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SUMMARY 

A general matrix-Holzer method is developed for predicting the free 
vibration modes of clustered launch vehicles. The problem is so formulated 
that it can be adapted to the analysis of clustered structures capable of 
vibrating in various types of modes. A complete theoretical analysis of the 
fully-coupled vibrations of the Titan IIIC launch vehicle is followed by 
analysis of the transverse bending vibrations of the Saturn I. The latter 
is a simplification of the fully-coupled case specialized to the Saturn 
cluster boundary conditions. The first six transverse bending modes of the 
NASA Saturn I l/5 scale model are calculated and compared with test results. 
A procedure for predicting the longitudinal vibration modes of Saturn I is 
also presented, and represents a second specialization of the fully coupled 
case. 

The formulation minimizes numerical operations by invoking symmetry 
where possible and by postponing satisfaction of compatability of deflections 
at cluster attachments until the last steps. Any kind of cluster boundary 
conditions can be represented in such a matrix-Holzer analysis, as illustrated 
by the two examples studied. Not only do the cluster boundary conditions of 
the Titan IIIC differ significantly from those of the Saturn I, but different 
cluster boundary conditions are also encountered in the same vehicle 
(Saturn I) depending on the direction of motion considered. 

The method developed here can account for (1) cluster body motion, 
longitudinal as well as in and out of plane of the centerbody motion; (2) 
cluster attachment flexibility; (3) various clusterbody end conditions, 
differing amoung cluster bodies from end to end and between bending planes; 
(4) steady axial loads; (5) liquid sloshing; (6) shear deflections and 
rotary mass moments of inertia; (7) t t s rut ural elements overhanging from the 
main body of the vehicle such as rocket engines and cluster body overhangs 
forwardof the forward cluster attachments and aft of the aft cluster attachments; 
(8) discontinuities in bending and torsion properties at staging joints. 
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INTRODUCTION 

The importance of the dynamic deformations of large missiles, and in 
particular knowledge of the natural frequencies and mode shapes, can be 
related to several continuing problems. Structural natural frequencies 
should be placed, for example, so as not to excite fuel-sloshing, or premature 
rocket engine cut-off could occur. The minimum bending slope points should be 
known so that control system gyros can be placed where they will sense rigid 
pitch and yaw, which are indicative of the vehicle's course, rather than 
flexible body motion. Structural loads resulting from response to dynamic 
excitation, such as wind shears, must be predicted for design purposes, and 
the natural modes are basic inputs in such structural calculations, as they 
are for control system stability analyses. Methods for predicting the natural 
frequencies of launch vehicles at the earlies possible design stage, therefore, 
continue to be actively pursued. 

Clustered configurations, where a number of tanks are arranged in a 
concentric ring or in a "piggy-back" arrangement on a central tank, have recent- 
ly come into use, and will be of interest whenever it seems profitable to gang 
existing boosters to achieve still higher thrusts. Such arrangements, from a 
structural viewpoint, comprise closed, branched-beam systems, and there is 
relatively little experience with the dynamics of such systems. 

It is usual to assume that launch vehicles have symmetry about a plane 
through the longitudinal axis of the configuration. The cross sections of 
individual bodies, in fact, are very close to being polar symmetric, and the 
array of cluster-bodies is generally symmetric about the center-body. The 
attachment of clustered bodies to the center-body, however, 'is usually such 
that deflections relative to the center-body in the radial direction differ, 
in general, from those in the tangential direction. As a result, unless the 
motion of a cluster-body support point is solely in a radial or tangential 
plane, that cluster-body will respond in two planes. This has been evident 
in reports of shake tests conducted at NASA, Langley (References 1 and 2). 
If, however, one or more of the bodies lacks axial symmetry or if the cluster 
array is unsymmetrical, then the entire array may not only experience 
oscillatory bending in two planes, but couple with torsional and extensile 
vibrations, as well. Even in the simpler, symmetric case, the lateral offset 
of the clustered body's neutral axis from the vehicle center-line suggests 
that longitudinal compression and extension are essential to the mathematical 
model, whether or not additional degrees of freedom need to be included for 
such motion. It follows that flexibility of cluster-body supporting structure 
must also be accounted for, and that the special joints often used at such 
attachments must be properly represented. 
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In addition to characteristics unique to clustered configurations, other 
effects encountered in the design of more conventional vehicles must still be 
considered. First stage booster rockets, for example, can deliver high 
longitudinal accelerations near burn-out. The resulting longitudinal compress- 
ion loads can have an appreciable effect on the first stage effective stiffness 
characteristics, and hence on the vehicle's natural modes and frequencies. 
In addition, cluster-body supporting structures are likely to have rotary mass 
moments of inertia sufficiently large to require that the analysis be capable 
of accounting for such mass pmperties. Further, the depth to length ratio 
of certain sections of the vehicle such as the "barrel" in the Saturn model 
(see figure la), strongly suggests that transverse shear deflections may not 
be ignored. Finally, the coupling effects of fundamental fuel sloshing and 
rocket engine natural frequencies considered as subsystems mounted to "ground" 
should be represented. 

All these "secondary" effects are more likely to affect branched systems 
than their simpler counterparts. There is a tendency for one or more of the 
system natural frequencies to fall relatively close to a natural frequency of 
a cluster-body or center-body considered separately from the rest of the 
vehicle. Small changes, then, due to any of the usually small effects dis- 
cussed above, can in such cases have appreciable influence on the system 
natural frequency and often result 'in really substantial differences In the 
associated mode shape. This pertains particularly to the motions which might 
normally be assumed uncoupled by virtue of neglecting small disymmetries. 

One of the earliest published theoretical attacks on this problem is 
in a paper by Hung and Stone (Reference 3). The I@klestad method was applied 
in matrix form to the vibrations, in a single plane, of a beam with two branches 
mounted on a center tank. Shear deflections were taken into account, but 
extensile loads and motions of the bodies off the neutral axis, flexibility of 
attachment structure, and subsystem degrees of freedom, were not. 

The special case of four uniform beams of circular cross section, coupled 
symmetrically at their ends thru pinned joints, and undergoing torsional 
oscillations about a longitudinal axis thru the center of the cluster, was 
analyzed by Lianis and Fontenot (Reference 4). They used a continuous system 
approach. The uncoupled, differential equations for bending and torsion were 
coupled by the boundary conditions and led to a 40.x 40 transcendental 
characteristic determinant for natural frequencies of modes in which torsional 
oscillations are coupled with radial and tangential bending. A lumped parameter 
approach was also described briefly. Apparently influence coefficients were 
obtained and a Dynamic Matrix (The "D" matrix in the notation of Bisplinghoff, 
Ashley and Halfman, Reference 5) set up, which yields the natural frequencies 
of four non-uniform bodies in the same arrangement. 
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Analysis of the Titan IIIC (Fig. lb) three-body configuration*, 
emphasizing the effects of attachment flexibility, was carried out by Storey 
(Reference 6). Offsets of the centers of gravity of cross sections of indivi- 
dual bodies from their centerlines were neglected. The oscillatory behavior 
of the system could thus be simplified to three uncoupled motions; (1) bend- 
ing of the centerbody in the plane of the clustered bodies coupled to 
extensile motion of the cluster-bodies plus their bending in the same plane; 
(2) twisting and bending of the cluster-bodies normal to the plane of their 
attachment, in concert, plus similar bending of the center-body; and (3) 
opposed bending of the clustered bodies, normalto the plane of their attach- 
ment, plus torsion coupled to center-body torsion. This formulation calculates 
flexibility influence coefficients by energy methods, eliminates redundant 
loads by requiring compatibility of deflections at joints, and forms a 
Dynamic Matrix which is used to calculate the eigen-values. The order of this 
matrix, of course, is the total number of degrees of freedom in the represent- 
ations; e.g. even presuming symmetry, using 10 mass points for bending and 
5 for longitudinal motion of the cluster-body, and 20 for bending of the center- 
body, leads to a 35 x 35 dynamic matrix for this case of two clustered bodies. 

Milner (Reference 7) carried out a multiple-beam analysis of the Saturn I, 
using a Rayleigh-Ritz approach, and a generalized coordinate approach to 
clustered configureations was recently published by J.S. Keith et al (Reference 
8). In an appendix of the latter reference, the NASA l/5 Scale Saturn I model 
is analyzed for lateral vibrations using the suggested approach. Although 
complexity in analysis is like beauty, i.e. it exists only in the eye of the 
beholder, the number of subformulations required, and the number of modes which 
must be used as coordinates to insure accuracy, detracts from this method as 
a means of analyzing clustered configurations. 

All of the usual methods for analyzing non-uniform systems can be thought 
of as either (1) requiring the assumption or precalculation of deflection 
shapes for the system or its subsystems (e.g. Rayleigh-Ritz, Lagrange's equations 
with normal modes as generalized coordinates); (2) setting up a Dynamic Matrix 
through the calculation of either stiffness or flexibility influence co- 
efficients; or (3) establishing transfer matrices preparatory to applying the 
holzer technique. As mentioned regarding References 7 and 8, a rather large 
number of modes must be used for clustered configurations in the first approach. 
Perhaps more important, this method is best adapted to situations for which 
there is a background of considerable experience. The number of variations 
possible with clustered arrangements exposes the analysist using the first of 
these approaches to the danger of neglecting some significant but inobvious 
mode of motion. 

Wroughout this report reference to "Titan III" implies the clustered "C" 
configuration. 
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Comparison of the relative advantages of.the last two methods fills the 
literature, but it is profitable to review the :important points here. The 
Dynamic Matrix method is adapted to an iteration procedure which quickly 
converges to the first mode. The first mode.results must be used, however, 
if the same iteration scheme- is to work for higher modes. This is often 
cited as a disadvantage, since the errors of the lower modes creep successively 
into .larger errors for succeeding modes. Actually, the higher modes could be 
solved from the original dynamic matrix by other schemes, such as de- 
terminant expansions with a series of trial values as:sumed for the unknown 
frequency. In this way, the evaluation of each frequency would be independent 
of the other, as it is in the Matrix-Holzer method. 

A more pertinent benefit in using the Matrix-Holzer approach stems from 
the fact that the bulk of'the numerical work can be performed independent of 
'boundary conditions. Imposing boundary conditions at the-last steps of the 
calculation, has a distinct advantage for systems where more than one set of 
boundary conditions may be of interest. Furthermore, where bodies are 
duplicated, and/or have polar symmetry and are free to move in two planes,. 
the "transfer" from one end of such bodies to the other need only be done once. 
The reduction in labor achieved by using this technique for clustered con- 
figurations will become apparent. Most important, the ease with which 
representation of very complex systems can be formulated using the Matrix-Holzer 
approach is .a powerful argument in its favor. 

In the following sections, the general approach is described; transfer 
relations are written in matrix form, drawing on previously published material 
where possible; and application is made to two clustered launch vehicles, the 
Titan IIIC and Saturn I. The Titan III case is a fully-coupled formulation, 
specialized to that vehicle. Sufficient symmetry exists on Saturn I so that 
no significant increase in complexity is entailed in presenting an analysis 
capable of handling configurations with from two to eight clustered bodies, 
either all the same or consisting of two kinds, (see figure 2). In this 
case lateral bending vibrations of the center-body in one of two planes of 
symmetry is emphasized. The analyses are capable of,accounting for the 
effects of: 

1. independent bending motions of clustered elements in and out of the 
plane of motion of the center-body, torsion and longitudinal motion . 

2. flexibility of clustered element attachments. 
3. various end conditions of cluster-body attachment, differing among 

clustered element types, from one bending plane to another , and from 
one end of the clustered bodies to another. 

4. steady axial loads in all elements due to either accelerations or 
preload. 

5. coupling due to fundamental sloshing and rocket engine natural 
frequencies. 

6. shear deflections and rotary mass moments of inertia. 
7. discontinuities in bending and torsion properties at staging joints . 
8. structural elements overhanging from the points of support of the 

clustered bodies. 
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I. ANALYTICALDEVELCP~NT 

A. General 

In review, it is noted that the Matrix-Holzer or transfer-matrix pro- 
cedure (References 9, 10, 11) is simply an adaptation of the Holzer or 
Myklestad method in matrix form. The first step in the approach is to 
"break down" the continuous system into (a) mass properties considered in- 
finitesimal in length i.e. "lumped", (b) lengths of massless, elastic 
members of various flexibilities, and (c) special concentrated elastic elements 
such as may occur at staging joints. "Transfer matrices" are written for each 
such element, relating the pertinent quantities (deflections, forces, moments) 
on the left of the element to those on the right, or relating bottom to top, 
in the case of launch vehicles. These quantities are usually arranged in 
columns, sometimes called "state matrices". The"state" of the left hand side 
of one element is, of course, also that of the right hand side ofhe next 
element to the left. Thus, by continuous substitution for these common "state 
matrices", in the case of an unbranched system, one relates the important 
quantities at one end of the system to those at the other. At this point the 
known boundary conditions can be applied and the unknown quantities evaluated 
if the equations are non-homogeneous. If natural frequencies are sought, the 
set is homogeneous and the natural frequency appears as an eigen-value. The 
procedure, then, is to assume values for the natural frequency; the boundary 
conditions provide a test to show whether the assumed value is correct. 

