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ABSTRACT 

An analytical model is developed for the survival times of organisms 

in heat steriliztion in which the probability of inactivation as a function of 

exposure time is log-normally distributed. Experimental data is examined 

relative to this model and it is concluded that the model is valid except during 

the initial period of heating when an additional interaction between the 

organisms and their surrounding medium appears to be present. At long 

heating times, the log-normal model appears more accurate for extrapolating 

to low survival probabilities than the usual logarithmic survivor curves and is 

generally more conservative. 
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1. INTRODUCTION 

I 

without any significant impact . This approach is revived here but, hopefully, 

Laboratory evaluations of microbial survival times under various 

destructive environments have been studied for well over half a century . 
Throughout this time period, including the present, experimental data have 

been in conflict with the most prevalent theory of microbial survival rates,  

i .e. that the viable population of micro-organisms exposed to a particular 

sterilizing environment decreases in number by one decade in equal times 

of exposure . This theory requires that a plot of the logarithm of survivors 

vs . exposure time be a straight line . Considering the experimental 

evidence against this assumption, it is remarkable that the logarithmic 

assumption should have endured as long as it has . It is even more per- 

plexing to find that even though the theoretical foundations for logarithmic 

survival of micro-organisms in heat sterilization have also been seriously 

questioned, e .g . references ( 1)* and (2), this approach has nevertheless 

become entrenched as the analytical basis for research as well as applica- 

tion of heat sterilization processes. 

1 



relationshjp is maintained it should be possible to interpret the f i t  (or lack of 

it) between experimental data and values predicted by the model in terms of 

the mathematical assumptions of the model and the associated physical 

parameters. 

As a preliminary to the analytical formulation of the problem, it may 

be useful to consider the principal variables in relation to the current logarith- 

mic model. In general, since the analysis and prediction of sterilization 

processes is a problem in statistics, we deal with prohabilities of an event 

either in the context of a frequency function o r  a cumulative distribution 

function . The frequency function represents the probability that the event 

will occur at a particular value of the random variable and the cumulative 

distribution function the probability that the event will occur during the interval 

up to some chosen value of the random variable. Thus, one event of interest 

is the inactivationofanyone organism with exposure time and q ~ )  will represent 

the probability per  unit time that inactivation will occur at  a particular exposure 

time T . Similarly, Pdt)  will denote the probability that inactivation will occur 

in the total time interval 0 < T ,< t . Since Pdt )  is the integral of q ~ )  with t the 

upper limit of integration, only one of these functions needs to be known. 

(For further detail, see reference ( 10) .) 

In the logarithmic model, the entire process is represented by a 

single parameter, the D-value , contained in the formulation of Pdt),  viz . (10) 

Pdt )  = 1 - lO’t/D 

Since Pdt )  is also given by the ratio of inactivated organisms to the 

original viable population ( lo), the D-value represents the time needed to 

reduce the initial population by one decade. 

The D-value in the logarithmic model is descriptive of the rate of 

inactivation in sterilization. In the model to be developed here there will also 

be such parameters but with two differences. First, these parameters a r e  

2 



. 

believed to be more closely associated with the physical characteristics of 

the organisms and/or their environment, e .g . a random distribution of 

resistances in a given environment (a "mortality" table). Second, there 

will be two parameters to define the rate of inactivation thereby making it 

possible to f i t  a wide variety of survivor-curve shapes with the same functional 

relationship . Specifically, and in contrast to the expression of Pgt)  shown 

above for the logarithmic model, the log-normal model will define Pdt)  

in terms of a normal distribution with a mean value wand variance c? , where 

CL and o2 relate to the physical characteristics of the process rather than the 

survival curve . As shown in the text, the statement that Pdt )  is log-normally 

distributed signifies that the probability of inactivation in the time interval t 

is given by a normal distribution with respect to the logarithm of exposure 

time. 

The principal purpose of the work reported here is not so much to 

prove the validity of the log-normal model for microbial survival but to 

examine the extent of its applicability. As will be shown below, this model 

is found to be useful . However, experimental evidence indicates that microbial 

survival processes in heat sterilization a re  sufficiently complex to require 

more sophisticated analytical techniques than that provided by the simple 

log-normal model alone . Nevertheless, the log-normal model is a useful 

starting point: it can provide a workable approximation for many experimental 

conditions and point the way for the more complex processes. 

