EXPERIMENTAL AND THEORETICAL STUDIES OF LIQUID SLOSHING AT SIMULATED LOW GRAVITIES

by
Franklin T. Dodge
Luis R. Garza

Technical Report No. 2 Contract No. NAS8-20290
Control No. DCN 1-6-75-00010
SwRI Project No. 02-1846
Prepared for
George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama

20 October 1966

APPROVED:

minna ate
H. Norman Abramson, Director Department of Mechanical Sciences

ABSTRACT

$$
13111
$$

An analysis is given for liquid sloshing in a rigid cylindrical tank under conditions of moderately low gravitational acceleration; the theory is valid for Bond numbers that are larger than 10. The results are put in the form of an equivalent mechanical model. It is found that both the fundamental sloshing mass and the natural frequency, for a liquid having a zero degree contact angle, are smaller than for the usual high-g sloshing.

A series of experiments was conducted to determine the sloshing force and the natural frequency for Bond numbers between 10 and 200. The test results are compared to the theoretical predictions of the mechanical model, and good correlation between theory and experiment is shown.

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS iv
LIST OF PRINCIPAL SYMBOLS vi
I. INTRODUCTION 1
II. ANALYSIS 4
A. Basic Equations 4
B. Equilibrium Interface 7
C. Linearized Sloshing Equations 8
D. Solution 10
E. Equivalent Mechanical Model 17
III. EXPERIMENTAL APPARATUS AND PROCEDURES 29
IV. TEST RESULTS AND COMPARISON WITH THEORY 33
A. Test Results 33
B. Comparison with Theory 36
V. CONCLUSIONS 39
VI. ACKNOW LEDGEMENTS 41
LIST OF REFERENCES 42
APPENDIX A. DEFINITION OF FOURIER-BESSEL COEFFICIENTS 44
APPENDIX B. ILLUSTRATIONS 45
Figure Page
1 Cylindrical Tank and Coordinate System 46
2 Natural Frequency of Fundamental Mode 47
3 Schematic of Mechanical Model 48
4 Fundamental Slosh Mass and Spring Constant 49
5 50
Height of Fundamental Slosh Mass Above Bottom of Tank
Average Liquid Depth and Center-of-Mass Location 51
View of Experimental Apparatus 52
$7 b$ View of Glass Tanks and Dynamometer 53
8
Schematic of Electrical Wiring 549
Response Curve for Methanol, Bond Number $=100$ 55
10
Response Curve for Carbon Tetrachloride, Bond Number $=175$ 56
11 Response Curve for Water, Bond Number $=23.5$ 57
12 Response Curve for Methanol, Bond Number $=55$ 58
13 Response Curve for Carbon Tetrachloride, Bond Number $=98$ 59
14 Response Curve for Methanol, Bond Number $=58$ 60
15 Response Curve for Methanol, Bond Number $=26$ 61
16 Response Curve for Carbon Tetrachloride, Bond Number $=45$ 62
17 Response Curve for Carbon Tetrachloride, Bond Number $=14$ 63
18 Comparison of Theory and Experiment, $\mathrm{N}_{\mathrm{BO}}=100$ 64

LIST OF ILLUSTRATIONS (Cont'd)

Figure Page
19 Comparison of Theory and Experiment, $\mathrm{N}_{\mathrm{BO}}=98$ 65
20 Comparison of Theory and Experiment, $\mathrm{N}_{\mathrm{BO}}=58$ 66
21
Comparison of Theory and Experiment, $\mathrm{NBO}_{\mathrm{BO}}=45$ 67
22 Comparison of Theory and Experiment, $\mathrm{N}_{\mathrm{BO}}=26$ 68
23 Comparison of Theory and Experiment, $\mathrm{N}_{\mathrm{BO}}=14$ 69
$A_{n} \quad-\quad$ amplitude of the time variation of the $n^{\text {th }}$ component of the velocity potential
$\mathrm{a}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}} \cos \Omega \tau$
$B_{n} \quad$ - amplitude of the time variation of the $n^{t h}$ component of the surface wave
$\mathrm{b}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}} \sin \Omega \tau$
$\mathrm{Cl}_{\mathrm{nm}}$,
$\mathrm{C} 2_{\mathrm{nm}}$, - Fourier-Besscl cocfficients in Eqs. (21) and (22)
C 3 nm
F - lateral force exerted on the tank by the liquid
$\mathrm{F}_{\mathbf{T}}$ - interfacial tension force at contact line
$f(F) \quad$ - height of meniscus above $z=0$; see Figure 1
g - steady axial acceleration or gravity
$\mathrm{H}_{\mathrm{n}} \quad$ - dimensionless wave height of $\mathrm{n}^{\text {th }}$ mode at the wall
$h_{a v}$ - average depth of liquid, $m_{T} / \pi \rho R_{o}^{2}$
$h_{\text {c.m. - height of center-of-mass above tank bottom }}$
$h_{n} \quad-\quad$ height of m_{n} above tank bottom
$h_{O} \quad$ - height of m_{O} above tank bottom
$I_{n}=\sum_{m=1}^{M} P_{n m} J_{1}\left(\lambda_{m}\right) e^{\lambda_{m} \beta} / \lambda_{m}$, see Eq. (34)
$J_{1} \quad-1^{\text {st }}$ order Bessel function of the first kind
$k_{n} \quad-\quad$ spring constant for $n^{\text {th }}$ mode
$L_{n}=\sum_{m=1}^{M}\left(h / R_{o}-\beta-1 / \lambda_{m}\right) P_{n m^{J}}\left(\lambda_{m}\right) e^{\lambda_{m} \beta / \lambda_{m}}$, see Eq. (43)
*Symbols in parenthesis are the nondimensional equivalents of the preceding quantities.

I. INTRODUCTION

The free surface wave motions ("sloshing") of liquid fuel in large rocket boosters is a well-recognized problem in technology. While nearly all the experimental and theoretical work on the practical side of this problem is limited to situations in which the steady axial acceleration (gravity or thrust or both) is so large that only the body forces in the liquid and the forces between the tank walls and the liquid need be considered for determining the liquid's motion, there are occasions when the axial acceleration is small, as for example when the booster is coasting in an Earth orbit, and then other forces must be taken into account; the most important of these forces is usually the interfacial tension between the liquid fuel and the ullage gas. Under these conditions, the resulting free surface motion has been called low-gravity sloshing.

Most of the previous research on low-gravity fluid mechanics is reviewed in Ref. [1], which also contains a lengthy list of references. The reports by Reynolds and his coworkers [2,3] are especially recommended. More recent developments are given in Refs. [4] and [5]. To the authors' knowledge, however, there are no experimental or theoretical results available for the important problem of the sloshing of the liquid during forced excitation of the tank (although the generalized analysis given in Ref. [4] can supposedly be specialized to include this).

In this report, an analysis and experimental correlations of low-gravity sloshing in a cylindrical tank are presented for the case of simple harmonic translation of the rigid tank. Now, experimental data for low-gravity sloshing
are not easily obtained. Ground facilities that can duplicate an actual lowgravitational acceleration, such as drop towers, are not able to provide the low-gravity field for a sufficiently long time to get consistent and reliable sloshing data because the testing time available is on the order of only five seconds; drop towers, though, are quite valuable for experiments on other aspects of low-gravity fluid mechanics. Another method of simulating low gravity is to use small models in a bench test; the interfacial or capillary forces can be made comparable to, or greater than, the gravity forces even in the one-g field, so this is a suitable "low-gravity" test for some purposes. The available test time is not a problem with this kind of simulation, but the liquid motion and the slosh forces are, of course, quite small because of the small dimensions of the model. In the experiments reported here, the lowgravity simulation was accomplished by this method of using small models; such a simulation required that an extremely sensitive dynamometer system be designed and constructed (slosh forces smaller than 0.001 pound were expected). The resulting data, to the authors' knowledge, are the first (and the only up to now) that present sloshing forces and frequencies as a function of Bond number; these are the parameters that are of most value in missile and space applications. (Some data for natural frequencies have been published previously [3].)

The axial acceleration and the tank dimensions used in the tests were small enough that the Bond number, $N_{B O}=\rho g R_{o}^{2} / T$, an indication of the size of body forces relative to interfacial forces, was in the range of 10 to 100 .

Very low-gravity fluid mechanics are characterized by Bond numbers of less than one, while high-g problems are in the range of $\mathrm{N}_{\mathrm{BO}}>1000$. Thus, $10 \leq \mathrm{N}_{\mathrm{BO}} \leq 100$ should be classified as moderately low gravities*. Even though body forces are still dominant for these Bond numbers (but not over whelmingly so) interfacial tension causes the undisturbed equilibrium free surface to depart considerably from a flat surface, and, thus, interfacial curvature and forces must be included in the analysis.

Effects such as stratification and thermally driven motions are ignored in the analysis and are absent in the experimental tests. Moreover, the influence of viscosity is neglected in the analysis since experience has shown it to be small; the main effects can be accounted for a posteriori by adding suitable linear damping. The circular cylindrical tank is assumed to be rigid.

The theoretical analysis is given first; the experimental procedure and test results follow, and the correlations between theory and experiment are then presented.
*Bond numbers of this size, for example, are encountered in coasting orbits of large boost stages such as Saturn IVB [6].

II. ANALYSIS

A. Basic Equations

An r, θ, z cylindrical coordinate system is fixed in the tank and centered along the axis at the point the axis intersects the undisturbed free surface, as shown in Figure 1. * The depth of liquid below $\mathrm{z}=0$ is taken to be large enough that the tank bottom is essentially at $z=-\infty$; this assumption greatly simplifies the algebraic work and is valid if $h / 2 R_{o}>1$. The height, $f(r)$, of the undisturbed axisymmetric free surface is measured positively above $z=0$; the wave height, $\eta(r, \theta, t)$, is then measured from the undisturbed surface and not from $z=0$.

By assuming that the ideal liquid is incompressible and its motion irrotational, a velocity potential, $\phi(r, \theta, z, t)$, may be defined such that the liquid velocity relative to the tank is $\overrightarrow{\mathrm{V}}=\nabla \phi$. The potential must satisfy Laplace's equation

$$
\begin{equation*}
\nabla^{2} \phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{1}
\end{equation*}
$$

and two conditions at the tank boundaries

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial r}=0, & r=R_{o} \\
\frac{\partial \phi}{\partial z}=0, & z=-\infty \tag{3}
\end{array}
$$

If the velocities and density of the ullage gas are neglected, the first integral of the equations of motion evaluated just below the free surface gives

[^0]one relation for determining the wave height from the velocity potential; it is
\[

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{p}{\rho}+\frac{1}{2}[\nabla \phi \cdot \nabla \phi]+g \zeta-x_{o} \omega^{2} r \cos \theta \cos \omega t=\psi(t) \quad, \quad z=\zeta \tag{4}
\end{equation*}
$$

\]

$\zeta(r, \theta, t)=\eta(r, \theta, t)+f(r)$ is the wave height above $z=0$, and $\psi(t)$ is a function of time at most.

