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PREFACE 

This  is  the f i r s t  technical repor t  p repared  under NASA Grant  

NGR 44-012-048. 

logical a spec t s  of the problem f o r  fur ther  theoret ical  and experimental  

s tudies  on the technique for  detection of CAT. 

It is intended to s e rve  as  a background in the meteoro-  

The second repor t  which will follow in a few weeks will be entitled 

"Remote Detection of CAT" by D r .  B. M. Fannin. This  second repor t  

will  examine the existing theor ies  on r ada r  r e t u r n  f r o m  dis turbed 

re f rac t ive  index regions.  

A th i rd  repor t  which is i n  the p rocess  of prepara t ion  will be cQn- 

cerned  with equipment for  direct  measurement  of re f rac t ive  index 

differences and the examination of the init ial  data taken on a 270 foot 

tower.  The r e su l t s  of these measurements  should shed considerable 

light on the nature of refract ive index anomalies  associated with r e f r ac t ive  

index var ia t ion of the atmosphere.  

A fourth aspect  of the r e s e a r c h  is concerned with the use of r ada r  

fo r  measuring the r e t u r n  f r o m  the refract ive index var ia t ion in  the 

a tmosphere .  

P r e l i m i n a r y  proposa ls  have been made to the Electronics  Resea rch  Center  

f o r  unique t e s t s  which would measu re  scat ter ing f r o m  rada r  beams  and 

the assoc ia ted  re f rac t ive  index anomalies .  

can  be continued in a n  extension of the gran t  per iod.  

Analysis of experimental  p rog rams  is  cur ren t ly  under way. 

It is hoped that th i s  p r o g r a m  

A. W. Straiton 
Pr inc ipa l  Investigator 

ii 



. 
CONCLUSIONS 

. 

2, c l ea r - a i r  turbulence patches ave rage  t-mm in  'I $t5l?? 

f r o m  500 to 3000 feet i n  depth and one-half have horizontal  dimensions 

z - 

less than 20  mi l e s .  

C lea r -a i r  turhiilence occurs  preferent ia l ly  on the boundaries  of 

shallow, thermal ly-s tab le  baroclinic zones in  the vicinity of the j e t  

s t r e a m .  

is shown in  Figr 2.  

The ave rage  percentage frequency in  the j e t  s t r e a m  vicinity 

A schematic  presentat ion of the var ia t ion with flow 

curva ture  is given in*g;.4. These indicate a preference  fo r  occur rence  

on the cyclone side of the je t  core  and topographic effects  may enhance 

these  frequencie  s. 

The re f rac t ive  index spec t rum for  s ca l e s  i n  the iner t ia l  subrange 

in  the p re sence  of c l ea r - a i r  turbulence can  be expres sed  in  t e r m s  of the 

mechanical  energy.  FOP stable stratif ication, the dependence suggested 

by Ta ta r sk i  [61] may be used to provide consistent es t imates .  

The re f rac t ive  index spec t r a l  e s t ima tes  for  d r y  air fluctuations 

made  h e r e  a r e  less than those found b y  other  invest igators  .tfor example, 

T a t a r s k i  E-611, Atlas  et al. [ 2 ]  ) by m o r e  than 10 db. Since the sca t te r ing  - -  

at any angle is d i rec t ly  proportional to  the spec t r a l  amplitude, the r a d a r  

r e t u r n  will be correspondingly l e s s  than previous e s t ima tes .  

iii 
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ESTIMATING REFRACTIVE INDEX SPECTRA I N  REGIONS 

O F  CLEAR-AIR TURBULENCE 

J. J. Stephens 

1 E. R. Rei te r  

I .  INTRODUCTION 

C l e a r - a i r  turbulence (CAT) may be defined as bumpiness  in  flight 

through c l ea r  air, i. e . ,  away f r o m  clouds and a t  heights exceeding 

15, 000 feet MSL. The turbulent mechanical  energy assoc ia ted  with CAT 

mus t  be of sufficient magnitude a t  the proper  wavelengths to affect a n  

a i r c r a f t  flying in  the region. Low-level turbulence induced mechanically 

by surface roughness  is  excluded f r o m  consideration, as  is turbulence 

encountered in  deep convective c u r r e n t s  assoc ia ted  with c u m u l u s  clouds.  

The problem understudy he re  is the a s s e s s m e n t  of the spec t rum 

of r e f r ac t ive  index fluctuations to be expected in  reg ions  of modera te  to 

s e v e r e  CAT. Scattering of e lectromagnet ic  waves by turbulent inhomo- 

genei t ies  in  r e f r ac t ive  index will be t r ea t ed  i n a  l a t e r  r epor t  b y  B. M. Fannin.  

Taken  together ,  these constitute a n  a l te rna te  solution to  the approach by 

Atlas ,  Hardy and Naito [ Z ] .  

P r o f e s s o r  and Acting Chairman, Department of Atmospheric  Science, 
Colorado State University, F o r t  Collins, Colorado. 

