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VI. ADIABATIC CORRECTIONS TO LONG-RANGE BO POTENTIALS

In the previous section the electronic wavefunctions for largeFl
were expressed in terms of products of atomic wavefunctions,cb(c),
characterized by definite atomic parity,‘?% , and angular momenta,

LC s Sc s :rc , and Mc . The large R expansion of the BO
electronic Hamiltonian was also expressed at Eq. (5-13) in terms of
atomic irreducibie spherical tensors of definite atomic parity. In
this section the adiabatic corrections are similarly expressed, and
parity and the Wigner-Eckart theorem83 are used to find selection
rules on the corrections. More detail on the procedure is given in
Appendix D. It should be noted that some of the corrections allowed
to be non-zero by these selection rules may still contain equal
terms of opposite signs that cancel each other and leave the

correction zero. Everything in this section is diagonal in the good

quantum numbers \;Z. s ~f5 , and jfﬁ,, and they will not be explicitly

written. The ''resonant'" and ''mon-resonant'" cases introduced at
Eq. (5-72) are considered in order, and at the end of the section

the meaning and importance of the corrections are discussed.

A. The "Resonant' Case

In this subsection it is assumed that the system consists of

identical atoms in states of different energies; that is, with

kq_7—l= kb . The true resonance case is a subcase of this and is

defined below. 1In order to more clearly see the relative importance
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of the corrections obtained, the selection rules on the static or BO
potential are reviewed first, and then the selection rules on the

corrections are obtained.

1. The BO Potential

The selection rules on the long range BO potential have been

8
treated in detail by Knipp84, Fontana 5, and Changso. They are only

(
sketched here. The coefficients E:j:)

given by Eq. (5-25), which now becomes

m) TS S S zszm)< [WEY WY LT,

T3, MM TT, MaMy, 2

, for n =3, 4, and 5 are

(6-1)

where LJ can be written in the form,

L1 = <blwy| Mm@ | bla;a))y {ble; b’)\)ﬂ'm(b)\b(b5b)> ¥

B ICHIIR I HOY bia; b)) &, to'nm;,’:',_ ROIIOI)

(6-2)

The notation is explained in connection with Eq. (5-69). One has

l L .
here k;'= ka. and kb: kb because only the energy degenerate
quantum numbers are included in the summation. The first product

of integrals in (6-2) will be called the ''diagonal part' of (6-2);

the second product of integrals will be called the 'off-diagonal part"

of (6-2).
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Now let us first consider
(%) _ /0) (a) 0 6-3)
'S T q/ LP > ' (

m £
The atomic tensors 7”& have atomic parity Q;O , and in this
. m
sum only the odd parity 7n7| appear. All of the diagonal parts of
(6-2) vanish for this case, and from the Wigner-Eckart theorem

(Appendix D), the off-diagonal parts of (6-2) also vanish unless

£F P,

IT,~1] £ 3, £ I+,

VL -t} & Lo & Lpg+1, and
Sa= S,

(6-4)

m
The last two restrictions hold because the 7”& only act on

configuration space. If (6-4) holds, then ane has

(3) 4:0 (6-5)

which is the true resonance interaction.
o)
To consider E%S one observes that for even n the product
-m
77ﬁ;va))41n—pff) always consists of one tensor of even parity
and one tensor of odd parity. This makes one of the integrals in

each term in (6-2) always vanish and leads to the result that,

for even n ,
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YDAy =0, ot s eaa 6

Thus, one always has

IT) , 67
555 =0. (6-7)

(s)
In Eq. (6-1) for 2}3 , examination of the possible tensors

shows that one can have

£ 4o,
if either
o= P,
1T.-Tl €2 £ 3}.*35,
iLa"Lbl L2 £ La—i’Lb’ and (6-9)
S.=9,
or else

Lt o,
T 1 21£32 34T,
|L—Lolc1 £3% batle, an

Sa: Sb,

(6-10)




o
The first integral in Eq. (5-26) for : ) vanishes from (6-7).
jS

The second one is
{0 (3) ()
Ej\(g) = LU 1N [ s (6-11)

3)

= 2y <RI
k

(3) @ \*
Z \ <-§j\)‘ls \\'PQS>\ (6-12)
279 &y~ Els .

3)
The first term vanishes if )/5 is fully diagonal in the set of
degenerate zeroth-order wavefunctions. The second term is the van

der Waals coefficient and never vanishes.

2. The Mass Polarization Corrections

The mass polarization correction to the electronic Hamiltonian

is given by Eq. (5-30),
(0) 2
m = A P1 + AP (6-13)

(6)
y/fm)contributes even at R" og Had it been included in the

(ie)
separated atom Hamiltonian and that solved exactly, the E}AWO would
not appear; hence, they simply correct for the fact that we used fixed-

nucleus atomic wavefunctions rather than exact atomic wavefunctions.
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Before considering the energy corrections, Eq. (5-35 to 38), let

us consider the more general matrix element,

<y IR VU2, (6-14)

where (:, 0‘5 3@ . Substituting into this, one gets a sum
similar to Eq. (6-1) and matrix elements similar to Eq. (6-2) with
m *
one 7)7} replaced by ‘Pc , the other replaced by unity. Because
k“:‘; K, , orthogonality makes the off-diagonal parts vanish.
2
Also _Pc is a zero rank, even parity atomic tensor depending only

on the configuration space. Using the Wigner-Eckart theorem (see

Appendix D) the equivalent of Eq. (6-2) becomes

[1= bb ao. [(&(a’a)ﬂf \ & ro; a)) 4-<¢[b'b)“£ H’(b:b)s_\(e -15)

where /‘/27'1,_ =/a/2mL = I/I{- for like atoms. These reduced
matrix elements LIl Iy depend only on k“ and 'k-b . They can

be factored out of the (6-1)-type sum, and from Eq. (5-73) one obtains
1)) 0}
= . . (6-16)

-~ [/0)
Thus, 74'“’(77') is always diagonal no matter what linear combination

‘
(5-70) is chosen for \,l/ ) Furthermore, it has the same value

L
over the whole degenerate set. It shifts all zeroth order energies

93



: : | | %) '
but splits none of them. Hence, the energy correction g;jf‘(m) is

given by Eq. (6-16). 1Its value is often made easier to calculate

52,68 . ‘.
if one makes use of sum rules™™”"". It is positive definite and

always nonzero,

()
Ejym) +0. (6-17)

For k = 3, 4, or 5, Eq. (5-37) for Eo‘,u(m) becomes

1 v~ @ 7 7 <k\ )
(k) ) — __Z Z <q’45 l”}l{m) \'&1)@1,\745 qﬁs) . (6-18)
: (0) i0)
1)3 és h gj's
, o«
let us now replace the energy denominator by an average value Ast
)
If one tries to estimate Ajs , this becomes Unsold's approxima-
tion. However, for gselection rule purposes, all one need assert is

)
that for some AJS ,

Z;-{:?m) =" Am z- ).}"”lm)\I <8 | % m> ' (6-19)

)

This assertion is equivalent to the mean value theorem86.‘ Using the

completeness relation and (6-16) this becomes

- 0 - te ) e {9 ) ] (4) 8)
£ = ,,,[w’m WYY <Y, l}ﬁ‘v)l%&&;;l){?l ¥
‘(6-20)

(0)
Because _}/ () contains only even parity zero rank tensors, both
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integrals in (6-20) are subject to just exactly the same selection

lie)
rules as .}ﬁ . One therefore has

{0), Gie)
E;-/{’") #0 (’—'—> st #0 , For k-—-?))‘wl)andf, (6-21)

~ | 10)
Furthermore, from the simple symmetry of F}£MFW0 and Eq. (5-38),

it is clear that one always has

f;ﬁ(w =I=O . (6-22)

®)
This E?)f”ﬂ represents a small correction to the BO van der Waals

C ) ©w
coefficient E%g . For most atoms E}s is not presently known

to sufficient accuracy make E;g(m) contribute to its significant
figures, but Eigkm) will be treated in more detail in Section VII
for a special case in which it is significant.
‘
We thus see that /;%ﬂ} contributes nothing new to the potential

but is just a small correction to each non-zero term in the BO

potential and is due to our choice of atomic wavefunctions.

3. Corrections to the Centrifugal Potential

Dalgarno and M.cCarroll10 calculated corrections to the centrifugal
potential, but their formulas have limited meaning and validity
because they used the products ® rather than the linear
combinations necessary to form the correct zeroth order wavefunctions.
We now consider those corrections in more detail.

~ (2)
Let us first discuss E 5/‘4(6) . From Eq. (5-39) and (5-41),

it is
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aﬁa:L<Mﬁq}ﬂﬁl?>' (6-23)

2

The operator here is positive definite. Therefore,

£2@ >0 (6-24)
m T

and the equality holds only if Vé: is an eigenfunction of §:
with eigenvalue 0 . This EER%C) appears in the effective potential
_ e )
as a term of C)(Iéu,ﬂz) . For sufficiently large K , ){ub
is the largest perturbation in (5-2) and the zeroth order wavefunctions
are chosen to diagonalize it. This diagonalization simply implies
that for large enough R the static interaction is small enough
that &3 and }2 can be simultaneously quantized. In such cases,
(6-23) is easily evaluated. For smaller Q , when %F is not

always diagonal ,Eq. (6-23) can still be readily evaluated by writing

%1:(}a+ %&.Y e
%z = %t“’ %25 + (}*‘34.((}!:),—*(?,),(35)* +2(?a\z(\\bz ' (6-25)

The first two terms in (6-25) are zero rank tensors, the other three

are products of first rank tensors. All have even atomic parity.

Their actions on ¢(a) and cp(b) are well known. To evaluate (6-23)

one just substitutes (5-72) and (6-25) into it and adds up the results.
The higher corrections f;ﬁlﬁﬂ for m = 5,6 are obtained from

(5-43),




Efler = YNNG (20

The .ﬂ.,z term vanishes from the normalization conditions (C-48).

10) (m)
If 4’5 is an eigenfunction of %:' , then Z;.’A(c) completely
vanishes for the same reason. Using Eq. (5-74) and the mean value

theorem (6f19), Eq. (6-26) becomes
ghn)() N %/<¢1o)\w(m-zs<q/m‘ zN/n _ 1 <¢m D‘lm-z),z‘q/lo)>__
e - TN - gy
L (0, 2. | (0 @ |~ D)) LD
3 <¢3.3|%| o) Mg D is)]. (6-27)

2
For any specified set of zeroth order functions the %} integrals

can be performed using (6-25). Because all the terms in (6-25) have

2

tm-2, tm-2
even atomic parity, 3& has the parities of '%L . Therefore,

the second term in (6-27) vanishes for m = 6,

| " (6-28)
~1L1=0, M=*
A
(3)
For m = 5, one has )4; in the second term of (6-27) and parity

arguments lead to

(6-29)

)

_A'__['] =0 for "m-_»gl unless ‘fw#ﬂ



7€;4p7% , there are many different atomic tensors which can
) .
be formed from )J through the Clebsch=-Gordan theorem (Appendix D),
indicating that the second integral will not usually vanish.
In actual practice Eq. (6-27) is usually easy to evaluate or

estimate, and we do not consider these general forms any further.