A second condition between ζ and ϕ is obtained by requiring that the normal stress across the free surface must be discontinuous by an amount proportional to the product of the interfacial tension, T, and the mean surface curvature:

$$
\begin{align*}
\mathrm{p}_{\mathrm{g}}-\mathrm{p}= & \mathrm{T}\left(\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left\{\frac{\mathrm{r} \frac{\partial \zeta}{\partial \mathrm{r}}}{\left[1+\left(\frac{\partial \zeta}{\partial \mathrm{r}}\right)^{2}+\left(\frac{1}{\mathrm{r}} \frac{\partial \zeta}{\partial \theta}\right)^{2}\right]^{1 / 2}}\right\}\right. \\
& \left.+\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \theta}\left\{\frac{\frac{\partial \zeta}{\partial \theta}}{\left[1+\left(\frac{\partial \zeta}{\partial r}\right)^{2}+\left(\frac{1}{\mathrm{r}} \frac{\partial \zeta}{\partial \theta}\right)^{2}\right]^{1 / 2}}\right\}\right), \quad \mathrm{z}=\zeta \tag{5}
\end{align*}
$$

A final condition between ζ and ϕ arises from the fact that the motion of the free surface and the fluid velocity at the free surface must be consistent with each other, or

$$
\begin{equation*}
\frac{\partial \zeta}{\partial \mathrm{t}}-\frac{\partial \phi}{\partial \mathrm{z}}+\frac{\partial \phi}{\partial \mathrm{r}}\left(\frac{\partial \zeta}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2}}\left(\frac{\partial \phi}{\partial \theta}\right)\left(\frac{\partial \zeta}{\partial \theta}\right)=0 \quad, \quad z=\zeta \tag{6}
\end{equation*}
$$

The final requirement for a well-posed problem is knowledge of the angle at which the free surface meets the tank walls.* Here it is assumed that the contact angle measured in the liquid, for the undisturbed surface, is zero, which is typical of several existing fuel-tank systems; any other angle could be used in the analysis just as easily. It is entirely possible that the angle at which the sloshing wave meets the walls differs from the undisturbed angle; this phenonemon is known as "contact angle hysteresis." Some researchers have tried to account for the hysteresis by assuming that

$$
\frac{\partial \eta}{\partial \mathrm{r}}=\mathrm{C}_{1} \eta, \quad \mathrm{z}=\zeta \quad \mathrm{r}=\mathrm{R}_{\mathrm{o}}
$$

which seems to imply that the change in the contact angle depends only on the distance the free surface is displaced from equilibrium. $\quad\left(C_{1}\right.$ is an experimentally determined constant.) But the hysteresis, should also be a strong function of the contact line velocity because, in a sufficiently slow movement, the contact angle should stay reasonably close to its static value. Thus, rather than assume an arbitrary functional relationship, hysteresis is neglected in the analysis, and the contact line is allowed to slide easily along the tank walls - the so-called "free edge" condition. Hence, the contact line condition used here is

$$
\begin{equation*}
\frac{\partial \eta}{\partial r}=0 \quad, \quad z=\zeta \quad r=R_{0} \tag{7}
\end{equation*}
$$

Actually, the contact angle is defined by $\theta_{c}=\cot ^{-1}\left\{\frac{\partial \zeta}{\partial r} /\left[1+\left(\frac{\partial \zeta}{r \partial \theta}\right)^{2}\right]^{1 / 2}\right\}$ (at $r=R_{o}$) so that Eq. (7) allows θ_{c} to vary from its static value, which is
*In high-g analyses, the free surface is flat at equilibrium and is assumed to deform to whatever shape the dynamics require, regardless of the value of the contact angle.
$\cot ^{-1}(\mathrm{df} / \mathrm{dr})$. However, since $\partial \zeta / \partial r=\mathrm{df} / \mathrm{dr}+\partial \eta / \partial \mathrm{r}$, if the equations are linearized with respect to η (which will be done presently), then Eq. (7) says that θ_{c} always equals its static value.

B. Equilibrium Interface

The equilibrium free surface shape, $f(r)$, must be known as an input to the sloshing analysis. It can be computed as part of the analysis, say, in the form of a series of the eigenfunctions of Eq. (1) [4], but this process does not converge very quickly; or it can be obtained from a numerical solution of the equations, but this virtually forces the entire sloshing analysis to be numerical. Fortunately, very good approximate algebraic expressions can be derived for $f(r)$ in the range of Bond numbers of interest here.

In Eq. (4) let $\phi \equiv 0$, and in Eq. (5) let $\psi(t) \square p_{o} / \rho$, where p_{o} is the liquid pressure at $r=0, z=0$. Now, the pressure at any other point on the free surface in the liquid is

$$
\begin{equation*}
p=p_{o}-\rho g f(r) \tag{4'}
\end{equation*}
$$

and the interface tension-curvature relation is

$$
p=p_{g}-T\left(\frac{1}{r} \frac{d}{d r}\left\{\frac{r \frac{d f}{d r}}{\left[1+\left(\frac{d f}{d r}\right)^{2}\right]^{1 / 2}}\right\}\right)
$$

where p_{g} is the ullage gas pressure. Thus, combining Eqs. (4') and (5'), it is found that

$$
\begin{equation*}
\left(\frac{1}{r} \frac{d}{d r}\left\{\frac{r \frac{d f}{d r}}{\left[1+\left(\frac{d f}{d r}\right)^{2}\right]^{1 / 2}}\right\}\right)_{r=0}-\frac{1}{r} \frac{d}{d r}\left\{\frac{r \frac{d f}{d r}}{\left[1+\left(\frac{d f}{d r}\right)^{2}\right]^{1 / 2}}\right\}+\frac{\rho g}{T} f=0 \tag{8}
\end{equation*}
$$

This equation with the boundary conditions $f=d f / d r=0$ at $r=0$ and $\mathrm{df} / \mathrm{dr}=\cot \theta_{\mathrm{c}}=\infty$ at $\mathrm{r}=\mathrm{R}_{\mathrm{o}}$ completely determines $\mathrm{f}(\mathrm{r})$.

At very small Bond numbers, the equilibrium interface is nearly spherical [i.e., $f(r)=R_{o}-\left(R_{o}^{2}-r^{2}\right)^{1 / 2}$]. As the Bond number increases, the interface becomes flatter. Using this as a guide, Satterlee and Chin [7] showed that a modified spherical shape, $f(r)=\beta\left[R_{o}-\left(R_{o}^{2}-r^{2}\right)^{1 / 2}\right]$ with β a function of N_{BO}, was an approximate solution of Eq. (8) which agreed well with experiments and exact solutions if $\mathrm{N}_{\mathrm{BO}}<10$; for larger Bond numbers, the assumed shape, however, was not "flat" enough. Thus, for a range of $N_{\text {BO }}$ greater than 10 , a reasonable assumption for $f(r)$ is

$$
\begin{equation*}
f(r)=\beta R_{o}\left[1-\left(1-\frac{r^{3}}{R_{o}^{3}}\right)^{1 / 2}\right] \tag{9}
\end{equation*}
$$

since the curvature of this is considerably less than that of a sphere except very close to the walls. β is calculated such a way that Eq. (8) is approximately satisfied in some sense. Now, Eq. (9) already satisfies the proper boundary conditions, and Eq. (8) at $\mathbf{r}=0$; if β is picked so that Eq. (8) is also satisfied at $r=R_{0}$, then Eq. (9) should give a reasonable prediction of $f(r)$. Carrying out the details yields the result that

$$
\begin{equation*}
\beta^{3} N_{B O}-\beta^{2}-\frac{2}{3}=0 \tag{10}
\end{equation*}
$$

Eqs. (9) and (10) compare very well with Satterlee and Chin's experimental data for $\mathrm{N}_{\mathrm{BO}}>10$ [7].
C. Linearized Sloshing Equations

The potential, ϕ, and the wave height, η, are now assumed to be small enough that the equations may be linearized with respect to them; note
that neither $f(r)$ nor $\zeta(r, \theta, t)$ need be small, though. After combining Eqs. (4) and (5) and subtracting out the equilibrium condition, Eq. (8), the linearized pressure requirement at the free surface is found to be

$$
\begin{array}{r}
\frac{\partial \phi}{\partial t}+g \eta-\frac{T}{\rho}\left(\frac{1}{r} \frac{\partial}{\partial r}\left\{\frac{r \frac{\partial \eta}{\partial r}}{\left[1+\left(\frac{d f}{d r}\right)^{2}\right]^{3 / 2}}\right\}+\frac{1}{r^{2}} \frac{\partial}{\partial \theta}\left\{\frac{\frac{\partial \eta}{\partial \theta}}{\left[1+\left(\frac{d f}{d r}\right)^{2}\right]^{1 / 2}}\right\}\right) \\
=x_{o} \omega^{2} r \cos \theta \sin \omega t=0 \quad z=f(r) \tag{11}
\end{array}
$$

and now this equation is evaluated on the undisturbed interface, $z=f(r)$.
Linearizing Eq. (6), the kinematic condition, gives

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}-\frac{\partial \phi}{\partial z}+\frac{d f}{d r}\left(\frac{\partial \phi}{\partial r}\right)=0 \quad, \quad z=f(r) \tag{12}
\end{equation*}
$$

This completes the linearization of the basic equations.
The entire set of equations are nondimensionalized by using the following substitutions:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{r} / \mathrm{R}_{\mathrm{O}} ; \mathrm{Z}=\mathrm{z} / \mathrm{R}_{\mathrm{O}} ; \tau=\mathrm{t}\left(\mathrm{~g} / \mathrm{R}_{\mathrm{O}}\right)^{1 / 2} ; \mathrm{N}_{\mathrm{BO}}=\rho \mathrm{g} \mathrm{R}_{\mathrm{O}}^{2} / \mathrm{T} ; \\
& \mathrm{F}=\mathrm{f} / \mathrm{R}_{\mathrm{O}} ; \epsilon=\eta / \mathrm{R}_{\mathrm{O}} ; \Phi=\phi\left(\mathrm{g} \mathrm{R}_{\mathrm{O}}^{3}\right)^{-1 / 2} ; \quad \mathrm{X}_{\mathrm{O}}=\mathrm{x}_{\mathrm{O}} / \mathrm{R}_{\mathrm{o}} \\
& \Omega=\omega\left(\mathrm{R}_{\mathrm{O}} / \mathrm{g}\right)^{1 / 2 *}
\end{aligned}
$$

For convenience, the nondimensional equations are listed below:

$$
\begin{equation*}
\nabla^{2} \Phi=0 \text { in the liquid } \tag{13}
\end{equation*}
$$

[^1]\[

$$
\begin{equation*}
\frac{\partial \Phi}{\partial R}=0 \quad, \quad R=1 \tag{14}
\end{equation*}
$$

\]

$$
\begin{equation*}
\frac{\partial \Phi}{\partial Z}=0 \quad, \quad Z=-\infty \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \epsilon}{\partial R}=0 \quad, \quad R=1 \quad Z=F(1)=\beta \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \epsilon}{\partial \tau}-\frac{\partial \Phi}{\partial Z}+\frac{d F}{d R}\left(\frac{\partial \Phi}{\partial R}\right)=0 \quad, \quad Z=F \tag{17}
\end{equation*}
$$

$$
\frac{\partial \Phi}{\partial \tau}+\epsilon-\frac{1}{N_{B O}}\left(\frac{1}{R} \frac{\partial}{\partial R}\left\{\frac{R \frac{\partial \epsilon}{\partial R}}{\left[1+\left(\frac{d F}{d R}\right)^{2}\right]^{3 / 2}}\right\}+\frac{1}{R^{2}} \frac{\partial}{\partial \theta}\left\{\frac{\frac{\partial \epsilon}{\partial \theta}}{\left[1+\left(\frac{d F}{d R}\right)^{2}\right]^{1 / 2}}\right\}\right)
$$

$$
\begin{equation*}
-\mathrm{X}_{\mathrm{O}} \Omega^{2} \mathrm{R} \cos \theta \sin \Omega \mathrm{t}=0, \quad \mathrm{Z}=\mathrm{F} \tag{18}
\end{equation*}
$$

and $F(R)=\beta\left[1-\left(1-R^{3}\right)^{1 / 2}\right]$ with β determined by $\beta^{3} N_{B O}-\beta^{2}-2 / 3=0$.