In adapting the method to clustered launch vehicle analysis, the points 
where the clustered bodies join the center-body are at first thought of as 
the ends of unbranched systems (See Figure 3b,c ). The"assembly" then proceeds 
as follows: starting from Station I in figure 3b,c and traversing downward, 
the system "branches" at Station II. The deflections at the upper (or right- 
hand) end of all of the branches, Station III A, B or C are, of course, equal 
to the center-body deflections at Station II. A certain number of unknown 
forces and moments ("redundants", if you like) must be introduced here, however, 
since the clustered bodies will carry as yet unknown portions of the loads from 
the part of the system between Stations I and II. Whatever the number of these 
"intermediate unknowns", the requirement that there be compatibility of 
deflections at Station VIII provides sufficient simultaneous algebraic equations 
to eliminate them. The procedure then continues as though the system were 
unbranched. 

Suppose it is presumed at the outset that there will be coupling of some 
kind among all the motions possible. Cross sections of each of the bodies mak- 
ing up the vehicle, however, will be assumed to retain their shapes, so that 
shell effects are neglected. The motion of a cross section can then be assumed 
to include that due to 
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(1) radial bending involving the quantities: 

I I d A 

drere: v= 
V 

M F?= 

+ 
+= 

Y 

Y= 

transverse shear force (N-), positive 
dmm 

bending moment (+F in.), positive with 
upper fibers in tension 
bending slope (radians), positive when 
it causes an increase in yi+, 
compared to Yi 
bending displacement (/II.), positive down 

(2) tangential bending, with the same four quantities, but differentiated 
from radial effects by a prime; i.e. 

I I 3’ 2 
V’ 

hl’ 

4' 

where: relationships with radial quantities are 
shown in figure 4 

I I Y’ 

(3) torsion, described by 

I I 3 A = T 

e 

where: T = torsion moment (#im.) positive forward, 
considered as a vector 

8 = torsion angle (rad.) positive forward, 
considered as a vector 

and 

(I!) extcnsile notion, involving 

I I x 4 IF 
I 

where: F = longitudinal force (# ) positive forward 
t = longitudinal displacement (in-) positive 

z forward 

IL significant loss of generality will be suffered if one restriction regarding 
the coupling between these different motions is made; namely that elastic coupl- 
ing will exist only in the attachments of the clustered bodies. This is a con- 
sequence of the near polar symmetry of the elastic characteristics of the 
individual bodies about their longitudinal axes, and th? fact that all deflections 
are assumed to be small, first order. 
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B. Basic Longitudinal Transfers 

Using Targoff's Notation (Reference g), the change in all the quantities 
of interest across a length of'one of the component bodies, considered as a 
massless, elastic element of unifom properties, can be written as 

J3 
8’ 

? 

25 

= 

i+r 

Where: 

Eq. (1) 

1 I 
i 
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L = 
= 

; = 
E = 

= 
Is = 
I = 

J = 
A = 

length of the elastic element ( in ) 
steady axial load (# ), positive in tension 
3 EI /a-ttJ= 
Young's modulus ( #:/in2 ) of the material 
shear modulus ( #/in% ) of the material 
effective shear area of cross section (in” ) 
second moment of area of the cross section referred to the 
neutral bending axis ( in4) 
torsional stiffness characteristic of the cross section ( ifi4 ) 
effective compressive-tensile area of the cross section ( ina ) 

Here and throughout the paper, zero matrix elements will be omitted unless 
there is danger of confusion. The diagonal nature of this partitioned matrix 
reflects the lack of elastic coupling. The bending elastic matrix is an 
approximate form for small axial loads, i.e. where 

In general, !:?ost elements of the array become hyperbolic or trignometric 
functions of 

'12 

depending on whetherais positive or negative, respectively. The vehicle 
bre.akdown will usually be fine enough to make [Et,7 a good approximation; how- 
ee-r, the complete bending tranfer is derived in Appendix A. 

The transfer of quantities across a mass element, considered to be 
infinitesimal in length, can be written by inspection using Figure 4. 
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where: 

I 
I -“q 

darn; 

I 
I 1 

a 
8’ 
7 
z 

i 

Eq. (2) 



lJ = the vibratory frequency (radians/see) 

“i = mass at the ith station (Ibs d/in. ) acting in bending 

'+i = rotational mass moment of inertia at the ith station ". 
( lb-in. sez ) about the radial bending axis 

Iii 
.tll = rotational mass moment of inertia at the I station 

( lb-in. SC? ) about the tangential bending axis 

Iti = torsional mass moment of inertia at the ith station 
( lb. in. secz) 

,mQ. = mass at the ‘th I , station ( Ibs SCL =/i~ ) acting. longitudinally 

The quantities Mi , I+; 9 'it , and Iti and "4; can all be thought 
of, when it is convenient to do so, as "effective" or frequency-dependent 
mass properties. In the simplest cases, there may be a flexible local 
attachment so that part of the total mass mti is mounted at station i 
thru a spring. If the natural frequency of that soft-mounted mass, Y",,; , is 

I.2 ni 
, when the station i is considered fixed, then 

( ) ti %l,- 
hli = m,. + &; ’ 

I [- $- 2 
t ) n; 

The mass term in the longitudinal sub-matrix, Ynci , is purposely differentiated 
from Wl; , since liquid mass would not generally be included, except for 
stations where there is a transverse bulkhead. All the liquid mass between a 
transverse bulkhead station and the next one forward, would be considered as 
lumped at the aftmost one. Similarly, liquid contributions to 1Ilti would 
be largely neglected, except where there are segmented tanks. Portions of the 
liquid near a free surface, and"overhung" parts of the structure such as the 
rocket engines in Figure la and the clustered body.noses in Figure lb require 
special treatment, and are discussed in later sections. The transfer across 
the ith mass and elastic length on any of the bodies comprising the clustered 
vehicle is thus written as 

3 
23’ 
3 
x 

t [‘Ii [ml; 
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Referring to Fig. 3b, transfer and state matrices can be associated 
with specific parts of the launch vehicle by using the subscript N for 
quantities associated with the length between Stations I and II; C for 
those between Stations V and VI on the center-body; T for those between Stations 
M and X; and AC" or ~('1 on the ith cluster-body of one or the :other of 
two types between Stations V and VI. Clearly then 

a 8 8 8’ Eq. (31 
=. 

3 [ ci 1 
it 

(n.mC, SEACi; Pr 8”; x) 

(“‘~C,A,B,T) ; 

(I,PC,YAc’~YB(“, 1x1 

where: 

The summation in Eq. 3 assumes that the first mass in each body is identified 
as i=l . It should also be noted that the number of masses, n 
may be different from one section of the system to another. 
however, [6] 

Most important: 
need only be obtained once for each kind of cluster-body, 

regardless of how many of such bodies there are. Furthermore, for a free-free 
condkt-lnn of the launch vehicle 

V 
M 
VI 
M’ = 

T 

F (1.X) 

0 

0 

0 

.o 

0 

0 

Eq. (4) 

Thus Cl m 
JN may be taken as a 12 x 6 matrix consisting only of those columns 

of the general mass matrix multiplying the deflections; i.e. columns 3, 4, 7, 
8, 10, and 12. Similarly may be taken as a 6 x 12 matrix consisting 
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of the rows corresponding to the zero forces and moments; namely rows 1, 2, 5, 
6, 9, and 11. By postmultiplying (from the right) to obtain 
premultiplying (from the left) to get 

L6lp.J and 
Cd, this application of the 

boundary conditions saves half the numerical steps which might otherwise have 
been carried out in obtaining these two products. 

C. Joining the Branches 

At Station III the structural attachments of the clustered bodies may 
individually experience transverse shears, extensile loads, bendi% moments 
and torques, irrespective of the particular motion assumed for the center- 
body. If, for example, the center-body is undergoing only bending in one plane, 
the shears and moments in a normal plane can exist on individual attachment 
"arms", so long as those components cancel among them. One can, of course, 
state unequivocably and quite generally that 

V 

M 

v’ 

M’ 

-I- 

F 

= 

Yc 

Similarly 

V 

M 

V’ 
= 

M’ 

T 

F 

IXT 

V 

M 

v’ 

M’ 

T 

I= 

V 

M 

V 

M 

T 

I= 

- I 
i 

II 

t t 
i 

V 

M 

V’ 

M’ 

T 

F 

m 
*Ci) 

L 
i 

V 

M 

V 

M 

T 

I= 

Eq. (5) 

V 

.M 

V’ 

F1’ 

T 

F 
= g’;> 

Eq= (6) 
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The forces, moments and torques at Stations XACiJ ,& are the 
"intermediate" unknowns of this problem. It is important to note that 
Eqs. (5) and (6) imply that these quantities are in the same axis system 
as the center-body; if, as shown in figure 2, the cluster-body axis system 
is reached by rotating thru an angle, Y , this must be reflected in the 
transfer from stations YXACila gCh to IQci,, B(i) and from 

m*Ch,&> to m &I, Bci ) . The"intermediate" 
unknowns ultimately are eliminated for the most part by equations which 
are companions to Eq. (6), expressing the compatibility of displacements at 
the aft attachment of the clustered bodies. That is 

P 
;I 
Y’ 
8 
z 

= 

!izIc 

0 
Y 
9’ = 
Yl 
8 

E 
m *(i) 

+ 

Y 

9’ 

Y' 
e 
z 

, 
Eq- (7) 

Exceptions to making complete use of these equations will ic: clear in specific 
cases. The conditions at Station =C will be expressible in terms of the 
unknown deflections at the nose of the vehicle and the"intennediate" unknowns 
thru the use of Eqs. (3) and (5). Thus, Eqs. (6) and (7) may be rewritten as 

V 

Y 

V’ 

M’ 

T 

F 
lx 

= c 1 vi 

9 
Y 
9’ 
Y’ 
9 
t 

I 4 1 6, c 

r 

,(i) 

V 

V’ 

-I- 

M 

M’ 

F 

+ z 
i 

m ,Ci) 

v 
M 

+ 
t 

V’ 

M’ 

i T 
I= 

v 

\I’ 

T 

M 

Y’ 

F 

Eq- (8) 
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where 

r I 

+ I 
i 

III VI 2 rows 1, 2, 5, 6, g, 11 of 

& rows 3, 4, 7, 8, 10, 12 of 

v 
V’ 

T 

M 

M’ 

F 

i 
IK BCf) 

- Eq. (9) 

Cl Y 

Cl u 

Cl 61 f columns 1, 5, 9, 2, 6, ll(in that order) of 
C 

k], 

II Is= 2 columns 3, 4, 7, 8, lo, I..? of 
c 

[u], 

rows 1, 5, 9, 2, 6, (in that order)of Cl 7 11 N 

cohnns 3, 4, 7, 8, lo, x? of [I 6 N 

H, rows 3, 4, 7, 8, lo, 12, of Cl a 
U 

Cl 4 f rows c 1, 2, 5, 6, g, 11 of Cl 6’ 
C 

Cl 6: p rows 3, 4, 7, 8, 10, . 12 of 
c 

[I 6’ 
C 
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The arbitrary rearrangement of forces and moments at Stations m,Cil 

and lTgCi> will prove convenient in later steps. Now if the quantities 
at m& 00) can be similarly expressed in terms of the unknown 
deflections'at Station I.and the intermediate unknowns, there will be as 
many sets of Eqs; (8) as there are cluster-bodies ACil or BCi) 
This provides a total number of equations equal to the number of intermedia-& 
unknowns, so that the latter can be eliminated in terms of the nose deflections. 
To relate quantities at pm: Ad,, SC;) to those at Station mA(i>,gci> 

requires transfer matrices for the forward and aft structural attachments. 

These expressions may take different forms depending on'the kind of attachment 
configuration encountered, and depending on whether test data or data from 
previous static structural calculations is available. Rather than attempt 
to generalize, several examples are given in presenting the analysis of the 
Titan IIIC and Saturn I vehicles in the sections to follow. 