4. The Cross Derivative Corrections

To get selection rules on the corrections that come from the

]
cross derivatives, let us first look at )J (X) , Eq. (5-47),

/u
N/(,')(x) - L (p & }_) (6-30)

V2

This can be written in terms of atomic tensors,

o = = e #Pcb)][} +(3b)]+[ﬁpfd>'#p‘°1[(%a)+(MQS

(6-31)

When miltiplied out, each term consists of a product of an odd parity

hs +)
function ('Pl or Rb}; ) on one atom and an even parity function

( 3t or unity) on the other. Therefore, from Eq. (6-6)7

U IIED =0, all iieqn

And Eq. (5-51) is always

Q) _
Ed/*(X) =0, (6-33)
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To obtain the corrections in (5-53) we observe that
B =gh@-4p, () (6-34)

also consists only of odd tensors (P;_,,-‘- R°> on one atom times
even tensors (unity) on the other. Using these results and the mean
value theorem on Eq. (5-53) one obtains for k = 4,5, and 6,

0 |

0 { 2 (e-1), 1 _
&0 = T Y2\l + e d BT (4). @29

(k-
If k=4 or 6, then EHL consists only of products of tensors
with the same parity on each atom and the integrand in (6-35) will
again consist only of products of an even function on one atom times

an odd function on the other. Thus, from Eq. (6-6), one always has

by
EL.)(X) =0, for k=4 anda b, (6-36)
M
(4)
However, for k = 5, )Js appears and the resulting product contains
functions with the same parity on each atom. If one uses the Clebsch-
Gordan theorem (Appendix D) to write this product in terms of

irreducible tensors on each atom, he obtains

3 -m
[.2}6“%1) + ctle-') P*] )’[:‘) ~ Z z ‘r{éa'jﬂ—‘; (b, p) . (6-37)
gm0 7

The ranks q and n each run through all values shown except the
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combinations q = 3, n = 3 and Z = 0, n = 0, which do not occur.
Hence, it appears that the only essential requirement in order to

have

Ly) ) (6-38)
5}#“) :#

is that at least ome of L,, L, is non zero. However, in this case
of identical atoms, the expectation values of some of the terms in
(6-31) may tend to cancel other similar terms of opposite sign.
This concludes the discussion of selection riules for the
"resonant' case. After discussing selection rules in the "non-resonant"

case, all the results will be summarized and discussed.

B. The_ '"Non-Resonant' Case

Let us assume that the system now either consists of unlike
atoms in any states or like atoms in states of the same energy (k;— k,‘)
This case is considerably simpler than the resonance case diséussed
above. The major difference is that the E& in (5-70) is

redundant and is to be left out. Then, in equations like (6-2),

only the first product (diagonal part) appears.

1. The BO Potential

As first shown by Knipp84 and as pointed out in the discussion
of Eq. (6-3) to (6-7), when the second term in (6-2) is no longer

included, one has

gdf‘;) =0, k=3 aa 4. (6-39)
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The next term in the series can be nonzero,

LY (5) -
£4s Fo0, (6-40)
i only if
| [ é :Ya ) 1£ \Tb , and
lela , 15 L. (6-41)

)
E&S is algso simplified. Because of parity restrictions

LY IHVWRY =0, aut 92 9o, and

. (3 (0 2
LT e
S T

This never vanishes.

2. The Mass Polarization Corrections

The mass polarization corrections are not affected by the off-

diagonal part of (6-2). Eq. (6=16) becomes

<YE I 142y = Sy, <haol sl +£2 Ll B doy|

(6-43)

for alj‘g ?JL . One always has

Ejf“/’pn) # 0, (6-44)



as before. The procedure leading to (6-21) now leads to

(k) -
Efon =0, k=3 me 4, (645
and
(5) )
2;./3.) Fo0 <= fjf 40, (6-46)

And as in the resonance case one again always has

@ (6-47)
Z’j».M(')n) -’-f: 0.

3. Corrections to the Centrifugal Potential

These corrections are also very similar to the resonant case.

The result of Eq. (6-24),

( 6-48
é;],:(q 20, (6-48)

still holds as before. However, by parity arguments, instead of

Eq. (6-29), one now has

’A-[] =0 , for m=5’ and (p, (6-49)

. (m)
simplifying the expressions for f%)‘aﬁ

4, The Cross Derivative Corrections

i)
The odd-even parity combinations of )iuho and F;_ again yield
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g;.ﬂ()() =—O) for k;l/t), and § , (6-50)

{s.
Now, the terms of odd parity in (6-37) do not contribute to fj‘,fﬂ .

However, it still appears that if at least one of Lk s Lb is

non zero, one will obtain

) .
g;;(x) $0, (6-51)

which completes the selection rules needed. We next discuss the

effective potential and the relative impoftance of the corrections:

C. Discussion. The Nonrelativistic Effective Potential.

From the result‘s'.o'f this section the nbnrelétivistic effective

potential of Eq. (5-6), correct through 0(,“')13

»

£ (Ryeff) = 5 RTE](ehH). o
n=o :

The coefficients for M4 which can sometimes be nonzero for

neutral atoms are



(o) (ﬂ _1 ~0
€ teth) = £y g
E;Q(c#) =

Eles) = 4 E£D €0

1}"9

o e (6-53)
Ej eH) = g,js tH Ejul™,

E;q)( ) =0,

)

£t 0 e (5o Eff + 500,

£t = £+ (€ + 1),

And for any given system, some of these terms will usually vanish.
- -
One sees that in most orders of Q , the corrections are @(}' ')
smaller than an already nonzero term. However, all the terms in the

centrifugal potential are of 0()‘") , and the corrected centrifugal

potential is

gtz) [I(SH) IJL + (LP ‘}\ (6-54)
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The first term is the BO result. The other two are corrections.
Grouping ‘one .fzz with the. BO result produces the symmetric top

| result used here as the uncorrected centrifugal potential, Eq. (5-5).

If J 1is large, it is clear from Eq. (3-9) that these correction

terms have little importance, but if J . is small, they are of the

same order of magnitude, and due to their 'sz dependence in (6-52),

they can have considerable effect on the long range effective potential.

In diécussing these corrections to the centrifugal potential it

is important to emphasize the. fact that thev are part of the effective

potential and not connected with the static potential. They arise
solely because of the motion of the nuclei and are present in the
equation for relative motion of any two particles having internal
struCﬁﬁre. For‘exampie, due to their spins;, the equation for the
relative motion of two neutrons has terms equivélént to these
céérections, even though the neutrons really have negligible inter-
action at these R valges. Thus, while the correction terms are

- mathematically significant in the equations for nuclear motion, they

have limited physical significance. Failure to make this distinction

led Dalgarno and McCarroll10 into the difficulty of an infinite

elastic scattering cross section.

(k
. Because of the selection rules on 2%}9”), the only situation

(k)
in which the E%A , for k 2 3, might be significant at long range
it ( 173
,unld be a case in which Z}S) = f%:):icj ., so that E%s)
. . e ) )
is the first static term, but in which either E}Ma) or Eyyfﬂ

did not vanish. One can find a2 number of cases in which the selection




rules will provide this behavior. However, many of these cases are
also those for which Meath20 has shown that there is a relativistic
and magnetic correction of 0(0‘2/123> , which would dominate
the 0(’//4.[25) term for all large R . One of the cases in
which the 0'(0(1/R3) also vanishes but in which the O(1 I/“ R*)
term does not vanish is the interaction of two unlike atoms, one o.f
which is in a 'S state, but the other is in any state of non-zero
orbital angular momentum, L. Then Ej‘;): g,’:) = 2;2 =0,

and most of the correction terms also vanish, but one may still have

E}j{x) + O . The nonrelativistic effective potential

assumes the form

: s) W, . ¢¥
T(Jﬂ)-ﬂ&z%'ﬂ) N ?A’.‘iﬂ" N £,~s~/4'f;‘u“"+ ..

E;(Rieht) - Elowseb) = e S

(6-55)

A specific example in which the effective potential could have this
sort of behavior is the interaction of the ground state boron
(zP) and helium ('S) atoms.

However, even if (6-55) holds, the importance of the 0[”}42;)
term is minimized by the fact that there is always a relativistic
correction of ({d*|R*) . In addition, it should be noted

that O ’//uP”') will not become appreciable compared to 0(‘2“’)

until R 1is so large that retardation effects have to be considered

and the whole development breaks down.
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VII. EXAMPLE. TWO 1S-HYDROGEN ATOMS

In this section the interaction of ground state hydrogen atoms
is considered. This is a very simple problem, and some of the
corrections discussed are unimportant, but they serve to illustrate
thevkinas of terms encountered. The corrections to the long range

potentials and the nuclear equations of motion are discussed.

A. The Zeroth-order Wavefunctions
/\/\/\/WWVW

In the LSJM coupling terminology of Section V, the ground state

hydrogen atom wavefunctions can be written as

) (7-1)
)

=

Blesjo T M) = Q0 ke, L 24) = § (ey

where i 1is the electron associated with the atom ¢, and

(7-2)
k=0, Pe, be,Se) = (1,0,0,4)
From these atomic functions onevcén form four degenerate products
13— = 47(0) Cp(lo) . In thisbcase the correct zeroth
order wavefunctions are uniquely determined just by projecting out
eiggnfunctions of 3; and 5;2 . This is a non-resonant inter-
action, and the functions automatically have 3 or W symmetry.

)
They can be labeled by ‘.P %Jl} fp‘ ‘Fe) , according to (5-67)

and (4-33), or else labeled by the spectroscopic notation,
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Sy, a7
[A‘I%)JL.

The zeroth-order functions are easily shown to be

(7-3)

Ly;zqn,,g):w;°’og,)= [ bla:)bts-5) ~bla-) blosk)|

igg- 0T, * AT, mo

uw;it

Plo,4) = WEZL ) = o dl-p +40-De0: %)) a-5)

The ; in (7-4) implies that the functions are not to be eigen-
functions of Tqi' . The reason that the parities under 3;; of
the two JL=0 functions differ, even though they are both
classified as + states, is that the reflection operator Gq.z
includes spins, but the + refers only to space reflection.

