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Abstract

The mode-acceleration or Williams method is used to obtain the axisymme-
tric response, due to an arbitrary time-dependent loading, of a complete
spherical shell, and of hemispherical shells with roller-hinged, roller-clamped
and completely fixed edge. Numerical examplcs, where the shells are subjected
to simple time-dependent loads, are presented. The same method is used in the
study of a cylindrical shell with clamped-edge boundary conditions. A numerical
example of a cylindrical shell subjected to a linearly decaying load, uniformly
distributed over the shell, is included. The results here compare favorably
with solutions obtained by means of a modal analysis in a previous investiga-
tion of the problem by the authors.
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General Discussion

The general equations of motion of a shell, when damping is neglected, may
be written as a system of three linear, coupled differential equations of the '

form
azua
Lo E b

- where [Lygl is a matrix differential operator, and where {uy} and {p,} are the
- displacement and load column vectors respectively. Naturally, suitable boundary
- and initial conditions must be included.

Assume the displacement vector, according to Williams' method, in the form

~ .

'{u (61.52.1:)} { (El,Ez,t)} ¢1(t) “46“_-).(51’52} , (2)

~v;)where {“ } and {u j} are solutions of

M

and

[Lae‘]{uej} + thzj {uaj} =0 (4)

respectively. Here, the ua represent the quasi-static response, and the uaa
are the normal modes of free vibration with corresponding eigenfrequencies
The necessary coupling equations for the evaluation of the ¢ (t) are obtaine
. by substituting (2) into equation (1) and simplifying by mea Es of equations (3)
. and (4). The resultant coupled equation is

§(¢j + sz¢j){§aj}'; -{?a} . - &s)’

Multiplication of both sides of equation (5) by the row vector lu i_]and use of :

the orthogonality condition [1]; i.e., | : L
f 2 v .u .dS = f 2 n ' (6)
Somy o1 d sl %1

All Greek indices range from 1.to 3, and the Latin indices from 1 to = unless
specified otherwise.




resultefin‘the following expression for the ¢

3 ,
. 2 f Z u . u ds
_3 + 0.6, =~ S a=l af o (7)
17 %% 3,
[ 1w, ds
S a=1 M -

where S denotes integration over the middle surface of the shell.

When the quasi-static solution can be obtained exactly, this will speed up
the convergence of the total solution. In general, however, the quasi-static
solution simply represents a quasi-equilibrium position about which the dynamic
response of the shell is distributed. When an exact bending theory solution
cannot be obtained for the quasi-static part, it is often feasible to use a
membrane solution modified by corrections due to bending effects at the boundary.

More detailed discussion of the method and its application to shell problems
may be found in [2] and [3]. The geometry of cylindrical and spherical shells
and the coordinate systems used for investigation are shown in Fig. (1).

e

FIG. 1b. GEOMETIRY OF CYLINDER.
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The Axisvmmetrically Loaded Cylindrical Shell

Under consideration is a cylindrical shell with an axisymmetric dynamic

loading, normal to the surface of the shell. The shell is of finite length L
with mean radius R and has clamped ends. For this problem the system of

equations
o a2 '.
Dl e g

in non-dimensional form, reduces to the single equation for the radial dis-
placement w [4],

-a—li‘f-+a w+a E’-?-W-=':=\Q : (8)
ag® 1 202 Y
where
u ‘ ' 4 4 3 P
Sy Xop B = BbL | < QhL | e EL, 5 o X
A A e T L R L Tl T (9)

To simplify calculations. the loading is taken to be of the form

pO .
QE, T = - (A1), (10)

The boundary and initial conditions are

w(0,1) = w(1,m) = WLD WD g0y - HED o a

For the solution of Eq. (8), w is assumed in the form

wg, ™) = WG, + T o (w8 a2
' i

As discussed previously'ﬁ is the quasi-static part of the solution and sat-
isfies the differential equation

4w - a3po -
= taws=--% (1-1) : (13)

along with the boundary conditions (11). Hence,

2 ) .
R%p A
F(Em) = =2 Aen{aee) + o[ BGE) - v(O)] + 6 0G8) - 1, (1)




where

<?hL:>g/4 «(kE) = cosh kE cos kE; B(KLE) = cosh kE sin kE;

v(kE) = sinh kE cos kE; S(kg) = s1nh k€ sin-k§,
with

PRI ICE) G-p? -260-0)

?
L7 g2 o2 52 277 g2 L2 2

the ‘quantities @, B, y and & all being evaluated at § =

The W, .are the normal modes of free vibration and as such satisfy

d4
Ti_ b o (15)
g =AW, =0 )
.d§4 i"i | . _
subject tp.;“?.g’jfr ' .
- dwi(O) dwi(l)
, w(0) =wy (1) =—gg— ==~ =0,
with =~ |
¢ 4 2 .
Ai = aZQi -a;. . | (16)
These eigenfunctions are
' N(li)
wy@® = o, [¥0.0) - gty uo,n)], | an

where .

M(Kig) = l’(sinh A § - sin A §), N(k.%) = % (qosh,k.g - cos A §).