1. Titan IIIC Fully Coupled Motion 

a. General 

Titan IIIC consists of two large Solid (propellant) Rocket Motors ( SRM's) 
clustered about a modified Titan II liquid rocket. Thus, using the general 
notation, the A(l) and *P-l bodies correspond to SRM 1 and SRM 2, 
respectively, and there are no B(i) bodies. Figure lb shows two 
Thrust Vector Control bodies (TX's) attached to the two solid rocket motors. 
It may be noted that in the convention shown in Fig. 3c the AC11 ( i.e. 
SRM 1) properties are identical to those of ,p) ( i.e. SRM 2). 
Nevertheless, the presence of the TVC bodies has the important effect of 
coupling the torsion of the cluster bodies with their bending in both the rad- 
ial ('$a~) and tangential (pitch) planes. Thus torsion is a mechanism for 
coupling between the two kinds of bending. In addition, there may be mass 
coupling between pitch bending and torsion in the center-body, due to apparent 
asymmetry of upper stage tanks. (See Figure lb). 

The cluster arrangement is such that regardless of the mass offset of 
individual bodies from their elastic axes, antisymmetric longitudinal motion 
of the cluster bodies couples with yaw-bending of the vehicle. Similarly 
if their tangential motion is in-phase in the convention of Fig. 3c (i.e. in 
opposite directions), the effect is to excite center-body torsion. If the 
tangential motion of the cluster tanks is out-of-phase (i.e. in the same 
directions), it excites bending of the center-body in pitch. 

Suppose, as in Ref. 6, eccentricities in the individual bodies are 
ignored. Uncoupled analyses could then be conducted and would result in four 
distinct kinds of modes, all of which involve center-body motion, viz.: 
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a) Center-body torsion, coupled with in-phase cluster-body 
tangential bending-torsion. 

b) Center-body yaw-bending, coupled with out-of-phase cluster-body 
radial bending and extensile motion. 

c) Center-body pitch-bending, coupled with out-of-phase cluster-body 
extensile motion and yaw bending. 

d) Center-body extensile motion coupled with in-phase cluster-body 
extensile motion and yaw bending. 

It is not clear that the mass-offset couplings can be ignored, however, 
and the resulting analysis cannot take advantage of symmetry. All twelve 
state quantities must therefore be carried on center-body and clusters, and 
distinction between state matrices on ,+(I) from those on A@) must be made. 

b. Cluster-body attachments 

The forward attachments of the cluster-bodies on Titan IIIC differ 
significantly from those aft. The forward "strap and slip-joint" arrange- 
ment can transmit shear loads and torsion, but not axial loads or bending 
moments in either the pitch or the yaw sense (See Fig. 5a). However, the 
aft truss is capable of carrying not only shears and torsion, but also bend- 
ing in the pitch direction,and longitudinal force at the truss attachments 
points (Pl and P2 in Fig. 5b). Since F, M or kt'.ccnnot be transmitted at the 
forward attachments, the system variables Z,+,+'on the Aci) bodies will be 
discontinuous with respect to the corresponding quantities on the center- 
body at those points. These quantities on AC')and AC"), therefore, replace 
the six "intermediate unknowns"( F,M,M’)~,co , which are known to be 
zero in this case. This explains why the forces and moments at Stations 

IlLA f$i ) were rearranged and the corresponding state matrices parti- 
tioned as they are in Eqs. 8 and 9. Similarly, since no moment,M, can 
be sustained at the points Pl and P2 in Fig. 5b, the slope, 9 , may be 
discontinuous here. These points do require, however, that the displace- 
mentsY and t be compatible with those on the center-body. 

We can thus summarize the intermediate unknowns of this formulation as 
(V,V:T) m AcI),Ab) and (+a+iz)xA’rA (> (2)for a total of twelve quantities. 

There will also be twelve conditions to be satisfied by the state 
variables, after traversing the branched,part of the system. These are the 
compatibility of the six displacements(+,y;e), A(,i&a)contained in Eq. 8. 
However, instead of the remaining six,(+,y,t) it will 
convenient to match (Y.2) Pl, P2 with correspon mg quantities on the 

~@,A- be more 

center-body and require the vanishing of the two yaw-moments Mpl~f~~. These 
twelve equations will allow eliminating the twelve "intermediate unknowns" 
for the Titan IIIC. 
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At this point the flexibility of the attachment structure must be 
represented for those loads which can be carried. Ioad deflection data does 
exist for the forward and aft cluster-body structural attachments and was 
provided by NASA Langley. This information is available in a form which 
presumes the center-body fixed and the cluster-bodies loaded, that is the 
flexibility of the upper attachments fixed and the cluster-bodies loaded; may 
be written with the aid of Fig. 3c, as 

where 

Y’ 

8 

iii 

= 

-- 
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I 

k Yb'; j 

I 

k# YT a- 
‘J 

1 

and 

tangential displacement of Station xACi1 
with respect to StationxAGlper unit 
tangential shear on Station "AY) [in/lb] 

tangential displacement of Station EAci) 
with respect to Station III per unit torque 
on Station mACj> cih /lb in3 

torsional deflection of Station xACi)with 
respect to StationTIC per unit torque on 
Station XII,(j) Lrad/ Ib ih] 

distance from center-body centerline to 
cluster-body centerline Cihl 

where: / 1 \ 
= radial displacement of Station=*(i) with 

respect to Stationm per unit radial shear 
on Station ilIlA [ b/lb-J 

All of the flexibility numbers 

I I I 
F’ 

YT kT 
,- 

k Yb’ 

are assumed known and Maxweil's reciprocity theorem has been used to minimize 
the number of distinct symbols. 
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Now from statics, and accounting for rotation of axes from cluster-body axis 
system to center-body. 

V 

VI 

T 
l.z 
A(‘) 

= 

-I 0 

0 il 

0 CA 

T 
lli 
AC21 

Thus the desired transfer can be written, using the above flexibility and 
equilibrium relations, as: 

V 

Y 

V’ 

Y’ 
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8 A(‘) 
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Y’ 
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8 Ac2’ 

= 
(: 1 F, H [ 1 F2 

9 
Y 
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Y’ 
8 
t NIL 
v 
Y’ 

T #) 
v 
v’ 

T A(1) 
m 

CFJ 
where - are as defined on page 25. 

bl 
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Now substituting from Eq. (3) in the right hand side of the above transfer, 
we obtain: 

where: I- 

V 
Y 
V’ 

= 
Y’ 

[ I 
FI 

-r 

8 
E 
A(0 

III 62 

N 

T 

Eq. (10) 

Eq. (11) 

colmms 1 through 6 of 

and I- 1 

Columns 7 through 12 of [ 1 6 ..(j = 1, 2). 



Now noting that V,V: and T are transferred from Station Eta Station TJ 
and introducing the new intermediate unknowns ( 9. #a r)e: qco ACW Eqs. (10) and (11) can be used in Eq. (3) to traverse tne clustered bodied, so that 

. 

where: 

Cl a-’ 
A(i) 

[I 
d 

,(h 

= columns 1, 4, 5, 8, 9, 10 of 

= colum.ns 3, 7, 12 of 

Eq. (13) 

Note that the disappearance of columns 2, 6, and 11 of [a] Ati) from 
consideration reflects the fact that (k+l,~',F)~~~i) r (M,M:E) 

m ACi) = 0 l 

To apply the compatibility of displacements at Stations -Aci) and Pi 
and require zero moments M at the latter points requires transfers across 
the aft attachment structure. Load deflections data at that point is also 
available for the Titan IIIC with the center body restrained and shear 
forces and torques applied to the SRM's. 
(See Fig. 5b) 

This information allows writing 

27 



Vhich anticipates that deflections at 
going to be the same. 
where: 

Rt. (14) 
pmA(l),A(ab l?Lt and ZXare all 

I 

y,;l 

I 
Z-7 YM 

-I 

I r I x- ,\ = 

I 111 x-- = 
22 

X’ YT 

I r- 
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-I 
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-I 
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I 111 x is the transpose of - 
12 L J x; 21 
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and where: 

correspond to 
I I 

k YY 
‘7 YT 

except that the deflections are at Station m AC;) with respect to 
StationlX forunit shears or moments applied to Station m,(j) . 

I 

7cY 'M' ij 

I 

tangential displacement of Station mACi) wLth 
respect to Station IX per unit tangential bending 
moment on Station YXACj) . 

tangential bending slope at Station mA(i) with 
respect to Station= per unit tangential bending 
moment on station mAcj) . 

tangential bending slope at Station mAci) with 
respect to station x per unit torque on station PITA(j) 

. 
longitudinal distance between Station m,cil and 
Station Ix. taken as positive when the latter is 
farther out than the former. 

Note that this form of transfer across the aft attachment requires that 
Station E be at the same longitudinal station as points Pl, P2. For radial 
load-deflection characteristics, two separate relations are available from 
the following tests; (1) with the center-body fixed, points Pl, P2 are 
loaded and (2) these points are loaded again but with the centerbody free and 
an SFW fixed. The resulting information allows writing 

Y 
= 

3 
PI 

V 

J= 
PI 
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and 

-I 

Y -Y XYV 
- = 

2 z 

r 

-I 
m P2 - 
* 12) KYF 

from the results of the second test and 

I 

xYF 
V 

F 

\I 

v 

P2 

Eq= (15) 

PI 

P2 

Eq. (16) 

from the results of the first, where: 

I 
= radial displacement at Station PII A(i) 

with respect to Station mA(i) for a unit 
radial shear at Station pz~,(il . 

I 

3c 
= radial displacement at Station m,(i) 

YF with respect to Station m A<;) for a unit 
longitudinal force at pILA(i) . 

I 

x 
= longitudinal displacement at Station mA(i) 

IF with respect to Station pm ACib for a unit 
longitudinal force at ~IT~(;, . 

' = 
x. 

radial displacement at point Pi with respect to 
yv ', station mA(i) for a unit radial shear at 

Point Pj* 
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Note that the change in axis system from cluster-body to center-body is in 
evidence in these equations. Since the structure is such that there is 
virtually no flexibility between points Plp2 and Stations 5AcI~,Ac~~ for 
+ motions, the foILlowIng kinematic relationship can be written 

3 PI z At’) = + &Cal 
E P2 E A(2) 

Eq. (17) 

From statics, and again accounting for the rotation of cluster-body axes back 
into the center-body system, it is clear that 
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Eq- (3-8) 
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V V 
= 9 

F 
PI blI 

A(‘) 

v 

F 

-v 
= 

P2 Fm 
Ah) 

From the first of each of the Eqs, (15) and (16), and the last of the static 
equilibrium relations, 

I- - 

1 I I -I --- 
x + %,, XYF 

Cl 
YV %Z 

I I I I 

x 
0 -- 

YVI, 
7d 

YV + %, *w 
- 

m 

Eq= (19) 

From (17) and the second of each of the two Eqs. (15) we can write 

I 
-0 
%F 

I 
o- 

xYF 

0 
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x i!F 

v \ 

‘1 [- 

,’ A(“-(C,-a) 
F 

AW 
m 

?Qi 
Eq. (20) 

The last two matrix relations express the compatibility of the displacements 
Y and t at points P l,P2 in terms of forces and moments at Stations mACi) 

and deflections at Station pm*(i) . Together with Eq. (1k)they represent 10 
of the 12 equations needed to eliminate the intermediate unknowns. The re- 
mabing 2 are easily written as follows 

M PI 0 b I -a o 0 0 

E = 

.M 0 0 0 0 ~2 b I -a 1 
xl- 

Eq. (21) 
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c. The Frequency Determinant 

Now if Eqs. (14), (lg), (20) and(2l)are assembled into one matrix 
equation of 12 KIWS, there obtains the matrix equation shown below 
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0 -I 

0 -I 
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c&F, o 

-(4,-e.) 0 
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I; 
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, 

AC" 

where the matrix[V]is as defined on the next page. 

33 



Cl v 4 I 0 0 
xYG --I -I O- 

XYF XZF 
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b I -& 
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I 0 

0 0 

3 I 

I 0 
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,I 
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-I 
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_.--... 

/c 1 I x I: 
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Ii: 1 * 
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-I 
x 0 0 

YY, 

.- ____ ~-.-.- ._._. .._-.. 
0 0 0 

-I -I 
x O KCF .-L?!!E- _.._._ - --_----_ 

0 0 0 

b \ -0. 