It should be noted that these correct zeroth order wavefunctions
also happen to be eigenfunctions of the total electronic angular

momentum. One has
/0) . (o)
‘}2 q/s = ;1(;"' ) q/s , (7-6)

where i:O for the .z and 1 for the 32 states.




B. The lLong Range Effective Potentials

From the selection rules givgn in Section VI, one readily finds
that most of the correction terms vanish here, and the long range,

nonrelativistic effective potential is just

ER;ekf) = E0+ g + "TYRRLALD | €D st E,i

?_/,(,R‘)-
(7-7)

w0 fe) .
Here E; is the energy of the separated atoms, and 25 is

essentially the van der Waals coefficient.

() E )

The mass polarization corrections, ghfwo and g s could
be obtained from Eq. ( 5-35 and 38). However, it is much easier in
this special case to follow Dalgarno and McCarroll10 and use the

virial theorems’

YT Yy = - &R - RBQ (R), (7-8)
vhich in this case becomes

<‘PIT.«,W> (°) + 5‘25(6) S | (7-9)

For the interaction of any isotopes of the hydrogen atom, one has

Te= 2% * zFa0 (7-10)
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and

_ = //(_ 2 M 2 (7-11)
)'fw‘“”’) Fm, Fa j;*,,b?”zb .

Using the fact that Ns and LPs are independent of M, and M ,

one can easily show from symmetry that

<q§ "Fl: lq’s> = <q/s ,‘?zzb'%>, (7-12)

and therefore,
€ R;m) = YR Y = £<44 T\ WY (7-13)

From (7-7) and (7-9) one sees immediately that

0) - _hl ) .
f: (m) = —3 Es X and (7-14)
I 5 ) )
£V = £EO -1

‘/L

Let us now list the potentials for the states (7-3 to 5).
Adding in the relativistic corrections obtained by Meathzo, we have

-6
as the long range effective potentials correct to /c" s o , and R 5




) £ ’
,) T4 '404 £ (H’Z/.) (7-16)
Elefs o) = E-43) "3 Ve T R

2z {t0) 5
+ Gy . L oso* £(1\+5) 7-17)
f(e#;sz%,_,)= £ 1-2;,’;\+3—'2‘—‘/‘Rz et ¢t S"“#R y

U

(o) JGE+H+2 «* +0~40°‘ ‘) l+" 7-18
g(eﬁﬁzgo):&? 2,.,“" 2uRE T “"( R (718

The constant term is usually subtracted off, leaving the effective
interaction potentials, E(Vh‘f) = E(RI f"H-) - 6(00}{#) .

The numerical values (in atomic ﬁﬁits) of the constants in thesé
potentials are as follows. The energy of the separated hydrogen

atoms is

Pz -1 L= _ (7-19)

the square of.the fine structure constant is

2 - 5,32492 X /67°

and the van der Waals coefficient has been accurately calculated to

be88

51‘) = =C, = —6.Y99026 (7-20)
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Let us now tabulate the corrected van der Waals coefficients for

some of the isotopes of hydrogen.

Isotope A(a.u) - fs“)(“'ﬁ > (a.u.)

H2 918.06 6.516723
HD 1223.87 6.512330
D2 1835. 22 6.507879
T2 2748.37 6.504938
Here /u_': m“mb /(-m‘.g. mb) expressed in atomic units,

and we have used m, = 1836.12, my = 3670.44, and my = 5496.74.
One sees that the corrections to Ezb) are very small even for these
light atoms.

The most important long range adiabatic correction to these
potentials is thus seen to be the 2 1in the centrifugal potential
in (7-18). For R}_ qa’ (for H2) it contributes more to the
effective potential than the van der Waals term does. Hence, for
small J and large R , this correction to the centrifugal potential
should not be neglected in the nuclear equations of motion.

It should also be noted from the accurate potentials of Kolos
and WOlniewicz11 that these long range representations of the

potential are accurate only for R > 10q, , due to our neglect of

electron exchange. Kolos and Wolniewicz's accurate potentials only
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extend to 10 a, , and there is still sufficient exchange contribution

at that point to prevent matching our potential and theirs.
4

' +
C. The Bound Ezﬂ o State of the H, Molecule
P e S ¥ ] P S 2 g SN NP

Let us now consider a hydrogen molecule with insufficient energy
to dissociate to the atoms. For this case it can be shown from the
secular equation (4-37) that the first contribution of the S

. . a( —z) .
coupling to the energy is of /k . Hence, one can combine
the extended adiabatic and adiabatic treatments of Section IV and
write the nuclear equations of motion for the bound state hydrogen

2 -
molecule complete to order #~  and /u.z in the form

(hw— Eov) Y() + 2h, YD) =O, (7-21)
where z(ﬂ,): ,Z(Q;S;ﬂ,)f=}|)j:01 )))) and

hooz 2'/'770;? + 3%/%%,’9 + g R) + o E(R) +/¢"5/L(g) +

-2 na
® + K. (7-22)
A5 R

"
Here 7% is given by (2-49), g%M(R) is given by (5-10), U
is given by Eq. (4-22), and ho; is given by (4-29) and (3-3).

The first order corrections have been discussed.

Eq. (7-21) needs to be solved accurately. Since l1o| and
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contribute to the energy only in (9(/*4) , they could be calculated
to sufficient accuracy using BO wavefunctions. Kolos and
Wolniewicz11 have calculated accurate BO wavefunctions and also
the relativistic and first order adiabatic corrections to the
potential, and their results could be used. The nonadiabatic
corrections, U’Md , have been estimated by Van Vlecks, Fisk and
Kirtmanm, and Poll and Karlls, but they need to be estimated more
accurately. The 2’/,/,, term has usually been neglected but could
readily be estimated. The ‘\o\ terms need further study. (For the
ground rotational state, which is of the most interest, J = 0 and
l’lo, =0 ) When all these corrections are included,Eq. (7-21) should
give extremely accurate results. However, it is expected to increase
the calculated dissociation energy and thus not improve agreement
with the experimental dissociation energy of H2 .

Let us now restrict Eq. (7-21) to the large R region. Since
the (9(};") corrections are small, we keep only their lead term. The

JL coupling term is

ol ~

) b _
b= fjjﬁ;'ﬂ o] s+ PPy,

The unique identification of the state ll;(l,f,g) may not be
4+
possible. The energetically nearest candidates are the 323:,

‘-ﬂ% , and Bﬂa states which come from one 1s-hydrogen atom

and one 2s- or 2p- hydrogen atom. Because of Eq. (7-6) the }';

term in (7-23) does not contribute until at least 0(\ I/LLRS) 5




and its large R energy effect is negligible. The E+J term can
contribute and make L\OIm@(l//uR) . The resulting effect
on the energy is of 0 ( II/,GR?') and is negligible unless
one wants extremely high accuracy.

At large R, the E (R) correction can be

/u

approximated from

¢ee | o >\ 7-24
»” -
j‘;fﬁ): —2:_ E'°;” T»‘L” ) (7-24)

But these are equivalent to the second order mass polarization
corrections at R’ @ ., They can be found instead by using (7-10),
solving the separated atom equation exactly in reduced mass atomic
units, and writing the result in Hartree atomic units again. One

finds that

i0) ‘)

Em(emri) = f (2) +'/m) + f ('0)(|+!/m@)

i

AP 7-25)

The first order correction is that obtained at (7-14). Thus, the

dominant contribution to E) (®) at large R is

(7-26)
”y

Z//Mm) = —47.7;.%+_») NIOR
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and its energy contribution is negligible for most purposes. It
(6 (o)
could also be subtracted off along with E; and ;;MPM),

nad
In estimating the lead term of LL at large R , we take

A, — 1 o +
ijv""i ; the transition energy from the ground lj:ﬁ state to

the first excited lj{;- state of H. . as a reasonable ''guesstimate"

of Zl-

AV

29
Then,

od . _2 (0, pz),0 2
W =~ 2 KETIRY, ] e (7-27)

5 T <Y B+ 20,0, +R WY pi

The cross term vanishes because of parity, and because of the

spherical gsymmetry of the atoms,
(N
LY+ R = 2 <TLy (7-28)
From Eq. (7-9) this is

ad [ z
W= - 3 Y, (7-29)

which will also generally be negligible.
Neglecting these tiny corrections, the equation for nuclear

motion at large R becomes
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2 30D 4O ™ I+
[+ ro BB g [yp = o .

! . Thus, neither the adiabatic nor the nonadiabatic corrections have
much effect on the long range effective potential of the bound Hz

molecule.

D. ’I;‘_}Lg\?i: States of the H2 System

. Let us now consider the nuclear equations of motion for the
321’ states. For simplicity, we neglect all second order and
nonadiabatic terms except the JL coupling. Assuming also that the
relative kinetic energy is in the thermal range (considerably less
than the first excitation energy of an H atom, %g{ ~ /Dc.u',))
one can also neglect the SL coupling with higher states and only

include coupling between the three states of the triplet. The

resulting equations are

’ [zj'bﬁe“ E(c#f;*»-E]l@,v) +2hy YOI = O

(7-31)

b YO + [Z 2+ E(H.7T)) - E| Y0 = O,
where X:X[ﬂ,,f) . The third nuclear function has opposite

parity, /’0':- J+1 , in Eq. (4-36) and only has JL  coupling to

distant excited states. Neglecting that couplin its equation is just
g g P g q 3
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Lz’j,«,fﬂz + f(e#.)iz‘::‘) _E] YO, 7)) = 0. (7-32)

At large R , one can use Eq. (7-6) and atomic parity to show

that the leading term of ho‘ and h.o is

_ o [23G+ -
hoy = hjp < 2/”21)] (7-33)

and with Eq. (7-17 and 18) the three equations become

L TG 42 <* 0404‘ £‘°(i+ \
(= f“ 2;1&; e ™ "E] X (0R)

)
. Lz:rs:d] YUy =0, (7-34)
e

[ 23¢ £Ta L Odod %0+ £ N
"{—g‘)] 0, 7) * L%ﬂ 3.4:: T T 5‘(_.&—3‘—”‘)-!21 X3 =0,

(7-35)

L‘%f‘ Z(Tzzl) Eo{; +o_,%o_°(¢ «-)(H 2 ) Elx(' K-H) O

(7-36)
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where the constant terms in the potential have been subtracted off.
These are examples of the kinds of equations one encounters

in this formalism.
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VIII. APPENDICES

Appendix A, Relative\ggggdinate Systems

In this appendix, we transform the Breit-Pauli ﬁamiltonian for
a system of N electrons and two nuclei (a and b) from laboratory-
fixed coordinates into three different relative coordinate systems.
The directional axes are kept space-fixed here. They are rotated in

Appendix B.