1 

1 
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11. LOCATIONS AND DIMENSIONS O F  CAT 

J 

Clea r -a i r  turbulence i s  found i n  the upper t roposphere  and s t ra to-  

d 

Y 

sphere,  principally in  shallow l aye r s  in the je t  s t r e a m  vicinity, i n  waves 

leeward  of mountain ranges,  and to a l e s s e r  extent in  associat ion with 

upper t roughs and lows, 

l a y e r s  of near ly  adiabat ic  stratif ication, modcra te  to  severe  C A T  

Although light turbulence may be expected in  

a p p e a r s  to occur  preferen t ia l ly  on the boundaries  of thermal ly  stable,  

barocl inic  zones.  

Various descr ipt ive t e r m s  have been used to  cha rac t e r i ze  the 

intensity of CAT. C r i t e r i a  developed b y  the NACA Subcommittee on 

Meteorological P r o b l e m s  a r e  shown in Table 1 along with objective 

c r i t e r i a  for  use with the VGH meter  (Colson [15], Endlich [ZO]). The 
2 

der ived  ver t ical ,  sharp-edge equivalent gust  depends upon the a i r c r a f t  

response  cha rac t e r i s t i c s ,  as  well as  the a tmospher ic  turbulent energy  

spec t rum (see ,  fo r  example,  Reiter [46]$. This  led to a modified VGH 

ins t rument  m e a  s u r  ing horizontal  g ust s (Endlich [ 2 0 3 ). 

The horizontal  extent of c l ea r - a i r  turbulence patches encountered 

i n  P ro jec t  J e t  S t r e a m  flights is  shown in Fig.  1, a f te r  Cunningham [17]. 

More  than 50% of the turbulent patches were  l e s s  than 20 m i l e s  in extent. 

Near ly  one-third w e r e  l e s s  than 10 mi les .  Cunningham considered that 

2 
This  ins t rument  r e c o r d s  velocity (air speed),  gus ts  (accelerat ion) ,  
and height. 
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Derived Gust Velocity Airspeed  

feet  p e r  second knots  
Adj e c t ive Description Ve r t i ca l  Ho r iz ont a1 Fluctuations 

Light 

Moderate 

Severe  

Ex t reme  

15-25 

A turbulent condition during 5-20 5-9 5-15 
which occupants may be 
requi red  to  u s e  seat bel ts ,  
but objects in the a i r c ra f t  
r e m a i n  a t  r e  s t .  

A turbulent condition in  20-35 10 - 19 
which occupants requi re  
sea t  be l t s  and occasionally 
are thrown against  the belt .  
Unsecured objects  in the 
a i r c ra f t  move about. 

A turbulent condition in  35- 50 > 20 m o r e  than 24 
which the a i r c r a f t  momen- 
t a r i l y  may be out of control.  
Occupants a r e  thrown violently 
against  the bel t  and back into 
the sea t .  Objects not secured  
in  the a i r c r a f t  are  tossed about. 

A r a r e l y  encountered turbu-  
lent condition i n  which the 
a i r c r a f t  is violently to s sed  
about, and is pract ical ly  
impossible  to control. May 
cause  s t ruc tu ra l  damage. 

over  50 rap id  fluctuations 
over 25 

Table  1. Turbulence c r i t e r i a  

o t h e r  investigations had suggested a l a r g e r  percentage for  t h i s  sma l l e s t  

s ca l e .  Estoque [23] found a distribution of small patch s i z e s  similar to 

Cunningham's r e s u l t s ,  

f requent ly  and s e e m  to be elongated in  the direct ion of flow. 

Pa tches  of l a r g e r  dimensions are  found l e s s  

As suggested by the summary  shown in Table 2 (Rei ter  [47]), the 

a v e r a g e  ve r t i ca i  th icknesses  of turbulent l a y e r s  appear  to l ie  between 
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J 

500 to 3000 feet .  

turbulent layer extended over  15, 000 feet .  

whether the turbulence was  uniformly distributed, or  consis ted of a 

s e r i e s  of individual shallow turbulent layers with relat ively quiescent 

intervening layers, 

Clodman [ l l ]  r e p o r t s  a n  ex t r eme  case in  which the 

It is questionable, however,  

Frequency of occurrence  s ta t i s t ics  der ived f r o m  turbulence 

encounters  b y  a i r c r a f t  depend upon season, location, type of a i r c ra f t ,  

flight planning procedures ,  and the degree  of subjectivity of the r epor t s .  

Some of the r e s u l t s  from e a r l y  investigations are summar ized  i n  Table 2 .  

Clodman, Morgan and Ball  [12] have concluded that 370 of flight t ime  

over  continental a r e a s  between 20, 000 to  45, 000 feet  will be in  turbulence.  

Of the 370 total, light turbulence may be expected 7570 of the t ime,  modera te  

15-200/0, s eve re  5-1070 and ex t reme 1-370. A somewhat l a r g e r  percentage 

was  found by Br iggs  and Roach [6].  

flying t ime,  modera te  4.070, and seve re  0 .2%.  Endlich and McLean [18] 

found a comparable  resu l t .  

Of this ,  2 .  570 was modera te  and 0. 270 was  severe .  

have  de te rmined  the average  distribution of light o r  g r e a t e r  intensity with 

r e s p e c t  to  the j e t  s t r e a m  co re .  As  shown in Fig.  2, the g rea t e s t  frequency 

is on  the cyclonic side of the core,  a s  noted by a number of invest igators .  

