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ABSTRACTAND SUMMARY ,%0 -_'!
J

Background is supplied and a theorem is proved that

gives the existence of a linear approximation of a real

valued function, defined on Euclidean n-space, by a class

G

of functions within a T_hebycheff norm. The hypotheses of

the theorem do not require any special conditions on the

characteristics of the domain, the basic approximation

functions, or the approximation bounds associated with

any point of the domain. /--_ _

v



LIST OF SYMBOLS

f(x)

D

Ix:

I

X

el(X)

F(A, x)

pq or [p, q]

Ek

E

(x, y)

(x, y)

function of a variable x

domain of a function

set consisting of the listed elements

set consisting of the elements x

satisfying the condition c(x)

closed interval

i x n vector (Xl, x2, ".', xn)

a basic approximating function

an approximation established by

the parameter set A

the closed line segment determined

by the points p and q

k-dimenslonal euclidean space

is an element of

point in E 2

point in En+lwith first n coordinates
identical with coordinates of vector x

vi



i. Introduction and Statement of the Problem.

An important problem to computer technology is the represen-

tation of a function when the values of the function were known only

within approximations. That is, data inputs specify that the unknown

function f(x) has values within an interval for each of the points

of the domain.

In the finite domain situation, we would have a domain,

D = {Cl,C2,...,Cn}, consisting of a finite number of points and

information that would specify that the f(c i) values are within

closed intervals I i = [_(ci),u(ci)]. Here _(c i) are the lower end-

point values of the interval and u(c i) are the upper endpoints values.

For domains consisting of an infinite number of points, we

would have a specified set of independent argument values, D, over

which the function values f(x) were known to be within the closed

intervals l(x) = [_(x),u(x)] for every x in the domain. Infinite

domains could consist of intervals of finite length, collections

of intervals of finite length, or an infinite number of discrete

points. Note figure i and figure 2.

The previous discussion was directed toward functions of a

single variable. In general we will be interested in functions of

n variables, and we will simply represent them as functions of

i × n vectors x. That is, f(x) will represent a function

f(xl,...,x n) of the n variables Xl,X2,...,x n.

We now have the problem of treating such a function in compu-

tational schemes. One approach is to represent the function as

being within a certain class that is inherently easy to process



f(x)
_(Cn,U(Cn))

(c 3, _(c 3) ) (Cn, t(c n) )
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cI c2 c3 •.. cn

Figure i

Approximate function values over a Domain

comsisting of a finite number of points

f(x)

u(x). I

t ] [ , -]
o

Figure 2

Approximate function values over a Domain

consisting of an infinite number of points

X
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through the computation. For example, we might elect to represent

f(x) as a polynomial of a certain degree, or we might elect to

represent the function as a truncated Fourier series. In most

schemes, the process calls for expressing the function as a linear

combination of specified approximation functions. That is,

_l(X), ..., _k(X) are specified and we want to fit al_l(X) + a2_2(x)

... + ak_k(X) within the approximation intervals by determining the

al,a2,...,a k values. In case we require that f(x) be represented

as a polynomial, the approximating _ functions would be _l(X) = I,

_2(x) = x, _3(x) = x 2, ..., _k(X) = x k-I Then values al,...,a k

k-I
would _ive us a specific polynomial a I + a2x + ... + akx Like-

wise, in the truncated Fourier series, the function f(x) would be

expressed as a linear combination of the first k Fourier functions;

and the a. values would be the Fourier coefficients. See Rice [i]
I

for detailed treatment of approximation problems.

The general approximation structure may be stated in the follow-

ing manner. For a specified approximating class, given by linear

combinations of the basic functions }l(X), ..., 0k(X) ; we will note

_l=li=kai_i(x) as F(A,x). Where A represents the set of parameter

values al,...,a k that establish the particular approximation F(A,x).

One problem basic to approximation theory and important to

computer applications is the existence of an approximation function

F(A,x) within the error bounds or approximation intervals of f(x).

This report is directed toward a theorem that is applicable to this

problem.

+



2. Basic Theorems of the Helly type.

The details of the main result of this paper are built around

an important theorem due to Eduard Helly (1884-1943) [2,pp.101-103].

The following statement and proof of Helly's Theorem are essentially

that of Yaglom and Boltyanskii [3,p.16 and p.121].

Definition: A set S is convex if and only if for any two points p

and q of S, the line segment determined by p and q, pq, is

contained in S.