1. The Hamiltonian in Laboratory-fixed Coordinates

In the laboratory coordinates the Breit-Pauli Hamiltonian of

our gystem is

H,o =T+ V+H,, (a-1)

where 7T stands for '"total'", and the total kinetic energy is

Mz

_— 2. : : (A-2)
PRI R RS TR S DB o

=1
where = d = o . Here everything is in the
% cz,;ﬁa/b)‘ N y g
Hartree atomic units discussed in Section II, and Ma and M, are
the masses of the nuclei a and b . The electrostatic potential
energy \/ is

N
V_ 2,72, _Zib -
Y;m =l Vi

Nz

a
— + Y r .

o

-~
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X =(137. 037 -! is the fine structure constant and ')'Ild contains
the magnetic and relativistic corrections. We use the form of 79&
given by Meath and Hirschfelderzo,

This Hamiltonian is written in terms of the laboratory-fixed

coordinates,

S :

V“"/rb,wfg,\g;, 1€ CEN, (A-4)
where 2. 1s the spin operator of electron ¢ , and the rest

of the set are vectors from some point in the laboratory to the
particles.

The Hamiltonian has fhe following set of constants of the motion,

2

VU*:C J (‘:S—t)z') v9) ‘yl:j, Eb , -3

They are respectively, the square of the total angular momentum, :3:.;

The component of g‘c along the space-fixed (primed) Z axis, the
inversion of the coordinate system, the exchange of any two electronms
i and j , and the interchange of the nuclei a and b . The
bar over ‘(qu implies that ng is only a constant of the motion

a

if the nuclei are identical (771._=mb 5 Z“,: Zb)._ 1f
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represents the components of X:t along the laboratory fixed axes,

then the actions of the operators on these coordinates are as follows.
X! - e A-
J ‘yt(%ﬁl)z q)t( ?‘3) ) 3’albz ! N (A-6)
i 4 ! «
B, Bx ¥ = TbG¥) e gie N, @

ﬁb Qt (*L)X;) = ?t(XL )Y\:‘.) ) (A'S)

,J;=,£ +<,<b+-9§+§. (A-9)

N
L = fzﬁ‘ , S-= Zé;) and (A-10)

L= Coxge. (a-11)

Here we have suppressed all coordinates in EPC; that are not
affected by a particular operator. Eg and éi are clearly the

electronic orbital and spin angular momenta.

2. The Separated Atom Relative Coordinates

We now transform the operators of the previous subsection into
the ''separated atom' coordinate system. This system is discussed
in the main body of the paper. The "separated atom' relative
ﬂ;b defined by

coordinates are the set £ g_ y Yo




(see Figure la):

web (A-12)
8 = rb - e ) and
- |
Q - _ﬁ(ma\x“-" mbrb + ﬁv‘(‘:o) N
=
In atomic units,
M =mg+m,+ N (A-13)

is the total mass of the system, and C 1is the center of mass of

the entire system.

The momentum operators are readily transformed into the new

coordinates by use of the chain rule89

N
Z .al__f_b)k, 2 , ‘g (A-14)
ngék- :;qﬁﬁok .
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Using (A-5) it is clear that

£," mb?g - i Koo, (A-15)

1
B
i
st
~
-
(18
<
)
a.

+ ??Cb) A/}J L _-A/

=N
1

|-
B

It is also convenient to have the inverse of Eq. (12). It is

easily found and is

N,
PR SRS D N
XT'-‘ - M M ;é;l L= N ?
1 1 ZA% il‘- -16
= + - o { (A-16)
fb— “Q M E Mi oy f;a L=N+) "g ’
No
- My -L5S L 2 e 1L M
wo - ﬁs(ﬁ +g~ “-’I‘J 8 Mi ey ¢ ‘2’“&, b'g ) y
No N
} M ,_L{ v, + \g NH ELEN .
rr Db &+ MR Rzt 2 6,
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Here Ma = Ma + Na and Mb = M.b + (N-Na) are the total masses of
the "atoms" a and b .

To transform }{t into these coordinates, we note that V is
trivially written in terms of them and is independent of € , and
7:/0( depends only on relative vect:ors20 (which are independent of € )

and on the electronic momentaso. But in Eq. (A-15),

fe = Fut d[;ﬁ)) t£(L N and  aldtib, (A-17)

d."
so that the change in }JA is of 967‘4) and hence negligible.
Hence, in )'IA we just let -f,;"-) fu to express it in this
relative coordinate system. To transform T‘C into these coordinates,.

we just substitute in Eq. (A-15). The result is:

24-.1

- L pt |y A ‘ (A-18)
Tz = 25 F +97,,fz +}£f.fp_+‘1" +5. B 5 B

)

=

where /I/‘r is the reduced mass of the nuclei, A= mum.p/(m,:fmb) 5

P= oz p -

(A-19)
Mg 4

w-b)

FIN

fa = Z ?Ca., (4-20)

(A-21)

o
]
M
®




and
\ Na 2 N "
T=3)0 4 *12 Fu. (a-21)
= EAY

1: is the electronic kinetic energy operator in the BO

z z 52
approximation. jl and .Ii are the mass polarization  operators

of the separated atoms. They are often split into their diagonal

and nondiagonal parts,

N,
Zﬂd‘a il"'di i:??uz + th f«‘d -ﬂ‘d% , d=a,b. (A-22)

The diagonal parts are just

M
L t . L (A-23)
2m, g?ﬂ‘ my —D ’

where ‘T; is the atomic kinetic energy operator. They simply

shift the energy slightly and give rise to the normal mass effect

in atoms. The off diagonal terms produce the special mass effect,

which is usually smaller. It is convenient for us to keep them
together and be able to use the BO wavefunctions.
We now have .}{E expressed in the separated atom coordinate

system. The only dependence of ‘)LZ on C is contained in the

first term of Eq. (A-18),

T, = 2—1;1 ¥z | (A-24)
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By setting EEQ:: q;‘%; and appropriately choosing the zero
of energy, we can exactly separate off the uninteresting motion of

the center of mass and leave as the equation for relative motion,

HP = Y | (A-25)

-z D

t

where

H=T+V + LN, (a-26)

and from Eq. (A-18),

T - T‘C - T‘,_ (A-27)

Now let us determine the operators of (A-5) in this relative

coordinate system. From Eq. (A-12) and Eq. (A-6 and 8), it is clear

that
{ ’ ’ ] /] ] .
J g’("‘m,%;b,X)-‘- G (-%ia X}, , %), and (4-28)
l / / ' / !
BT (% X5, %) = VX, X X ), (A-29)
where J&£ (4 A/a/ M+ £ J_‘.N , and X‘/ = xé . Also

EJ&D(X‘-'C )y\(;,d) =¢ (x;,c ,Y£d> ) (A-30)



where (x5 | £ ¢, yEN and a t Q,d b . Substituting

Eq. (A-15) and (A-16) into Eq. (A-9) and rearranging, we get

N N (A-31)
3_.: L +vL\:R+ /‘Z_Cq"‘z_ ,..{b+§~r
wT we \t:“l J\:Na“,
where d..e 2= “\C‘tax ?7““ , etc.. é is a formal operator,

invariant under the transformation. When the center of mass motion
is separated off, the conserved angular momentum we are interested

in is

J= J.-L (A-32)

3. The Center of Mass of the Nuclei System

The second relative coordinate system to which we transform
')#E is the 'center of mass of the nuclei' (CMN) system. It
, . . , 40 .
avoids the nuclear-electronic cross derivatives which appeared
. . , 90
in the other system. It is convenient for bound state molecules
and also for short range potentials because it goes smoothly to
the united atom Hamiltoniangl. In this system the electronic
coordinates are taken relative to the center of mass of the nuclei

as follows: (See Figure 1b)
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(ma:(3+m.,:(‘) EN,

Y. = . -
wan AL (m“_'_mb
(A-33)

& = fb‘f«>
N

> #(Wﬂxm+mb£b+z-"—-€c)-
iz

e

s C , and P are thus the same as in the previous system

Using the chain rule as before, we find that

N

'fﬁ = mo\?‘d ?Qg (mann,,) J‘ﬂ” >

(A-34)

N
Fos B R T g g B
F = Hen Tt

J€¢( 4N,

The inverse transformation is

% Lo,

- =My M - 2 ¥in ,and (A-35)
Le W’a+mb‘g (M+W+mb)"c’ (M+ma+w'b) =t ’

Ma M
g +(M+ m‘,‘ﬂnh\Q (M "’mtf“'"b)

A

“b Yn,_-kmb

ll

N .
M L S ., [£CEN.

= C -
Yi= Lot (Pt )™ (M+mat ) (=




Eq. (A-17) holds as before. The relative vectors in "h& and \/
are easily written using (A-35). Substituting Eq. (A-34) into _T%

we obtain

N 2

| 1 0 2 l )
Te= 2M fcﬂ- ;};fg ey :Z Fin + Jlnaimy) \En , (A-36)

=}

where -)pb is the nuclear reduced mass as before, and

N
E- Z Fen (A-37)

z
so that the iz term is the united atom mass polarization operator.

The center of mass motion separates just as in the separated atom
system, so that if T= T‘E -—Tc , the relative Hamiltonian
is given by Eq. (A~26) using Eq. (A-36) for 1;

The symmetry operations become

(A-38)

J q./(\(c'n)¥,> = (P_('Xgn ;")(') ,

??‘" Q (“»Q;X;n\) = @(%;m D\‘\{’n> ) | £ C,j.l-',\/. (A-39)
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If mo=mo,

785 L:-‘_/(%:n)xl) = l:P(%L',,)‘X') . (A-40)

The total angular momentum becomes
Jr= L.t ket fcfzh +3. (a-41)
=t

where /\E{n- Y. X f;“ and = ét— L, is again
the interesting conserved angular momentum.

The removal of rotation from the Hamiltonian in this system

is discussed at the end of Appendix B.