The work reported herein has been carried out in connection with 

sterilization requirements of planetary spacecraft for which dry-heat has been 

selected as the most appropriate agent. Experimental data to be considered 

here will therefore be restricted to dry-heat . However, some moist-heat 
, 
1 I 

data published in the literature have also been examined in the course of this 

work and the basic analytical approach to be described was found to be applicable. I 

I Indeed, the effect of moisture on the physical process and the role it plays in the 

model is one of the more interesting questions which can be raised within the 

analytical framewmk d e a c r h d  klcw . I 
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2. ASSUMPTIONS 

The following assumptions underlie the analytical model for microbial 

survival-time to be developed herein: 

(1) A single species of organisms is considered . 
(2) The death of one organism is independent of the 

death of any other organism within the population. 

(3) Survival time under a constant sterilizing environ- 
ment is a function of (a) prior exposure time and 
(b) a random variable representing pertinent 
physical characteristics of the organisms and/or 
their environment . 

It will be noted that assumption (3) allows for a random distribution of 

resistances among organisms in a given species, i.e. resistance can be viewed 

as one of the physical characteristics under consideration. However, it need 

not be the only contributor to the random process. This, and the assumption 

that prior exposure time is a principal factor in determining survival, 

distinguish the present approach from the analytical basis of the logarithmic 

model. 
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3. ANALYTICAL DEVEIBPMENT 

The assumptions listed above can be used to derive a large variety 

of models for survival-times and further restrictions will be required to 

produce the log-normal basis . These will be noted as  the need arises . 
Consider a population of micro-organisms satisfying assumptions 

(1) and (2), i .e . they are all of the same species and the "death" of any one 

of them does not influence the process of rendering others non-viable . As 

shown in (10) , these two assumptions a r e  sufficient to establish a functional 

relationship between the fraction of survivors and the probability of survival 

up to time t . Specifically, 

N(t) Ps(t) = - 
NO 

where Ps(t) = 

No = 

N(t) = 

probability that an organism will survive exposure to time t 

initial n u r r . : ~ , ~  of viable organisms (at t = 0) 

number of viable organisms remaining a t  time t . 
Equation (1) is obtained by viewing the exposure time t as consisting 

of No trials in which survival of an organism is considered a success. The 

probability of such a success in i ~ i ~ y  one trial is Ps(t) and the frequency of 

successes in No trials is obtained from the binomial distribi.~tion . The 

expected number of successes is then given by NO 0 Ps(t), which leads to 

equation (1) provided it is understood that N(t) is obtained by statistical 

estimation from a number of experiments on No organisms in which exposure 

was maintained for the same time interval t o  (The alternative of graphically 

estimating N(t) , which is the conventional procedure for generating survival- 

time curves, is 

If P&) 

time interval t, 

discussed in Reference ( 10) 4 

denotes the probability that any one organism will die in the 

then clearly 

Pdt)  = 1 - Ps(t) 
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Ps(t) is a cumulative probability function and is related to the 

frequency function of survival times through the conventional definition of 

cumulative probabilities, viz  . 
t 

pd t )  = J ~ T N T  ( 3) 
0 

where 

will occur in the interval between T and T + d7 . 
T is the time of death. Thus f ( T ) ~ T  expresses the probability that death 

Survival-time curves are generally obtained in the laboratory by 

observing N(t) with 

exposure time t in the form of equation (l), yield the survival probability 

function Ps(t) . (The alternative experimental approach in which "end point" 

data is obtained by obsenring sterility of multiple samples is discussed in (10) 

and its relationship to equation (1) defined .) 

respect to No. These data, when plotted against 

In a curve-fitling approach to survival-time functions the procedure 

would be to use any one of a number of cumulative probability functions for 

Ps(t), i .e . the logarithmic gamma distribution, Weibull distribution etc . , and 

determine which gives the best f i t  for all the curve shapes obtained by experi- 

ment, allowing the parameters of the distribution to change with changing 

experimental conditions . This is a workable approach but its usefulness is 

limited when empirical distribution functions are its basis . We therefore 

restrict ourselves to distribution functions whose evolution can more closely 

be related to the physical process which they are intended to model . On this 

basis we have selected the log-normal distribution as a starting point for 

modeling microbial survival-time functions in heat sterilization. 