D. Solution

Unfortunately, no function or set of functions known to the authors will exactly satisfy the field equation, Eq. (13), and all the boundary conditions, Eqs.` (14) through (18). Of several approximate methods, the one selected here is to construct a solution from the known set of solutions for sloshing at very large Bond numbers for which $F=0$. This seems reasonable because body forces are still the largest forces when $\mathrm{N}_{\mathrm{BO}}>10$. Thus, a velocity potential of the following form is assumed to be acceptable:

$$
\begin{equation*}
\Phi(R, \theta, Z, \tau)=\sum_{n=1}^{\infty} a_{n}(\tau) \cdot J_{1}\left(\lambda_{n} R\right) \cdot \cos \theta \cdot e^{\lambda_{n} Z} \tag{19}
\end{equation*}
$$

If the λ_{n} are determined from $J_{1}^{\prime}\left(\lambda_{n}\right)=0$, Eq. (19) identically satisfies term by term Eqs. (13), (14), and (15). * This will also insure that each $J_{1}\left(\lambda_{n} R\right)$ is orthogonal to all the rest in the interval $0 \leq R \leq 1$, with the weighting function R.

Boundary condition, Eq. (16), is satisfied if

$$
\begin{equation*}
\epsilon(R, \theta, \tau)=\sum_{n=1}^{\infty} b_{n}(\tau) \cdot J_{1}\left(\lambda_{n} R\right) \cdot \cos \theta \tag{20}
\end{equation*}
$$

This type of expansion for ϵ cannot be made to satisfy a contact line condition of the form $\partial \epsilon / \partial R=C_{1} \epsilon$, and consequently only the free edge condition $\left(C_{1}=0\right)$ can be analyzed with Eq. (20).

Now, if $\mathrm{F} \equiv 0$ (i.e., if $\mathrm{N}_{\mathrm{BO}}=\infty$) Eqs. (17) and (18) reduce to

$$
\begin{align*}
& \dot{b}_{n}-\lambda_{n} a_{n}=0 \tag{17'}\\
& \dot{a}_{n}+b_{n}-\frac{2 X_{o} \Omega^{2}}{\left(\lambda_{n}^{2}-1\right) J_{1}\left(\lambda_{n}\right)} \sin \Omega \tau=0 \tag{18'}
\end{align*}
$$

These equations result from dividing through by $J_{1}\left(\lambda_{n}\right) \cos \theta$ in each of the orthogonal equations. Thus, a_{n} and b_{n} can be easily determined, and the potential and the wave shape are completely defined.** Using Eqs. (171) and (18') as a guide, every term in Eqs. (17) and (18) is expandedin a BesselFourier series of the form:

$$
\begin{aligned}
& * \lambda_{1}=1.84118, \lambda_{2}=5.33144, \lambda_{3}=8.53632, \lambda_{4}=11.70600, \ldots, \\
& \lambda_{n+1} \approx \lambda_{n}+\pi[8] . \\
& * * \text { It turns out that } a_{n}=\frac{-2 X_{o} \Omega^{3}}{\left(\lambda_{n}^{2}-1\right) J_{1}\left(\lambda_{n}\right)\left(\Omega^{2}-\lambda_{n}\right)} \cos \Omega \tau \text { and, in particular, } \\
& a_{1}=-\frac{1.438 \mathrm{X}_{0} \Omega^{3}}{\Omega^{2}-1.841} \cos \Omega \tau .
\end{aligned}
$$

$$
\sum_{m=1}^{\infty} C_{m} J_{1}\left(\lambda_{m} R\right) \cos \theta
$$

Now, Eq. (17) reduces to

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{\dot{b}_{n}+\sum_{m=1}^{\infty} C 1_{n m^{a} m}\right\} J_{1}\left(\lambda_{n} R\right) \cos \theta=0 \tag{21}
\end{equation*}
$$

and Eq. (18) reduces to

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left\{b_{n}+\sum_{m=1}^{\infty} C 2_{n m} \dot{a}_{m}+\sum_{m=1}^{\infty} C 3_{n m} b_{m}\right. \\
&\left.-\frac{2 X_{o} \Omega^{2}}{\left(\lambda_{n}^{2}-1\right) J_{1}\left(\lambda_{n}\right)} \sin \Omega \tau\right\} J_{1}\left(\lambda_{n} R\right) \cos \theta=0 \tag{22}
\end{align*}
$$

where $C 1_{n m}, C 2_{n m}$, and $C 3_{n m}$ are the functions of β and $N_{B O}$ given in Appendix A. Since the $J_{1}\left(\lambda_{n} R\right)$ are orthogonal, each term in the sums over n in Eqs. (21) and (22) must be identically zero. Hence, after combining Eqs. (21) and (22) to eliminate the $b_{n}(\tau)$, the equation for each $a_{n}(\tau)$ is found to be

$$
\begin{align*}
& \sum_{m=1}^{\infty} C 2_{n m} \ddot{a}_{m}-\sum_{m=1}^{\infty} C 1_{n m} a_{m}-\sum_{s=1}^{\infty}\left(C 3_{n s} \sum_{m=1}^{\infty} C l_{s m} a_{m}\right) \\
&=\frac{2 X_{0} \Omega^{3}}{\left(\lambda_{n}^{2}-1\right) J_{1}\left(\lambda_{n}\right)} \cos \Omega \tau=0 \tag{23}
\end{align*}
$$

It follows that each a_{n} depends on all the rest. Adequate results, however, can be obtained for the first few modes by truncating the equations at, say, $m=M$, and then treating the resulting set of equations by ordinary methods.

Each of the set of M equations in M unknowns can then be put into a form such as

$$
\begin{equation*}
\ddot{a}_{\mathrm{n}}+\xi_{\mathrm{nl}} a_{n}+\sum_{\substack{m=1 \\ m \neq n}}^{M}\left(\xi_{m} 2^{\ddot{a}_{m}}+\xi_{m 3} a_{m}\right)=X_{o} \Omega^{3} \xi_{n 4} \cos \Omega \tau \quad, \quad n=1,2, \ldots, M \tag{24}
\end{equation*}
$$

where the ξ_{ij} are numerical constants. For example, with $\mathrm{N}_{\mathrm{BO}}=20(\beta=0.340)$ and $m=3$, the equations to be solved are

$$
\begin{array}{r}
\ddot{a}_{1}+1.750 a_{1}+\left(-0.375 \ddot{a}_{2}+1.138 a_{2}\right)+\left(0.608 \ddot{a}_{3}-2.093 a_{3}\right) \\
= \\
\begin{aligned}
&\left(-0.129 \ddot{a}_{1}-0.365 a_{1}\right)+\ddot{a}_{2}+9.304 a_{2}+\left(-0.666 \ddot{a}_{3}-1.427 a_{3}\right) \\
& \cos \Omega \tau
\end{aligned} \\
=
\end{array} \begin{array}{r}
-0.130 X_{o} \Omega^{3} \cos \Omega \tau \\
\left(0.065 \ddot{a}_{1}+0.503 a_{1}\right)+\left(-0.260 \ddot{a}_{2}-4.589 a_{2}\right)+\ddot{a}_{3}+28.229 a_{3} \\
=
\end{array}
$$

The b_{n} 's are calculated from Eq. (21), which for this case is

$$
\begin{aligned}
& \dot{b}_{3}=0.345 a_{1}-3.213 a_{2}+17.083 a_{3} \\
& \dot{b}_{1}=2.071 a_{1}-0.456 a_{2}+1.554 a_{3} \\
& \dot{b}_{2}=-0.373 a_{1}+7.445 a_{2}-3.993 a_{3}
\end{aligned}
$$

Only the steady state response of Eqs. (24) is desired, so letting $a_{n}=A_{n} \cos \Omega \tau$, substituting this expression into Eqs. (24), and then solving for the A_{n} shows that the A_{n} are of the following general form:

$$
\begin{equation*}
A_{n}=\left[\frac{K_{1 n} \Omega^{2 n}+K_{2 n} \Omega^{2 n-2}+\ldots+K_{M n} \Omega^{2}}{\Omega^{2 n}+K_{1} \Omega^{2 n-2}+\ldots+K_{M-1} \Omega^{2}+K_{M}}\right] X_{o} \Omega \tag{25}
\end{equation*}
$$

K_{ij} and K_{i} are various products of the constants in Eqs. (24). This equation can be put into a more revealing form by rearranging it according to the ideas of partial fractions:

$$
\begin{equation*}
A_{n}=\left[\frac{P_{l n}}{\Omega^{2}-\Omega_{l}^{2}}+\frac{P_{2 n}}{\Omega^{2}-\Omega_{2}^{2}}+\ldots+\frac{P_{M n}}{\Omega^{2}-\Omega_{M}^{2}}\right] X_{0} \Omega^{3} \tag{26}
\end{equation*}
$$

The Ω_{i}^{2}, which are the factors of the denominator in Eq. (25), can be identified as the square of the natural frequency of the $i^{\text {th }}$ sloshing mode; they are ordered such that $\Omega_{1}^{2}<\Omega_{2}^{2}<\ldots<\Omega_{M}^{2}$. Physical reasoning implies that all the $\Omega_{i}^{2}>0$, and this turns out always to be the case.

By substituting these results into Eq. (19) and rearranging the terms according to natural frequency, the velocity potential may be expressed as

$$
\begin{equation*}
\Phi=X_{o} \Omega^{3} \cos \theta \cos \Omega \tau \sum_{n=1}^{M} \frac{1}{\Omega^{2}-\Omega_{n}^{2}}\left\{\sum_{m=1}^{M} P_{n m} J_{1}\left(\lambda_{m} R\right) e^{\lambda_{m} Z}\right\} \tag{27}
\end{equation*}
$$

The sum in braces in Eq. (27) is the normal mode function for the $\mathrm{n}^{\text {th }}$ sloshing mode (not normalized to one). Note that the index n in $P_{n m}$ in Eq. (27) occupies the first position in the subscript, while, in Eq. (26), it occupies the second; thus, all the A_{n} contribute to each mode of Φ.