The functions w, are orthogonal on the basic interval (o, 1) .and they may be
normalized by cﬁoosing

NQA)D -1/ 2 .
{fjfu(x © - 5 Lwogn] g (18)
hence;"
AR 1
R AT Y




where Gij is the Kronecker delta.
To evaluate the functions ¢., Eq. (12) is substituted in Eq. (8), and
after simplification by means of %13) and (15) the result is

2-

o) _
_—, (19)
372 .

o In view of the orthogonality of the w; and the fact that

2=
oT
for this problem, the ¢; are given by
_@1(7) = A, cos Q7 + B, 'sin QT ' .(20)

with

- 5]:.- J‘l ow(E,0) wi(g) dg

1 -
A = -fo w(§,0) w,(8) a8, B I %

due to the initial conditions (11). The evaluation of these integrals is
facilitated greatly if Eqs. (13) and (15) are used and the identity

- 4

13w -tes n &, =t g = 1t
f —=w, d§ = [w W, W W, +W W, W W ] + f
0 B§4 i v | i i i .§

which is obtained by the repeated application of integration by parts. The
primes denote differentiatlon with respect to §. The result of the evalua-’
tion is.

due to the fact that, in the present case

2u(.0) - - 5,00

The-expreséion'K(ki)'is given by

N(xi)

K(x ) = et {M(x ) - o) [l cosh A + %'cos A, - 1]} (21)

With theée expressions in mind w may finally be written as




] p,a° RO W (8) . |
w(§,m) = WS, + Gy ? 5—[cos ;T - a; sin Q7] (22)

2y

where w (E,T) is given by (14).

To provide a numerical comparison with the results obtained in [47], the
response was calculated at £ = %1 with

L = 10.0 in; R‘ 5.0 in; p = 0.3; E = 30 x’106 psi;

h

0.05 in; d

20 msec; p = 0,0007298 1b - secz/in4.

For convenience p = 1 psi. The results are shown in Fig. 2. The value of
the quasi-static solution at T = 0, namely, 1.67 x 107°, corresponds exactly
to the results obtained by using the membrane theory. It should be noted
that the extremd of the response are somewhat greater here than obtained in

(4]. In [4], terms like cosh x - cos x, resulted in computorial round-off
error for small values of x.

The Axisvmmetriczally Loaded Spherical Shells

" The equations of motion for the axisymmetric response of spherical
saells, used by the authors in a previous study [4], are:

.

L L 2 2 2
® . . ) - a“(1- g
\%(¢) =»-q;(w) + (v = (L-pdy + A atg - Ehud) fﬁ qu@’ 3(23)
| , - 2 2, 2 ‘
AN e e 1+ _2Q1+) AQw  ca(l-p)
LL WD = B L00) (-p)Lw) + TR - TGRS w - G e Ty, (20
. where
o =L (h 2 A= 32 1- 2y v = oY () = (1-x2 @Eﬁ;l ‘ZX‘QL;l and x = cos
12 ’ P E ’ o 2 3% P

" The meaning of the geometric symbols may be inferred from Fig. 1. Equations
(23) end (24) were derived in accordance with the elastic bending theory of
" thin shells., The related elasticity equations are given in [4]. As implied

in the preliminary discussion the solutions are assumed in the form

$0e,t) = §lxot) + TR(E) 4500,
| ! f | (25)
wix,t) = w(x,t) + & R/ (t) wj(x).

. Vj .J

The functions ﬁland w represent the quasi static part of the solution.
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For the complete spherical and the hemi-spherical shell with roller-
clamped or roller-hinged edge, the admissible solutions are given in terms
of Legendre polynomials as

y = i c ()P (x), w= i D_(£) B_(x) (26)

where n= 1, 3, 5 ... corresponds to the roller-hinged edge and n = 0, 2, 4 ees
corresponds to the roller-clamped edge. The functions ¥, and w, are the

noral modes of free vibration of the shell. Details ofjtheir donstruction
may be found in {4]. The natural frequency Q, of the jth mode is obtained

from the expression J

.wij |
2 _{ } L 2 5
Qj = 2 = [A-lj T (A7, - 44,5)°] | (27)
23

the choice of sign corresponding to the desired frequency on the left side
o che equatiom. A’j and AZj are glvea by
RS

Ay = lg(n Pl + [GH) + (3], (28)
5,5 = el3GH) - Q@G HFE] - P77 - 20" () ]
+ QS GH) - 2] (29)

The subscripts 1 and 2 correspond ressactively to the upper and lower branch
frequencies of a complete spherical shell. When j is an even integer, equa-
tion (27) yields the eigenfrequencies of a hemispherical shell with a roller-
clamped edge, when j is odd, the frequencies correspond to a hemispherical
shell with roller-hinged edge. In each case the respective eigenfunctions
are the Legendre polynomials Pj(x)°

. When the beunding theory of shells is used in obtaining the quasi-static
part of the solution, no advantage is realized in applying the present me thod
over the usual mode displacement method, unless the loading can be expressed
in the form

p(x,t) = B_(x) T(t). - (30)