The log-normal model for Pdt) can be formulated in three steps. 

Refering to assumption (3), it is first necessary to define the variables which 

will enter the functional relationship between survival time and exposure time. 

These variables are intimately related to the physical characteristics of the 

ULG.LLALuu.*uu  inn nrncess r----- and a detailed definition would be desirable. However, 
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little is known about these physical characteristics to permit a meaningful 

functional formulation. It is therefore assumed that their total effect on 

survival time can be represented by a random variable, E., which can take 

on different values as a function of exposure time. No assumptions are made 

concerning the explicit form of the distribution function of this random 

variable except that it has some mean value p and a variance 2. A s  a 

minimum, this random variable can reflect the variable resistances of 

organisms of a given species to a particular sterilization environment. In 

addition, should other characteristics of the environment in an assumed 

model of the physical process also be random, they can be viewed as being 

a part of e and contributing to its mean value and variance . 
The second step in formulating the log-normal model consists of 

specifying the explicit functional relationship between survival time and 

prior exposure time. For this purpose we visualize a population of No 

initially viable organisms ranked in order of their death times . Thus, T~ 

denotes the time of death of the first organism and T~ defines the time 

of death of the j-th organism. We then define the time dependence as 

i .e e the incremental time T - T j j-1 
organism will die is proportional to the prior exposure time T , - ~ .  The 

parameter of proportionality is the random variable e described above. 

The particular value which it assumes in the time interval ( T j  - Tj-1) is e,. 

which must elapse before the j -th 

It should be noted that equation (4) is a hypotheses concerning the 

dependence of survival times upon prior exposure time and the justification 

for its choice is, for the present, the fact that it leads to a log-normal model 

for the probability of death as a function of exposure time . The derivation of 

the log-normal model, the third and final step in the analytical development, 
is sczt&cd- k- _AnnPnrlin A Tr------ - - -  
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Before proceeding with an evaluation of the validity of the above 

hypothesis, general features of the log-normal model will be described e 

It will be useful to distinguish between three groups of variables. 

The first consists of p and o and they will be referred to as  the independent 

variables o r  parameters. They are  of prime interest since they relate 

directly to the causes of heat inactivation. However, they are not directly 

observable in heat sterilization experiments and must be inferred from the 

observed parameters through the analytical model. The second group, 

therefore, a r e  the observed variables. They include: (1) the number of 

survivors as  a function of exposure time, N(t), and (2) the initial number 

of viable organisms, No, for which N(t) has been observed e The probability 

of an organism surviving to time t , Ps(t), and the complementary probability 

Pd(t) will be viewed as equivalent forms of the observed variables in 

accordance with equations ( 1) and (2). 

The third group of variables may be viewed as providing a transition 

between the independent variables p and o on the one hand and the observed 

variables N(t) and No on the other. Since this transition must be made 

through the analytical model, this group contains variables or  parameters 

of the model. In the case of the log-normal model (see Appendix A), it 

consists of the following: 

(I) 4 ~ )  - probability (or frequency) of death at a particular 
exposure time 7 

(2) pT - mean value of f (  T) 



2 
uT - variance of f (  T) (3) 

(4) TIT - coefficient of variation of f (  T) 

(Note that 7 for the log-normal model is independent of p .) 
T 

With f (7) defined as in ( 1) above the transition from the observed 

variables to the independent variables is achieved through equation (3) . 
The effect of p on f( T) for a constant cs is illustrated in Figure 1 

whereas Figure 2 shows the effect of 0 for a constant p .  The wide range 

of skewness obtainable through changes in p and 0 is evident from these 

illustrative graphs. 

Of greater interest than the shape of f ( T) is the shape of survivor 

curves which would result from the log-normal model. This is illustrated 

in Figures 3 and 4 for a range of values of 

plots have been made in semi-log form to permit comparison with experi- 

mentally obtained curves which a re  normally plotted in this manner. It is 

readily evident from Figure 3 that when the data spans only a few decades of 

reduction in Noy sections of the log-normal curves could be approximated by 

straight lines particularly for the less resistant cases i .e. IJ~ small . 
However the straight line f i t  on a semi-log plot becomes a poor approximation 

to the log-normal when extended over more than about four decades of 

reduction in the viable population. 

and two values of 0. These 

The sigmoid nature of the log-normal curves is also evident from 

Figures 3 and 4 ,  including the initial lag observed in experimental data. 