Now, by letting $\mathrm{b}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}} \sin \Omega \tau$, Eq. (21) shows that

$$
\begin{equation*}
B_{n}=\left[\frac{Q_{1 n}}{\Omega^{2}-\Omega_{1}^{2}}+\frac{Q_{2 n}}{\Omega^{2}-\Omega_{2}^{2}}+\ldots+\frac{Q_{M n}}{\Omega^{2}-\Omega_{M}^{2}}\right] X_{0} \Omega^{2} \tag{28}
\end{equation*}
$$

in which the $Q_{i j}$ are various products of the constants in Eq. (21) and the $P_{i j}$. Thus, the dimensionless wave shape is:

$$
\begin{equation*}
\epsilon=X_{o} \Omega^{2} \cos \theta \sin \Omega \tau \sum_{n=1}^{M} \frac{1}{\Omega^{2}-\Omega_{n}^{2}}\left\{\sum_{m=1}^{M} Q_{n m} J_{1}\left(\lambda_{m}\right)\right\} \tag{29}
\end{equation*}
$$

The velocity potential, Φ, and the wave shape, ϵ, have now been determined. The appropriate terms can be easily picked out of Φ and ϵ for studying any particular mode; as will be seen, this is of considerable help in formulating an equivalent mechanical model.

As a numerical example, let $N_{B O}=20, \beta=0.340$, and $M=3$ as before. Then, using the previous results, the A_{n} are

$$
\begin{aligned}
& A_{1}=\left[-\frac{1.158}{\Omega^{2}-1.819}-\frac{0.002}{\Omega^{2}-10.373}-\frac{0.007}{\Omega^{2}-31.797}\right] \mathrm{X}_{\mathrm{o}} \Omega^{3} \\
& \mathrm{~A}_{2}=\left[-\frac{0.027}{\Omega^{2}-1.819}-\frac{0.016}{\Omega^{2}-10.373}+\frac{0.012}{\Omega^{2}-31.797}\right] \mathrm{X}_{0} \Omega^{3} \\
& A_{3}=\left[\frac{\vdots .}{\Omega^{2}-1.819}+\frac{. .}{\Omega^{2}-10.373}+\frac{0 . v L u}{\Omega^{2}-31.797}\right] \mathrm{X}_{\mathrm{o}} \Omega^{3}
\end{aligned}
$$

(A_{3} is not determined quite so accurately as A_{2}, which in turn is probably less accurately determined than A_{1}. In general, one would expect that the A_{n} for n near M will not be as accurately calculated as for smaller n; i.e., if another $M^{\prime}>M$ is picked, then the previously calculated A_{n} for n near M will be changed somewhat. This is not an important limitation because only the first mode results are needed in most applications.) For the numerical example, the B_{n} are

$$
B_{1}=\left[-\frac{2.384}{\Omega^{2}-1.819}+\frac{0.023}{\Omega^{2}-10.373}+\frac{0.012}{\Omega^{2}-31.797}\right] X_{o} \Omega^{2}
$$

$$
\begin{aligned}
& \mathrm{B}_{2}=\left[\frac{0.227}{\Omega^{2}-1.814}-\frac{0.170}{\Omega^{2}-10.373}+\frac{0.012}{\Omega^{2}-31.797}\right] \mathrm{X}_{\mathrm{o}} \Omega^{2} \\
& \mathrm{~B}_{3}=\left[-\frac{0.295}{\Omega^{2}-1.819}+\frac{0.272}{\Omega^{2}-10.373}+\frac{0.336}{\Omega^{2}-31.797}\right] \mathrm{X}_{\mathrm{o}} \Omega^{2}
\end{aligned}
$$

Thus, the fundamental sloshing mode for $\mathrm{N}_{\mathrm{BO}}=20$ is

$$
\begin{gathered}
\frac{\mathrm{X}_{\mathrm{O}} \Omega^{3} \cos \Omega \tau \cos \theta}{\Omega^{2}-1.819}\left[-1.158 \mathrm{~J}_{1}(1.841 \mathrm{R}) \mathrm{e}^{1.841 \mathrm{Z}}-0.027 \mathrm{~J}_{1}(5.331 \mathrm{R}) \mathrm{e}^{5.331 \mathrm{Z}}\right. \\
\left.+0.001 J_{1}(8.536 \mathrm{R}) \mathrm{e}^{8.536 \mathrm{Z}}\right]
\end{gathered}
$$

and the fundamental wave shape is

$$
\frac{\mathrm{X}_{\mathrm{O}} \Omega^{2} \sin \Omega \tau \cos \theta}{\Omega^{2}-1.819}\left[-2.384 \mathrm{~J}_{1}(1.841 \mathrm{R})+0.227 \mathrm{~J}_{1}(5.331 \mathrm{R})-0.295 \mathrm{~J}_{1}(8.536 \mathrm{R})\right]
$$

For comparison purposes, the first three dimensionless sloshing frequencies when $\mathrm{N}_{\mathrm{BO}}=\infty \operatorname{are}(1.841)^{1 / 2},(5.331)^{1 / 2}$, and $(8.536)^{1 / 2}$. When $\mathrm{N}_{\mathrm{BO}}=20$
 $(12.906)^{1 / 2}$, and $(39.634)^{1 / 2}[9] \%$. According to the present analysis, the frequencies for $\mathrm{N}_{\mathrm{BO}}=20$ and $\theta_{\mathrm{c}}=0$ are $(1.819)^{1 / 2},(10.373)^{1 / 2}$, and $(31.797)^{1 / 2}$. Thus, the conclusion is that interfacial tension "stiffens" the free surface but that surface curvature, which depends greatly on the contact angle, "relaxes" it.

The dimensionless natural frequency parameter $\Omega_{1}^{2}=\omega_{1}^{2} R_{o} / g$ for the first mode is shown as a function of the Bond number in Figure 2. Ω_{1}^{2} for $10 \leq N_{B O} \leq 100$ is always less than the high-g limit, $\Omega_{1}^{2}=1.841$, and approaches this value rather slowly as $\mathrm{N}_{\mathrm{BO}} \rightarrow \infty$. The frequency equation of Ref. [3],

[^2]$\Omega_{1}^{2}=1.841+\left(6.26-4.76 \cos \theta_{c}\right) / N_{B O}=1.841+1.50 / N_{B O}$ for $\theta_{c}=0$, is also shown for comparison purposes; as will be seen, however, the results of the present theory give the best comparison with the trend of Ω^{2} vs $N_{B O}$ from our experiments; in any case, the difference between the present theory, the theory of Ref. [3] and the high-g theory is always less than about 5 percent for $10 \leq N_{B O} \leq 100$.

E. Equivalent Mechanical Model

The sloshing characteristics important in missile applications are primarily the slosh frequencies and the forces and moments exerted on the tank. These characteristics are displayed in a more convenient from for stability and control analyses by an equivalent (mathematical) mechanical model. Moreover, the results of the partially numerical analysis must be presented in graphical form, which is a form especially suited for a set of lumped oarameters such as springs and masses. Finally, damping can be introduced in a straightforward manner in the mechanical model.

The proposed model, shown in Figure 3, is outwardly similar to other slosh models; as can be seen, one spring-mass oscillator is included for each of the M slosh modes. In order to calculate the parameters m_{0}, $m_{1}, \ldots, k_{1}, k_{2}, \ldots, h_{0}, h_{1}, \ldots$, the forces and moments exerted on the tank by the liquid must be known.

The interfacial tension forces acting on the tank walls along an element ds of the contact line is shown in the sketch at the top of page 18; these forces arise as a consequence of considering the interfacial tension to be similar to a stretched membrane. The force in the plane of the wall, $\mathrm{F}_{\mathrm{T}}=\mathrm{T} \cos \theta_{\mathrm{c}} \mathrm{ds}$, acts as shown; since here θ_{c} is always 0 , thus $F_{T}=T R_{O} d \theta$ because $d s=R_{o} d \theta$

when higher order products of η are neglected. The vertical component of $\mathrm{F}_{\mathbf{T}}$ is also F_{T}, to the first order in η, and the component of F_{T} tangential to the tank walls in the increasing θ direction is $\mathbf{F}_{\mathbf{T}, \theta}=\mathbf{F}_{\mathbf{T}} \frac{\partial \eta}{\partial \theta}$. Thus, the net force on the tank is composed of a vertical force, which is not important here, and the vector sum of the $\mathrm{F}_{\mathrm{T}, \theta^{*}}$ ds forces, which turns out only to force, then, caused directly by interfacial tension is

$$
\mathrm{F}_{1}=-\int_{0}^{2 \pi} \frac{\partial \eta\left(\mathbf{r}=\mathrm{R}_{\mathrm{o}}\right)}{\partial \theta} \mathrm{T} \sin \theta \mathrm{~d} \theta
$$

Since $\eta=R_{o} \epsilon$, after the integration this equation becomes

$$
\begin{equation*}
F_{1}=\pi X_{o} \Omega^{2} T R_{o} \sin \Omega \tau \sum_{n=1}^{M} \frac{H_{n}}{\Omega^{2}-\Omega_{n}^{2}} \tag{30}
\end{equation*}
$$

where $H_{n}=\sum_{m=1}^{M} Q_{n m} J_{1}\left(\lambda_{m}\right)$ is the dimensionless wave height at the wall for the $n^{\text {th }}$ mode. Now, $T=\rho g R_{o}^{2} / N_{B O}$ so Eq. (30) reduces to:

$$
\begin{equation*}
F_{1}=\left(\frac{1}{N_{B O}}\right) \pi \rho R_{o}^{3} x_{o} \omega^{2} \sin \omega t \sum_{n=1}^{M} \frac{H_{n} \frac{g}{R_{o}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}} \tag{31}
\end{equation*}
$$

after resubstituting dimensional variables back in.
The part of the force directly attributable to the liquid's motion can be calculated with the aid of the velocity potential. Since Φ can be used only in an accelerating reference frame moving with the tank, a velocity potential for particles moving with the tank must be added to Φ before forces in an inertial frame can be computed. Thus, let $\Psi=\Phi+X_{0} \Omega R \cos \theta X$ $\cos \Omega \tau$. Then, if products of Ψ with itself are neglected, the liquid pressure is

$$
\mathrm{p}=-\rho g R_{\mathrm{o}}\left(\frac{\partial \Psi}{\partial \tau}+\mathrm{Z}\right)
$$

or

$$
\mathrm{p}=-\rho g R_{\mathrm{o}}\left(\frac{\partial \Phi}{\partial \tau}-\mathrm{X}_{\mathrm{o}} \Omega^{2} \mathrm{R} \cos \theta \sin \Omega \tau+\mathrm{Z}\right)
$$

In this equation p, has its usual dimensions but is expressed in terms of the dimensionless coordinates R, θ, Z, τ. Thus, the force is

$$
F_{2}=R_{o}^{2} \int_{0}^{2 \pi} \int_{-\frac{h}{R_{o}}}^{\frac{\zeta_{o}}{R_{o}}}[p(R=1)] \cos \theta d Z d \theta
$$

where $\zeta_{0}=\zeta\left(r=R_{o}\right)=R_{o} F(1)+R_{o} \epsilon(R=1)=\beta R_{0}+R_{o} \epsilon_{0}$. Hence

$$
F_{2}=-\rho g R_{o}^{3} \int_{0}^{2 \pi} \int_{-\frac{h}{R_{o}}}^{\beta+\epsilon_{o}}\left[\frac{\partial \Phi(R=1)}{\partial \tau}-X_{o} \Omega^{2} \cos \theta \sin \Omega \tau+Z\right] \cos \theta d Z d \theta
$$