Slight intensity was  found 5. 470 of 

Endlich [ 2 0 ]  found CAT about 1270 of the t ime.  

Endlich and McLean [21] 

An idealized je t  s t r e a m  model c r o s s  section is shown in Fig.  3 ,  

a f t e r  Endlich and McLean [18]. 

for  example,  b y  Brundidge and Goldman r 8 7  and Serebreny,  Wiegman and 

More complex models  have been presented,  
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FIG. 2. AVERAGE DISTRIBUTION OF PER CENT OF 
TIME TURBULENCE O F  LIGHT OR GREATER 
INTENSITY IS ENCOUNTERED IN THE JET 
STREAM. (after Endlich and McLeun L211). 
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Hadfield [57], the la t te r  indicative of those proposed by Canadian workers .  

While the Endlich and McLean model is somewhat simplified and indicative 

only of the polar front jet ,  it does contain the stable,  barocl inic  zone ( je t  

s t r e a m  front).  

in tersects  the 500-mb sur face  below the j e t  core .  

with respec t  to  the j e t  s t r e a m  front and the tropopause b reak  may be too 

far north.  

The polar  f ront  h a s  been placed a rb i t r a r i l y  such that it 

The co re  placement 

The distributions of CAT with respec t  to schematic  c r o s s  sect ions 

taken through trough, r idge and straight flow conditions a r e  shown in 

Fig.  4 af te r  Endlich [19]. 

CAT occurrence  on the upper boundary of the je t  s t r e a m  front and on the 

sub- t r  opical tropopause.  

These show a tendency for  moderate  to  severe  

Any anticipation of CAT encounters should consider topographical 

effects.  

a f t e r  Jenkins  [27]. 

and in  l a y e r s  (not shown) where the wave motion leads  to a maximum wind 

shea r .  

t o  the extent of turbulence. 

A schematic  mountain wave flow reg ime  is shown in  F i g ,  5, 

Turbulence is to  be expected in the ro tor  c i rculat ion 

The indicated turbulent layer  a t  the tropopause is misleading as 

Mountain wave behavior i s  l a rge ly  governed b y  the Lyra [34] 

3 
p a r a m e t e r  : 
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where 4, is the wave number generated in  the lee  of the mountain, 

the acce lera t ion  of gravity, 8 is  potential t empera ture ,  and u is wind 

speed component normal  to  the mountain range. 

is denoted by z .  

l o s s  in otherwise minimal  turbulence conditions was likely due to a 

mountain wave phenomenon. The L y r a  pa rame te r  decreased  to the lower 

boundary of the stable barocl inic  zone where it increased  to a secondary 

maximum, a favorable condition for  the formation of lee  waves.  

g is 

The ver t ica l  coordinate 

In a case  study, Rei ter  [48] h a s  shown that a n  a i r c r a f t  

A cloud photogrammetr ic  study by Rei ter  and Nan ia  [49] h a s  shown 

that  both standing and traveling gravi ty  waves ranging f r o m  100 m e t e r s  t o  

50 k i lometers  a r e  found a t  j e t  s t r e a m  leve ls  in  the lee  of the Rocky 

Mountains. 

Similar  s ca l e s  were  found by Conover [16]. 

The shor te r  waves a r e  in  the range of c l ea r - a i r  turbulence,  

Even modera te  t e r r a i n  relief can have a pronounced effect on CAT 

f requencies .  

shown i n  Fig.  6, Clodman, Morgan and Ball  [12] found a n  enhanced f r e -  

quency of occur rence  (Fig.  7 )  when the 850-mb flow was approximately 

In a study of CAT occur rences  in the lee  of the sma l l  r idge 

n o r m a l  to the r idge and a reduction (Fig.  8 )  when the flow was  para l le  

F u r t h e r ,  the enhancement was favored by la rge  low-level wind speeds 

small wind shea r  in the middle t roposphere.  The enhancement under 

mountain-wave conditions i s  a l so  ref lected in the s ta t i s t ics  compiled by 

Colson [13,14]. 

and 
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FIG.6. TOPOGRAPHY IN VICINITY OF PATTERSON AFB. 
UNSHADED AREAS 0-1000 F7: MSL ; SHADED AREAS 
1000 - 2000 FT MSL. 
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Finally, Clodman, Morgan and Ball  [12] have shown that turbulence 

encounters  over  oceanic a r e a s  a r e  a n  o r d e r  of magnitude sma l l e r  (0,2470) 

than over  continental areas. 

111. MECHANISM, SIGNATURE AND STRUCTURE O F  CAT 

Turbulent fluctuations stemming f r o m  Reynolds s t r e s s e s  assoc ia ted  

with a mean  wind shea r  must  work against  the stabilizing effect of gravi ty .  

Richardson ' s  well-known stability c r i t e r ion  a s s e r t s  that turbulence can  

proceed  only i f  turbulent generation exceeds the work against  gravity.  