-I 
-I 

Equations (12) and( 13) are available to substitute into the right hand side 
of this equation and for the left-hand side it is merely necessary to again 
note (Fig. 3c) that the conditions at StationaCare identical to those at 
Station Ix . Hence, thru the use of Eqs. (12), (13), and (9) we may write 

m 
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where 

C-l s!J = first three colums of 
C 

El = 

Cl sj = rows ' 1, 2, XL, 5, ALi) 6, 9, 4, 12, 
10 ( in that order) of 

7, 8, and 

PJ Ali) 

This equation can now be rearranged as follows 

[I P 

where 

ICC A(=) 

and 
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By matrix inversion we may now write 

El 

4 

if 
Y’ 

I9 

t 
I 

Eq. (22) 

To complete the transfer from end to end of the Titan III, it is first 
necessary to use Eq. (12) and (l.3) again, this time in Eq. (18). The 
resulting equation is then substituted into Eq. (8) along with the first 
six rows of Eq.(22). A similar step is made by substituting the first six 
rows of Eq. (22), into Eq. (9). Finally Eqs. (8) and (g), modified in 
this way, are used in the right hand side of Eq. (3) to obtain, with the 
help of Eq. (4). 
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Eq. (23) 
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where 

p;i’ = 
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first SIX rows of 

second six rows of 

0 0 1 0 0 0 

0 0 0 I 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
-~-_- -___ 
0 0 (C,,) 0 I 0 

0 0 0 0 0 0 
- _.-- -- _ .- __... --.------ __-_.. 
0 0 0 0 I 0 

0 0 0 0 0 0 

-I 0 0 0 

0 0 0 0 : (t&y& 

0 0 0 0 0 0 

0 0 0 0 0 4 
__.- 

0 0 -I 0 0 0 

0 0 0 -I 0 0 

0 0 0 0’ 0 0 

0 0 

(& 

0 0 0 

-- 0 0 0 I 0 

0 0 0 0 0 0 
---.___ 

0 0 0 0 0 I 

0 0 0 0 0 0 

Equation (23) h s ows that for free vibration, a 6 x 6 determinant, which 
is a function of J, must be zero. The procedure for obtaining natural 
frequencies, therefore, is to assume a series of trial values for J , calculate 
the value of this 6 x 6 determinant, plot them vs. frequency, and interpolate 
for the values, dn, which make the determinant zero. This is repeated until 
the desired accuracy is obtained. These are, of course, the natural 
frequencies i.e. the eigen values for the vehicle. 

d. Mode Shapes 

After determining the natural frequencies as described in the preceding 
section, it is now possible to proceed to get the mode shape of vibration for 
any particular natural frequency. The procedure is as follows: 
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From the 6 x 6 matrix described at the end of Section lc, the normalized 
"state vector" of the six displacements ~y.+:r;e,t at Station I is obtained. 
The mode shape can, of course, only be determined to within an arbitrary 
factor since we are dealing with an eigen-value problem. It is convenient to 
normalize the "displacement vector”; specifically we will choose the pitch- 
displacement Y or the yaw-displacement y' of the tip to be unity. The fact 
that v,~,V',hl',T and F are all zero at StationI, enables us to write down 
all the twelve state quantities at Station I . Equations (1) and (2) 
provide means of obtaining the state vectors at each successive station until 
we reach Station IL . Equation (22) yields the intermediate unknowns. These 
in conjunction with equations (5), (lo), (ll), and the fact that M,H:F, are 
zero at EAA(i) provide enough information to obtain the state vectors at xc 
and Spa . Equations (1) and (2) are again used to traverse the lengths of 
the center body and cluster bodies yielding the state vectors at each mass 
station on them. Equations (6) and (18) can now be used to get the state 
vector at Station Ix , where use of equations (1) and (2) enables the determin- 
ation of the state vectors at each mass station of the tail section. At Station 
X, the vanishing of V,M,V:M:T.~ provides a check on the accuracy of the 
numerical calculations. 

The "mode shape" thus obtained gives information about the displacements 
c/~,y,.$',y:@ and a at each mass station as well as about the forces and 

couples V,M,V~M'*T and F in all sections of the vehicle. 

2. Saturn I Lateral Bending 

a. General 

Saturn I can be assumed to have eight radial planes of symmetry, if the 
small effects of rocket engine mass and those of their support offsets are 
neglected (see Fig. la.). Its center body can undergo bending motions in either 
of two distinct planes of symmetry, and neither will couple with center-body 
torsion, longitudinal motion, or bending in the other plane. In this case the 
clustered bodies carrying fuel will be identified by A(;' and those carrying 
LOX will be associated with the subscript Bci' . 

Figure 6a shows how Saturn I cluster-bodies are supported at the upper end 
by eight radial beams. This structure, called the"spider", lies in a plane per- 
pendicular to the longitudinal axis. The aft cluster-body support is similar, 
but the attachment structures are beam-trusses in radial planes, and are called 
"outriggers." It was assumed that all spider-beam and outrigger-truss flex- 
ibility in a plane perpendicular to the longitudinal axis of the vehicle could 
be ignored based on three facts: (1) adjacent support points from one cluster 
body to another are very close (Fig. 6a), (2) the assembly forms a complete 
circle, and (3) there are radial members between all cluster-bodies and the 
center-body in the plane of the ends of the cluster-bodies. Accordingly, the 
model, shown in Fig. 6b, was used to represent the cluster-body attachment- 
structure flexibility. These "equivalent " beams are flexible for deflections 
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.(a) ACTUAL SPIDER BEAM 7 (b) EQUIVALENT SPIDER 
(or OUTRIGGER) BEAM 7 

I 
ACTUAL 
CLUSTERED 

Figure 6. Cluster-Body Support Structure - SATURN 1 

NOTE: No difference 
In these mgles 

NOTE: Difference in these angles 

Figure 7, Effect of Support Flexibility on Cluster-Body Torsion 
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in a radial plane, and rigid for motion in a plane perpendicular to the 
longitudinal axis. Fig. 7 shows that if bending in the latter plane could 
occur, a difference in slope between outriggers and spiders would twist the 
cluster-bodies, even though only center-body bending is being considered, 
The assumption of rigidity in this plane, however, precludes cluster-body tor- 
sion for the case under consideration. Thus only two kinds of longitudinal 
transfers will be necessary in this analysis; namely, bending on center and 
clustered bodies and longitudinal motion on the clustered bodies. 

b. Specializing the Iongitudinal Transfers 

Since this is a problem of bending in only one plane, Eqs. (1) and (2) 
reduce for the center-body to 

and 

where 

Eq. (la> 

b = Mb 

i-b& 
[ I i I I B ; Eq. (2a) 

Thus we may write in place of part of Eq. (3) 

[ 1 /cc 
i 

[Mb]; 
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Since bending on the clustered bodies still can occur in two planes and 
longitudinal mtion can also take place, the equivalent transfers for these 
bodies merely reflect the lack of mass coupling, as follows: 

a 
6’ 
x = 

i*l 

and 

8 
i’ . 

= 
I+$ 

so that 

where 

t-l x 

i4 

+ 

PI 

- 

n 

4 E A 
i-1 

4 [ 3 x 

b 
s’ 
IX i+& 

Eq. (lb) 

Eq. (2b) 

Eq. (3-t)) 
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It should be noted that for this case the number of masses, Yi , may be 
different not only from one section of the system to.another, but also 
for longitudinal motion as compared to bending. And again, the quantities 

CA] and LA3 need only be obtained once for each kind of cluster-body, 
regardless of how many of such bodies there are, and despite the fact that 
two normal directions of bending are involved. 

c. Cluster Attachments; The "Spider" 

The attachment of the clustered bodies of the Saturn I to their supporting 
structure is complicated by the fact that there are two kinds of bodies. A 
summary of the end conditions is given in Table I. 

As indicated earlier, the center-body can have transverse shears and 
bending moments in only one plane for the postulated motion, and may have no 
longitudinal forces. The spider beams, however, may individually experience 
transverse shears and bending moments in both radial and tangential directions, 
and longitudinal forces as well, so long as all forces and moments other than 
those in the plane of the center-body motion cancel among them. 

Transfer from Stationx to Station 
place in four steps: 

XAti’,# is pictured as taking 

Step 1: rotation thru the angle v (fig. 6b) from the plane of motion 
of the center-body to the azimuthal plane of the equivalent spider beam. 
Regarding forces, moments, and small angles as vectors, resolution from one 
axis system to another yields; 

a 

i 

b 
F 

III 
spider 
azimuthal 
axis 

I COS y I [ 1 I I 
I 

sih 't' 
I 

[ I 
I 

I 

-sin Y 

r 0 
0 I -1 0 0 
0 0 I 0 cosy O ’ [I 0 0 0 0 

r 

1 3 
V’ 

-1 M’ 

F 

III 
center 
bow 

azimuthal 
SXiS 

c 1 R 

Note that, wherever possible, advantage is taken of the fact that quantities 
in the state vectors are zero. 
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p 

Table I 
Saturn I Cluster-Body End Conditions 

, 
Fuel Tanks LOX Tanks 

"Spider 

1. Radial Bending Moment(M)=0 

2. Tangential Bending Moment (M’)=O 

1. Radial Bending Moment (M)=O 

2. Tangential Bending Moment 
Carried 

3. Longitudinal Force (F)=O 3. Longitudinal Force Carried 

r-~ ~~~~~ /4. Radial Bending Moment (M)=O 1 4. Radial Bending Moment(M)=;--1 

5. Tangential Bending Moment( M’) 
"Outrigger" 

5. Tangential Bending Moment (M’) 
Carried Carried 

6. Longitudinal Force (F) Carried 6. Longitudinal Force(F) Carried 

Note: Radial and tangential shears carried on all bodies at both ends. 



c LOX TANK 
BEFORE BENDING 

‘-\v z 

TANGENTIAL 
BENDING SLOPE 

OIFFERENTIALLY BENT 

BENDING SLOPE 

Figure 8. Support Flexibility for Tongentiol Moments due to Spider 
Beom Differentiol Bending - Saturn I 

STATION STnT 

ACTUAL 
OUTRIGGER -/ 
(schematic) 

I 
//////,/////// ,,,, ,, , , 

// PI”““////////// //1 ,a I _ 

f 
.- 

/ ‘/“‘OUTRIGGER\ 

i 

FLEXIBILITY 
“LUMPED” HERE 

CENTER 
BODY 

CLUSTER 
BODY 

/ STATION 

Figure 9. Mathematical Model for Outrigger Flexibility - SATURN 1 
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Step 2: "turning the corner" from the longitudinal direction into the 
axis of the spider beam (i.e. into a radial direction). Again transforming 
coordinates, but noting that twisting of the equivalent spider beam can 
occur (See Fig. 8), 

d 3’ 
1 

= 
l III 

spider 
arm 
radial 
ElXi.6 

0000 0000 i i 
0 IO0 0 IO0 

0 0 0 0 1 0 1 0 

0 0 000 000 

I 0 0 0 I 0 0 0 
0000 0000 

0 0 000 000 

0 j 0 1 0 0 0 0 

0 -I 0 0 0 -I 0 0 

a 0 -I 0 

-\ 0 0 0 
0 0 0 -1 

.25 
H F 

III 
spider 
arm 

azimuthal 
axis 

System 

Step 3: traversing the length of the flexible spider beam. This is 
easily done by defining: 

23 

s’ 

i 

3 = 

hv 
spider 
arm 
radial 
axis 

III 
spider 
arm 

radial 
axis 
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Here Z,Z,Z’, 2 represent spider heam bending flexibility in the direction 
of the longitudinal axis of the vehicle, and Z'is its torsional flexibility. 
A derivation of these quantities is contained in Appendix B. The length from 
the center-body elastic axis to that of the clustered body is is . 

step 4: "turning the cornerHi back again, into the longitudinal axis 
systeme clustered body, clearly requires muJtiplication by a matrix, 

LT21, which is a 10 x 12 submatrix of the inverse of the I.2 x 32 form of [TJ 

A = 

The complete spider matrix is thus obtained by the product 

and the desired transfer is 

m A(i), 8”) 

w (24) 
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w+ere 

[I S’ A = 

cos y 

sin y’ 

0 
0 

I 0 0 I [I 03 0 0 I 0 0 I 11 0 -z 0 0 -;i COOSY 

I 0 4” -sin y! [I 0” $ 0 0 ; : 0 I 0 cod [1 1-i 0 0 
0 0 I 
0 -2 sin Y 1 T J 

L-1 s2 * 0 0 = Slh Y 7 ,” [ I 0 I 
O 0 

cosy e, o [ I- 

d. Cluster Attachments: The "Outrigger" 

A procedure similar to that for the spider beams was followed in 
obtaining the transfer across the aft cluster-body attachment. The major 
difference is in arriving at a suitable elastic matrix. The outrigger 
structures are beam-trusses with joints whose dimensions are not negligible 
compared to the lengths of the members. For this reason, Turner's method 
(Reference 12) was used to compute influence coefficients for forces and 
moments in the plane of the truss, acting at the cluster-body attachment, 
with the center-body attachment fixed to "ground". The outrigger re- 
presentation is shown in Fig. 9. The springs pictured schematically in 
this figure represent the following force-deflection relation 

Y 

4J = 

z 
0 

v 

M 

F 
0 
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Making use of (a) these flexibility influence coefficients, (b) the transfer 
required.-to cross the rigid lengths D and H in Figure 9, and (c) a rotation- 
matrix which is the inverse of the matrix [R] filled out to 10 x 10 form, we 
obtain the outrigger transfer relation 

3 

1 

3’ = 

x 
YUI 

j---(Dd,+ ?!) -(D_e+_h) -D o 

sin y 
H I 
00 I 

L - OOH l 

rl 1 - cos Y 

/ 

e-9 
1 0 0 

-D o 
-sin W -f o 

L - 0 OHI L.- I 
(Hf-c) 0 -- 

Cd Eq. (25) 

It should be noted that both the outrigger matrix [2] and the spider matrices 
Es4 and Es9 are dependent on the angle W associated with a particular A or 

B cluster body. 
or gci' 

Thus these matrices must be identified by the indices AC') 
* state (column)matrices associated with these transfers will, in 

general, Also have to be so identified. 

e. The Frequency Determinant 

Consider bending motion along either of the principal axes shown in 
Figure 2. Symmetry allows the sum of all moments and forces which are applied 
to the center-body by the clustered bodies to be described in terms of 
quantities on the clustered bodies in only one quadrant. 