4. The ";.? " System (Joins Centers of Masses of Two 'Atoms')

The third system into which we transform 74{ was suggested

by Jepsen and Hirschfelder34’40

. In this system the vector TD
between the centers of masses of the '"atoms' or subsystems is used
as a coordinate rather than 8 . And in this system ')4 goes
smoothly to the separated atom limits but does not contain the
bothersome nuclear-electronic cross derivatives. As a result the
coupling terms are smaller and the nonadiabatic corrections go to
zero at infinite separation, so that for sufficiently large
distances it may well have more physical meaning than the separated

atom system used in the text of this paper. However, its usefulness

is severely limited by the fact that 7@ is not invariant to
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exchange of electrons between the two atoms, and it becomes ill-
defined and virtually impossible to use at any interatomic separations
small enough that electron exchange must be included. Long range
potentials and the adiabatic corrections are readily calculated in
this system, but they would seem to be of limited value, since it

is difficult to connect them accurately to the rest of the potential,
which must be in terms of R . we do not use the system in this
paper but present ‘3[1 in the system for use in interpreting our
separated atom system results. The f? system is: (See Figure lc)

Y.= G-Y AN

|9 wa Lo ) )

ffb = h‘(:t_—fb ) Nat1 % CI;N’

N
c = 'plh(mafn*m”fb +Z;{;)) and (A-42)

=t

Na

N
‘F = MLb (gkj_;'ri +mb£b) — M—-l—“'( mf: +M, fa) .

The mass symbols here are those used earlier. The only change from
the separated atom set is the use here of 49 » the vector from
the center of mass of '"atom' a to that of '"atom' b .

In these coordinates the momenta become



Fe”

e .- - 2,
P HHe 2B - ) A,
Fe
M P

(g

M
N

N

3@% = %ﬁ iﬁ} ‘79&&,

Fes

The i nverse transformations are

&S
i
3=

._.f.b
1
e
|
= =
[\
™
iz

L)
fl
$
&

= 3|

1£0£Na

.??f 4"1Q£b ) AL4J £

133

(A-43)

and

LN,

(A-64)

1
é:tﬁhé, and

v A Map 4 -1 3 Z N
- R . Z !
w-(,\ - w\:b+ M‘e v~ sz- 'I‘ab ) Na""—.b_, ’

From Eq. (A-44) one sees that

s
= vg + That Y
where /(“_é':- M.Mb/(ﬂx"”b)

atoms, and

N
%} /llaf ZE:JCLa ﬁg%i ZE: lféb .

M“— =y boc=N,d)

(A-45)

is the reduced mass of the

(A-46)
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In the BO approximation the distinction between fi and %? is
negligible. Even here in')%d the correction is negligible, and one
just changes Tz‘ to 42 in the separated atom form of 74‘ .

To transform \/ to these coordinates we write it in terms of the
separated atom coordinates and then use (A-45). It appears somewhat

complicated, but for large 4? , it can be expanded as a Taylor

. : -1
r
serles 1n /y.‘+ >

V= [v]@:ﬁ + /—‘J;+%-“Yf’lvi“~(?=3 t O(/,q;;‘ . (A-47)

Each of these terms can be expanded in powers of f’ using methods

developed by Rose7.,4 and the interatomic potential and corrections can be

calculated.

In this coordinate system,
=Lty Lot . L Pl gt
‘rc“szﬁ 4’2/,‘;?(’ +—re * T E°+2m,°£b , (A-48)

where 1; ’ fl s Ii have been given before, so that here ‘T;
differs from (A-18) only by qﬁk-—7'??r and the absence of nuclear

electronic cross derivatives.

The center of mass motion separates as before. And in this

system,

J.= L.+ .’:.p *Zicb+i£cb+§. (A-49)

T = TNt
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The symmetry operations become

J Poxe, ,X;',,J\x(,’) = B, %, ,—%}), and (4-50)

| 7)9%\2 (‘l‘c"a,%’ja )%D = Uy, Xu, %) (a-51)

if i and j are in the same atom, but if i and j are in
different atoms, f? is neither invariant nor simply altered by 'U%j,
The same is true of G%b . Hence, %2 can only be used for

widely separated atoms and cannot be extended in to match with the
other parts of the potential. For this reason we do not treat this

system any further.



Appendix B. Removal of Rotation using Representations of the

Rotation Group.
M

In this appendix the representations of the rotation group are
used to obtain the results of Section II. There are four parts:
1) the separation of the rotational coordinates, 2) the transformation
of the inversion operation to body-fixed coordinates, 3) a discussion
of the double-valued representations of the rotation group
encountered when the angular momentum is half-integral, and 4) a
prééentation of the results of Section II in the center of mass of

the nuclei (CMN) coordinates.

1. Separationof Rotational Coordinates

The HWC seriesltz-46 is followed closely, and the reader is

referred to those papers for more detail. The notation and

; 44-46 | .
conventions correspond more to the later papers 6 in the series.

a. Conventions
The notation and conventions are those of Section II. 1In
addition it is convenient to list some of the conventions in more

detail. Let us take

= | X, (B-1)
X

to be the components of Ei relative to space-fixed axes. The

space-fixed axes are denoted by the primed unit vectors,
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! ) X (B-2)
@1 (é\'l )87:/63)'

The body-fixed coordinates are given by ¥ R §( , where

X = ﬂZﬁ&,) and
¥ = R¥ ®3

The rotation matrix ﬂz is orthogonal,

R'= ® (B-4)

We choose to rotate axes rather than vectors, so that Y is

invariant to the rotation:
!l s
Y= % = ¢X. (B-5)
Then, it is clear that the body-fixed axes € are
) (B-6)
e- €¢R
And scalar products are clearly invariant to rotationms,

(B-7)
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The functional convention used in Section 1T,

RO, %) « PRk, RY) = L1, %), (3-8)

. . . 92 93 . .

is the convention of HWC, Wigner ~, and Hamermesh™~, but is opposite
. 94 .

the convention of Rose . The wavefunctions are chosen to transform

as basis functions of the irreducible representations of the

rotation group,

R EKTM)= 2 DLe) P ¥ 50, (8-9)
JL

T
where the ~DQM(]2) form a representation of the group. Here J is
the total angular momentum quantum number, and JL and AA
(_S AM L4 T) are magnetic quantum numbers. It is
)

clear from (B-9) that

DﬁM(UZ) = <Pxx 7)) |R| @t%‘,x’;T,M)}. (3-10)
Eq. (B-9) and (B-10) define ;;q 663> up to an arbitrary
phase factor. The phase is fixed by requiring the spherical harmonics
ygm , to transform according to (B-9). .The spherical harmonics
used for that purpose here are those of Condon and Shortleygs,
Wigner96, and Rose97. They differ by Q—4$“ from the \J;r“ which

HWC use98,

Yj"(hmx = )" Y:(ch) , (B-11)
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The choice made here allows one to use the ordinary raising and

lowering operators which are defined by Eq. (2-22 to 24)., TUse of

(B-11) in (B-9) shows that99

7 -M N3
7 Cheee) = Dy (). (3-12)

The wavefunction used in the transformations is given by

Eq. (2-37),

Dixxism) = D D@ Tx¥, 50, @-3)
JL

Here Q(%,*, 3’/JZ) is in body-fixed coordinates; hence,

\fl is the component of the angular momentum along the body-fixed

Z axis.

b. The problem

—

To determine the equation satisfied by 4{ in the body-fixed
coordinates we substitute Eq. (2-37) into the space-fixed relative

1"
Schrodinger equatiom,

}/ g(x‘,%(';J,M) = EL- Q(‘XB*[ ‘,3;M), (B-13)

where ‘)4 was obtained in Appendix A,

~ = 5}"&?': +]‘C£‘fﬂ + )4@) (B-14)



and the 9&% have the usual gradient representation in space-fixed
coordinates.
Now let '12 be a rotation described by three Euler angles
A P, and .Y, which are arbitrary, except that they are
restricted to be independent of the electronic coordinates. Then
M, does not act on J’{M[Q(d,@,)’)] . Furthermore M,

consists only of scalar products which are invariant to rotation.

Hence, we just drop the primes and )4, is prepared to act on EP(‘X,X),

However, for the other two operators, one needs to know

Jﬁbgﬂ&léé,xﬁﬁ)__ J_ji:l{ __ﬂ“caDSP(KﬁfIJt) +.hg(1€)3GZb<§é~)ﬂDg>
C %, ¢ e

(B-15)

To evaluate the second term in (B-15) one expresses %;ésq‘

in terms of the rotated coordinates by means of the chain rule.
Before doing so, however, we observe that Q(%,%) depends on
spin as well as space variables. Since 4 1s included in 7#
these must be rotated, too. The Pauli matrices can be used to
rotate the spin axes?3 but they can also be rotated simultaneously
with the space rotation as follows. We define a formal vector WY .

with body-fixed coordinates U , such that the spin operator of

electron 1 1is

Ses boX Pu, @16
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in analogy with <£; :.yfi-x.qu . Then, if &i( is a true
vector, S, will transform like an angular momentum. And SE
becomes

@ (x%,70)= Lo, ukTn). (5-17)

U will be explicitly listed in Q? only when its being acted on.

Now by the chain rule,

1 éiP‘**ng ﬂ)-— | ¥ 2
S iz T

3 L AW
Z A% D i ) X\Q( €0,

¥ a(x)

¢zt 2=
(B-18)
Using (B-3) one finds that

1306 uX,
FS LS S v G )Rk

2=t j, ﬂ),),'m =
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20 (SR o 3w [

(B-19)

Thus the quantities needed to complete the transformation of

Eq. (B-15) are
AR AR,
25><k ;D§én



c. Derivatives of the rotation matrices.

Because [R = ﬂe(d,ﬁ,wﬁ is well-known explicitly in

terms of the Euler anglesaf’57 it could be differentiated explicitly.