Theorem I (Helly's): If n (n > 4) convex sets are given in the

plane with the condition that any three of the sets have a

common point, then there is a point common to all of the sets.

Proof by induction on n _ 4:

(i) If n = 4, then denote the sets as SI, $2, $3, S 4. The

point known to be common to S1, $2, S 3 denote as P4" Likewise,

P3 is common to SI, $2, $4; P2 to S1, $3, $4; Pl to $2, $3, S 4.

Now consider the triangle formed by Pl' P2' and P3" Denote it

as T 4. It is an immediate consequence that triangle T 4 is

contained in S 4. Likewise, triangle T 1 established by P2' P3'

P4; T2 established by Pl' P3' P4; and T 3 established by Pl' P2'

P4 are respectively contained in SI, $2, and S 3. If one of

the Pi points is contained in Ti, then it is contained in S i

and it must be common to all four of the convex sets. Other-

wise, the four points form the vertices of a convex quadrilat-

eral. The intersection of the diagonals of this quadrilateral

is a point that is common to all four of the triangles TI, T2,

T3, T 4. Thus it is common to all of the four convex sets SI,

$2, $3, and S 4.



(ii) Now assume an inductive hypothesis that the theorem is

true for n = k, and note the convex sets SI, $2, ..., Sk, Sk+I.
,

If we denote Sk as the intersection of Sk and Sk+l, then we
,

see that SI, $2, ..., Sk_l, Sk form a collection of k convex

sets satisfying the conditions of the theorem. For example,
,

SI, $2, Sk have a commonpoint since SI, $2, Sk, and Sk+I have

a commonpoint. By the inductive hypothesis SI, $2, ..., Sk

have a commonpoint, so SI, $2, ..., Sk, Sk+I must and we see

that the theorem is proved.

The statement of various Helly type theore_is listed below

for convenience. The proofs are available in the references listed.

The proofs are not given here since they are somewhat complicated.

In particular, the proofs related to infinite collections of sets

involve topological concepts like finite intersection properties.

Theorem 2. If n (n _ k+2) convex sets are given in Euclidean

k-space, Ek, with the condition that any k + I of the sets

have a commonpoint; then there is a point common to all n of

the sets ]2,p.i02].

Theorem 3. If more than k + 2 compact convex sets are given in

Euclidean k-space, Ek, with the condition that any k + i of

the sets have a commonpoint; then there is a point commonto

all of the sets [2,p.i02].

Definition: A slab is the unbounded convex set bounded by two

parallel hyperplanes.

Theorem 4. If more than k + 2 closed slabs are given in Euclidean

k-space, with the condition that any k + i of the slabs have



a commonpoint; then there is a point commonto all of the

slabs [4,p.178] and [2,P.350].

3. Applications to line approximations.

The application of Helly type theorems to line approximations

through a finite number of parallel line segments is detailed in

part by Yaglom and Boltyanskii [3,p.20]. A similar discussion is

given here as an aid to understanding the main results of the next

section.

Theorem 5. If n (n h 4) parallel line segments are given in the

plane, with the condition that any three of the segments have

a commonline transversal; then there is a line transversal

intersecting all of the line segments.

Proof: If we establish an x-y coordinate structure on the plane

in such a manner that the y-axis is parallel to the given

line segments; then the coordinates of the endpoints of the
r TT

i-th segment would be (xi,Yi) and (xi,Yi). Note the upper

endpoints with the double prime and the lower endpoints with

! IT

a single prime, i.e., Yi < Yi"

Any line in the x-y coordinate plane has a representation

of y = kx + b. Thus knowledge that y = kx + b intersects the

segment [(xi,Yi),(xi,Yi) ] is expressed as Yi _ kxl + b _ Yi"

Since a line is uniquelly determined by the values k and b;

we note that for a given xi, the set of values of k and b that
! Tf

satisfy Yi £ xik + b ! Yi precisely describe the collection of

lines that intersect the segment above the horizontal coordi-

nate x i. This collection of k and b values is representable

6



as a slab between two parallel lines in a k-b coordinate plane.

See figures 3 and 4, and note the line y = k0x + b 0 in the x-y

plane is associated with the point (k0,b0) in the k-b plane.

! I!

That is, Yi <- k0xi + b0 <- Yi implies that (k0,b 0) is between
r I!

the parallel lines b = - xik + Yi and b = - xik + Yi in the

k-b plane. Observe that the point (k0,b 0) would be in the

slab established by the segment above the x 2 value,

! T!