The last term in the integral is

$$
\int_{0}^{2 \pi} \int_{-\frac{h}{R_{o}}}^{\beta+\epsilon_{o}} Z \cos \theta d Z d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left[\beta^{2}+2 \beta \epsilon_{o}+\epsilon_{o}^{2}-\left(\frac{h}{R_{o}}\right)^{2}\right] \cos \theta d \theta
$$

The first and last terms in Eq. (32) integrate to zero; the next-to-last term is a second order quantity in ϵ and is negligible;* Eq. (32) thus reduces to

$$
\begin{align*}
\int_{0}^{2 \pi} \int_{-\frac{h}{R_{o}}}^{\beta+\epsilon_{o}} \mathrm{Z} \cos \theta \mathrm{~d} \mathrm{Zd} \theta & =\beta \int_{0}^{2 \pi} \epsilon_{\mathrm{o}} \cos \theta \mathrm{~d} \theta \\
& =\pi \beta \mathbf{X}_{\mathrm{o}} \Omega^{2} \sin \Omega \tau \sum_{m=1}^{M} \frac{\mathrm{H}_{\mathrm{n}}}{\Omega^{2}-\Omega_{\mathrm{n}}^{2}} \tag{33}
\end{align*}
$$

Similarly, since products of Φ and ϵ are negligible, the first term in the force integral is

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{-\frac{h}{R_{0}}}^{\beta+\epsilon_{o}} \frac{\partial \Phi}{\partial \tau} \cos \theta d Z d \theta=-\pi X_{o} \Omega^{4} \sin \Omega \tau \sum_{n=1}^{M} \frac{I_{n}}{\Omega^{2}-\Omega_{n}^{2}} \tag{34}
\end{equation*}
$$

where $I_{n}=\sum_{m=1}^{M} \frac{P_{n m}}{\lambda_{m}} J_{1}\left(\lambda_{m}\right) e^{\lambda_{m} \beta}$, and it already has been assumed that h / R_{o} is so large that $e^{-\lambda_{m} h / R_{0}} \approx 0$. The results then show that

$$
\begin{equation*}
F_{2}=\pi \rho R_{o}^{3} x_{o} \omega^{2} \sin \omega t\left\{\beta+\frac{h}{R_{o}}-\beta \sum_{n=1}^{M} \frac{H_{n} \frac{g}{R_{o}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}+\omega^{2} \sum_{n=1}^{M} \frac{I_{n}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}\right\} \tag{35}
\end{equation*}
$$

[^3]and the total force, $\mathrm{F}_{1}+\mathrm{F}_{2}$, acting on the tank walls is
\[

$$
\begin{array}{r}
F=\pi \rho R_{o}^{3} x_{o} \omega^{2} \sin \omega t\left\{\beta+\frac{h}{R_{o}}-\left(\beta-\frac{1}{N_{B O}}\right) \sum_{n=1}^{M} \frac{H_{n} \frac{g}{R_{o}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}\right. \\
\left.+\omega^{2} \sum_{n=1}^{M} \frac{I_{n}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}\right\}
\end{array}
$$
\]

After combining and rearranging various terms, it can be seen that

$$
\begin{align*}
& F=\pi \rho R_{o}^{3} x_{o} \omega^{2} \sin \omega t\left\{\frac{h}{R_{o}}+\left[\beta+\left(\beta-\frac{1}{N_{B O}}\right) \sum_{n=1}^{M} \frac{H_{n}}{\Omega_{n}^{2}}\right]\right. \\
& \tag{36}\\
& \left.+\omega^{2} \sum_{n=1}^{M} \frac{I_{n}-\left(\beta-\frac{1}{N_{B O}}\right) \frac{H_{n}}{\Omega_{n}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}\right\}
\end{align*}
$$

of masses and springs in the mechanical model, one finds that

$$
\begin{equation*}
F_{\text {model }}=x_{o} \omega^{2} \sin \omega t\left[m_{0}+\sum_{n=1}^{M} m_{n}-\omega^{2} \sum_{n=1}^{M} \frac{m_{n}}{\omega^{2}-\frac{K_{n}}{m_{n}}}\right] \tag{37}
\end{equation*}
$$

The mechanical model will give forces equivalent to the sloshing, then, if

$$
\begin{align*}
& m_{n}=-\left[I_{n}-\left(\beta-\frac{1}{N_{B O}}\right) \frac{H_{n}}{\Omega_{n}^{2}}\right] \tag{38}\\
& \frac{K_{n}}{m_{n}}=\Omega_{n}^{2} \frac{g}{R_{o}} \tag{39}
\end{align*}
$$

and

$$
\begin{equation*}
m_{o}+\sum_{n=1}^{M} m_{n}=\pi \rho R_{o}^{3}\left[\frac{h}{R_{o}}+\beta+\left(\beta-\frac{1}{N_{B O}}\right) \sum_{n=1}^{M} \frac{H_{n}}{\Omega_{n}^{2}}\right] \tag{40}
\end{equation*}
$$

The numerical calculations show that $\pi \rho R_{o}^{3}\left[\frac{h}{R_{o}}+\beta+\left(\beta-\frac{1}{N_{B O}}\right) \sum_{n=1}^{M} \frac{H_{n}}{\Omega_{n}^{2}}\right]$ is always very nearly equal to the total mass of the liquid, which is $\mathrm{m}_{\mathrm{T}}=\rho \pi \mathrm{R}_{\mathrm{o}}^{3}\left(\mathrm{~h} / \mathrm{R}_{\mathrm{o}}+0.264 \beta\right)$; as $\mathrm{M} \rightarrow \infty$, it is reasonable to believe that it would equal the liquid mass exactly, although this would probably be difficult to prove in complete generality. Assuming, then, that the term is equal to m_{T}, Eq. (40) shows that

$$
m_{o}+\sum_{n=1}^{M} m_{n}=m_{T}
$$

It would be surprising if the part of the force directly proportional to the acceleration of the tank were not equal to the product of the liquid mass and the acceleration. Note that both m_{n} and k_{n} can be computed from knowledge of only the $n^{\text {th }}$ sloshing mode and surface wave; in other words, m_{n} and k_{n} are not coupled to the other modes.

A slightly more exact estimate of m_{1} can be obtained by noting the difference between the term $\beta+\left(\beta-\frac{1}{\mathrm{~N}_{\mathrm{BO}}}\right) \sum_{\mathrm{n}=1}^{\mathrm{M}} \frac{\mathrm{H}_{\mathrm{n}}}{\Omega_{\mathrm{n}}^{2}}$ and its correct value of 0.264β (the differences are always small), attributing this error to H_{1} / Ω_{1}^{2} $\left(H_{1} / \Omega_{1}^{2}\right.$ is much larger numerically than the other $\left.H_{n} / \Omega_{n}^{2}\right)$, correcting H_{1} / Ω_{1}^{2} so that the difference is zero, and then using the corrected H_{1} / Ω_{1}^{2} to calculate m_{1} in Eq. (38).

For example, using the previous results for $N_{B O}=20$ and $M=3$:
$\mathrm{H}_{1}=-1.546, \mathrm{H}_{2}=0.146, \mathrm{H}_{3}=0.095 ; \mathrm{I}_{1}=-0.672, \mathrm{I}_{2}=0.015, \mathrm{I}_{3}=0.007$;
$\Omega_{1}^{2}=1.819, \Omega_{2}^{2}=10.373, \Omega_{3}^{2}=31.797$. Then, $\beta+\left(\beta-\frac{1}{N_{B O}}\right) \sum_{n=1}^{3} \frac{H_{n}}{\Omega_{n}^{2}}=0.340$
$+(0.290)(-0.833)=0.098$, instead of the exact value of $0.264 \beta=0.090$. Thus, correcting $\mathrm{H}_{1} / \Omega_{1}^{2}=-0.850$ by -0.008 , as outlined above, one finds that $m_{1}=0.417 \pi \rho R_{o}^{3}, m_{2} \approx m_{3} \approx 0$ and $m_{o}=\left(h / R_{o}-0.327\right) \pi \rho R_{o}^{3} ;$ and $k_{1}=0.760 \pi \rho g R_{o}^{2}$. For comparison, when $\mathrm{N}_{\mathrm{BO}}=\infty$, known results [10] predict that $\mathrm{m}_{1}=0.455 \pi \rho \mathrm{R}_{\mathrm{O}}^{3}$ and $k_{1}=0.837 \pi \rho g R_{0}^{2} *$ In Figure 4, the fundamental sloshing mass, m_{l}, is shown as a function of the Bond number; in every case, the amount of liquid participating in the sloshing motion is smaller than that for $N_{B O}=\infty$, and, in fact, for $N_{B O}=10$, the sloshing mass is almost 10 percent less than the high-g case. The spring constant, k_{1}, is also shown in Figure 4. The amount of liquid participating in the second and higher modes is very small.

The moment exerted on the tank is caused both by the direct action of the surface tension and by the sloshing pressures. Taking a reference axis in an inertial reference frame whose origin coincides with $z=-h, r=0$, for $t=0$, in the direction $\theta= \pm \pi / 2$ (i.e., the axis is perpendicular to the excitation), the moment due directly to interfacial forces is

$$
M_{1}=-\int_{0}^{2 \pi}\left(h+\beta R_{o}\right) \frac{\partial \eta\left(r=R_{o}\right)}{\partial \theta} T \sin \theta d \theta
$$

*The difference between the values of m_{1} for $N_{B O}=20$ and $N_{B O}=\infty$ is substantially larger than the probable error of $0.008 \pi \rho R_{0}^{3}$ in the calculations for $\mathrm{N}_{\mathrm{BO}}=20$; this is always the case.
when higher order products of η are neglected. Thus,

$$
\begin{equation*}
M_{1}=\left(h+\beta R_{o}\right) F_{1}=\frac{h+\beta R_{o}}{N_{B O}} \pi \rho R_{o}^{3} x_{o} \omega^{2} \sin \omega t \sum_{n=1}^{M} \frac{H_{n} \frac{g}{R_{o}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}} \tag{41}
\end{equation*}
$$

The direct contribution of the liquid pressure to the moment is*

$$
\begin{align*}
M_{2}=R_{o}^{3} \int_{0}^{2 \pi} & \int_{-\frac{h}{R_{o}}}^{\beta+\epsilon_{o}}\left(Z+\frac{h}{R_{o}}\right)[p(R=1)] \cos \theta d Z d \theta \\
& +R_{o}^{3} \int_{0}^{2 \pi} \int_{0}^{1} R^{2}\left[p\left(Z=-\frac{h}{R_{o}}\right)\right] \cos \theta d R d \theta \tag{42}
\end{align*}
$$

The second integral in Eq. (42) is the moment exerted on the bottom of the tank; since $\Phi \approx 0$ for $Z=-h / R_{0}$, this integral reduces to $\frac{\pi}{4} \rho R_{o}^{4} x_{o} \omega^{2} \sin \omega t$.