J
However, HWC have shown that by treating the matrices E) and ﬂ2

- . . . J
similarly, one can obtain the derivatives of ﬂ) from those of ﬂz‘

They have shown that differentiation of the matrices is equivalent
to changing the rotation -62 by an infinitesimal rotation ,AX‘

The derivatives are

s_‘&d = L [ (SR)y,- R‘A /W\; (B-20)

%, S0
and
SD®  gm 1 )y 8, ®)1/ sx/
= A - 3K . -
Sl sx‘,g—aoL Dy dR) ~ Dan [s% . @
Here '$ is the matrix representation of Ag . HWC represent

it as the product of an infinitesmal rotation about each of the
three axes. To determine < , they only need derivatives

evaluated at special points,

?_%ﬁo(,(b,b')} 5 K)_;_R_“.L(d Iezbﬂ ; and [a__%_\u '@'X)I ‘1. (B-22)
o (0,0,0) g (0,6,0) ¢ z %)

These quantities are readily determined from the explicit form

of “2 . Using them, one finds that
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3
NRM - Zé”‘ [Qm= (B-23)

k. .
where & is an antisymmetric matrix. Similarly, HWC show that

, J o, ; .
since H) is a homomorphic representation of the group,

DU =0 D@, (B-24)

Y75
and all that is needed to determine [D ) are the quantities

- (B~25)

—

3 _%ae)} 3__3)},4(12% . F wa(ﬂ)l |
9d  dpyg > LB 16,0,0) > of 3,0

HWC determine these quantities by differentiation of the
explicit expressions for dfr . However, they can more easily be
obtained from Eq. (B-10) as follows. It is well known that -&Z
can be written in terms of the Euler angles and angular momenta.
If all the rotations are performed about the space-fixed axes,

Rose56 shows that

- C*ji'quw ldji
R=e e. (B-26)
Then, Eq. (B-10) is just®®
J . \‘ ! . j’ ; U 3 oL
DM(?)Z) = e‘sléx,)é;lﬂ,l C‘Q T % 3 MY e)“ (B-27)

and the quantities of (B-25) are obtained by direct differentiation



and use of the raising and lowering operators. With (B-30) and the

€k matrix of Eq. (B-23), Eq. (B-21) becomes

__J&A“@ e D00 + 1\ (5D (e &) Dyt ®
A%,
L )GV G- L) D © . (B-28)

The differences between this result and that of the latest in the
k

HWC series are due just to (B-12) and the fact that ¢ is

antisymmetric. Using this antisymmetry, the orthogonality of fR s

ang Eq. (B-16), Eq. (B+19) becomes

2TxuX,3, S -
%&%xu TRy ["'Z +'LZ;>:€':"*”%X¢ Z €5, %n U

where 8." , n=1,2,3 are the components in the body-fixed

system of %= £+§_ , the total electronic angular momentum.

d. The‘ standard configuration

Thus far, except for the restriction that it be independent
of the electronic coordinates, 'ﬁ has been left general. To
evaluate the elements of Q;k explicitly, W must be fixed by

the choice of body-fixed axes. We choose 712 such that the new
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z axis lies in the direction of jg and such that the new Y

axis lies in the old Xﬂ plane (See Figure 2). With these

restrictions Eq. (B-3) becomes

) R ¥; = SR, (2-30)

and Eq. (B-6) for é; leads to the conclusion that

IR =0. ( )
23
-, /MM med 2T\ pama : { ke
Eq. (8-3C and 31) are all that is needed to determine £

However, it is of interest to present K explicitly. For this
choice of fR , the Euler angles become o = ¢, £=6 , and Y=0 ,
where 6 and @ are the spherical polar angles of E; . The
matrix ﬂz becomes simp1y46’57

Coe 6 oo o0& an§ 2

(B-32)

R(®6,0)= —ain® o 0

Méw‘? Méﬂ;”cp Coe 6

k
To obtain . & , let us differentiate (B-30 and 31) with
/
respect to *k . One has 6.&7 , and the others elements

]

are easily found to be



kR _ e . Ry
63‘ = '—é\b = /R )
ek = ._é:‘zz —[Rzk/R) and (P-33)

ek = _¢gk = - R R [RuR.

—

F] /
e. Derivatives of ‘P(X)X)
Combining (B-28, 29, and 33), using the properties of n? and

rearranging the sums slightly, Eq. (B-20) becomes

LW (%3,M) ’ - (3-34)
L SK, = %32; Do (®) Ry Ay ¥ (x,R;3,2)

where from (B-30) we have used the fact that

)(' = (g) (B-35)

to write R instead of * in LP . The A‘J are defined by
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A=4[ M(S,JZ)&E: MG "?3] ) (B-36)

A= [ R0, + §- Ms 116D (5-37)

)

= 1 -
/\3 ; . (B-38)

ol

Here 0; are not ordinary raising and lowering operators, but are
defined simply to raise or lower the index SL of any arbitrary

| function, f: S.'tﬂ}:(ﬂ,):—fl{fltl)o The reason for treating 'P
as arbitrary will become apparent below. If the properties of 92

are invoked, one sees that Eq. (B-36 and 37) are equivalent to

(B-39)

A UK R:32) = J§(:rw- W Y (%,R,T,2), and

A YR = "{i (5 ) ¥ (%, R,3,2). (B-40)

where the :52 are to be evaluated in terms of the raising and
lowering operators relative to body-fixed axes. Eq. (B-45) has

used the fact that the only angular momentum along the internuclear

axis is electronic angular momentum,

U; = }‘Z . (B-41)
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Eq. (B-34) now provides the first derivative. The second

derivative is

T XM 3R\ 3 @A, Tox,e3,0) +
7<% - = , 3 1T Yy
Y7 3 &Zj (Qsﬁu

?_‘ Rj‘kl% %*k; DA s R’S’R)].

As HWC observed, the second term here is just given by Eq. (B-34)

if one lets AOT play the role of the arbitrary function of body-

—

fixed coordinates played by Ek' before. And using Eq. (B-28),

one obtains

-3 Qix ¥, Y e
D*:- N 2 Z D‘;M(K) R;k[ %c + ng‘\z A}] A; Vx,RIR) .
e Ju ‘)/Jr

(B-42)
The Af) in AI/L)' can be represented by Eq. (B~38 to 40), but the

second one, /\L , must be represented by Eq.(B-36 to 38).

Summing over k and using the properties of €* and R ,

we obtain

o .
R LR PILALL [ L RSN ELAR

(B-43)
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Substituting in Eq. (B-36 to 40) as appropriate and using the
commutation relations among the components of %,_ , one finds that

the terms containing the components of ﬂ? drop out, leaving

R ""_1."' +
2 P = 25 MO
w1 foibens neuef s o

Lidhane - Maas] -4y ) Bran.

When these expressions are worked out and the O allowed to raise
and lower all .ﬂ,’s that follow them, the result obtained is the

same as if this equation were written as

7 1’; Py = 5L Z Bl 383+ 1 G- V] e,

(B-45)

and the components of ;),- allowed to act via the raising and

lowering operators.

¢
The cross derivatives f‘ ?g are also needed. The Ple don't

affect ID:(?Z) and simply transform according to Eq. (B-3). From
(B-34) one has




_ _ | .
}/:,f'fg Ek(x;*,‘fnm)ajz? 0, KA ¢ (x,R.7,0)

S.@ x Uy "P\‘(x" X)
:)g});w ) {4 [AE4D R p] +

Pa%%ki L—y (‘}2)3’\’?)) ' (3'46)

f. Transformation of the Hamiltonian
The Schrgdinger equation can now be written out, with all the

operators transformed, as

y (P Ly~ !
§ DpR) 3“,{\2‘%‘{‘2’%\1* z;lai + }LHQ( Peby = Pyl + i)

+H, — E:d Q(wg,ﬂ‘.ﬁ,ﬂ\ =0 . (D)

Here Eq. (2-11), A‘?" %— , must be used when the components
of vl:-_ act on T . Thus, the only dependence on & and ¢

is in the D;M (‘R).

To complete the removal of the rotation at this point, HWC
- _
use the orthogonality of their Dﬂﬁ . However, ¥=0 in
¥
Eq. (B-27)) and our DﬂM are not orthogonal in different SL

values. Instead, the orthogonality relations becomeloo
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¥ ) “\ 3% vl 4T
= 21 1 ! (B-48)
Sod? &unédo Dﬂ-M C@) Dﬂ-M(‘E) 23+ SSK XMM . B

3
Although the DJZN cannot be used to complete the removal of the
rotation, it can be accomplished as follows. If all the operators
in Eq. (B-47) are written in terms of irreducible tensors, they
(=]
all are zero components of the form T,_ and commute with 3;
(see Appendix D). Likewise, they commute with any function of Jgz,

say 7C(D'z) . Applying #(Iz,) to Eq. (B-47), one obtains
£) T {3 ToRan = ) fn) Dy L ITGRI D, 36
%) T %m0 {1 L 290 Dew

Let «F(Q, = elw&‘ where w is a dummy parameter. Multiply

by 4?&2') and integrate (,, from O to 2x , and it is clear that

L | - 12
P
(B-50)
+ )’Ie _ E‘K \Y “/R:-S)JU) = O_"

Except for the P; term, this is the result of Section IIB.

>
t IR
let us now consider this term. The rest of the terms in (B-50) are
Hermitian; hence, this one should also be Hermitian. But the

2
integration over R now involves the Jacobian R . By partial
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. ., 66 . .
integration  one easily finds that

a3V = Ly L2 i
so that }{’%\l is not independently Hermitian. However, for all

functions g’ transforming as the irreducible representations of

the rotation group, one can show (Appendix D) that
%(Q‘)%@> :O’

so that. —LP‘%R is still Hermitian with respect to all the
functions of interest. However, it is convenient to use a form

in which the differential R operator is independently Hermitian.

: : 4
We thus take the Hermitian part of P;_ L%R 3

‘al.{Psz%Q* U’z%%ﬂq = E(—i—;— + 7‘3 . (8-52)

But this is the same as

- 113p = 4 Q
A= TSR F% Y, (B-53)

where ﬂ is the radial momentum used in Section II. The added
' term makes no contribution to expectation values and we are thus

free to use (B-52) in place of Pz"f%k in Eq. (B-50).



2. The Inversion Operation

/ v !
In this subsection, we want to determine -:9- ‘;P(‘J*)
for use in Section IIB. Applying \»ﬁ directly to Eq. (2-37), one

has

AP ik, M) = 3 Py Tm) = ;J'ibffmmw»@ﬂ Toramy

(B-54)

We now use the fact that %= R¥ , etc., and treat the quantity

in i 3 as though it were just a function of the space-iixed
coordinates. ‘9;15(’= "XI ,and if R, & , and 9  are the
spherical polar coofdinates of 8_ , it is easily shown that the
spherical polar coordinates of —-g are R, -6 , and Qt“
Since UQ’ acts simultaneously on all that follows it, Eq. (B-54)

becomes

(1) D5 TH) = 2 Dam [Ra-oe:m)]d THE* TR, (b-55)

where
AT ¥30) = Y Rin-s,¢emx’, Rin-e,demid¥’; 50 ]

= @ [-R@-s, f2w) X -R(r-0, ) ¥ ;3,21 ,
(B-56)
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From the explicit form of IP given at (B-32) we can put
Rm-e, C9r1r) = TIR(G,CP) . , where Jd isa rotation,

and its matrix | is just

| © O
T = 6~ O (B-57)

o o -l

Using this in (B-56), we see that since

%= (%),

J'7 (\\(,X,D’,Jﬂr— qj[(‘ﬁ) )-)(; j‘,ﬂ,‘l ,  (B-58)

so that when acting directly on a function of the body-fixed

/
coordinates, cQ is just

:a/ — Wﬁ ) ) | (B-59)

a reflection in the body-fixed yz plane. For greater clarity
/
we replace Jd by O,; hereafter when it operates on ‘:P(‘X)*y

Thus, Eq. (B-55) becomes

@0F Blx X, T M) = JZL-D;H(Q‘R) o BOOXT,R) . (50

In the most recent paper of the HWC series, Kouri and Curtiss"6
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J
have used the explicit formulas for DLM and shown that

I N D (B-61)
Dol I®Y =D Qﬁ)MDR).

