(1)
(67) HGg ' = leq
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where p' is the distance from the line source image to an observation
point P(x, y) on the field plot plane and qu(l) is the first-bounce wave
equivalent line source current from Eq. (57). The other cylindrical

wave component is given by

(68) Hg?) = HG(Z) - H?

’

where the total second-bounce wave HT(Z) is given by Eq. (66). It
should be noted again that both Eqs. (67) and (68), like Eq. (66),
describe field plots, not just discrete field values.

The second-bounce wave components HG(Z) and HS(,') are both
cylindrical. By superposition, they constitute the second-bounce
cylindrical component waves incident on the guide aperture caused
by the first-bounce wave. The contributions of HG(z) and Hs(z) to the
reflection coefficient are computed in the san.e way as is 1'“)
(Eq.(59)), the first-bounce cylindrical wave reflection coefficient
component. For both HG(Z) and HS(Z), the same geometry for
equivalent line source determination in Fig. 27 applies except for
superscript changes.

For Hc,(z) the line source location from the guide aperture,
denoted by p(z)(l), is given by Eq. (56), with A¢ being the phase

( (

difference between HGZ) (aperture center) and HGZ) (edge). The

equivalent line source current is given by

6l



. (2) .
jke (1) -]

(69) qu(z)(l) =j21rp(z)(1) e
(2)
HG  (aperture center).

Coupling back into the guide is given by
(70) 1)) = 1,421 J_L Hy (¢2(1)) |
2wa
where HT(p(z)(l)) is the free-space guide magnetic field at p(Z)(l)
according to Eq. (17). Thus the reflection coefficient contribution

due to HG(Z) is given by

(2)
(71) r‘z)(l)z_ligz_(_ll_ I’zl;? Ho(p2 (1)

(2)

Similarly, for Hg"' the reflection coefficient contribution is

given through the following equations:

(72) o2y = 2 _ne |
8Ad 2

where A¢$ is the phase difference between HS(Z) (aperture center) and
Hs(z) (edge);

. (2) .
, ——  jkp (2)-J£-

(73) ed?(2) = [2ndP2) e

X Hs(z) (aperture center);
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(74) 1R*2) = 1ed?2) |_’~_ o P2
2ma

and

(2) )
(75) r@ )= leq BN T o p2)2)) .

a 2w

It should be again noted that HT(p) in both Eqs. (71) and (75), as in
Eq. (59), are computed by Eq. (17) for a free-space guide at a
distance p from the aperture along the guide axis. The total
contribution to the reflection coefficient from the second-bounce

wave is then given by
(76) r2) 2 pla) 1) 4 pl2dz) |

3. Multiple-bounce waves

Similar to the generation of the two cylindrical wave components

(2)

of the second-bounce wave by the first-bounce cylindrical wave, Hc,z

2
and HS( ) each generates two cylindrical waves to constitute the third-

bounce wave. The waves generated by Hc,(z) is denoted by HG(3)(1)

and HS(S)(I) while HG(3)(2) and Hs(s)(Z) represent the waves generated

by Hs(z). Computational procedures for these generated components
¢ 12 (2) ; k)

of HG ' and Hg“’/ are exactly the same as those for computing Hg

and Hs(z) from the first-bounce cylindrical wave H-[‘l). This cause-

and-effect relationship for multiple-bounce wave generation can thus

be extended to includé any number of bounces. In general, the logic

(o
(P )



diagrammed in Fig. 30 describes the genération of the cylindrical
components of the higher-order bounce waves. Thus by continuing
this process, any desired number of bounces may be included.

The total reflection coefficient is given in general by

0]
(77) Pp =T+ N rm) (2m,
-
n=1
where I'g is the self reflection coefficient computed by Eq. (30) and

(n) is the order of the bounce.