Thus,  the f lux  Richardson number,  

Rf 
Kh 

m K 

--c 

m u s t  be l e s s  than unity fo r  the continuation of turbulence.  Here  u is  the 

m e a n  fluid velocity and K 

momentum, respect ively.  A summation convention is implied for the 

and Km a r e  the eddy diffusivities €or heat and 
h 

s h e a r  tensor ,  au. /ax  . 
1 J  

As discussed  by Lumley and Panofsky [ 3 3 ]  I the diffusivity r a t io  

( S / K m )  is nea r  unity for  unstable stratif ication, but may d e c r e a s e  with 

inc reas ing  stabil i ty.  The gradient Richardson number (=  l / F r o u d e  number)  

is obtained b y  multiplying R by the turbulent P rand t l  number:  f 

R. = (K) Kh R f .  
1 

m 



17 

It is  the gradient  Richardson number that h a s  been used with mixed 

success  in  cor re la t ion  s tudies  with CAT. 

Rei ter  [45], as examples,  found poor cor re la t ion  between R 

Anderson [l], Rustenbeck [53] and Kronebach [29]  found some correlat ion.  

P e t t e r  s s e n  and Swinbank [41] found that the Richardson c r i t e r ion  was  

applicable in  the f r ee  atmosphere provided that K / K  N 0.65. The 

dispar i ty  in  r e s u l t s  may be attr ibutable to the ver t ica l  g r id  c o a r s e n e s s  

in  the R. -calculations.  

Brundidge [7], Lake [31] and 

and CAT. i 

h m  

1 

Other c r i t e r i a  have been developed. 

given a modified ( thermal )  Richardson number.  Sasaki [54] h a s  der ived 

a c r i t e r ion  involving wind and tempera ture  curva tures  for  a three- layer  

model. 

CAT, but suf fe rs  f r o m  the necessity of determining second ver t ica l  

differ  e nce s. 

Radok and Clarke [44] have 

The la t te r  appea r s  t o  be superior  to the Richardson c r i t e r ion  for  

Other p a r a m e t e r s  have been studied with mixed o r  l i t t le success .  

g Considerat ions of the stability, - aO/az, alone have met  with l i t t le 

success .  

g a t o r s  as super ior  to  the Richardson number.  

e 
The ve r t i ca l  wind shear  has  been suggested by some invest i -  

Also ,  a turbulence index 

where a is wind direct ion and (Endlich and Mancuso [22]), Iu  - 7 I ,  
T i s  absolute tempera ture ,  was found to be as skillful as R. in identifying 

turbulent  regions.  The horizontal  shea r  h a s  a l so  been examined, again 

with mixed r e s u l t s ,  A study of two confluent j e t  s t r e a m s  b y  Rei ter  and 

aa aLT 
a Z  

a Z  

1 

Nania [4?! has shnwn that the vector wind shear  should be considered. 
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This is in  accord  with the r e su l t s  of Endlich and Mancuso [22] ,  and the 

suggestions by Keitz [28] and Schwerdtfeger and Radok [55], except that 

the pertinent differential advection in  the f i r s t  study appea r s  to  be in 

the sense of a tmospheric  stabilization. 

The c r i t e r i a  above a r e  not scale-dependent. Since moderate  and 

severe  CAT appea r s  to occur preferent ia l ly  on the upper boundary of 

thermal ly  stable layers ,  a n  appropriate consideration is the c r i t i ca l  wave- 

length, Ac3 of gravitational shearing (Helmholtz) wave s on the interface 

between two stably stratif ied,  incompressible fluids (Rei ter  [47, 501): 

where  the subscr ip ts  0 and 1 refer  to the lower and upper layers ,  

respect ively.  Wavelengths l e s s  than A are unstable. This  is indicated 

schematical ly  in  Fig. 9. The large black a r r o w s  denote the wind vec to r s  

i n  the two l aye r s .  

Small  black a r r o w s  indicate ver t ica l  motion. 

excited,  for example, as lee  waves. The wind shear  necessary  to produce 

c e r t a i n  c r i t i ca l  wave lengths i s  shown in Table 3 for var ious tempera ture  

discontinuities (Rei ter  [50]) .  

t rans i t ion  l aye r s ,  but the range of wavelengths can easi ly  fall within 

the  CAT spec t rum input region. 

C 

The gravi ty  wave c r e s t s  a r e  normal  to  the vector shea r .  

Such gravi ty  waves may be 

The value of A will be reduced for finite 
C 
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FIG. 9. S C H E M A T I C  D I A G R A M  O F  A I R  F L O W  I N  
THE V I C I N I T Y  O F  A N  I D E A L I Z E D  GRAVI -  
T A T I O N A L  S H E A R 1  NG W A V E  hdupted 
from Reifer [5/1) 
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X = 2 0 0 m  X = 100m X = 5 0 m  
C C C 

AT('C) 

-1 
2 2 . 3 m  sec  1. 6 1 . 2  

4 3 .3  2 .3  1 . 6  

6 4 . 0  2 . 9  2 .0  

8 4.7 3 . 3  2 . 3  

10 5 . 2  3.7 2 . 6  

Table 3. Vert ical  wind shear  for  different t empera tu re  
discontinuities and c r i t i ca l  wave lengths a t  a n  
interface.  