Qualitatively therefore the log-normal model would appear to be a good 

basis for interpreting experimental data. A more quantitative assessment 

is however needed as diticussd below . 
9 
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4 .  COMPARISON WITH EXPERIMENTAL DATA 

Experimental data on the heat inactivation of organisms was gathered 

from a variety of sources and evaluated with respect to the log-normal model 

described above 

N and No were read off the graphs o r  tables, whichever were available, 

along with the corresponding exposure times. For any one experiment, i .e. 

a particular organism 011 paper strips or  embedded in plastic and subjected 

to a fixed sterilization temperature, the data were arranged in the form 

N(t)/No . These data points were then plotted on log-normal paper to test 

for conformance to the model. For the present purposes, a graphical 

approach to testing log-normality is adequate. Thus, the degree to which 

the data points approximate a straight line on log-normal graph paper is a 

measure of the validity of the log-normal model for the heat inactivation 

process of the experiment. 

The basic procedure was as follows. First, the values of 

A large number of experiments were evaluated in the above manner, 

including moist-heat sterilization data. The data presented herein a re  

representative of experiments which f i t  the log-normal model a s  well as 

of experiments which do not. The criterion for inclusion in this report 

has been the adequacy of data points over a sufficiently wide range of N/No , 
i.e. 10 -6 <N/N, 1. 

Table I summarizes the data shown in Figures 5 through 14. In these 

figures a "log-normal plot" refers to a plot on log-normal graph paper and a 

"log-imrmal fit" shows the conventional semi-log plot of N/No as a function 

of exposure time but with the fitted curve obtained from the log-normal 

plot, i .e. the straight line drawn on the log-normal plot through the data 

points has been transferred to the semi-log plot. The latter has been done 

to indicate the degree to which a log-normal f i t  suits the variety of shapes 

encountered, including those cases where the experimenter has concluded 

14 
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that a straight line, i .e . a logarithmic model, is appropriate. Examples 

of this are shown in Figures 12 and 13, where the straight lines represent 

the experimenters choice, even though they do not start at  N/No = 1.  

Our major interest is in the log-normal plots of each of the four 

experiment categories shown in Table I i.e . Figures 5 ,  8 ,  11 and 14 

these plots each straight line represents a particular experimental condition 

and each line has a value of p, and CT. p, is obtained from the intersection of 

the straight line with the time axis, i .e . p is equal to In t when N/No = 0.5 . 
0 is obtained from the slope of the straight line and it will be noted that the 

family of lines in any one of the above figures have the same slope 

appeared to give a reasonably straight-line f i t  for each set of data points in 

the group of experiments and results in the same value of 0 for the group e 

There is however, some variation in the values of CT among the four groups 

(see Table I) 

In 

This 

Scrutiny of the log-normal plots leads to the conclusion that the log- 

nsnnal model is valid only beyond some initial time period of exposure. 

(The corresponding value of N/No below which the model holds a r e  indicated 

in Table I .) However, the nature of the deviations from log-normality are 

also worth noting since they a r e  the basis for future modificaticns of the model. 

These may be summarized a s  follows: 

(a) The deviations occur during the initial heating period and 

consistently show an accelerated inactivation rate relative to 

the subsequent log-normal phase. 

(b) The range of the accelerated inactivation phase appears to 

depend upon the medium surrounding the spores. Thus, for 

spores on paper strips and in air-atmospheric conditions only 

50-90% become inactivated during this initial phase, regard- 

less of the sterilization temperature. However, in a vacuum 

environment 99% become inactivated before the log-normal 

phase, and when embedded in lucite 99.9% of the initially viable 

population is inactivated during the accelerated phase. viz . the 
3 - C -  --:-..- A*-:-- +I.;- 4 - 4 t G n l  mn4nt-l onnaiatpntlir fal l  hplnw the uaua ~UILLLU UULILL~ UIIY UIIUUI p ~ ~ ~ ~ . .  -"-.-.--------, ____ _ _ _ _  
straight line . 
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In three of the four experiment groups discussed herein, the 

parameter which is changed between experiments is the sterilization 

temperature. Although the range of temperatures covered is relatively 

small, there is nevertheless an opportunity to explore the form of 

temperature dependence in the log-normal model. 