B. Results

The total reflection coefficient for the ground-plane guide
illuminating a perfectly conducting sheet was calculated by use of
a Scatran program on the IBM 7094. The logic of the program is
essentially the same as the block diagram shown in Fig. 30.
Computational rigor was reduced by the use of a DOTHROUGH loop
for the computation of the cylindrical wave generation and its coupling
into the guide. The results were computed for a ground-plane guide of
0.278\ guide width with the reflecting plate distance (r) varying from
0.5N to 2.5N. Five bounces were used for this computation.

Computing time on the IBM 7094 for the program is approxi-
mately one minute for each reflection sheet position. In order to
obtain a detailed plot of I'T as a function of reflecting plate distance

(r), (r) would have had to be incremented every 0.05x. This
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computational expense would have been too costly, consequently
a more economical scheme was used. From sample calculations at
selected reflecting plate distances, it was noticed that each bounce-
wave reflection coefficient contribution (namely 1"(1), F(Z), F(a), and
..., etc.), when plotted versus the reflecting distance (r), exhibits
a magnitude variation very close to an exponential decay and a
phase variation very nearly linear. By calculating the reflection
coefficient at these widely spaced reflecting plate distances, the
exponential decays of the magnitudes of the various I' components
and their corresponding linear phase variations were determined
by curve fitting approximations. These curves describe the com-
plex bounce-wave reflection coefficient components (1"(1), I‘(z), e,
etc.) as continuous functions of (r). The phasor sum of these I
component curves with ['g then yields the continuous total reflection
coefficient curve with a minimum expenditure of computer time,
The individual bounce-wave reflection coefficient magnitudes
calculated by the computer program for discrete reflecting plate
distances are shown in Fig. 31 with the exponential curves used to
approximate them. The apparent differences between the calculated
points and the approximation curves for the third and fourth bounces
result from inaccuracies in the computational procedure. For

example, for the fourth-bounce fields, eight components must be
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Fig. 31. Bounce wave reflection coefficient magnitudes.

considered. Any error in the assumptions in the analysis or
computational inaccuracies are thus taken into account eight times
in the course of computation. The phase variation for the various
bounce components of I'T is 4nT radians per A in (r), the reflecting
sheet distance, where (n) is the order of the bounce.

Experimental verification was obtained through the sectoral
horn of Fig. 14 with the horn aperture mounted in a ground plane.
Calculated-versus-measured results for a 0.278\ wide guide are
shown in Figs. 32-35. Figure 32 shows two sets of measured

results versus the calculated total reflection coefficient magnitude

which includes the first four bounces. Figure 33 shows the calculated

results for I'T by separately including one, two and then three
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bounces. Bounce contributions to the total reflection coefficient
are seen to behave as harmonic components. Figure 34 compares
TT with four and five bounces included in the computation. From
Fig. 34, the effect on I'T by including the fifth-bounce is seen to
be quite small. The computed phase of the total reflection

coefficient, including the first four bounces, is presented in Fig. 35.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

The reflection coefficient of a parallel-plate waveguide
operating in the TEM mode and illuminating a perfectly reflecting
sheet has been analyzed as a function of guide aperture to reflector
distance through wedge diffraction techniques. For the half-plane
guide (zero wedge angle), the reflection coefficient was obtained
through integration over the guide cross section of the magnetic
field reflected back from the reflecting sheet onto the guide
aperture. Experimental verification was obtained for this case
using a narrow-angle sectoral horn. Good agreement was found
between calculated and measured results.

For guides with finite wedge angles less than 90°, the inter-
actions between the guide aperture and the reflecting sheet were
approximated by bouncing plane waves. The total fields resulting
from these plane waves were obtained through applications of the
Higher-Order Diffraction Concept.7 General agreement between
measured and calculated reflection coefficient magnitudes was
obtained. However, the verification is not conclusive because tne

self reflection coefficient of the chosen guide geometry was found to be

quite high. It should be noted that though symmetry in wedge angles
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was assumed in the analysis, asymmetry may be tolerated provided
the pr{mary assumption that the interactions between the guide and
the reflector are plane waves is not violated by this asymmetry in
wedge angles.