The argument  for  the "breaking" of gravitational shearing waves 

as the energy source  for  CAT may be substantiated b y  a n  examination 

of mechanical  energy spec t r a  such as shown by Rei ter  and Burns  [52]. 

Smoothed spec t r a  of the u-, v- and w-components (along flight direction, 

t r a n s v e r s e  and ver t ical ,  respect ively)  a r e  shown i n  Fig. 10 (af ter  Burns  

and Rider [ S I )  for  moderate  to  severe  CAT. Since the same turbulence 

patch was studied for  both the headwind and t r a n s v e r s e  measurements ,  

Re i t e r  and Burns  [52] have argued that a wave phenomenon of specific 

or ientat ion was  responsible  for  the energy input a t  wavelengths c o r r e -  

sponding to  the llhumprr i n  the spectra .  
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FIG. IO. "SMOOTHED" SPECTRA OF u-, Y - ,  AND w- 
COMPONENTS OF TURBULENCE MEASURED 
DURING FLIGHTS 188 AND 18D ( a f t e r  
Burns and Rider, /965DI 1. 
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IV. REFRACTIVE INDEX SPECTRA 

Es t ima tes  of the scattering f r o m  a tmospher ic  turbulent fluctuations 

requi re  a n  evaluation of the spec t ra l  density of re f rac t ive  index a t  a wave 

number 4 n s i n ( ~ ) / X ,  where 0 is the scat ter ing angle and X is  the wave 

length of the radiation. 

0 

F o r  backscattering (0=n) th i s  is twice the rad ian  

wave number associated with the incident radiation. As suggested sche-  

mat ical ly  in Fig.  11, the scattering c r o s s  section is de te rmined  by a na r row 

band filter acting on the refract ive index spec t rum.  The f i l tered evaluation 

h a s  been placed near  the dissipation subrange boundary. The implications 

a r e  d iscussed  below. 

Following Tatar  ski [61], the fluctuation spec t rum for  the re f rac t ive  

index will be approached b y  considering conservative passive additives, 

s a y  X(r) ,  where r is a position vec tor .  Although X will ult imately be 
3 + 

taken as  the potential refractivity,  fluctuations in  re f rac t ive  index near  

the  tropopause a r e  due pr imar i ly  to t empera tu re  var ia t ions and considera-  

t ions for  t empera tu re  spec t ra  wi l l  be used as guidelines. 

t ions that follow, the Reynolds and Pkclet  

l a r g e  so that a convective subrange ex is t s  where the pertinent outer scale,  

In the considera-  

numbers  a r e  taken to be 4 5, 6 

4 

5 
The dimensionless  ra t io  of measu res  of iner t ia  to  viscous forces ,  R . e 
The dimensionless  r a t io  of convective to molecular  flux of heat, P. The 
Pe'clet and Reynolds numbers  a r e  re la ted  by P = oRe ,  where o ( = v / x )  is 
the P rand t l  number,  the ratio of molecular  momentum diffusivity to 
t h e r m a l  diffusivity. 

A m o r e  appropriate  number would be sR where s ( =  v / v  ) is the Schmidt 
number,  the r a t io  of molecuiar momentum diifusiviiy io x5diEcisliGty. 

6 
e' 
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a r e  such that L >>>> 4 . 
X X 

L and the diffusive inner scale,  
X’ 

In a locally isotropic  random field the s t ruc ture  function 

-, ensemble 

+ +  
then depends only upon r (= 1r - r 1 ) ’  rl and 6 where 7 r e p r e s e n t s  the 1 2  

amount of inhomogeneity which d isappears  pe r  unit t ime due to molecular  

diffusion and E is the energy dissipation r a t e ,  In th i s  convective, iner t ia l  

subrange dimensional considerations show that 

c 2  X r2/3 

D ( r )  = 
X 

9 

X - 

where  

2 2 - 1/3 
C = a q ~  . 

X ( 4 . 3 )  

2 
H e r e  the pa rame te r  a 

s t ra t i f icat ion.  

depends upon the Richardson number for  stable 

The inner  and outer s ca l e s  a r e  given by Ta ta r sk i  as  

6 3  4 = (27a vx / E )  14 
X 

and  

( 4 . 4 )  

w h e r e  v is the molecular  diffusion coefficient for X and K is the 

coeff ic ient  of turbulent diffusion of X (Ta ta r sk i  takes  this  as the 

X X 
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momentum coefficient). 

section of the asymptotic expansions of eqs .  4. 2 ( a )  and 4. 2(b). 