Since within an experiment group D was found to be essentially 

constant, only p appears to be a function of sterilization temperature . (The 

dependence of the transition parameters, e .go pT or uT, upon temperature 

was not considered since they are  not directly related to the physical process 

of heat inactivation .) The possibilities for At) considered included a linear 

relationship between either p o r  1/p and ( 1) T (2) T 

The last case-represents an Arrhenius form and T is, in all cases, the 

sterilization temperature in degrees Kelvin . A plot of p andl/p vs . the 

above four forms of T was made using the data from Figures 8 and 14 e 

It was thus found that only powers of T yield a linear relationship. Figure 15 

shows the plots for 

1/2 (3) T3l2 and (4) e k/T . 

and 

where K1 and K 2  are the slopes of the respective curves and pR is some 

reference value of p on the curve. 

Equation (9) suggests relatidnships in the kinetic theory of gases, 

whereas equation (10) contains T in the form encountered in self-diffusion. 

Needless to say, however, equations (9) and ( 10) cannot both be valid and 

the fact that a linear relationship is observed her T , T1'2 and T3/2 merely reflects 

the inadequacy of the data with respect to the range of temperatures covered. 
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5. DISCUSSION 

As noted in the introduction, a major objective of this study is the 

evolution of a model which will represent the physical inactivation of 

organisms during heat sterilization 

attained in the study reported herein, the results are believed to be of 

immediate practical utility This can be demonstrated by assuming that the 

log-normal model is used to set sterilization requirements based on experi- 

mental data and the resulting requirements compared with requirements 

based on a logarithmic (D-value) interpretation of the same data 

Although this objective is not fully 

For the purposes of this discussion, assume a constant temperature 

requirement and fixed environmental conditions, e .g . spores encapsulated in 

lucite and sterilized in air-atmospheric conditions at a constant temperature . 
The requirement itself is viewed as  a specification on the time of exposure to 

heat such that the initial viable population will be reduced by 10 decades, i .e . 
to N/No = 10-l'. It is further assumed that the experimental data is obtained 

for only five or six decades of reduction, i .e. to N/No = 10 

comparison will therefore consist of extrapolating the experimental data to 

N/NO = 10 

model. 

-5 . The 

- 10 based upon (1) the logarithmic model and (2) the log-normal 

First, consideration is given to data which might appear to faithfully 

follow a logarithmic model, i .e. it can be f i t ted with a straight line on a 

semi-log plot and the line would start at N/No = 1 . This would, for example, 

be true for the curves on Figure 4 when p = 1, p = 2 and, to a lesser degree, 

when p = 3 .  The straight lines which might thus be obtained based on data 

for 1 < N/No < 10 

continued down to N/No = 10"'. The solid curves are similarly interpreted 

as the log-normal fits to the same data and their extrapolation to 

-5 are shown a s  dashed lines, and these lines a re  

.l 1.7 - 10. 
l Y / l Y o  = iG . 
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Table 11, below, compares the required sterilization times based on 

the above two interpretations of the data. 

TABLE I1 

Sterilization Time - Minutes 

t 2  
p - Minutes D -Value, Minutes Logarithmic Log-Normal t d t 2  

12 

33 

90 

66 120 1.8 

19 0 3 30 1.7 

496 900 1.8 

The log-normal model would thus require about twice a s  long a 

sterilization time compared to the logarithmic model and, as previously 

noted, this applies to cases where there might be the least hesitation in 

using the logarithmic model. 

For the most resistant organisms it is difficult, if not impossible, to 

attempt a meaningful straight line fit starting at N/No = 1 

times done, e .g . Figure 12, 13 and References (13), (14), is to f i t  a straight 

line without requiring that it start at N/No = I . This is, of necessity, a 

rather arbitrary procedure since the D-value thus obtained depends entirely 

on the range of data to which it is fitted and the choice of the experimenter 

as to which portion of the data is to dominate the f i t .  It is therefore not 

surprising to find a great divergence in D-values reported for essentially 

identical experimental conditions. 

What is some- 

For reasons similar to the above it would not be very meaningful to 

make numerical comparisons between the logarithmic and log-normal models 

when highly sigmoid curves a re  encountered in a semi-logplot of experi- 

mental data . For, as shown herein, the log-normal model will produce a 

30 



consistently good f i t  to all o r  most of these data points, whereas the 

choice of a D-value is largely arbitrary. 