The forces we are concerned about here are supplied at the cluster attach- 
ments and can be looked upon as consisting of inertia forces (and couples) of 
the masses on the cluster bodies and the intermediate unknowns (V,M,V;M’~~,F)=A(;~~(;). 

, 
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Cluster-body 
Table II 

Sumnation Coefficients and Azimuthal Constants - Saturn I 



Fxom.a simple inspection, the intermediate unknowns on the two A') 
bodies will be equal and so would be those on the two ~~~~ bodies and 
those on the four B bodies. (This is so when bending along Principal 
Axis #l is considered). In order to obtain a similar result for the 
inertia forces referred to the center body axis system, it is only necessary 
to (1) assume bending deflections + and y along a principal axis, (2) 
resolve these displacements into +,y,+:y:t in the cluster body co- 
ordinate system, (3) assume forces and moments V,M,v/:M’ and F. in the 
co-ordinate system of each body to be proportional to displacements #%y,+; 
y',t and (4) retransform these forces and moments into the center body axis 
system. 

Alternatively, a completely formal proof would consist of writing out 
the azimuthal rotation matrices CR1 *ti>,g4) and outrigger matrices 

c23 JQ &Ci> for all eight bodies, lumping the cluster traverse 
matrices together with matrices [TcL~ ,Les] and [rd in the spider transfers for 
the three groups of bodies represented by the @,A@' and B bodies respect- 
ively (See Fig. 2 and Table II) and using the displacement compatibility 
within these groups. This procedure establishes Table II. 

For the case of the Saturn I, bending in the direction of Principal Axis 
#l, thus, the sum of transverse shear forces experienced at the center-body 
as reactions from the spider beams would be 

Similarly the total bending moment for an arrangement with six cluster-bodies 
of the same kind, say A-bodies, bending along Principal Axis #2 would be 

4M m&Z, -t- 2 M IIIAC’I 

Clearly the choice as to first cluster-body.and principal axis direction.is 
arbitrary; the angle YC;) must, however, be consistent. To preserve 
generality, the numerical coefficients which appear in the above equation 
will be called k,ci)..ci) . They will be inputs to the problem, depending 
on the configuration being analyzed. For the first equation above, for example 

k A(l) = 2 

k A(2) = 2 

k fp =4 



Table II gives values of kAcia,+i) and the s5nes and cosines of 
corresponding to Fig. 2. Note that for the Saturn I - axis #l case we 
have reduced the problem to one of three cluster-bodies, #),A(=) and %. 

It is now possible to express the transfer across the entire system 
using (a) Equ. (xa), (b) the as yet undetermined forces and moments carried 
in the spiders and outriggers, and (c) the summation of such forces and 
moments where the cluster-body structural attachments join the center-body. 
Thus 

V 0 
= I I = 

M loI 
X 

where 

GII = first two colums of PiI, 

E; = second two columns of Plc 

i = first two rows of 

FJ; = 

PI, 

second two rows of L$ 

Eq; (26') 
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Note that the quantity inside the brace in this equation is the equivalent 
of Eqs. (8) and (9) p s ecialized to the Saturn lateral bending case. The 
first step is to evaluate V and M at StationPm+,~b,~ in terms of V,M,ViM’ 
and F at Station m ,@,g and 9 and Y at Station I. If all the cluster- 
bodies were "buLlt-in" at the attachment to the spider and outrigger, this 
would be a straight-forward matter. 
(3b), (24) and (25) to write 

That is, we would simply use Eqs. (3a), 

where El = first two rows of L4 

The variety of cluster-body end conditions encountered on Saturn I, and 
summarized in Table I, however, requires more detailed treatment. It is 
important to keep in mind that the fuel and LOX tanks are associated with 
indeces A and B. respectively. 

Condition 1 in Table I implies that hr~~~‘,l3 can influence nothing 
"downstream", and that &:ti',a will constitute three more unknowns, 
since they are related to nothing "upstream". 
for the fuel tanks in Table I imply that +m &i) 

Similarly, Conditions 2 and 3 
andZ,&will be of no 

further influence in the transfer procedure, and that ~,,(i, and ZyAfi) will 
comprise four new unknowns. Old unknowns are therefore exchanged for new in 
the following steps. 

Step 1: Conditions 1, 2, and 3 for the fuel tanks allow Eq. (24) to be 
specialized to 

M 

M’ = 

Fls? 
AC’, 

0 C65y -sky 0 0 

5 [ 0 sih$J 0 wsv 0 

0000 \ 

V 

M 

V’ 

M’ 

fn 
A(‘) 
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which leads to the conclusion that 

Eq. (27) 

step 2: Condition 1 for the LOX tanks leads to the relation 

f 
CO6 9)s sin v* 

m0 = -Mms - t M’ - 
4s ms 4, 

Eq. (28) 

Step 3: Condition 4 applied to Eq. (36) leads to the relation 

+ 4, v Pa4 

P (A?B) = - - fia3 P (A$B) - x ‘X (A‘;‘, 0) 

Where pccij Is the element of [Al in the ith row, jth column, and Condition 1 
has also been used to advantage. It follows that 

v 
= 

ysLr 
A”) B I 

A ,B 

v 

y E 
A(‘-? B 

Eq. (29) 
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Using Eq. (28) and the remaining conditions at the'outri&er.izi Table. I, the 
transfer'across the clustered bodies expressed by Eq. (36) is now replaced by 

V 
Y 

3’ 

1 x4 

4m 

..’ 

= 

JR. (30) 

- Eq. (31) 

where: 

El, = first and fourth columns of 

M, = third column-of 

cq = second column of Cl x 
A 

and the last row in each of these equations 'is an identity. 
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at Station 3?llIACi>lB 
Subst~tUt~W Eqs. (24) and (25) in Eqs. (30) and (31) 

eliminated and Qj and Y at-StatIon I,' by the equations: Vand M can-k expressed in tems:of quan&ties pt to be.. :. 

Cl S: 

AC') 
+ II Y 

=a- (32) 

Eq* (33) 
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where : = 

CO%‘+ C 0 

sin y 

0 

-Sin y 

0 

as’+’ 

0 1 
Ati’, 0 

0 0 

0 

= L 0 

0 
co&‘+’ I 0 

+‘Y 

A+ 0 

and [2gAh, B is formed from @I A(i), B by dropping the second column 
and moving column three to the last position. 

These equations could now be inserted in the complete transfer, Eq. (26), 
and thus eliminate all the quantities at Station VIII. But, note, however, 
that fifteen intermediate unknowns would remain, namely V,V’ atlIL, Zat Yj 
and 4 at VII on A(') and A@)'; and V,M,V:M’ at SlC and 9 at Pn: on B . 
The fifteen simultaneous equations required to 
provided by the conditions that deflections at 
compatible i.e. 

4 
Y 
+' = 
Y' 
Q!n 

Aci,, B 

eliminate these unknowns are 
Station VIII must be 

l?Jn 
C 

The left hand side of this compatibility equation is obtained by a process 
similar to that leading to Eqs. (31) and (32). The right hand side is available 
from Ew. (36), (26), (28), (32)) and (33). Thus 
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and 
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where 

= last two rows of 

= last two rows of L-4, 

is formed f the jrd, kth, 7th, 8th, and 
10th rows of ' '2 -el -where the 2nd column is 
dropped, and cLlumn three moved,to last 
position. 

These three simultaneous matrix equations can now be combined into a 
single relation expressing the fifteen compatiblity equations. Thus, 

where 

Eq- (34) 
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AnewmatrIx 3 [Ii] > toti usedlnthe netiEqwtion, is definzd 
as follows : 

Cl -i7 = 
kAo, 0 0 00 0 0 0 0 0 

kAca) o o 0 o k, 0 o o 0 

0 0 
ooookBooe 1 
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NOW premultiplying Eq. (34) by [al', substituting the appropriate rows 
of the resulting equation into Eqs. (32) and (33) and all of them into Eq. (26) 
we obtain'the etiression for the transfer acnks the complete vehicle. - 

V 

M 

0 

= = fi r-1 
0 T 

X 

r 

t 
Cl K 

0 Cl 
0 

4 4 
=. [’ II A 

Y 

4 

Y 
I 

Eq. (35) 
I- I I 

This shows that for the natural bending frequencies of the complete Saturn 
vehicle compared to Eq. (23) it is necessary to find the values of awhich 
make a 2 x 2 determinant equal to zero. 

f. Mode Shapes 

The procedure for obtaining the mode shapes is essentially similar 
to that used for getting the mode shapes of the fully coupled motion of 
Titan III described in Section I C(d) above. In this case, however, the 
procedure involved to obtain the"displacement vector" at Station I does not 
involve elaborate matrix operations since the final singular matrix in 
equation (35) is of a lower order, 2 x 2 instead of 6 x 6 in case of the 
fully coupled vibrations. Thus either one of the two equations comprising 
equation (35) allows solving for 4 when *)=I&, and &=I . Thus 
the state vector at Station I is completely defined (to within an arbitrary 
factor) and equations (la) and (2a) with i3 h inserted provide a means for 
evaluating the state vectors at successive stations to the branching point at 
Station III. There, equation (34), premultiplying by [a]-' allows the 
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process to be continued, with the successive use of the spider matrix, equi- 
librium at Station III, more of Equation (la) and (2a) plus (lb) and (2b) type 
of transfers and then the outrigger matrix. At Station VIII, compatibility 
of deflections provides a rigorous check of the calculation's accuracy to 
that point, a similar test occurs at Station X, whereV and M should be zero. 

3. Saturn I Longitudinal Vibrations 

a. General 

Though the natural frequencies of longitudinal vibration of clustered 
launch vehicles of conventional design are likely to be considerably higher than 
those of transverse or torsional vibrations, a study of the former is of 
considerable interest. A major reason for this is the phenomenon of "pogo" 
oscillations which is really an instability involving the rocket engine thrust 
variation and structural properties of the vehicle as well as the liquid 
sloshing phenomenon. 

The effect of coupled shell-liquid interaction is of considerable import- 
ance in case of the longitudinal oscillations. The present analysis does not 
take this interaction into account. However, many coupled shell-liquid 
oscillation analyses employ a generalized coordinate approach and the results 
of the present analysis may be found useful in these methods. 

Due to the offset of the cluster centerline from the vehicle axis of 
symmetry, bending of the clustered bodies may be coupled to the longitudinal 
vibrations of the entire vehicle and provision must be made in the analysis 
for accounting for this bending. 

The following sections indicate the analytical treatment of these 
longitudinal vibrations of Saturn I. A more detailed description will be 
found in Reference 16. 

b. Considerations of Symmetry 

In case of these longitudinal vibrations of the Saturn vehicle, it may 
be argued that all the four "A" bodies will behave identically as a group 
and so would the four "B" bodies. Pure longitudinal motion, however, is not 
the only type of natural motion of the vehicle. There can be harmonic 
oscillation with absolutely no motion of the center-body and higher stages 
of the vehicle. These modes are termed the "internally balanced modes" and 
are described in detail later in part D of this chapter. 

If, as will be seen, it is possible to have cluster-body motion without 
any center-body motion, it will also be possible to have cluster-body radial 
bending with only pure extensite motion of the center-body. In fact the 
existance of non-zero values for the terms 5 and f on page 47 is evidence 
of a direct coupling between longitudinal motion and cluster-body radial bending. 



While the same argument might be made for cluster tangential bending, it is 
more difficult to imagine a situation in which this kind of motion would exist 
as part of a longitudinal mode. 