Iowever, in many cases the membrane theory of shells may be used to obtain ¥

and w for an o oitrary loading. For a completely fixed hemispherical shell,
.assuming a separable loading function

Pd(xst) = qa(X) T(t), (31)

‘the use of the membrane theory,.including bending effects, results in quasi=-
static solutioms of the form '

[+ 4]




]
«

- _ o 1+ ? 1
v=§%=-ﬁ-#tr(t) sincp‘fo{sinn[qw-

U
22 IO (qw 'COS §

sin™T)
o - (32)
+ q sin §) sin §d§] g & an
oo sin '
W=V coto+ Ehz——m i_':f;' - (1+1)G cot cp] T(t) | (33)
 where
, N2 m2E tE -9
w5l -0, 5+ T P e
| A% NV B, . oo B . A5y (2)2 .
4 tan . <2@40'3Q0>] ; _'Mo = 21;2 fo 3 Qo =7 fo ;s § = o(l-p,b) = 3
: I.T.. ’
2 2 |
£, = EE'[qw‘E - (1) IO (qwcos E + . sin €) sin gdg] . (34);
> ,

The eigenfrequencies Q., as in (4], are given by the roots of the following
expression d :

2 (2 1)AQ? - m(wl) + (1-p) TR0 -
| - =0, 35
A T »

<aa corresponding hormal modes by
| y (21)00F - nGL) + (1) (02 ()
w =2

3 20122 1ra2 w2
MLag-or, 105wy, ]

(36)
o

The expression for vj Zs similar.

She’ls Subjected to Sxvonentially Decaving Loading Function

The solution for a complete spherical shell, a hemispherical shell with
roller-clamped edge or a hemispherical shell with roller-hinged edge, sub-
fected to the same type of loading as given by Eq. (30), may be derived by
substituting Eq. (26) into equations of the form of Eq. (3), in conjunction

with Eqs. (23) end (24). The result of this substitution 1s




2 2 1 %)
Eh (20+1) IO f qun(}.)o\pdx -on(n+1)-(1+u)

~ 1 _

Clt)=3 (37)
N 2,024 1 R
| - a(d-p) 2 2 ..

== - (ntl) Io q P_(x)dx n (L) - (l-pin(ntl) . | &
: + 2(3+Hy) -
o
. 2,2 1 o(x)
. & {1=-u
- n(eEL )+ (1p) - 202 Grun)[ [ g R (e)dgd
00
. ' 1 )
‘ - 2,2 1
a ('14'1) Qlk)g(n"‘l) _& Q-Ehu P) (2n+l)f qun(X)dX
0
where |
~2
_M 2 2
A= “1n%n
With \}Jn =w a =P (x), the equation dor the coupling function R, becomes

<——+ leD " +w2J)Rj < D, . | (39)

The £inal solutions for a snell, which Is considered to be at rest initially,
.end has.a loading |

- then become

\';(X,t) =A[an(4rrl-1)+(1+;.x.)] {Bl <cos Wy & -_wi sin~w1nt).
n

&,

(40)
b . _=bt] . : '
.-&-AB2 (cos» wZnt -\wzn sin ._w2nt> + e Pn(x) :
¢ (x,e) = adc ¢ -2 ; st - st a, o)
¥ Get) = ey (‘”"’St‘”zn'— "W, sin et T e, <°'°° “an® 7, IR 9%,
7 1n o 2n
‘ (41)
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A = az(l-u%),. Win Yon ~ b . 1 .
: 2 2 2 2 2 .2 2 °
EhA W), Yoq (b +w1n)(b +w2n,
L 2y 52,2
B, = 2n 3 = in |,
172 2 2° 2 2 °
1n “2n Qo ¥1n
?
A 2
c; = B Dwl_ - [n(e) - -] + N
¢. = B.[wZ - [n+l) - (1-u)] + b2}
2 2% 2n ‘ ~ *

To provide a quantitative evaluation, numerical examples for the response of
a hemispherical shell at the apex, with a roller-clamped edge, and with

-

1,-b = 100 and 0.25, & = 300 In,

90

E

30 x 106 psi, p = 0.33, and p = 0.7298 x 10-3 lb-secz/in4,

are presented in Figures (3), (4), and (5).

Conclusion

1. When an exact solution can be obtained for the quasi-static part, the
Wiliiams method has a definite advean:age over the usual modal analysis, in
that the quasi-static part provides an immediate average response, and fur-

thermore the spread in the individual modes is weduced.

2. When the quasi-static part of the solution caunot be obtained exactly
by using bending theory, it suffices in many cases to use the membrane solu-
tion, including bending corrections at the boundaries.

L) -
2
. In the nume

riczl evaluation of tha response of a cylindriccl shell, as
obtained by means of the modal analysis [4], tevms of the form.cosh x -

cos X, and sinh x - sin x, resulted In smaller values of the respoase, tham
those obtained by means of the Williams mathod, since, for small x, these
terms are close to zero. A large par:t of this error is eliminated by ob-
taining the quasi-static solution in its exact Iform.
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