It might appear that the deviation from log-normality during initial 

heating, as noted herein, should also enter the above comparison. This 

would be true only if sterilization requirements were considered in terms 

of very small reductions in N/No, i .e to values of N/N, > 

reductions are seldom the objective of sterilization processes. Since 

the parameters of the log-normal distribution a re  obtained from data 

beyond the initial die-off period, the extrapolations to small values of 

N/No based on these parameters a re  therefore unaffected. This is true 

for the constant temperature case considered above. When lethality is 

integqated over - temperature transients , e .g heat-up and cool-down periods, 

the initial die-off phase would enter the estimate of sterility versus 

exposure time. However, in this case, use of the log-normal model will 

produce a conservative sterility estimate because the die-off predicted by 

it, ignoring the die-off phase, will be smaller than the actual die-off during 

the initial phase. 

Such 

The data presented herein suggest a number of directions for further 

study which might shed some light on the physical process of heat steriliza- 

tion Some of these are briefly discussed below . 
The constancy of 0 in a given set of experimental conditions, i .e when 

only one parameter is varied, leads to speculation concerning the degree to 

which the values of p, and Dare determined by characteristics of the environ- 

ment surrounding the organisms a s  opposed to the resistance characteristics 

of the organisms. For purposes of illustration, assume that the inactivation 

mechanism is due to the thermal motion of molecules surrounding the 

organisms The distribution of molecular velocities at a given temperature 

are well known, a s  is the temperature dependence of this distribution function . 
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One might therefore seek a distribution function for the resistance of 

micro-organisms (and a normal distribution would certainly be a good 

candidate) such that the compound distribution will result in a constant 

CJ with temperature but p will vary linearly with p, where n is to be 

evaluated on the basis of more extensive experimental data. 

The above will require use of experimentally obtained values of p 

and CJ based upon the log-normal model. However, it was shown that the 

log-normal model does not hold over the initial phase of heating which, 

although of short time duration, can cause the inactivation of a large part 

of the viable population. Furthermore, this initial phase appears to be 

characterized -by a different process in that it is particularly dependent 

upon the nature of the medium surrounding the organisms. The use of 

experimentally obtained values of p and 0 ,  ignoring the initial phase, is 

therefore not a good basis from which to proceed. 

A more fruitful approach would be to extend the model so as  to 

account for the initial, accelerated die-off phase . As noted in the analytical 

development of the log-normal model, the hypothesis that the incremental 

change in death-time is proportional to pr ior  exposure time, i .e. equation (4), 

has been chosen only because it was b o r n  to lead to a simple log-normal 

model. This hypothesis should therefore be replaced by others which will 

give a more complex formulation but will reduce to the log-normal model for 

long exposure times and/or small values of N/No . This is best done in 

conjunction with more detailed experimental data covering the entire range 

of interest. 
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6. CONC UrSIONS 

Althougfi the log-normal model does not fully describe the process 

of heat sterilization where a significant accelerated phase is present during 

initial heat application, it has considerable value for the following reasons: 

(a) The major concern in sterilization is the inactivation of the 

entire viable population and the terminal phase of the process , encompassing 

the last few remaining organisms, is of particular interest . The log- 

normal model appears to be particularly valid for this latter phase and is 

therefore a useful basis for sterility estimation. 

(b) In many instances the initial phase is not significant and the 

log-normal model could be expected to represent the entire process with 

more accuracy and greater repeatability than is currently obtained on the 

basis of the logarithmic model (D-value approach) Ln general, use of the 

log-normal model in sterility prediction would represent a conservative 

approach since neglecting the initial phase (as was done here in obtaining 

the values of pand 0 )  will lead to conservative process requirements . 
(c) The log-normal model provides a meaningful reference with 

respect to which the validity of basic assumptions may be judged. It thus 

offers guidelines for extensions of the model which , ultimately , may lead 

to more generally applicable analytical formulations and a better under- 

standing of the physical processes causing microbial heat inactivation. 
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APPENDIX A 

DERIVATION OF UG-NORMAL MODEL FOR MICROBIAL 

SURVIVAL IN HEAT STERILIZATION 

The derivation described below follows the general patterns 

described in reference (15) ,, To develop the log-normal basis for heat 

sterilization it will be convenient to visualize a population of No organisms 

ranked in chronological order of their death times. Thus, when subjected 

to a constant heat environment, we can define the following discrete 

death- times : 

T~ - time of death of first organism 

72 - time of death of second organism 

e . . 
~ j - 1  - time of death of (j-1) organism 

T j  - time of death of j-th organism 

. . . 