Furthermore, since there is complete polar symmetry, the azimuthal angle 
Y loses significance as does the difference between AC') and A(=) and 

between 0" and Ocz). Thus, in this longitudinal analysis, we are dealing 
simply with longitudinal and radial bending quantities on un-numbered A and 
B cluster bodies. 

c. Analysis 

Since only longitudinal vibrations of the vehicle are being considered, 
the only quantities of interest on the nose section,center-body and tail 
section will be F and t . Thus 

. 

Eq. (1~) 

Eq. (2~) 

Eq. (3~) 

As discussed above, the transfer matrices for the cluster-bodies can be 
simplified from the form in Eq. (3b) to 

A,6 
A,B Eq- (3d) 
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The matrices representing the transfer across the spider arms, involve 
only E],[%] and [T%j metrices, which differ from [T], [ES] and 
FJ (used for the transverse bendin 

ities need be carried and [r,] uses 8, 0 
case) in that no tangential quant- 
,e,a insead of~,~;,~,~-,~ (see 

Appendix B). 

I 
0 0 0 0 
0 IO0 

[I 7) & I---- 00 10 
0 00 0 
-I 0 0 0 

p 0 0-l 

Cl xi A 
= 

3 0 0 0 

0 I 0 0 

0 0 I 0 

0 0 0 c 

I000 

0 00 I 
i 

I 0 

0 0 

0 0 

0 I 

0 0 

0 0 

-I o- 

0 0 

0 0 

0 -I 

0 0 

0 0 
- 

The spider matrix for the longitudinal analysis will thus be denoted 
by El > and is given by 

III s = [XI [G--j II';] 

satisfying the equation 

lx* A,B indicates the cluster-body azimuthal axis system at Station lIIAIB . 
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The transfer matrices representing the outriggers will correspond to those_, 
used in the transverse analysis, but again eliminating the rotationmatrix CR3 
referred to on page 48 and the tangential quantities. This relaeion is 

0 0 0 0 0 

i" 

! 
l-l I 0 0 -D 0 3 

0 

x,* = 
s! 

(lid,+) WA, : 
f 

I (Hi-c) : %zlI 
A,B 0 0 0 0 I 0 

1 
LB 

-(Dd+$) -(OS-!?) -D o -(Df+i) 1 

L-L 

c7 
z- 

mEBindicates the cluster-body azimuthal axis system at station ~A,B. 

Using (a) eq. (3~)~ (b) the as yet undetermined longitudinal forces carried 
in the spider arms and outriggers and (c) the summation of these forcesat 
the cluster-body structural attachment to the center-body, the transfer 
across the entire system can be written as 

where 

= 0 

Cl ST 

[I 8 

h’?4 and 

[I x' and 
C 

% are the first and second elements in column 2 of u , respectively 
are columns 1 and 2 of CAIlc respectively 
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In order to be able to use equation (26a) to get the numerical 
equivalent of the frequency polynomial, we have to express the forces at 
Ill 

A.B and =A,0 
in terms of Ef . 

writeThe spider matrix [z] in conjunction with Eq. (3~) can be used to 

A,B A,0 Eq. (24a) 

where 

r7 3’ 2 columns 1, 2, and 5 of B] 

Since the cluster boundary conditions are the same as in the earlier 
case of transverse bending vibrations, equations (27)thru (31) will hold in 
this case. 

The six intermediate unknowns will be, in this case of longitudinal 
motion of the Saturn vehicle, 

and 

Using equations (24a),(29), (31), and noting from the outrigger matrix on 
page 48 that 

FIKflA = bLA 
, we get 

F 
-1 

?iUEA = ‘A %A 

Where Cx', is the first element of 5; A . [-I 

Eq. (32a) 



Similarly, using equations (24a), (29), (30)) and observing that 

we find that 

where 

Noting from page 53 that 

FYllLs = [I XI F I I B 'PB 

Cl XI 
0 

= row 1 of [A] 
0 

this becomes 

F 
YlKB = 

where 

and 

Eq. (33a) 

11 -1 5' = columns 1, and 2 of ISI ? 

[yj = column 3 of E;1 ' 

to column 2 and dropping colunk 3,4,and 
5. 

Thus, using (32a) and (33a) and noting that FmA = o : Eq.(26a) 
simplifies to 

Eq. (26b) 
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The six compatibility equations to be used to eliminate the six intermed- 
iate unknowns are 

I 4’ 
Y 

0 

0 

t IZIJLC 

The longitudinal displacement at Station VIIIC is 

-,,‘mc = 

where 

i.e. 
z 

-!zmc = 

e2z1 - (x:,, (k+) +KBc=,) F,B 

e1 2 2nd element of Cd 

( 1 h:, 4 2nd element of PI, 

Using Eqs. (28), (29), (30)) (31) the following expressions are obtained for 
d ir 3pli 3cement at mk, 

9 

Y 

t 

III 2 
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and 

where Bj' = rows 3,4,6, of ra which is formed from 
columns 1,4,5,6,3 of [z] in that order 

El = rows 1 and 4 of El 

pJ = column 1 of c"d 

PI = column 6 of El 

r5l = rows 1 and 4 of rsl 

pj = .columns 1 and 2 of L-4 

[-I = column 3 of El 

The compatibility relations can now be written in the following forms 

4 
Y = 

t 
d0 

and 

[I 2' 

\ -/ / 

Cl 2 
B 

Cl T 
B 

Eq. (34a) 

Eq. (3’+b) 
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where 

Premultiplying Eqs. (34a) and(34b) by [$i" and bi' respectively, and sub- 
stitutingthe results in Eq. (26b), 

Eq. (35a) 
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The element a in equation (35a) must be zero for free vibrations 
of the vehicle. 

d. Mode Shapes 

The procedure for obtaining the mode shapes will not involve obtaining 
the state vector at Station I, since the only displacement there is "1 . 
Assuming eI=I the nose section can be traversed using equation (3~); 
equations (lc) And (2~) being used to obtain the state vector at each of the 
nose stations. At Station III, equation (34a) allows the process to be con- 
tinued with the successive use of the spider matrices, equilibrium of Station 
III, more of equations (lc) and(2c), and then the oturigger matrix. At 
Station VIII, compatibility of deflections provides a check on the numerical 
work, a similar test occurs at Station X where F should vanish. 

D. Internally Balanced Modes 

The symmetry of the usual clustered configuration makes it possible for 
the clustered bodies to oscillate in groups so as to achieve equilibrium with- 
out motion of the center-body. The simplest of such modes is shown in Figure 
10a; this is a sort of dilatational pattern and requires only two symmetrically 
arranged clustered bodies. In this motion, as well as the others described 
below, the cluster attachment flexibility enters, since the points of zero 
motion, in general, are at the center-body. The effect of the attachment 
structure will be in general, to couple longitudinal and radial motion. 
Figure lob shows how this too can be balanced without center-body motion if 
there are at least four clustered bodies. The expressions from which the 
natural frequencies of these "internally balanced modes" can be calculated are 
different for fuel and LOX tanks, since their attachment fixities differ. 
Using Eq. (3b), and the component factors of,the spider and outrigger matrices 
excepting the rotation matrices [a] and [RI , it can be shown that the 
expressions for the natural frequencies of these dilatational-longitudinal 
"internally balanced modes" are: 

for fuel tanks, i.e. A”’ bodies, 

Eq. (36) 
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and for LOX tanks, i.e. BCil bodies, 

Q -- 1 
Eq- (37) 

Figure 10~ shows a third such pattern, consisting of tangential motion 
which requires at least three clustered bodies. The appropriate characteristic 
expressions yielding the frequency of these modes are 

for fuel tanks, 

/"&43 -/u33P41 = O Eq. (38) 

and 

for LOX tanks, 

E. Modifications to the Basic Longitudinal Transfers 

The transfer matrices given in Section IB of this report can be used 
to properly represent almost all parts of a launch vehicle where shell de- 
formations are not involved. There are special situations commonly encountered, 
however, which require additions to or modifications of these basic transfers 
for a realistic mathematical model. Three such cases are considered here. 
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1. Staging joints 

Truss work joints, such as exist between the first and second stage 
of the Saturn I model, can be handled much like the outrigger structure, 
and also result in flexibilities concentrated in very short lengths. 
(See Figure la) Again, 'Turner's method (Reference 12) can be used for 
obtaining the influence coefficients of such structures; Appendix C de- 
rives a transfer matrix, denoted by the symbol PI which can simply be 
placed in series with the [&],CE~],[E~] transfers'with no other modification 
of the method. 

2. Fuel Sloshing 

Reference has been made earlier to the changes necessary to mass 
properties in order to properly approximate the dynamics of liquids carried 
by the launch vehicle. For the lateral motions,effective mass expressions 
were used. The theory adapted was that of a sloshing liquid in a rigid, 
cylindrical tank as given by Abramson, Chu, and Ransleben (Reference 13). 
They give the following expressions for 

(a> side-force per unit lateral acceleration 

2 tunh (t, $) 

(b) side-force per unit angular acceleration 

where M - L - mass of the liquid column of height h 

4 = first sloshing natural frequency = 
(rigid cylindrical tank) 
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4l - - first zero of the first derivative of the first order 
Bessel function of the first kind = 1.841 

% = acceleration of gravity. 

A brief examination of the dimensions involved in the case of the Saturn I 
shows that only the first mode of sloshing would have an appreciable effect 
on the bending modes of interest. 

It seems commensurate with the accuracy of the overall calculation to make 
a simple adaptation of these expressions to the flexible tank situation 
actually encountered here. The difficulties in so doing are associated with 
the facts (a) that various lengths of the fluid column must be represented as 
concentrated masses, (b) that each such mass will be undergoing different and 
unprescribed amplitudes, and (c) that the farther a part of the column is 
from the free surface, the smaller will be the influence of the free surface. 

For the case of the two dimensional waves in an infinitely deep liquid, 
bounded by plane vertical walls, Iamb (Reference 15) shows that the amplitude 
of oscillation in the first mode at a depth hi is proportional to 

where d is the distance between the walls. Thus, it was considered reason- 
able to limit the liquid column which could be considered to be "sloshing" to 
a depth where only 58 of the surface wave motion occurs. Thus 

h = -2 loge 0.05 

and d is now taken as the tank diameter. The amount of fluid undergoing 
sloshing between two stations on the tank, say j-c to j+j is proportional 
to 

hj+l z 
-p c-y 4x 

h- 
J-p 
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This amount of fluid is a fraction of the total undergoing sloshing, and 
that fraction is expressible as 

hj++ 

exp(-m$) dx 

( 
hi-4 \ 

--rr ^___ 1-7~ h.i+*\ 
fz = h.i-t ev 

= 
.5 

d-j --r\- 
. . - 

d / 

0.95 

Thus, to account for sloshing in those sections of the tanks near a free 
surface the CMa matrices must be written in the form 

I 0 

[I 0 I 0 0 

Mbf = 
j 0 0 I 0 

0 0 0 I 

where yylrj = solid contribution to mass at station j 

Mfj = M, 
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It has been noted earlier that an important fluid effect which is not 
accounted for in the longitudinal analysis presented here is the coupling 
between longitudinal fluid accelerations and the shell breathing resulting 
from "hoop stresses". It appears likely that an extension of the transfer 
matrix approach using classical shell theory could account for such effects. 

3. Overhanging Structures 

The Titan III has SRM engine nozzles and skirt structure aft of stations 
m A<i> which contain considerable portions of the SFW bodies and which are 

likely to contribute appreciably to the modes of oscillation. Some accounting 
is therefore desirable that will represent this structure in the usual form; 
i.e. lumped masses and massless elastic elements, 

Similar treatments could be used for the forward portions of the SRM's 
ahead of Station IV SRM. The revision to the mathematical model is shown 
in Figure 11. 

The desired changes can conviently be included as follows: The 
continuity of deflections at Stations=-x and at Stations m-m requires 
that 

and 

Similarly the equilibrium of these 

V 

M 

v’ = 
M’ 

‘7 
F 

yACi) 

4 
Y 
9’ 
y’ = 
e 
2 

PAti) 

4 
:I 
Y’ 
e 

2 

joints requires 

, 

V 

Y 
V’ 

M’ - 

T 
F 

x*til 

V 

M 
V’ 
M’ 

T 

I= 

= “A,;, 

Eq. (40) 
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and 
v V 
M M 
V’ V’ 
M’ - M’ 

T 1 
I= F 

‘PIAh PII & Ati) Eq. (41) 

Since the engines and nose section extremities at mA<i) 
respectively, are free, 

and EA(i) 

V V 

M M 
V’ V’ 

M’ = M’ = 
0 

T 

I I F 

EACi) 

T I I F- 
YK ACil 

The engines can be traversed using 

V 

M 
V’ 
M1 = 

1 

F- 

m*(i) 

l-1 61 E 

I3 E is obtained by taking only the rows 1, 2, 5, 6, 9, 11 of the [6], 
(I2XIZ) 
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This homogeneous set can be rewritten as 

V 
M 
V’ 

M’ 

T 

F 
QZ E,+ci) 

[h] 

I 

I 
YE EAcI’) 

where 2 cohmns 1, 2, 5, 6, g, 11 of k& 

L-1 6: : E cohmns 3, 4, 7, 8, lo, 1.2 of t-1 6 E 

Similarly for the front overhang between XO,(i> and E,<i, 

V 
M 
V’ 
M’ 

T 
F 

= 
n A(i) 

t-l 61 
0 

xq. (42) 

Cl 61 
0 

is obtained by taking only the rows 1, 2, 5, 6, 9, 11 of 
(Wm.) 