Here the inner  scale  is found as the point of in te r -  

The r a t e  of molecular  dissipation of x-fluctuations is given by 

(4.6) 
2 - 2  

r\ = v (gradX' )  = K ( g r a d x )  
X X 

The energy dissipation r a t e  is 

( 4 . 7 )  

The three-dimensional  spec t ra l  density corresponding to ( 4 . 2 )  i s  

where  k is rad ian  wave number (2n/L). Here  it will be convenient to  use 

the one-dimensional counterpart  which may be defined by 

or 
/-. kl ) k @  (k) dk. Fx(kl) = - ZIT 

X 

Thus,  

3 8 2 - 5/3 
F (k) = - r (3 )  sin ( - )Cx k 

X 1 on 3 

(4,lO) 

(4 .11)  

Equations (4. 3)  and (4. 6 )  may be used to wr i te  

- 5/3 
(4. 12) F (k) = - a 2 5  r ( ? ) s i n  n ( 3 ) K x ( g r a d X )  - c - 43 k -- Y 3-7 I 
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The c r i t i ca l  pa r t  of th i s  study is the determinat ion of a stable f o r m  

' -  

for F (k);  that is, a fo rm which lends i tself  to evaluation f rom exper i -  
X 

mental  data, but with minimal  uncertainty. Equation (4.12) is not well- 

suited for  this  purpose since the p a r a m e t e r s  involved range over s e v e r a l  

o r d e r s  of magnitude. 

outer  scale  explicitly. 

Atlas, Hardy and Naito [ 2 ]  have introduced the 

7 
In the present  instance th i s  would be by 

- 2  
C 2  = a2L4I3  ( g r a d X )  , 

X X 

and 

Fx(k) = - a 2 5  r(5) s i n ( t ) L ? ( g r a d X )  - 2 k - 5/3 . 
2Tr 

(4.13) 

(4.14) 

Since stable s t ra t i f icat ion will be presumed for  the considerations he re ,  

a = a (Ri).  

adapted f rom Ta ta r sk i  [61], indicate that a d e c r e a s e s  with increasing 

Rie 

2 2  
Data presented  by Lumley and Panofsky [ 33, p. 204 1, 

2 

Ta ta r sk i  [60] has  concluded f r o m  a somewhat s p a r s e  data sample 

that  

2 
a = O.l/R i (4.15) 

f o r  R. g r e a t e r  than about 0. 05. The uncertainty in  L4I3 is one o r d e r  
1 X 

of magnitude. 

Although it  would s e e m  that these uncertaint ies  would be resolved by 

The range of l g r a d y  1 is of the o r d e r  of a factor of ten. 

evaluation f r o m  experimental  data, the scale  of observing is  u s u a l l y  too 

7 
This  p r e s u m e s  equality of the diffusivities, K and K x m 
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l a rge  for  a n  appropr ia te  determinat ion of grad ien ts  and Richardson ' s  

number . 
Again following Atlas,  Hardy and Naito [ Z ] ,  s ince the object h e r e  

is to  evaluate the re f rac t ive  index spec t rum i n  the p re sence  of clear-air 

turbulence,  it is appropriate  to  introduce some m e a s u r e  of the mechanical  

energy.  The one-dimensional mechanical energy  spec t rum in  the iner t ia l  

subrange is 

where c is a numer ica l  constant. If the spec t r a l  density is defined b y  

2 f E(k)  dk = (u ' )  E 

0 

(4.17) 

where  uI is the longitudinal velocity fluctuation, then c 5 4 for  k = 2n/h  

(Panofsky and Pasqui l l  [39]). The constant for  t r a n s v e r s e  components 

is l a r g e r  b y  a factor  of 413. 

Equation (4.16) is presumed to be valid only for  lag separat ions,  

4, << r << Lm where(Tatarsk i  [Sl])  rn 

(4.18) 

e That is, the outer  xi Km a n d  L differs  f r o m  L by the rep lacement  K m X 

s c a l e s  for  

where s , ~  

momentum and the X-quantity are re la ted  by 

s the turbulent Schmidt number.  

(4.19) 
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A more  c r i t i ca l  factor  i n  the consideration of overlapping of the 

iner t ia l  subranges a r e  the microsca les .  

the mic rosca le s  are re la ted  by 

F o r  t empera tu re  and momentum 

m 314 4, 
- -  - c r .  
&T 

The Prandt l  number is 0.7  for the a tmosphere  so that 

C 1.314, T m 

Ta ta r sk i ' s  microsca le  for  momentum is 

.e = 4 . 5 4 (  
"1 

V 1/4 
-) 
6 

(4 .20 )  

(4.21) 

(4 .22 )  

This  i s  not substantially different f rom the es t imate  by Megaw [ 3 7 ]  used 

by Atlas, Hardy and Naito [2]. P a o  [ 4 0 ]  h a s  indicated that the microsca le  

f o r  the convective subrange for  a r b i t r a r y  Schmidt number is 

(4. 23)  

This  d i f fe rs  f r o m  Ta ta r sk i ' s  es t imate  by a factor  2. 2 8 2 / 2 .  F o r  small 

Richardson number,  th i s  i s  of the o r d e r  of 3. 8. Thus, =sing e i ther  

T a t a r s k i ' s  o r  Pao ' s  r e su l t s  

(4. 24) 

w h e r e  s is the Schmidt number. As determined by Atlas, Hardy and 
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vicinity) is of the o r d e r  of a few mi l l imeters .  According to the i r  c lass i -  

fication, moderate  c l ea r - a i r  turbulence cor responds  to a n  cnergy diss ipa-  

tion r a t e  of the o r d e r  of 100 cm s e c  . Tempera ture  spec t r a  taken by 

Lowenberg, Bostick and McCullough [ 3 2 ]  show definite slope discon- 

8 
t inui t ies  a t  a scale  of the o rde r  of 10 cm.  