. . . 
Tk - time of death of k-th organism 

. . . 

. . . 
T N ~  - time of death of last organism 

As discussed in the body of the report, the assumption leading to a 

log-normal distribution is that the incremental time between successive 

deaths is proportional to the prior exposure time, viz . 



where (Cj) is a set of independent, distributed random variables. Equation 

(A-1) can be written as 

- Tj - ‘Tj-1 
- ‘j-1 

and the two sides summed between j=2 and j=k, i.e. 

j =k j=k 

j=2 Tj-1 j =2 

T. - 7 
‘j  .j-1 = c Ej 

(A-2) 

(A-3) 

It will be noted that the j= l  term has been excluded from the 

summation since its use would give T~ = 0 (see Equation A-1). 71 will 

however be accounted for in the following development . 
The left-hand side of A-3 can be approximated by an integral if 

No, and k ,  are sufficiently large. This is generally the case and we can use 

(A-4) 

We could dispose of T the time of death of the first organism, in one 1’ 
of two ways. Thus, we might simply say tt.lat because we generally look at 

death times much longer than T ~ ,  In Tk >>In T~ and In T~ could be neglected. 

An alternative approach is to incorporate In T~ into the summation on the 
right-hand side of A-3, i.e. let . 

(A-5) - 
T1 - E 1  

Thus, 

E2y Cg..... ‘k 

is also viewed as a random variable, independent of 

From A-3, A-4 and A-5 we have 

j =k 

h q C =  G ej 
i =I 

(A-6) 

A-2 



Although we do not know the distribution of (e.),  we can associa e 
J 

with it a mean p and cr variance. Under the general regularity conditions 

of the central limit theorem, and with k sufficiently large, the summation 

of G ~ ,  i .e. the right-hand side of A-6 , is normally distributed with mean p 

and variance o. Hence In Tk is normally distributed and Tk is log-normally 

distributed. 

The subscript k derives from the ranking according to death-times 

which was used to facilitate the analytical development. Needless to say, 

such ranking is not possible in practice nor is it needed in the application 

of the analytical results. For when we consider the death time of the k-th 

organism, &is is equivalent to saying that k out of No initially viable 

organisms have died Thus k corresponds to No-N(t), where N(t) is the 

number of survivors , and k can therefore be supressed. The statement 

that h 7k is normally distributed can therefore be defined as (see Equation 3 

in body of report): 
t 

(A-7) 

It will be noted that although the lower limit of the last integral is 

-03 for  the normal distribution, the fact that the variable in the integrand is 

h T serves to confine the limits of integration to positive values of T only, 

since for In T = -OD 7 = 0 and the lower limit becomes t = 0 .  

Since T is the running time of heat application, it is useful to define 

the frequency function 47). From equation A-7 

A-3 



Equation A-8 gives the frequency function of deaths, i .e. the 

fraction of the original viable population which die at time T . This frequency 

function differs from the bell-shape of the normal frequency function not 

only because the logarithm of time is the variable in the exponent, but also 

becausc of the additional factor 1 / ~ .  This is therefore a highly skew 

frequency curve with frequencies of death becoming relatively smaller with 

time compared to the normal distribution. And as  previously noted, the 

frequency curve is restricted to positive values of time. 

A detailed discussion of the log-normal distribution will be found 

in Reference (15) ,, For our purposes we note the following parameters of 

f (  7): 

Although both pT and oT appear to be dimensionless quantities, this 

is not the case and both have the same units of time as  used for T and t. 

That this must be so can be demonstrated by noting that T, p and CT in the 

exponent of equation A-7 must all’ be dimensionless quantities. To achieve 

this we should have written each of them as  T/;, p/?, C T / ~  where 7 is unity 

in magnitude andof the same dimension as T, i .e seconds , minutes o r  

hours Carrying 7 through the analytical development would then serve to 

car ry  the units of T into pT( as well as p and a). It will also make f ( T) , 
equation A-8, dimensionless, as  required. 
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