For ground-plane mounted guides (90° wedge angles), the
assumption that the interactions between the guide and the reflector
may be approximafed by bouncing plane waves was found to be
invalid because of the presence of reflection boundaries in the
directions of interest. Consequently, the exact nature of each
bounce wave was taken into account in a method of successively
bouncing cylindrical waves. An iterative computational procedure
was used to find the various reflection coefficient contributions
from each individual bounce. Again, good agreement between
measured and calculated results was obtained.

For each of the above cases, the normalized admittances may

be obtained from their corresponding reflection coefficients by

(78) Yr _1-Tr |

Y, 1+TIg

where Y, is the admittance of free space.
Since the ultimate purpose of this analysis is to gain insight
for antenna applications in reflectometer systems, a non-oscillatory

reflection coefficient magnitude versus reflector distance curve is
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desired. This analysis has showr that the oscillatory behavior of
most curves thus far obtained is due to the phasor addition properties
of the summation of the antenna's self reflection coefficient and the
various bounce waves' reflection coefficient contributions. The
self reflection coefficient presents little difficulty in practical
applications because it may be easily minimized through design
considerations. However, for the practical ground-plane mounted
antenna, the significance of multiple bounce waves between the
ground-plane and the reflecting sheet cannot be over-looked. The
presence of these bounce waves will always cause the reflection
coefficient magnitude versus reflecting sheet distance curve to be
oscillatory. Therefore, in order to use a ground-plane mounted
antenna in a reflectometer systemn., higher-order interactions
between the ground-plane and the reflecting sheet mmust be taken

into account.
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APPENDIX A

The diffraction function VB(r, ¢, n) for plane wave incidence

has been expressed by Pauli? as

P
1 51'.11-E e 4 2 |cos 3[
(79) VB(r, ¢,n) = — % 2
'\/;r CcCOSs I - COS2
n n
[~ o]
. _ia2
x eJkr cos P g e JT dr

[(1+cos (D)kr]%

+ [ higher order terms] .

The higher-order terms in Eq. (79) are identically equal to zero
for the half-plane case, i.e., n=2. For more general values of
n, the higher-order terms are negligible for largé values of kr.
The function may be further simplified for large values of

(1 + cos ¢) kr; large values of (1 + cos )kr imply that the point of
observation is removed from. both the diffracting wedge (r large)
and the shadow boundary (¢ = 180* ~—— 1 4+ cos ¢ = 0). The field,

under these conditions, may be expressed by
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. n
_‘](kr+4) lsinﬂ
(80) VB(I‘, P n) = & — i 2
NZmkr m $

+ [ higher-order terms] .

The diffracted field as expressed by Eq. (80) is that from which the
asym.ptotic diffraction coefficients of the Geom etrical Theory of
Diffraction® are obtained.

For cases in which the higher-order terms of Eq. (79) are
significant, an alternative formulation of the problen. based on a
Bessel function expansion given in Reference 12 may be used.

For example, the higher-order terms of the Fresnel integral
formulation become significant for values of the radial parameter

r less than one wavelength in the case of the 90® wedge. The Bessel
function formulation, which converges rapidly for radial parameters

in this region, is given by
m
n

. mo
¢y, 3 In. (k1) < cos —
n

()8

(81) V(r,o,n):_l_
n

n”;:O, 1

where J (kr) is the cylindrical Bessel function of order m/n and €.

n
is Neumann's number defined by

-~
-~}



1 m =20

2 m#0

Equation (81) represents the total incident or reflected tfield where

the total field is given by

(82) U(r,\P, n) = V(I‘:\P-‘l‘oyn)i\/(r,\}ti-qao, n) .

The diffracted field may be obtained by simply subtracting the

geometric optics field in Eq. (3) from the expression in Eq. (81).
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