given by Wilkins [62]  is used, then (using 4. 23) 

2 - 3  

If the average  value of c (100m)  

2 -1 $4 j = 2 . 4 m m .  .e = ((0.19 cm s e c  ) 
2 - 3  2 cm s e c  T 

w 1 cm. Since the "true" mean wind speed 
$T 

Using Ta ta r  sk i ' s  es t imate ,  

es t imate  for the Lowenberg et  al. data  would likely yield s t i l l  a g r e a t e r  

scale ,  e s t ima tes  of the refract ive index spec t rum corresponding to lengths 

( X / 2 )  may not be in  the iner t ia l  subrange for wavelengths of a few centi-  

m e t e r s  (for a backscat ter ing evaluation). It is of i n t e re s t  to  note that the 

Lowenberg et  al, data show a n  average slope of - 1. 65 a t  low frequencies .  

Th i s  i s  in excellent agreement  with the If-  5 / 3 "  law. 

they found a n  average  slope of - 2.99.  

At higher f requencies  

Here  i t  will be presumed that the 

ine r t i a l  and convective subranges coincide and the spec t r a  determinat ions 

r equ i r ed  may be evaluated in  the iner t ia l  subrange. 

Equations (4.12) and (4.16) may be combined to wri te  

The re  is some uncertainty here  because the observat ions were  taken on 
zi t ~wr t r ,  ht-xt m-ean wind speed e s t ima tes  a r e  a t  the sur face .  

8 
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- 2  
a' Kx ( g r a d X )  

1 . l  

F (k)  = - - 2 E & ) .  
X C Km (aG./ax.)  
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(4 .25 )  

Following T a t a r s k i  [61], i t  is presumed that the m e a n  index of re f rac t ion  

{E  - 7800 - a e  \ g r a d % \  = 
T2 

(4. 27)  

depends only on the ve r t i ca l  coordinate so that 

(4 .26)  
1 .62 B 
3 , 2 4  Bq az '+ T 

10-6Ap t1 + 3.24Bq 
2 T 

\ g r a d % )  = 
T 

where  p is p r e s s u r e ,  T is absolute t empera tu re ,  q is specific humidity, 

0 is  potential  t empera ture ,  and A and B a r e  empi r i ca l  constants .  When 

p is expres sed  in  mi l l ibars ,  A 79 and B s 4800. Typical va lues  of q 

i n  the je t  s t r e a m  vicinity are of the o r d e r  of 1-300gm/lO g m  [SI .  Thus, 

the t e r m  (3 .24  Bq/T) may be neglected when compared  to unity. However, 

as  suggested by Figs .  12 and 13 a f t e r  Br iggs  and Roach [6], the moi s tu re  

t e r m  is not necessa r i ly  negligible, as taken b y  Atlas,  Hardy and Naito [2].  

F i g u r e  13 i l l u s t r a t e s  the intrusion of d r y  s t r a tosphe r i c  air into the ba ro -  

c l inic  zone below and on the cyclonic side of the je t  co re .  

6 

Thus,  for  

t he  moi s tu re  gradient  on the upper boundary will s e r v e  to  d e c r e a s e  the 

r a d a r  r e tu rn .  

the  o r d e r  of 4070 in  th i s  instance, but is somewhat less e l sewhere .  

t h i s  was  apparent ly  the most  pronounced case  during the Br iggs  and Roach 

investigation, mo i s tu re  considerat ions are a l so  to  be omit ted h e r e .  It 

The mois ture  contribution on the upper boundary is of 

Since 
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should be noted that a n  enhanced r a d a r  r e t u r n  will  r e su l t  f r o m  the 

mois ture  distribution everywhere but the upper boundary of the je t  

s t r e a m  front .  

If i t  is now a s s u m e d  that K may be r ep resen ted  adequately b y  
X 

the diffusivity fo r  heat, Kh, then 

where  

- 3  -6  2 
f ( p ,  T )  = T { 7 9  x 10 p (mb) ]  . 

(4. 28) 

(4. 2 9 )  

The approximation T s 8 has been used. 

Since the re  are no measu remen t s  of E(k)  f o r  k values  of in te res t ,  

i t  is  convenient to  r ewr i t e  (4 .28)  as 

(4. 30)  

The function f (ps T )  may be evaluated with negligible e r r o r ,  a rel iable  

value of c( e4) is  available,  and E(k ) has been  measu red  by Rei te r  and 

B u r n s  [52] for  va r ious  intensit ies of clear-air turbulence.  Atlas,  Hardy 

and  Naito [2]  used E(-) = 3 . 2  x 10 c m  sec / r a d s e c  as  indicative 
lOOm 

of modera te  turbulence.  9 9  lo This will be used h e r e  along with the a s sump-  

1 

2rr 6 2 - 2  -1 

t ion  

AS indicated by MacCreadyPs  resu,;s [ 3 5 ] ,  the extrapolation to the cent 
m e t e r  range  is probably not in s e r i o u s  e r r o r .  

This  is slightly l a r g e r  than suggested by MacCready [36] and is of the 
o r d e r  of surface boundary layer va lues  [62]. 