Hence, altogether M_{2} is

$$
\begin{aligned}
M_{2}=\pi \rho R_{o}^{4} x_{o} \omega^{2} \sin \omega t\left\{\frac{1}{2}\left(\frac{h}{R_{o}}+\beta\right)^{2}\right. & -\beta\left(\frac{h}{R_{o}}+\beta\right) \sum_{n=1}^{M} \frac{H_{n} \frac{g}{R_{o}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}} \\
& \left.+\omega^{2} \sum_{n=1}^{M} \frac{L_{n}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}+\frac{1}{4}\right\}
\end{aligned}
$$

where $L_{n}=\sum_{m=1}^{M}\left(\frac{h}{R_{0}}+\beta-\frac{1}{\lambda_{m}}\right) \frac{P_{n m}}{\lambda_{m}} J_{1}\left(\lambda_{m}\right) e^{\lambda_{m} \beta}$. After combining M_{1} and M_{2}, the total dynamic moment on the tank is:
*The contribution arising from the displacement of the entire mass of liquid as a rigid body relative to the inertial frame (which equals $\mathrm{m}_{\mathrm{T}} \mathrm{x}_{\mathrm{O}}$ sin $\omega \mathrm{t}$) is neglected because it can be computed statically.

$$
\begin{align*}
& M=\pi \rho R_{o}^{4} x_{o} \omega^{2} \sin \omega t\left\{\frac{1}{2}\left(\frac{h}{R_{o}}+\beta\right)^{2}-\left(\beta-\frac{1}{N_{B O}}\right)\left(\frac{h}{R_{o}}+\beta\right) \sum_{n=1}^{M} \frac{H_{n} \frac{g}{R_{o}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}\right. \\
&\left.+\omega^{2} \sum_{n=1}^{M} \frac{L_{n}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}+\frac{1}{4}\right\} \tag{43}
\end{align*}
$$

Using the previous observation that $\beta+\left(\beta-\frac{1}{N_{B O}}\right) \sum_{n=1}^{M} \frac{H_{n}}{\Omega_{n}^{2}}=0.264 \beta$ and rearranging the terms in a manner similar to that used in Eq. (36), Eq. (43) is finally written as

$$
\begin{align*}
M= & \pi \rho R_{o}^{4} x_{o} \omega^{2} \sin \omega t\left\{\left(\frac{h}{R_{o}}+0.264 \beta\right)\left[\frac{\frac{h}{R_{o}}+0.528 \beta+0.128 \beta^{2} \frac{R_{o}}{h}}{2\left(1+0.264 \beta \frac{R_{o}}{h}\right)}\right]\right. \\
& \left.+\left(0.25-0.3 \beta^{2}\right)+\omega^{2} \sum_{n=1}^{M} \frac{L_{n}-\left(\beta-\frac{1}{N_{B O}}\right)\left(\frac{h}{R_{o}}+\beta\right) \frac{H_{n}}{\Omega_{n}^{2}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}\right\} \tag{44}
\end{align*}
$$

Since the distance from the bottom of the tank to the center-of-mass of the liquid is*

$$
\begin{equation*}
h_{c . m}=R_{o}\left[\frac{\frac{\mathrm{~h}}{\mathrm{R}_{\mathrm{o}}}+0.528 \beta+0.128 \beta^{2} \frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{~h}}}{2\left(1+0.264 \beta \frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{~h}}\right)}\right] \tag{45}
\end{equation*}
$$

it turns out that Eq. (44) is equivalent to:
*This distance equals the distance to the c. m. of the undisturbed liquid in the linearized approximations used here.

$$
\begin{align*}
& M=\pi \rho R_{o}^{4} x_{o} \omega^{2} \sin \omega t\left\{\begin{array}{l}
\frac{m_{T}^{h} c \cdot m}{\pi \rho R_{o}^{4}}
\end{array}\right)\left(0.25-0.3 \beta^{2}\right) \\
&\left.+\omega^{2} \sum_{n=1}^{M} \frac{L_{n}-\left(\beta-\frac{1}{N_{B O}}\right)\left(\frac{h}{R_{o}}+\beta\right) \frac{H_{n}}{\Omega_{n}^{2}}}{\omega^{2}-\Omega_{n}^{2} \frac{g}{R_{o}}}\right\} \tag{46}
\end{align*}
$$

Carrying out the calculations for the mechanical model, the moment of the system of vibrating masses about the same reference axis is

$$
\begin{align*}
M_{\text {model }}=x_{o} \omega^{2} \sin \omega t\left\{h_{o} m_{o}+\right. & \sum_{n=1}^{M} h_{n} m_{n}
\end{aligned}+\sum_{n=1}^{M} \frac{m_{n} g}{\omega_{n}^{2}}, \begin{aligned}
& \left.-\omega^{2} \sum_{n=1}^{M} \frac{m_{n}\left(h_{n}-g / \omega_{n}^{2}\right)}{\omega^{2}-\omega_{n}^{2}}\right\}
\end{align*}
$$

Since $h_{o} m_{o}+\sum_{n=1}^{M} h_{n} m_{n}$ is, by definition, equal to $h_{c . m} m_{T}$, Eq. (44) and Eq. (46) give the same resulting moment if m_{n}, m_{0}, and ω_{n} are calculated as previously indicated and if in addition

$$
\begin{align*}
h_{n} & =-\frac{1}{m_{n}}\left[L_{n}-\left(\beta-\frac{1}{N_{B O}}\right)\left(\frac{h}{R_{o}}+\beta\right) \frac{H_{n}}{\Omega_{n}^{2}}\right] \pi \rho R_{o}^{4}-\frac{R_{o}}{\Omega_{n}^{2}} \\
= & R_{o}\left\{\frac{h}{R_{o}}-\frac{1}{\Omega_{m}^{2}}-\frac{\pi \rho R_{o}^{3}}{m_{n}}\left[\sum_{m=1}^{M}\left(\beta-\frac{1}{\lambda_{m}}\right) \frac{P_{n m} J_{1}\left(\lambda_{m}\right) e^{\lambda_{m} \beta}}{\lambda_{m}}\right.\right. \\
& \left.\left.-\beta\left(\beta-\frac{1}{N_{B O}}\right) \frac{H_{n}}{\Omega_{n}^{2}}\right]\right\} \tag{48}
\end{align*}
$$

and

$$
\begin{equation*}
h_{o}=\frac{1}{m_{o}}\left(m_{T} h_{c . m}-\sum_{n=1}^{M} m_{n} h_{n}\right) \tag{49}
\end{equation*}
$$

Note, again, that h_{n} depends only on the $n^{\text {th }}$ sloshing mode. Unfortunately, the se expressions cannot be simplified a great deal, but for $N_{B O}=\infty$, in which case $\Omega_{n}^{2}=\lambda_{n}$ and $P_{n m}=0$ for $n \neq m$, Eq. (48) reduces to

$$
h_{n}=h-\frac{2 R_{o}}{\lambda_{n}}
$$

which is the correct result [10].
Another apparent requirement for moment equality from Eqs. (46) and (47) is

$$
\begin{equation*}
\sum_{n=1}^{M} \frac{m_{n} g}{\omega_{n}^{2}}=\left(\frac{1}{4}-0.3 \beta^{2}\right) \pi \rho R_{o}^{4} \tag{50}
\end{equation*}
$$

When $\mathrm{N}_{\mathrm{BO}}=\infty$, Eq. (50) is not independent of the previous requirements since
$1 / 4=2 \sum_{n=1}^{\infty}\left[\lambda_{n}^{2}\left(\lambda_{n}^{2}-1\right)\right]^{-1}, \omega^{2}=\lambda_{n} g / R_{o}$, and $m_{n}=2 \pi \rho R_{0}^{3}\left[\lambda_{n}\left(\lambda_{n}^{2}-1\right)\right]^{-1}$; hence,
Eq. (50) is satisfied identically [10]. For $\beta \neq 0$, it cannot be proved that Eq. (50) is not an independent requirement; yet, within the accuracy of the numerical examples, it seems that satisfying Eq. (50) is not necessary if $m_{n}, m_{o}, k_{n}, h_{n}$, and h_{o} are calculated by the previous equations; furthermore, the selection of the model parameters would be overdetermined if Eq. (50) were independent. Thus, Eq. (50) will be assumed not to be another independent requirement and henceforth will be neglected.

For the previous numerical example $\left(\mathrm{N}_{\mathrm{BO}}=20, \mathrm{M}=3\right)$, it turns out that $\mathrm{h}_{1}=\mathrm{h}_{\mathrm{av}}-1.179 \mathrm{R}_{\mathrm{o}}$, as compared to $\mathrm{h}_{1}=\mathrm{h}_{\mathrm{av}}-1.086 \mathrm{R}_{\mathrm{o}}$ for $\mathrm{N}_{\mathrm{BO}}=\infty$ where $h_{a v}$ is defined by $h_{a v}=m_{T} / \pi \rho R_{o}^{2}$; thus, the line of action of the springmass system is slightly nearer the bottom of the tank than for $\mathrm{N}_{\mathrm{BO}}=\infty$. The
variation of h_{1} with the Bond number is shown in Figure 5. The other springmass heights, h_{2}, h_{3}, \ldots, are not shown because the extremely small magnitude of m_{2}, m_{3}, \ldots, prevents their being accurately calculated.

The average liquid depth, $h_{a v}$ and the center-of-mass distance, $h_{c . m}$. are shown in Figure 6; using this information, h_{o} can be computed in any particular case from Eq. (49) when it is recognized that the products $\mathrm{m}_{2} \mathrm{~h}_{2}$, $m_{3} h_{3}, \ldots$, can be neglected in comparison to $m_{1} h_{1}$.

III. EXPERIMENTAL APPARATUS AND PROCEDURES

An overall view of the experimental setup is shown in Figure 7a, although the probe used to determine the displacement of the tank (a "Bently" electromagnetic probe) has been removed for the purposes of clarity. A closeup view of the tank and dynamometer system is shown in Figure 7b, which in this case also shows the displacement probe. The tanks shown are made of glass and are approximately 1 in . in diameter; they are attached directly to the flexure arm structure of the dynamometer; semiconductor strain gages (gage factor $=118$) are mounted on the flexure arms, which are strips of aluminum 0.0055 in . thick, 0.312 in . wide, and about $7 / 16 \mathrm{in}$. long. The dynamometer structure is bolted to a base which is then mounted on the armature of the electrodynamic shaker; this arrangement allows the tanks to be excited in pure translation.

As can be seen in Figure 7b, there are two test tanks. One tank, called the active tank, contains the test liquid, and the other tank, called the balance tank, is used to cancel the inertial signal of the empty active tank by appropriate electrical connections and the adding of balance weights; thus, the signal reaching the oscillograph is that due only to the inertia of the sloshing liquid plus any slight residual forces which could not be cancelled. The electrical leads from the tension and compression sides of the balance tank (the gages marked T_{B} and C_{B} in Fig. 8) are connected to the gages from the active tank through a Wheatstone bridge. Details of the wiring and an electrical schematic are shown in Figure 8.