(k0,b0) _ {(k,b): Y2 <- x2k + b <_ y2}; and it would not be in

the slab established by the x I value, (k0,b 0) L {(k,b):
I !1

Yl <- Xlk + b <_ yl }.

The hypothesis of the theorem states that any three of

the parallel line segments are such that some line intersects

the three. Since the lines through any given segment are

identified as a slab in the k-b plane, this hypothesis trans-

lates to say that the n slabs in the k-b plane are such that

any three have a common point. Employ Theorem 4 to conclude

,
that the slabs all must contain some point (k*,b). Thus the

line y = k x + b intersects all of the segments.

We can extend the above concepts to more complicated approxi-

mations. That is, the xi values and the segments above the x i

values could be taken to be infinite in number. For example, a

line approximation of a function over an interval. Refer to figure 5

and note that the above theorem in its extension would say that f(x),

known to be between _(x) and u(x) over the interval [a,b], has a

line intersecting the three segments [(Xl,Z(x)],(Xl,U(Xl))],

2)),(x2,u(x2))], and[(x3, (x3)),(x3,u(x3)]].



Y

J

y = k0x + b0_

(Xn,Y n)

J t ! ! x

Xl x2 xi x
n

Figure 3

(O,Yi) "

I b : - xi_ + Yi

Figure 4
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Y

f(x)

(x3,u(x_))/ / _- _- -- _.

u(x) , _ I/ }

_-- -. _(x3,_(x3) )
, _(x)

!

!

!

!

!

a

!

x I

!

x 2

O

x3

!

b X

Figure 5



Polynomial approximations are also connected with an extension

of Theorem 5 A polynomial of k-th degree p(x) = a0+alxl+ .+ak xk

is uniquelly determined by its k + 1 coefficients_ Thus the graph

! 11

of the polynomial p(x) intersects the segment [(xi,Yi),(xi,Yi) ] if

T k 11

and only if Yi _ a0+xial+'''+xiak _ Yi" The collection of aj

(j = 0,1,...,k) values, related to polynomials that in their graph

intersect a segment [(xi,Yi),(xi,Yi)], can be associated with the

slab in Euclidean k + i space. The slab is between the two parallel

hyperplanes a0+xial + + k ' k ""'" xiak = Yi and a0+xial+...+xia k : Yi in a

k + 1 dimensional space with coordinate variables a0,al,...,a k.

Thus f(x) in figure 5 admits a polynomial approximation of degree k,

between _(x) and u(x), if and only if for any k + 2 points Xl,...,Xk+ 2

the segments [(xi,_(xi)],(xi,u(xi)]], i = l,...,k+2, are such that

the graph of some polynomial of degree k intersects the segments.

This analysis leads to the following general theorem.

4. The General Theorem.

Theorem 6. Given a class of linearly independent approximation

functions _l(_),_2(_),...,_n(_ ) and a function f(_) of n

variables (Xl,...,Xn) , known to be within bounds _(_) and u(_),

_(_) S u(_), over a domain D. Then f(_) admits an approximation

T

L(A',5) = _j=Ik aj_j(_) within the bound functions over the

domain D if and only if for any k + 1 points of D, Xl,...,Xk+l,

there is some set of values A = {al,...,a k} such that

k

_j=l aj_j(_) intersects the k + i closed intervals

( ) ( ))[ ]i,_( +xi) , +xi,u( ], i = 1,2,...,k+i, in Euclidean n + i

space.

10



Proof: The collection of functions L(A,_) that intersect the inter-

val above x. is described by the condition:
i

_(x i) _ al¢l(_i)+...+akCk(_i ) _ u(_ i)

Associate with L(A,_) the point A = (al,...,a k) in Euclidean

k space. Then L(A,_) intersects the interval above x i if and

only if A is an element of the closed slab in E k space between

the following two parallel hyperplanes:

¢l(_i)al+...+¢k(_i)ak = u(_ i)

¢l(_i)al+...+¢k(_i)ak = _(_i )

The hypothesis that any k + i points Xl,...,x k are such that

some L(A,_) intersects the intervals above Xl,...,x k, translates

to say that any k + I of the slabs have a common point. Thus

Theorem 4 implies that all of the slabs intersect in a common

! f T

point A = (al,...,ak). Restated in terms of approximation

_ a'functions, we see that L(A' _) = _j_l jCj(_) intersects all

of the intervals above points x in the domain D.

11
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