1n IU 
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2 

a 1 ~ ~ 1  = 0.1. 
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(4. 31) 

Since the a tmosphere  is polytropic to  a l a rge  extent, f(p, T )  is 

essent ia l ly  a function of p r e s s u r e  only. 

Fig.  14. An essent ia l ly  p r e c i s e  evaluation of f(p, T )  can  be made for  any 

A suggested model  is  shown in 

real izat ion;  however, fo r  purposes  of estimation, the few p e r  

t ion f r o m  Fig.  14 a t  any given p r e s s u r e  is of no consequence. 

corresponding to  p = 300 mb, T = 223K, af te r  Atlas  e t  al . ,  is 

The var ia t ion is significant enough to  warran t  i t s  accounting. 

Equation (4. 30)  can  now be wr i t ten  as 

-4  a e  - 5 ~ 3  ( 1 
F N (k) = 3 . 7 ~ 1 0  f ( p , T ) l z l  k rad ians  ) -  

cent devia- 

The point 

a l so  shown. 

(4. 32)  

cm 

The  pr incipal  assumpt ions  used in  obtaining (4. 32)  were:  

of a n  iner t ia l  subrange, 

r e l a t ion  a IR 1 = 0.1. 

tonically decreas ing  function of the Richardson number,  the a s sumed  

functional re la t ionship should be indicative of i t s  behavior.  

b y  (4. 30),  the re f rac t ive  index spec t rum is de te rmined  b y  both the t h e r m a l  

(and moi s tu re  i n  the gene ra l  ca se )  configuration and the intensity of turbu- 

l ence  

(1) the existence 

( 2 )  the energy  level  and extrapolation, and (3) the 

2 2 The la t te r  is suspect,  but s ince a is a mono- f 

As  suggested 

Before calculating the spec t rum f o r  some sample  prof i les ,  i t  may 

be worthwhile pointing out that eq.  (4. 32)  p r e s u m e s  that modera te  turbulence 

G A L D ~ ~ .  ---. ” + ”  This, of ccurse, im-plies a. vector  wind shea r ,  bu t  for  R. > 0 .05 ,  
i 
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consistency is  no problem. However, it should be mentioned that more  

s t ra ightforward approaches must cope with consistency. Atlas, Hardy 

and Naito [ 2 ]  have evaluated a f o r  R. = 0. 05 and have stipulated p, T 
2 

1 

and 80/8z ,  This  could be used to imply a wind shear :  

(4 .33 )  

- 2  -1 F o r  the i r  choice of p a r a m e t e r s ,  1 N 8 x 10 s e c  ~ While th i s  is  
J 

quite l a rge ,  i t  may be physically rea l izable ,  Stinson, Weinstein and 

Rei te r  [ 5 9 ]  have repor ted  values as high as 5 x 10 s e c  . However, the 
- 2  -1 

concern  h e r e  is that the choices of c and L a l so  imply a wind gradient:  
0 

4 2 - 3  
Using the minimum L (10 c m )  and 6 = 4 0 0 c m  s e c  , 

0 

(4 .34 )  

T h e s e  shear  e s t ima tes  differ by a factor  of five. 

The i l lustrat ion of eq. (4. 32) chosen h e r e  is  taken f rom data given 

by  Endlich [20] and shown in Fig. 15. The potential  t empera tu re  grad ien ts  

along the l ines  marked  A and B were  est imated;  smoothed prof i les  a r e  

shown in Fig.  16. 

The r e s u l t s  shown i n  F i g .  17 a r e  expres sed  in  t e r m s  of the coefficient 

2 
C N  f o r  ease  in  compar ison  with other r e s u l t s  (cf.  eq. 4 , l l ) .  Atlas,  Hardy 

aiid ICTaito E21 ~ G E Z G !  thzt a n  appropriate  range for  L~~ - 2  was  i0  -16, F -,,-14 iu C i i i  -2/3 . 
I\ 
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The r e su l t s  h e r e  a r e  one to  three o r d e r s  of magnitude l e s s ,  Using a n  

outer sca le  of 600 m, the po T and a€l/az values  b y  Atlas e t  al., and the 

relat ion a R. = 10 , a value R. w 0.06 is obtained for  C = 10 . Smaller  

values  of C yield l a r g e r  R.. The dispar i ty  can be par t ia l ly  explained b y  

- 
2 -1 2 - 17 

1 1 N 
2 
N 1 

-2  -1 - 4  
noting that for  a wind shea r  of 1.65 x 10 sec  and a lapse  r a t e  of 10 OC/cm, 

1 1/12. Thus, their  r e su l t s  

This  explains a major  portion of 

R i71 .2  
Atlas e t  al. should have evaluated a 

may be overest imated b y  a factor of 24. 

the discrepancy. 

Again, Fig.  17 h a s  been constructed on the tacit  assumption that 

modera te  CAT 

the calculation 

( Wilkins [ 62 I), 
i n  Fig. 17. 

is occurr ing everywhere.  

of CN l inear ly)  a r e  reduced to  non-turbulent leve ls  

When energy leve ls  (which en ter  

2 

2 
N 

C will be o r d e r s  of magnitude sma l l e r  than indicated 
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