Before each series of tests, the tanks were carefully cleaned in a detergent-and-water solution and rinsed with ethanol and distilled water. In some of the tests for which distilled water was used, the tanks were also cleaned in both a NaOH solution and a hot chromic acid solution. The top of the tank was then covered with a clean plastic wrapper ('Saran Wrap") which was removed only to put in the test liquid. All of the hardware that came into contact with the test liquid was cleaned in the same manner. In this way, the liquid surface was kept free of contamination.

After a set of tanks was installed in the dynamometer rig, the signal from the empty active and the balance tanks was cancelled as nearly as possible by adding tare weights to the balance tank, as described previously. Next, the displacement probe was calibrated by setting known static displacements of the shaker armature with a dial indicator and recording the probe signal on the oscillograph. After this calibration, any residual force signal not entirely cancelled out was recorded by exciting the empty active and balance tanks at various frequencies and amplitudes. A test liquid was then put in the active tank. (The first liquid in each series of tests was always distilled water because this was the most easily contaminated liquid. The other test liquids, methanol and carbon tetrachloride, are both good "cleaners" and not very susceptible to contamination, but, even so, the active tank was always rinsed with distilled water before each change in test liquids. All of the test liquids were reagent grade.) The sloshing forces were next recorded for various excitation amplitudes in a frequency range centered about the fundamental
sloshing frequency.* After the sloshing tests, the residual signals with an empty active tank were again recorded. Then, measured weights (usually rolled up strips of brass shim stock) were put in the active tank and the force output of these weights recorded for various amplitudes and frequencies. Because the amplitude of the actual force exerted by the weights can be calculated exactly $\left(=\omega^{2} x_{0}\right.$ times mass of the weights), the dynamometer force signal was calibrated by subtracting whatever residual signal was previously noted from the signal of the known weights (taking into account the phase angles of the two signals with respect to the displacement) and plotting the resulting amplitude of the signal against the calculated force. The sloshing force was finally obtained by subtracting the residual signal from the sloshing force signal and comparing the result with the force calibration curves.

The accuracy of the various measurements can be estimated from the following considerations. The excitation frequency could be determined and maintained to the fourth significant digit in the period (in seconds); e.g., a nominal frequency of 5 cps could be set and held with a variation in the true period (0.2 seconds) of about ± 0.0003 seconds. The excitation amplitude could be determined and maintained to within ± 0.0005 inch. Phase angles between excitation and force traces, which were used only in subtracting the small residual signals from the larger dynamic force signals, could be determined
*The forces were quite small so that, to prevent their being masked by external noise, the dynamometer signal was passed through an electronic filter with a band pass of 2 to 30 cps . A plastic dust cover, which can be seen in Figure 7a, was put over the tanks and the dynamometer to prevent stray air currents from giving spurious signals in the frequency range of the band pass of the filter. A clean sinusoidal force signal was usually obtained by these methods.
from the oscillograph records to within about ± 20 degrees. The amplitude of the force signals could be read to about 1 part in 100 , with the exception that for extremely small amplitudes the accuracy was about 1 part in 10 . The deviation of any experimental point in the force calibration was within ± 5 percent of the "best-fit" straight line through the data and the zero point. The height of the liquid in the tank was determined to within $\pm 0.01 \mathrm{in} .$, and the meniscus height could be determined to about ± 0.015 inch. The overall accuracy of the sloshing force data, after being reduced, is estimated to be within ± 5 percent of their true values.

IV. TEST RESULTS AND COMPARISON WITH THEORY

A. Test Results

The main objective of the experimental program was to determine the sloshing force (for incompressible liquids in rigid cylindrical tanks) as a function of the excitation frequency for a band of frequencies centered about the fundamental mode, with the Bond number as a parameter. No attempt was made to measure the sloshing moments since this would have greatly complicated both the experimentai setup and the experimental procedures; for example, not only would residual forces (no liquid in the active tank) have had to be kept as close to zero as practical, but the residual moments would also have had to be cancelled by tare weights.

Four different sized tanks, with diameters from 1.36 in. to $0.384 \mathrm{in} .$, were used in the tests with three different test liquids: distilled water, methanol, and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$. Except for one series of tests with a $1.00-\mathrm{in}$. diameter Lucite tank, all of the tests were run in glass tanks. As nearly as could be determined from visual observations, the contact angle of all the liquids against the glass tanks were zero degrees, although, with the Lucite tank, the water's contact angle was nearly ninety degrees. The sloshing motion of the liquids, except as discussed subsequently, appeared to approximate the "free edge" condition very well.

Figures 9 and 10 show the force response curves for CCl_{4} and methanol in a 1.36 -in. diameter glass tank; the Bond numbers were 175 and 100 , respectively. The solid lines in these figures are faired curves through the experimental data. There is a pronounced resonance for both liquids in the vicinity
of 5.1 cps , as can be seen from the curves; the curves, in fact, are qualitatively quite similar to resonance curves for ordinary high-g sloshing. Near the resonant frequency, the sloshing is of the rotary or "swirling" type encountered in high-g sloshing [11, 12] in which the surface wave rotates around the tank. The shaded areas shown in the figures indicate in a very crude fashion the swirl-zone boundaries. Once swirling is encountered, the sloshing force, of course, rotates around the tank also, and, thus, the forces in this zone cannot be determined nor the exact resonant frequency found. The curves for water, methanol, and CCl_{4} in a 1.04 -in. diameter glass tank are shown in Figures 11, 12, and 13, and for methanol in a 1.00-in. diameter Lucite tank in Figure 14. The methanol and CCl_{4} (B ond numbers about 55 and 98, respectively) again display a marked resonance, this time near 5.75 cps because of the smaller tank. However, water (Bond number of 24) responded in a quite different fashion, as shown in Figure 11 . The resonance peak, for one thing, is near 6.5 cps instead of the expected value of about 5.75 cps . For another, the response curves appear to be heavily damped; note the difference between the peak force for water and CCl_{4} for $x_{0} \approx 0.005$ inch. Furthermore, the boundaries of the swirling motion, which are highly dependent on the amount of damping present, are not encountered except for large values of the excitation amplitude. The apparent conclusion is that the water's motion is much more highly damped than either the CCl_{4} or the methanol. Yet, the viscosity and hence the Reynolds number for all three liquids are approximately the same*; certainly, the differences in the

$$
\begin{aligned}
& *_{\mathrm{H}_{2} \mathrm{O}}=0.010 \mathrm{l} \mathrm{~cm} \\
& 0 / \mathrm{sec} ; v_{\mathrm{CCl}_{4}}=0.00969 \mathrm{~cm}^{2} / \mathrm{sec} ; v_{\text {methanol }}= \\
& 0.0059 \mathrm{~cm}^{2} / \mathrm{sec} .
\end{aligned}
$$

viscous action are not sufficient to explain the discrepancies in the response of the water and that of the other two liquids.* The difference, then, must be due to the water's sticking to the tank walls, and visual observations indicated that, indeed, the water did not slide freely along the tank walls (it was not completely stuck, however), even though extreme care was used to prevent contamination of the water and the tanks (see Section III). The shift in frequency can be explained by a contact line condition of the form $\partial \eta / \partial r=C_{1} \eta$, as has been noted before [3], but this equation, if C_{1} is a numerical constant, does not seem able to explain the additional damping caused by "sticking." The entire subject of contact angle hysteresis and surface wave damping has recently been reviewed by Miles [13] ; he points out that the important physical processes. are far from being fully understood.

The water behaved in the same anomalous manner in the other glass tanks, and, since the interest here is in the "free edge" condition, the other response curves for water are not shown.

The response of methanol in a 1.00 -in. diameter Lucite tank is shown in Figure 14; it is quite similar to that shown in Figure 12 for a 1.04 -in. diameter glass tank. Because of this, and because water has almost a ninety degree contact with Lucite and CCl_{4} attacks it, the tests with Lucite tanks were not pursued further.

Curves for methanol and CCl_{4} in a 0.688 -in. diameter glass tank (B ond numbers 26 and 45) and for CCl_{4} in a 0.384 -in. diameter glass tank (Bond
*The shift in resonant frequency because of the lower Bond number of the water is not nearly enough to explain the observed frequency shift. See Figure 2.
number 14) are shown in Figures 15, 16, and 17. In these tests, the Bond number is small enough that the interfacial forces are almost as important as the body forces. It can be seen that a pronounced resonance still exists. B. Comparison with Theory

The experimental value of the natural frequency is determined from each response curve by assuming it is halfway between the swirl boundaries for the lowest excitation amplitude; this is not an exact procedure, of course. These values are compared with the theoretical predictions in Figure 2. There is considerable scatter of the data about the theoretical curve, but the general trend of the data and the theory is in agreement. In particular, the experimental frequencies, except for $N_{B O}=14$, are below the high-g limit as the theory predicts. In fact, for several cases, the high-g theoretical frequency lies to the right of the observed swirl boundaries, especially for the higher Bond numbers, whereas the true natural frequency must lie within the swirl region.

Comparison of the theoretical values of β and the observed value of the meniscus height at the wall agree fairly well, but the inaccuracies in measuring the meniscus ($\pm 0.015 \mathrm{in}$.$) make quantitative comparisons very$ difficult. For example, with $\mathrm{N}_{\mathrm{BO}}=14$, the meniscus height is about 0.07 in . in the 0.384 -in. diameter tank; this gives a value of $\beta \approx 0.365$ compared to the theoretical prediction of 0.442 .

The force response of the proposed mechanical model, with only the fundamental sloshing mass included, is compared with the experimental results in Figures 18 through 23. The solid lines in the figures are the
theoretical predictions, and the small squares and circles indicate actual experimental data taken from the previous curves. The ordinate and abscissa scales deliberately have not been nondimensionalized in order to facilitate direct comparisons. In these curves, the excitation amplitude, x_{O}, for use in the theory has been adjusted within the ± 0.0005-in. accuracy limits mentioned in Section III until the model and the test results agree at the lowest experimental frequency below the resonance; at this frequency, the force is almost entirely equal to total liquid mass times acceleration (i.e., no magnification due to resonance), and, hence, adjusting x_{0} can be interpreted as mainly accounting for inaccuracies in measuring both x_{O} and the force amplitude. The adjustments in x_{o} are relatively small, and all the curves in Figures 9 through 23 have been labeled with these adjusted values. With this exception, it can be seen that the mechanical model and the test results agree very well, especially for that part of the response curve for frequencies below the natural frequency. The upper part of the response curves do not agree quite so well, but at least part of this discrepancy is caused by the influence of higher order modes, which are not included in the single sloshingmass model used to derive the theoretical curves.

There are more serious discrepancies between theory and experiment for the smallest Bond number tested, $\mathrm{N}_{\mathrm{BO}}=14$. The comparison is shown in Figure 23. If the theoretical natural frequency, $\Omega_{1}^{2}=1.841$ or $f_{1}=9.66 \mathrm{cps}$, is used in the mechanical model, the predicted forces near resonance are much too large in comparison to the test results. However, if the experimental natural frequency, $f_{1}=9.80 \mathrm{cps}$, is used in the model, the predicted
forces and the observed forces agree considerably better. It appears from this, then, that the theoretical calculations have not converged to the proper values for Bond numbers near 10. Perhaps by retaining more terms in the potential and wave height equations, this situation could be corrected.