Using Eq. (2-37) for the left hand side of Eq. (B-60) and changing

the dummy index of summation on the left hand side, we obtain

S 07 0 [6)f T&K I - 6, TOXIA)] =0
JL

M (B-62)

Thus, if the body-fixed wave functions satisfy
% @(%)X’D—rﬁ/} = E"'f.{z (%,*,T)‘JL), (B-63)

then the space-fixed wavefunction Q Wf/x') will have

definite parity under inversion.

3. Double-valued Representations of the Rotation Group

In this subsection we discuss the effect on the results of the
previous two subsections if the total number, N, of electrons in
the system is odd. Each electron has spin ¥ , and if N 1is odd,
then the total angular momentum of the system, J , will be a half
integer. Wignerlo1 has discussed this case in detail. He shows
that if N 1is odd, the ﬂfr form a double valued representation

J
of the rotation group. And instead of ‘using the ﬂ> used in the
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preceding subsections, we should have used-,@.i)N [D-S everywhere.
The + signs can take either value and cannot be fixed by any choice
of convention. Furthermore, instead of Eq. (B-24), which was used
for 4 and then later for g | at’ Eq. (B-60), there is the

additional uncertainty

YR = DD . o6y

For most of the symmetry operations this presents no problem,
since they did not affect the rotation. However, for half integral

J , Eq. (B-63) should read
N -
G FOX,TR) = @ )T, T (665)

This equation presents two problems. Onle is that (,—I)-j=u).u
is imaginary for half integral J . The second is that while
(B-65) causes ‘P(%') ¥') to have definite parity under JI s
the i makes it impossible to say y_l'_x_:l._g_}l parity Q(‘*’,*) has.

To handle the imaginary factor, we follow Messiahloz, who

puts O ,(3) = W75z - Then,

S50) X (X%, T ) = (B )P B, T,-R), (8-66)

and qu(t)’) is used in place of Oy if J 1is a half-

integer. The simplest way to handle the (j)” seems to be the




. 103 . .
following™ ~. We use the symmetry operations only to find
selection rules for transitions between states. And the matrix
elements always involve two wavefunctions, so that any symmetry
R W R
operation always produces two of the L_) which cancel each
other out. In such applications, which parity a wavefunction
has doesn't matter. What matters is whether its parity is the
same as or different from the parity of the other wavefunction
in the matrix element. Hence, one obtains the same selection rules
. +)V
whether or not he includes the (—) , and for convenience the
factor ie simply ignored in the text.
To complete the conventions necessary to specify the
behavior under all the symmetry operations, we choose to construct
all angular momentum eigenfunctions out of the usual spherical

harmonics95 7 and spin functions. The spherical harmonics have

the form
y e;m‘Qc
Y, 0,0) = Spldgm -67)

where 69 is a real function. Also, they obey

T= ey,

Because  Oygz , Eq. (B-58), reflects through the yz plane,

one has Otli ”‘:(Y},G;,‘P;) = -F-(Y‘{,Qt-"'ﬂ’- CPt) . Hence,
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m‘- ” m x -m _
GQZYL = £1) (Yz) = \L_ . (B-69)
. o ~ = \h %
The spin functions L= l 3,M> = 2, z> and

-l =
p' ' /z., /z> are chosen to behave similarly,

- (B-70)
Sie 14,54) = 1433).

Under inversion of their coordinates, the behavior of the

spherical harmonics is well knownlo4,

(B-71)

X \f}oc,cg) ﬂf’cv—eg 9,1T) = L—l)'zY;?oc,lP.-).

But, in choosing the spin functions, as I-Ieine105 pointed out, we

are free to take the usual convention,

(B-72)
JI4 24y = 15,5 %

4. The Removal of Rotation in the CMN Coordinates

In Appendix A, we obtained the relative Hamiltonian in the
center of mass of the nuclei (CMN) system. From Eq. (A-36) it

can easily be written as

)J: :E-L fﬂz ! ﬂe(c””% (B-73)
2 i
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where

PO B O
Hemw)=4 L Fon ¥ ilgamy ™" ' (B-74)

t=1

jqéﬂﬂb does not contain any nuclear momentum operators and is
invariant under rotation. Let us rotate the axes as before. Then,

2
<f§ transforms as before and the Schrgdinger equation in body-

fixed coordinates is just

) # J = B-75)
T 5},&2 t :""L‘m + T (CHN) ‘Ec] P¥n R TR) 7O ¢
A */’éi\

whére L__z: (;):- })" just as before. The angular momentum
properties are the same as in the separated atom system and need
not be repeated. The electron exchange is simple in this system
and invariant under the rotation. Hence, it remains given by
Eq. (A-39). It is convenient again to use .;Q; instead of jé;.

In these coordinates, Je’“ JE,‘, is invariant under the

rotation as before and given simply by

I P4 32) = P (%, %, T = )PP (%, ¥, 7,2)

(B-76)



hy !
Once again, we use the DJLM to get a tractable way to treat J

and get the condition that

% Ponx ) = B (4) %3] <00 Wik -0,
(B-77)

Thus, the formulas in the CMN system are even simpler than those
in the separated atom system.

The Hamiltonian in the .,.P system transforms similarly, with"g
chosen to lie along the new Z aiis in place of 8- . The formulas,

if needed, can be written by inspection, and we do not list them here.
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Appendix C. Perturbation Formalisms
WVWVW

This appendix contains the development of the perturbation
equations and energies for two special cases. In the first, the
perturbation is an operator which is only defined when it acts on the
zeroth order solution. In the second, the Hamiltonian is an infinite

power series in the perturbation parameter ,X .

1. A Differential Operator as a Perturbation

In Section IV the formulas of ordinary perturbation theory65’68

are used for a perturbation which is an operator and only defined
when acting on the zeroth order wavefunction. We now prove that
that use was valid.

Consider an arbitrary wave equation,

N = E 4, b

for which the only thing known initially is a complete set of

(0)
orthonormal approximate solutions, 4; » such that

o) 1] O (0,419 2,0 -
.#(%rouEJ.’\[/ﬁ-rmJ"lg +XH Y ©®

The last two terms simply contain everything left over when ){ acts

(0)
on HK . The terms are taken to be ordered by the parameter .
0), 1 10)

)] (
The perturbations N and 74 2 are operators and only )J A

12,0 /
and )4 43 are defined. It is assumed that E%o) is non-

degenerate and that
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oo A 2 m)
n o — nw - (C"3)
hh:z:o) VR trﬂzox =

)
Since the set of q@ was assumed complete, the higher order

wave functions can be expanded in terms of them,

('n) Z o) u/“‘) (C-4)

Eq. (C-4) keeps all the quantities well defined when (C-3) is

substituted into (C-1) to obtain

o) o
SN (B E TN e
wn=o 5

(€C-5)

F e - o

m=0

Setting the coefficient of each power of ‘k " equal to zero and

rearranging slightly, we obtain the n-th order perturbation equation,

Z[CM EJ{O)— E:.O)) u{).lo) ('n—:))_,u)wo) Cm-z) II)L}//()) Z Elm)cnm U/a”] =0.
(C-~6)

' . (o)
Upon multiplication by UL and integration, this becomes
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n“ﬂ ( E(a) Elo)) z ( Cb' -) m m“}m> ‘4: l)<q/w)n_{(z)q;'m>)

Z‘ E_tm)c(n-m) - O ’ ©-7)

If n ='O'., one obtains

167 ( ©_ —-lo')) =0 (C-8)
¢ )

or

0} _ (c-9)
C(-‘k - g,:‘e_7

consistent with the choice of zeroth-order solution.

If n=1and k =i, then
u) < q)lo) D\UDLP”)> (C-10)
If n=1, but k§i , then

{0) DITRLY
cgz - LB > o (c-11)
E_lc) - Elo)
. . h)
which gives the usual spectral expansion formula for "h from
Eq. (C-4). One is free to use the normality relations in the usual

fashion68 to set
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O ' ' (C-12)
i =0 ’

If n=2 and k=i , Eq. (C-7) becomes

2 ) fo "« q,‘”' qu, '7><w«.n mqj o)>
D _ :o)l}{ )(-P )
EY = <y y-2 duipes

(C-13)

Since the Hamiltonian }( must be Hermitian,

LY ‘}‘;a) = Ol LJ/J"”> . (c-14)

Using Eq. (C-2) and equating powers of ) in (C-14), one sees that

4‘1’.{0)1)/")%’05 = YT (c-15)

(2)
This allows E‘. to be written in the more symmetric fashion,

ED= <WIHEY Z < HYLLES <47 D, 10

o _ 0)
E’- E,

) o
If the E E are replaced by a mean value, A“

, the

sum can be performed to give the Unsold approximation,




ES= ZUTIHOY < 1§ NPy — 4P
, - (C-17)

To obtain an estimate for A g let us consider the first order
] ¢

wavefunction, -

1) ‘¢ O ) 1N f1D1'®
W= =5 1 P<HTIHETS (c-18)
y EN-EP

and as an approximation to q«‘“) s let us again perform the Unsgld ’

approximation,

T = - L i e

If Q’; is a state to which the Rayleigh-Ritz variation principle
' ) qro

applies, substitution of the unnormalized trial function \h- +) ¢

into the variation principle and expansion in powers of ) gives

67,68

the Hylleraas principle for this case,

E9 2 B2 = DD + LEN- EME")

FARCEINGS . e
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Actually, only ‘3¥ is needed in the second integral instead of')J)
I 5 : . -
;- but ')4 is not known here.
§})
Now let us assume that E;‘ = (O and substitute Eq. (C-19)

inﬁo (C-20).' The result is

« ¢

ED = <P IHo¢> +:1L: R H-ES T

OGPV Y e

Z
A
Let us now minimize this with respect to A by setting

== (1) S :
QEC = 0. - (C-22)
RYLY,

(2) . : o ) . . :
‘){ is allowed to depend only on the final value of Z}( , not

on this variable value; The result is just

Z _ % )4(»)('{/:0)] - Ecm l .H“)(H.’o)>‘ (C-23)
¢ 4)’1(04{‘40)' )‘mqj“fﬂ>

"' .
Use of this Zlg in Eq. (C-21) gives the same result as its use

@)
in (C-17), providing an upper bound to f;g equivalent to the

Dirichlet princip1e67

166

This completes the derivation of the formulas needed in Section IV.
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2., Infinite Series Expansion of the Hamiltonian

The results of this appendix are not new. They are derived
here (for use in Section V) because the formulas obtained from a
Hamiltonian of the form of an infinite power series in the perturbation

parameter ) R

W= i N (C-24)
o

‘ n) 0w
are not so familiar as the usual )~l=)4 + ).)J form.