Note: Since we are moving from left to right in this transfer, the values of 
lengths of the elastic elements in the overhung nose section elastic matrices 

El; will have to be negative. 

78 



Again rearranging gives 

Eq. (43) 
where 

ki], = iohmns 1,2,5,6,g,u of t+--, 

@fd, = columns 3,4,7,8,10,12 of.p10 

Equations (40, 41, 42, and 43) allow adding the forces and moments due to 
the overhung structures at their pointsof attachment. It is thus possible 
to modify Eq. (3) for the clustered-bodies and obtain the following equation 
for transfer from Station =*c;) 
the overhung sections: 

to Yu*CI) including the effects of 

m,(i) 

Where [O], and E], are defined on the next page. 
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II. NUMERICAL RESULTS AND COMPARISON WITH TEST 

Table III shows the input breakdown for the NASA l/5 Scale model of 
Saturn I at 4% fuel condition. Even after taking advantage of symmetry, 
a breakdown this fine results in a system with 114 degrees of freedom; the 
largest inverse required, however, is 15 x 15, and the largest frequency 
determinant 2 x 2. 

Figure I2 is a plot of frequency determinant vs. trial frequency for 
this case. The abscissa is linear, but the ordinate is the signed log 
(to the base 10) of the determinantal values divided by 10 raised to a 
power. This power is determined for each plot as that which leaves the small- 
est value greater than unity after all values are so reduced. The natural 
frequencies are immediately obvious in this plot, as are the vertical asymp- 
totes which indicate the existence of the internally balanced modes. Figure 
13 shows the corresponding plots for the natural frequencies which involve no 
center-body motion. (i.e. for Eqs. (36) thru (39)). 

A summary of calculated frequencies, including the effects of fuel slosh 
and lg axial loads, is given in Tables V and VI. Comparison with test re- 
sults using three different cable-harness suspensions (References 2 and 14) 
shows reasonably good agreement. None of the internally balanced modes listed 
in Table VII were obtained in the referenced tests, since shaking forces were 
always applied on the center-body there. Note that the rocket engine natural 
frequency is listed; although not all subsystems are sources of internally 
balanced modes, uncoupled engine modes can also be in equilibrium without 
center-body motion, since there are two similar sets of four identical engines. 

Figures 14 thru 27 show modal deflections corresponding to the first six 
center-body bending modes of both the 4876 full and 100s full conditions. The 
theoretical shapes are all normalized to unit deflection of Station 369, the 
first mass point in the analysis. The test points, however, are normalized to 
enhance the comparison; in a mode consisting mainly of cluster-body motion, 
for example, the maximum test deflection is made equal to the calculated value. 

These calculations were repeated for Principal Axis #2 and neither frequen- 
cies nor deflection shapes showed significant differences. 

A normal reaction to Fig. 14a, if unfamiliar with vibrations of branched 
beams, is that the shape is too complex for a fundamental mode; there is a 
tendency to feel that the cluster-body deflections should line up with the 
center-body, more like the test results. Some thought regarding the minimiz- 
ation of energy, however, will lead to the conclusion that, for branched 
systems, the motion of part of the system can have several nodes and re- 
versals of curvature if such is necessary for equilibrium and minimizes the 
strain energy of the system. 
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Differences between theory and test for the fuel tank radial motion in 
Fig. l&a exists mainly because the first two zeros in Fig. 12 are very close 
to the fundamental uncoupled fuel tank mode listed in Table VII. Amplitudes 
near resonance are, of course, sensitive to small changes in frequency ratio 
and damping. The calculation neglects damping and so over-estimates the re- 
sponse of subsystems near resonance. The same comments apply to Fig. 15a; 
note here that merely changing from spring to link suspension systems in the 
Reference 14 test cause a phase change of 180° in the fuel tank radial 
motion. This also typifies behavior around resonance, and suggests that the 
spring-suspension mode at 14.7 cps really should be grouped with the funda- 
mental mode. Note also that the effect of the staging joint between station 
190 and 200 is noticeable even in these low modes, but might easily be 
"faired out" in drawing thru test points. Sloshing reduces the fuel-tank 
radial motion shown in Fig. 14a by a factor of 3 and increases that in Fig. 
lja by the same amount. 

The third test mode in Fig. 16a shows that the slope in tangential bend- 
ing at the aft fuel tank attachment need not be equal to the center-body slope 
at that point. Thus, the rigidity assigned to this joint in the basic model 
is a poor assuption. The calculated center-body deflection in this area 
clearly shows the effect of being "forced" to follow the slope of the near- 
resonant (see Table X) fuel tank in tangential bending. This assumption 
could be easily relaxed by introducing a "concentrated spring" as the last 
station of the clustered bodies. Sloshing increases the first stage motion 
relative to second and third stages but the major effect is in improving 
frequency correlation (see Table V). Previous comments regarding cluster- 
body resonance and aft-attachment tangential bending slope all apply to a 
lesser extent to the comparison in Fig. 17. In this case, the flexibility 
of the second stage inner tank relative to the missile skin is becoming 
evident. Because of this, or perhaps the combination of this plus the 
outrigger tangential bending fixity, LOX-tank radial motion is apparently 
closer to resonance in the test results. In any event, the modal agreement 
is generally good. The effect of sloshing on this mode is rather small and 
tends to become still less with increasing modal number. 

The fifth calculated natural mode (Fig. 18) has a family resemblance 
to the test data; that is, they are both "first antisymmetric" bending of 
the center-body. The A(') radial motion is out of phase with respect to 
the translational motion at its end points, since it is being excited above 
its uncoupled natural frequency. The assumed rigidity of the outrigger for 
tangential bending slopes, however, forces the slope of the A(* body at the 
aft end to be equal to that of the center-body, hence its more complicated 
shape. 
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Note that the calculated clustered LOX tank motion is in proper phase, but the 
tests show much less response than is predicted. Again from Table V the cal- 
culated system rn0d.e appears close to resonance with the uncoupled tangential 
mode of the clusted LOX tank. It is difficult to predict how the relative 
amplitudes would change if the tangential bending flexibility of the outrigger 
were included. If the response of the B-body were lowered, the balance of forces 
and moments would then require increased center-body motion, thus - in all 
likelihood - improving the center-body correlation as well. 

Fig. 19 shows a comparison of calculated and test shapes for the sixth 
natural frequency. This shows quite good agreement everywhere except for the 
first-stage center-body. Again, one can speculate as to how corrections for 
second stage inner tank flexibility and outrigger tangential bending flexibility 
would affect these higher modes. 

1 
1 

Figure i2. Frequency Determinant Index vs. Trial Frequency 

Saturn I, 48% Full Condition 
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STATION DATA Q 
LOC 

NOSE 1 379.I”“U 
2 359.4000 
3 3i3.Bbbu 
4 335.5000 
5 362.2000 
6 316.9000 
7 307.60011 
B 29_7.00!(, 
9 285.5000 

10 272.0000 
1, 262.9000 
12 250.7000 
13 238.5000 
14 226.3000 
15 clt.I""" 
16 195.9000 

JOIN, 2.4250 

CENTER 1 173.9000 
2 165.3OOU 
3 149.0000 
4 126.7000 
5 104.0000 
6 9o.ooou 
7 85.0000 
‘8 iS.*uuu 

.9 72.7000 
10 66.0000 
11 58.0000 
12 5O.DOOU 
13 35.6000 

0.0346 0.0000 
0.0347 0.0000 
0.0147 0.0000 
0.0152 ".O"OO 
0.0152 0.0000 
0.1787 0.1750 
0.1531 0.1491 
".LLLl 0.2169 
0.2195 0.2138 
0.2227 0.2169 
0.3212 0.3045 
0.1497 0.1148 
0.2,B" 0.0000 

A BODY 1 173.9000 0.0000 0.0000 
2 166.OOOU 0.0138 0.0000 
3 147.0000 0.0025 0.0000 
4 127.8000 0.0067 0.0000 
5 105.1000 0.0034 0.0000 
6 90.0000 0.0727 0.0720 
7 80.6OOU 0.1993 0.1973 
8 67.0000 0.1993 O.L973 
9 56.0000 0.1208 O.llbb 

10 45.ooou 0.0121 0.0063 

0 BODY , 173.9000 
2. 167.9500. 
3 151.0000 
4 
% 

'36:5PPP 
123.5000 

6 102.8000 
7 90.0000 
0 80.2000 
9 65.5OOG 

10 ~&OOOO 
11 44.0000 

IAIL 1 -0.0000~ 

Table III 

l/5 Scale Saturn I , Breakdown for 48 $ Full Condition 

w nw MSTAR 

U.Olb4 
0.0317 
u.5025 
0.3425 
0.3425 
0.3425 
0.3425 
0.4000 
J.0187 
0. ,651 
0.4270 
0.4270 
0.4270 
0.4270 
0.*,!70 
0.1513 

0.0000 
0.0000 
o,oooo 
O.WOO 
0.0000 
O.O”OO 
0.0000 
0.0000 
0.0000 
0.0000 
o.onoo 
0.0000 
o.onoo 
0.0000 
0.0000 
0.0000 

0.1775 5.2250 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
O.OOOJ 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0105 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
1.3910 
0.0000 

0.0000 
iJ.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0170 
0.0477 
0,0519 
0.0045 
0.0045 
0.0730 
0.2150 
0.2150 
p.!sso 
0.0206 

5.0000 
p.0000 
o.onoo 
o.onoo 
0.0000 
O.O"OO 
0.0720 

0.0000 
0.0000 
0.0000 
0.5895 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.2106 0.0000 
0.2106 0.0000 
O.llOR 0.6232 
0.0192 0.0000 

0.0000 0.0000 0.0000 

19.90')0 0.4000 13.1000 0.0000 
15.6000 1.3000 21.5UOO 0.0000 

e.30no 1.8000 24.1000 O.OU”O 
9.3000 1.8000 24.1000 0.0000 
9.3000 1.0000 2+.1000 3.0000 
9.3ono 1.8000 24.1000 3.0000 

10.60'1" 1.8000 L3.9000 0.0000 
11.5000 0.0000 0.0000 3.0000 
13.5O"O L8.5000 44.6400 0.0000 

9.lO"O 18.5000 44.6400 3.0000 
12.2ono 18.5000 44.6400 0.0000 
12.2o')o 18.5000 44.6400 0.0000 
12.2ono 18.5000 44.6400 3.0000 
L2.2OnO 18.5000 44.6400 0.0000 
18.2000 18.5000 44.6400 3.0000 

0.0000 0.0000 O.OOOO O.OOQO 

0.0164 
0.0481 
".,,"b 
0.8931 
1.2356 
1.57El 
1.9206 
2.4006 
2.4193 
2.5044 
3.0114 
3.4384 
3.8654 
4.2924 
4;7194 
4.8707 

14.7500 4.6000 0.0000 9.4200 0.0006 

8.60"0 3.5000 20.4000 5.3600 2.9510 
16.3000 1.6000 27.7000 5.3000 2.ti17 
22.3000 1.5000 27.5500 5.2000 3.0064 
22.70"O 1.5000 26.400" 4.9BOO 3.0216 
14.0000 1.5000 26.4000 4.9800 3.0368 

5.0000 1.8000 29.3000 5.5300 3.1968 
5.6010 1.8000 33.0000 6.2200 3.3441 
t..7ono 1.0000 33.0000 6.2200 3.5576 
6.7000 1.8000 33.0000 6.2200 3.7707 
0.0000 l.fJOOO 33.0000 6.2200 3.9840 
8.0000 2.6000 49.5000 9.3400 3.3052 

14.40no 4.0000 46.0000 8.6700 3.4549 
5.50no 4.7000 49.3000 9.3000 3.6729 

7.9O"O 0.2160 0.8000 1.6660 
19.OO"O 0.1600 5.9000 1.1130 
19.2000 0.1185 5.0000 0.9430 
22.7000 0.1185 5.0000 0.9430 
15.10'10 0.1292 5.2800 0.9970 