The actual damping was not determined in the tests or used in the theory, but visual observations of the number of cycles required for the sloshing to decay indicated that the total damping was not large (except for the water); this is verified by the good comparison between the idealized theory and the test results. Also, by using the well-established equation for large tanks [14]

$$
\delta=4.96 v^{1 / 2} R_{o}^{-3 / 4} g^{-1 / 4}
$$

where δ is the \log decrement, it is found that, for the smallest (0.384 in.) diameter tank, $\delta \approx 0.097$ to 0.13 , and that, for the largest (1.36 in.) diameter tank, $\delta \approx 0.04$ to 0.05 for the methanol and CCl_{4}. While these are larger values of the log decrement than are usually employed in sloshing tests, they are still not so large as to affect materially either the natural frequency or the force response, with the possible exception that the boundaries for swirling motion are wider in the present tests than are found in tests with larger tanks. Thus, the liquid damping is not considered to be a serious limitation in small-model testing.

v. CONCLUSIONS

This study of lateral sloshing for moderately small Bond numbers has revealed a number of interesting features. The analysis shows that the fundamental sloshing frequency for $10 \leq N_{B O} \leq 100$ is always less than the high-g limit of $\omega_{1}=\left(1.841 \mathrm{~g} / \mathrm{R}_{\mathrm{o}}\right)^{1 / 2}$ if the liquid's contact angle is zero and if the liquid obeys the "free edge" contact line condition. The amount of liquid taking part in the sloshing motion is also less than the high-g limit; this is a reasonable result because, for the same size tank and the same total amount of contained liquid, more of the liquid is in contact with the walls for small Bond numbers than for large Bond numbers; thus, more of the liquid must follow the motion of the tanks, i.e., more of the liquid must be assigned to the rigid mass, m_{0}, and less to the sloshing mass, m_{1}, in the mechanical model. The sloshing masses, moreover, are located slightly nearer the bottom of the tank than for $\mathrm{N}_{\mathrm{BO}}=\infty$.

The experimental tests have verified the force response of the proposed mechanical model with about the same degree of accuracy as similar mechanical models for high-g sloshing. There is some doubt about the natural frequency for $\mathrm{N}_{\mathrm{BO}} \approx 10$, but, in general, the correlation between theory and experiment is good. The experiments, furthermore, have demonstrated that it is possible to simulate low-gravity sloshing (i.e., sloshing with small Bond numbers) by the use of small models and still get usable results for the sloshing forces and frequencies. The amount of damping with such small tanks did not appear to be critical. However, considerable care must be used in these
kinds of tests to insure that the tanks are very clean and the liquids pure; also, test liquids and tank materials must be chosen which will duplicate the desired conditions of "free edge, " "partially stuck edge, " or "stuck edge" contact lines.

VI. ACKNOWLEDGEMENT

The authors extend their thanks to Professor Helmut Bauer of the Georgia Institute of Technology and Dr. Wen-Hwa Chu of SwRI for several helpful discussions about the analysis and to. Mr. Dennis Scheidt of SwRI for his aid in running the experiments.

LIST OF REFERENCES

1. Habip, L. M., "On the Mechanics of Liquids in Subgravity," Astronautica Acta, 11, No. 6, pp. 401-409 (1965).
2. Reynolds, W. C., Saad, M. A., and Satterlee, H. M., "Capillary Hydrostatics and Hydrodynamics at Low-g, "TR LG-3, Dept. of Mech. Eng., Stanford University, September 1, 1964.
3. Satterlee, H. M., and Reynolds, W. C., "The Dynamics of the Free Liquid Surface in Cylindrical Containers under Strong Capillary and Weak Gravity Conditions, " TR LG-2, Dept. of Mech. Eng., Stanford University, May 1, 1964.
4. Benedikt, E. T., "A Study of Propellant Behavior at Zero Gravity," Final Report, Contract NAS8-11097, North American Aviation, Inc., Space and Information Systems Division, April 15, 1966.
5. Ryan, R. S., and Buchanan, H., "An Evaluation of the Low G Propellant Behavior of a Space Vehicle During Waiting Orbit, " NASA TM X-53476, June 22, 1966.
6. Swalley, F. E., Platt, G. K., and Hastings, L. J., 'Saturn V LowGravity Fluid Mechanics Problems and Their Investigation by FullScale Orbital Experiment, " Fluid Mechanics and Heat Transfer under Low Gravity, Proceedings of the 1965 Symposium sponsored by U.S.A.F. Office of Scientific Research and Lockheed Missiles and Space Company, ed. H. Cohen and M. Rogers. No publisher given. pp. 1-1 to 1-24.
7. Satterlee, H. M., and Chin, J. H., 'Meniscus Shape under ReducedGravity Conditions, " Fluid Mechanics and Heat Transfer under Low Gravity, Proceedings of the 1965 Symposium sponsored by U.S.A.F. Office of Scientific Research and Lockheed Missiles and Space Co., ed. H. Cohen and M. Rogers. No publisher given. pp. 13-1 to 13-24.
8. Handbook of Mathematical Functions, ed. by M. Abramowitz and L. A. Stegun. National Bureau of Standards, Applied Mathematics Series 55, Washington, D. C., June 1964.
9. Benjamin, T. B., and Ursell, F., "The Stability of a Plane Free Surface of a Liquid in Vertical Periodic Motion, " Proc. Royal Soc. (London), A225, pp. 505-515 (1954).
10. Bauer, H. G., "Fluid Oscillations in the Containers of a Space Vehicle and Their Influence Upon Stability, " NASA TR R-187, February 1964.
11. Hutton, R. E., 'An Investigation of Resonant, Nonlinear Nonplanar Free Surface Oscillations of a Liquid, "NASA TN D-1870, May 1963.
12. Abramson, H. N., Chu, W.-H., and Kana, D. D., "Some Studies of Nonlinear Lateral Sloshing in Rigid Containers, " Final Report, Contract NASr-94(03), Southwest Research Institute, December 1964 (also to appear in December 1966 Journal of Applied Mechanics).
13. Miles, J. W., "Damping of Gravity Waves by Surface Films," Sixth Symposium on Naval Hydrodynamics, Paper 23, Volume II, Washington, D.C., September 1966.
14. Stephens, D. G., Leonard, H. W., and Perry, T. W., "Investigation of the Damping of Liquids in Right-Circular Cylindrical Tanks, Including the Effects of a Time-Variant Liquid Depth, " NASA TN D-1367, July 1962.

APPENDIX A

DEFINITION OF FOURIER-BESSEL COEFFICIENTS

The constants, or Fourier-Bessel coefficients, in Eqs. (21) and (22)
are:

$$
\begin{aligned}
& C l_{n m}=\frac{2 \lambda_{n}^{2}}{\left(\lambda_{n}^{2}-1\right)\left[J_{1}\left(\lambda_{n}\right)\right]^{2}} \int_{0}^{1} R\left\{-\lambda_{m} J_{1}\left(\lambda_{m} R\right)\right. \\
& \\
& \left.\quad+\frac{3 \beta R^{2}}{2\left(1-R^{3}\right)^{1 / 2}} J_{1}^{\prime}\left(\lambda_{m} R\right)\right\} J_{1}\left(\lambda_{n} R\right) e^{\lambda_{m} \beta\left[1-\left(1-R^{3}\right)^{1 / 2}\right]} d R \\
& C 2_{n m}=
\end{aligned} \begin{aligned}
& \left(\lambda_{n}^{2}-1\right)\left[J_{1}\left(\lambda_{n}\right)\right]^{2} \int_{0}^{1} R J_{1}\left(\lambda_{m} R\right) J_{1}\left(\lambda_{n} R\right) e^{\lambda_{m} \beta\left[1-\left(1-R^{3}\right)^{1 / 2}\right]} d R
\end{aligned}
$$

and

$$
\begin{aligned}
C 3_{n m}= & \frac{2 \lambda_{n}^{2}}{\left(\lambda_{n}^{2}-1\right)\left[J_{1}\left(\lambda_{n}\right)\right]^{2}} \int_{0}^{1} \frac{R}{\left(N_{B O}\right)\left(1-R^{3}+\frac{9}{4} \beta^{2} R^{4}\right)^{3 / 2}} \\
& \times\left\{\left(1-R^{3}\right)^{3 / 2} \lambda_{m}^{2} J_{1}\left(\lambda_{m} R\right)+\frac{9}{4} \beta^{2} R^{2}\left(1-R^{3}\right) J_{1}\left(\lambda_{m} R\right)\right. \\
& \left.+\left[\frac{9 \beta^{2} R^{3}\left(1-0.25 R^{3}\right)\left(1-R^{3}\right)^{1 / 2}}{\left(1-R^{3}+\frac{9}{4} \beta^{2} R^{4}\right)^{3 / 2}}\right] J_{1}^{\prime}\left(\lambda_{m} R\right)\right\} J_{1}\left(\lambda_{n} R\right) d R
\end{aligned}
$$

APPENDIX B

ILLUSTRATIONS

Figure 1. Cylindrical Tank And Coordinate System

Figure 3. Schematic Of Mechanical Model

Figure 4. Fundamental Slosh Mass And Spring Constant

Figure 5. Height Of Fundamental Slosh Mass Above Bottom Of Tank

Figure 6. Average Liquid Depth And Center-Of-Mass Location

Figure 7a. View Of Experimental Apparatus

Figure 7b. View Of Glass Tanks And Dynamometer

Figure 8. Schematic Of Electrical Wiring

Figure 9. Response Curve For Methanol, Bond Number $=100$

Figure 10. Response Curve For Carbon Tetrachloride, Bond Number $=175$

Figure 1l. Response Curve For Water, Bond Number $=23.5$

Figure 13. Response Curve For Carbon Tetrachloride, Bond Number $=98$

Figure 15. Response Curve For Methanol, Bond Number $=26$

Figure 16. Response Curve For Carbon Tetrachloride, Bond Number $=45$

Figure 18. Comparison Of Theory And Experiment, $N_{B O}=100$

Figure 19. Comparison Of Theory And Experiment, $\mathrm{N}_{\mathrm{BO}}=98$

Figure 21. Comparison Of Theory And Experiment, $\mathrm{N}_{\mathrm{BO}}=45$

Figure 22. Comparison Of Theory And Experiment, $\mathrm{N}_{\mathrm{BO}}=26$

[^0]: *All figures grouped in Appendix B.

[^1]: *For very small Bond numbers, a better nondimensionalization of ω is $\bar{\Omega}=\omega\left(\rho R_{o}^{3} / T\right)=\Omega N_{B O}$ since this avoids any difficulties in the dimensionless frequency as $g \rightarrow 0$.

[^2]: *The set of Eqs. (13) through (18) can be solved exactly for this case since $F=0$ and the boundary conditions "separate" term by term.

[^3]: *The entire integral is negligible for very large Bond numbers.