We

(=9

esire a perturbation solution of the Schrgdinger equation,

)'(q/= E"P | | (C-25)

Let us assume that

o
E - i )r E“‘) , and (C-26)

e (C-27)
‘ n=o
. { -
where h\> = l}/ ) is the n-th order wavefunction.
~-The wavefunctiong are subjected to the usual normalization68

conditions;

LYy = Zolo> =| ; (c-28)
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Substitution of Eq. (C-27) into this and requiring that it hold for

all allowed ) leads to

n
S \ = c-29
S <kln-ky = §,,. (c-29)
K =0
To obtain this result we used the Cauchy product of sums definition,
©® n z
=2t
= . C-
Zanib Z 2 G by Z (C-30)
w=o K=o

'\130 :
Next, let us substitute the sums into Eq. (C-25) and equate

powers of A . This leads to the nth order perturbation equation,

Z D(z\ n-k> = 0, (C-31)
k =

where

(R) _ ~yld_ =l |
D =N '—E. (C-32)

(k)
Using Eq. (C-29), (C-31), and the fact that D is Hermitian, one

can show by a series of algebraic manipulations‘that the (2n)-th
and (2ntl)-st order energies can be obtained from the n-th

order wavefunction. The formulas for them are

L) 1\ 2nemky,
1n»»pk

%= <o ¥ ™0y +-§:40l])""’|z )+ i

m=pt) k=
(C-33)
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and

+ ™ . : ' -, °
E‘zﬁg—: <0””m "‘» + 24‘)' ) )lz”*m") *u=| mzs;!?l-ék\ D™ i

Mapet
‘ (C-34)

The procedure for obtaining these results is essentially that
explainéd by Hirschfelder, Byers Brown, and Epst:ei.n,m*6

Before considering spec;al cases, let us obtain the expression‘
for the expectation value of aﬁy Hefmitian éperator' A which can

- PP A
pe expanded in A

-2 A” (-39

k%

Using this, (C-27), and (C-30) one obtains

<YIpIYy = 2 X e

where

“ A= i_ i()ﬂ-!émm\n-?b. (c-37)
m=0 k=0

Before ending this appendix, we give the formulas which will
be needed in Section V and VI. For neutral atoms two of the terms

in the_multipole expansion are zero,



/ (C-38)
‘){“): }/ 2); 0)

which leads immediately to

= MW=0 , and (C-39)

Em.): D“’z 0. , (C-40)

‘The first ‘three perturbation equations become

= | C-41
blo),k'>:0 , k-—o;‘)z' ( )

Since |d> is assumed to be the proper zeroth order wavefunction,
the only allowed solutions for the first and second order wave-

functions are

iy = c”loy
125 = ¢c?10)

(C-42)

\

From the normalization conditions (C-29), one finds restrictions

on the constants,

Re ¢W=0, and (C-43)

2R ™ 4 \eP|F =0, (C-44)
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and the imaginary parts of C“ and C‘z) cannot affect the energy
or the expectation values of any Hermitian operator. .Hence, one is

free to choose

S P = = o, (C=45)

Theﬁ, Eq. (C-42) becomes
= 12)= 0, C (C-46)

which merely says that a zero perturbation does not perturb the
wavefunction or the energy.
With these results, the perturbation equations up through the

sixth order are

Do = O,

13)

V213> + D

D214y + Do) =0, (c-47)

o> =0,

D15y + D)0y =0, and

D1y + D®I13 + b0y = 0.
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Thus, h’\} ', for n'=‘3}(,5, are all obtained by solving 'first-order"
.p'er'turbation equations. The normalization conditions (C-29) also

are simplified,

Loloy = |,
Re<ol3» =0
Re o> =0, (c-a8)

R <0I5> =0, and

2R <016y + <313) =0.

The first few perturbation energies become

Efq:: Ei(ﬂ1= C),
D= Lo H® 0,

o <oy o
Ecb‘)___ Z0l )4(5)|Q> , and

gle) < 401#“’107 +»<0$)"ml3>'

And finally, the first few terms in the series (C-36) for the

expectation value of a Hermitian operator become
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(
a® = <ol A®10>, k=012,

AP = <ol A?)0> + 2R <31AV1DS

A% = Lol AW[0Y +2R KHIAPIDY 4+ 2R <31 A"I0Y,

ﬂ(g)z <O‘A(5)IDS +2KL<5‘A’Q|0> + j&(L"A(nl0>+

(C-50)

20, {31A®106) , and

Al0) le /
P’ - )14 1Al }3} ._L':)

= Lol A7I6Y + 2R, KbIA <EAM0Y

0
N

tA0LUIAR10Y 2R <3 APy + B3IAID)

' This completes the derivation of the formulas needed in

Section V.



Appendix D. Matrix Elements

In the body of the paper a number of assertions were made about
the values of certain matrix elements. 1In this appendix the
properties of irreducible tensors used in the text are reviewved,
and some particular matrix elements encountered in the text are

discussed.

1. Irreducible Tensors107
M
The quantity 11_ is the M component of an L-th rank
irreducible spherical tensor if it satisfies the commutation

relations,

1
L3, TP] = [(Leme) s ) T ane

(D-1)

[T, TN = M7

Here the J: are components of the total angular momentum of the
system, and 'Tzw depends on the coordinates of any or all of the
particles in the system.

The components of a vector are easily written in terms of first

rank tensors. If \E is any vector, then
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, and (D-2)

P:‘ = .\)!—i_'(PX-L P‘!)

are the associated irreducible tensor components. Thus, the raising
and lowering operators themselves are irreducible tensors (except

for a normalization factor),

:[; = __\ﬁz.‘)‘ and

)

J_=Vz2 3,

-

(D-3)

The spherical harmonics, \izn , also are irreducible tensors to
within a normalization factor.

The Clebsch-Gordan Theorem. To write a tensor which depends
on all the coordinates in terms of products of tensors, each
involving the coordinatesrof only one atom, one uses the Clebsch-

Gordan theorem,

- M, M
M . [ 2 -4
M- >l L, LM M, T T o
Mlle
where —1_‘ e M, < Ll and =L, -‘-Mz 4 L,_ . The Clebsch-

Gordan coefficients (( ) are well known. To form irreducible
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tensors from products of irreducible tensors as was done at Eq. (6-37),

one uses the inverse of this theorenm,

M , (D-5)
T IIML — Z CCLI,LZ/L‘/ M‘/ML,MI"'M?_) TM‘+ML

L] 2 L_ L.. )

where the sum on L runs over |L,—Ll,!< o £i +L,.

The Wigner-Eckart Theorem. The great value of irreducible

tensor operators lies in the ease with which their matrix elements
and selection rules are obtained using the Wigner-Eckart theorem.
1f |j d) is an eigenfunction of the total angular momentum (or of
the angular momentum associated with the variables on which '11FA

depends), then

Ly | Ty = Cl g M) LT NS . @O

The reduced matrix element 4<-“ |h> is independent of m, M
and m'. It is obtained by evaluating the integral on the left

for aﬁy oﬁe value of m, m' and M. Then the matrix elements for
all other values are obtained directly from (D-6). The Clebsch-
Gordan coefficient directly gives the rotational selection rules.

It vanishes unless

m+ M=m’ (D-7)

and unless 3, L and }' satisfy the triangle inequalities,
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2. Some Matrix Elements

At Eq. (4~16) we obtained the matrix element

YR B IRWWORDNY,, o9

where the \IJ are electronic wavefunctions, and the integration

is over the electronic variables. To treat it, let us observe

that the electronic wavefunction can always be constructed such
. o : ¥

that its only imaginary part is due to a phase € , where -F

depends only on the azimuthal angles, ? , of the electrons

relative to the body-fixed axes. Neither Pz nor %-R. affects

the azimuthal angles of the electrons, and the phase is thus

independent of them. Hence, the results in (D-9) will be the same

. . 1
as if the LP were real functions

Now consider the first part of (D-9). Because g is Hermitian,

one has
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(q’jl A 492“’;‘%); |

Now either integrating out the P first, so that the functions
left. are real or else treating the kP as real, one can take the
complex conjugation inside. ¥% is an imaginary Hermitian operator,

and the result is

LY IR Y= = LW RW =0 @-10)

To evaluate the second part of (D-9) let us use the fact that Fz

is independent of the electronic integration,

X !
o= 1= S <\,

>
IR -
= <:€2%§ \“1;>¥ + <(l+§\%§%?sz ,

- 2<U W @

This last result is again due to the fact that only the real part

of 43 depends on ;2 . This concludes the demonstration that

(D-9) is identically zero.

In connection with Eq. (5-44), let us consider




o= T il

A S S\ oYy
MPCTIINEOTAL WERE AL 3

‘ DR‘ X T Z<§§é\3‘§é7y . | (D-12)

The last step again was possible because only the real part of \Py
was operated on.

_Finally, we want to prove Eq. (4-40),

ho)_l =0 h, | | (4-40)

From Eq. (4-29) this is

= LYo | )404», \"P“—')?x (4-29)

O:"l

where

'—

)40 = >~+(J D)( R \1_%_'7 P.;l)' (3-3)

Now W(0) is an eigenfunction of reflection,

L _
W) = 0T o2 Y0. (4-34)
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Using this and the fact that 574{ is Hermitian, one has

(D-13)

' l’lo_‘ = (")f:s< 70 \G-qz,)‘(o,-l L‘J(")>$( '

4

The components of B behave like the coordinates (2-44) under 6712
but the components of %, behave oppositely, like angular momenta.
Using Eq. (D-2) and the definitions of the raising and lowering

operators one immediately finds that

0711740,-, = HoiSqz (D-14)

and using Eq. (4-33) and (2-24), Eq. (D-13) becomes Eq. (4-40),

the desired result.




a. The Separated Atom Relative Coordinates

@

b. The Center of Mass of the Nuclei (CMN) System

c. The ﬂ*?" System for Two One-Electron Atoms

Figure 1. Relative Coordinates. The directional axes
(not shown) are space-fixed.
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