9.4000 0.1400 5.7200 1.0800 
13.6000 0.1400 5.7200 1.0800 
11.00"0 0.1400 5.9200 1.1200 
,1.0000 0.2160 13.7200 2.5900 

7.lO"O 0.2160 29.1OUO 5.4900 

0.0000 
0.0138 
0.0163 
0.0230 
u.o2+ 
0.0991 
0.2984 
0.4977 
0.6185 
0.6306 

5.95QO 
16.9500 
14.5000 
13.OO"O 
20.70nO 
12.BO'JO 

9.BO')O 
14.70no 
11.5ono 
10.00~0 

6.1000 

3.6400 0.4871 
1.7080 0.. 5041 
L.7060 0.5518 
1.7080 0.6037 
1.6740 0.bV.M 
1.6740 0.6127 
2.0190 0.6857 
2.0190 0.9007 
2.0680 1.1157 
4.0000 1.1329 
4.2700 i.r,rr 

1.8000 

0.4570 19.3000 
0 ._2 170 9.0500 
0.2170 9.0500 
0.2170 9.0500 
0.2170 8.0600 
0.2170 8.8600 
0.2630 10.7000 
0.2630 10.7000 
0.2630 10.9500 
0.4570 21.*000 
0.4570 22.6000 

k.1000 49.3000 9.3000 0.0000 

A I 

0.0000 
0.0000 
0.“““” 

P .o.w? 
0.0000 
O.O”OO 

‘0.0000 
0.000” 
u.0000 
0.0000 
0.0000 
o,oooo 
0.0000 
0.0000 
0.0000 
0,000~ 

33.3100 

o.oobo 
O.“““” 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.000” 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
cr.0000 
0.0000 
0.0000 
0.0000 
0.0000 

O.O”U” 
_o,oooo 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 

SLOSH 

O.QOOO 
0.0000 
".OO"U 
o.nnr(o 
O.OBO" 
n.0000 
0.0000 
0.0000 
O."""" 
0.0000 
O.OU"U 
0.0000 
".""OO 
0.0000 
0.0""" 
0.0000 

0.3161 

0.0000 
0.0000 
0.000~ 
"."""U 
0.0000 

ll.dOOO 
12.0000 
l~.UUUl, 
14.0000 

0.0000 
0.0000 
o.oooo- 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

Zl."U"" 
22.0~00 

0.0000 
0.00.Q0 
0.0000 

.^. 
0.0000 
0.00~0 
OIOUO" 
".,-WllJ0 
0.000" 
0.0000 

31.0000 
32.0000 

o.oooc 
0.0000 
o.oo*o 

D.OODD 

SPARE : 

-O.OUUU 
0.0000 
U."""" 
0.0000 
".OOOO 
0.0000 
".0000 
0.0000 
"."OO" 
0.0~0 
o.ooou 
0.0000 
0.0000 
0.0000 
".O"O" 
O.ODOO 

-0.0088 

0.0000 
".OOOO 
0.0000 
O."""U 
0.0000 
O.OtJ"" 
0.0000 
".O"O" 
0.0000 
0."""" 
0.0000 
U.UDOO 
0.0000 

yL!. 
: 

0,00&O 
".ODO" 
,o.oooo 
O-U""" 
0.0000 
O.UV"O 
0.00n0 
0.0000 

0.0000 
lJ.nnno 
ll.OOO" 
0.0n00 
".0000 
0.0000 
O.lrUUU 
0.0000 
u.uuoo 
n.0000 
0.0000 

LOOOD 

@r See Table IX for interpretatlonof columulabels. 



STATICN DATA @ LO‘ 

NCSE 1 379.7000 
2 359.4000 
3 343.8bOO 
4 335.5000 
% ~62.2000 
6 316.900D 
7 JO7.6000 
B 297.0000 
Y 285.5000 

10 272.0000 
I1 262.91100 
12 250.7OOC 
1.' L3a.~-ooo 
14 226.3000 
15 214.100G 
16 195.9000 

JOlhT 2.4250 

CENTFH 1 173.9”OO 
2 165.300C 
3 149.OOOC 
4 135.2000 
5 129.5OOC 
b IL,.900L: 
7 118.2000 
8 112.5OOC 
9 IOh-90GO 

10 LOI.2"OC 
11 95.5OCC 
12 YU.OO"O 
13 d5.30OC 
14 79.4000 
15 72.7000 
16 66.0000 
11 ss,qgoo 
10 50.000C 
19 35.5500 

A RC"" I 173.9000 
2 lbb.OOOC 
3 153.1""" 
i 143.0000 
5 133.4500 
.J 124.35OC 
7 ,15.z500 
0 LUb. 1500 
9 97.0500 

t; 90.0000 
80.600‘ 

12 07.oooc 
13 56.O"OO 
14 45."000 

B BCDY 1 173.9OOG 
2 168.000c 
3 L58.1OOC 
4 150.0500 3 142.0000 _. 

6 133.4500 
7 124.3500 

14 54.OOOC~ 
15 44.“““0 

iAIL 1 -o.ooco 

Table IV 

l/5 Scale Saturn I , Bwakdown for 100 $ Full Condition 

* 
0.0164 
C.0317 
C.5025 
0.3425 
0.3425 
0.3425 
C.3425 
C.4800 
0.01E7 
5.1651 
0.4270 
Q.4270 
0.4271 
C-4270 
C.4270 
C.1513 

C.1775 

C.0346 
c.0347 
C.ii147 
C.1876 
C.1876 
O.,B,b 
C.1876 
C.1876 
C.1876 
0.1876 
C.1076 
C.,787 
C-1531 
C.2227 
C-2195 
(1.2227 
C.3212 
c.1497 
C-2,"" 

o;oooo 
C.0138 
c.0013 
c.0012 
C.1322 
C.132i 
0.1322 
(1.1322 
C.1322 
C.072, 
C.1993 
c-1993 
C.lZCB 
C.ULZL 

c.ooco 
C.0170 
c.cc17 
r.ccI8 
C.CO,, 
C.1333 
C.1330 
C.1330 
0.1330 
c.1330 
G-0730 
0.2150 
C.215" 
0.1250 
t.OZCb 

C.OOCI? 

MSTAR L EI*10=*9 bEelO.* GHT*lO**6 A 

o.ooco 19.9000 0.4000 ~3.1000 0.0000 0.0164 
o.occo 15.6O"O 1.3000 21.5000 0.0000 5.0481 
o.occo 8.3000 l.HOOO 24.1000 0.0000 0.5506 
o.ocoo 9.30'10 ,.nopo 24.100" o.ooco O-H931 
c.occo 9.3O"O 1.600" 24.1000 0.0000 1.2356 
o.occo 9.30"0 l.BOOO 24.1000 0.0000 1.5701 
o.ocoo 1C.6000 1.0000 13.9000 0.000” 1.92Cb 
o.ooco 11.5O"O *.oooo 8.8000 0.000” 2.4OCC 
c.occo 13.5O"O 18.5000 44.6400 O.OOOG 2.4L9? 
o.occo 9.10110 18.5000 44.6400 0.0000 2.5844 
o.ocoo 12.2O"O 18.5000 44.6400 0.0000 3.0114 
c.ooco 12.2000 1El.5000 44.6400 0.“000 3.4384 
o.ocoo 12.2O"O 18.5000 44.6400 0.0000 3.i1654 
o.occo 12.2O"O 18.5000 44.6400 0.0000 4.2924 
0.0000 lB.ZO"O 18.5000 44.6400 0.0000 4.7194 
0.0000 O.OO"O o.uooo 0.0000 0.0000 4.8707 

0.010s 14.75"C 4.6000 0.0000 9.42'10 O.U"C6 

o.ocoo 8.60"0 3.500" 28.4000 5.3600 2.75,C 
o.occo ,6.30"0 1.6000 27.7000 5.3000 2.9917 
o.ocoo 13.8030 1.5000 27.5500 5.2000 3.0064 
o.occo 5.7000 1.5000 27.5500 5.2000 3.1876 
o.occo 5.6000 1.5003 26.4COO 4.9800 3.368P 
o.ooco 5.7000 1.5000 26.4000 4.98"" 3.55oc 
o.occo 5.7ono 1.5000 26.4000 4.9800 3.7112 
o.occo 5.6O"O 1.5000 26.4000 4.9800 3.9124 
o.occo 5.70"" 1.5000 26.4000 4.9800 4.0936 
o.occo 5.7900 1.5000 26.4000 4.9800 4.2748 
O.OCC” 5.50"" 1.5O"O 26.400" 4.9000 4.f156C 
o.ocoo 5.OCQO 1.3oco 29.3000 5.5300 4.616C 
0.0000 5.6000 1.3000 33.0000 6.2200 4.7633 
o.occo 6.70QG 1.8000 33.0000 6.2200 4.5766 
o.ooco b.,O"O 1.9000 33.0000 6.2200 5.1899 
o.occo 8.00'10 1.8000 33.0000 6.2200 5.4032 
o.ccoo 8."000 2.6000 49.5000 9.3400 5.1244 
2.861C 14.45"0 4.dOOO 46.0000 8.6700 5.8741 
O.OCOG 5.4500 4.7000 49.3(300 9.3000 6.092, 

O.OGCC 
o.ocoo 
o.ocoo 
O.OCOO 
O.OGC" 
o."cc* 
0.0000 
o.occo 
o.occc 
O.GCCO 
9.occo 
o.o‘co 
1.245" 
9.0000 

0.2L60 8.8000 1.6660 o.oocc 
0.1600 5.9000 1.1130 O."L3P 
O.Ll85 5.0000 0.9430 0.315, 
0.1185 5.0000 0.9430 0.0,6? 
O.LLB5 5.ocoo 0.9430 0.14R5 
0.1185 5.0000 0.9430 0.28C7 
0.1185 5.0000 0.9430 ii.4125 
0.1292 5.280" 0.9970 0.545, 
0.1292 5.2800 0.9970 0.6773 
0.1400 5.7200 l.OBOO 0.75oc 
0.1400 5.7200 l.OBOcI 0.949? 
0.1400 5.9200 1.1200 1.!4.56 
0.2LbJ 13.7200 2.5900 1.2694 
0.7160 29.1COO 5.49oc 1.2!3,5 

C.OCCO 
o.ocoo 
0.0000 
o.occo 
o.ooco 
o.ocoo 
o.occo 
o.occo 
o.occo 
o.occo 
o.occo 
o.occo 
c.occo 
1.279, 
O.C‘CO 

0.4570 19.300" 3.64"" 0.'187, 
0.21,o 9.0500 1.7080 0.5~41 
0.2170 9.0500 1.70"" 0.505F 
0.2170 9.0500 1.7080 0.5076 
0.2170 9.0500 1.7080 0.5093 
O.ZL,O 9.0500 1.7080 C-6423 
0.217C 8.8600 1.6740 0.7753 
0.2170 8.8600 1.6740 0.9083 
0.2170 8.8600 1.6740 l.')G,? 
O.ZL,O 8.8600 1.6740 1.1743 
0.2630 LO.7000 2.0190 1.2473 
0.2630 10.7coo 2.0190 1.4623 
0.>630 10.9500 2.0680 1.6773 
0.4570 21.2000 4.0000 1.8023 
0.4570 22.6000 4.2700 1.819s 

c.ocoo 7.800" 4.7000 49.3000 9.300" cl.~l"CC 

I 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
o.ooco 
0.0000 
“.OOOO 
0.0000 

33.3100 

0.0000 
0.0000 
0.0000 
0.0000 
o.ooob 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
O."OOO 
0.0000 
c.0000 

O."OC" 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
O.O"OO 
0.0000 
cJ.0000 
0.0000 
0.0000 
0~0000 
0.0000 
0.0000 

0.0000 

SLOSH SPARE 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-0.3161 

0.0000 
0.0000 
0.0000 

11.0000 
,2.0000 
13.0000 
14.0000 

0.0000 
0.0000 
0.0000 
0.000" 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

21.0000 
22.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0. "000 
0.0000 
0.0000 
0.0000 
0.0000 

31.0000 
32.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 

0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-0.0080 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

~0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-0.0000 

0.0000 

@ See Table IX for interpretation of column labels. 
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Table V: Summy of Bending of Saturn I 
Calculated & Test Natural Frequencies (cps) 

4% Full Condltlon, Principal Axis No. 1 

%Ermr 
(Nearest 
-WT.) 

Calculated 41, 
(FIW-FE~) 
with slosh 
Lg axial Load 

$Emr 
(Nearest 
Exper.1 

Ref. 2 
(g-cable 
SlE.peIlSlO~) 

Ref. 14 
f&able 
spring 
suspension) 

Ref. 14 
(&cable 

1 2 3 4 5 6 7 a 

13.0 13.65 

0 - 7.1 

13.3 15.2 

+ 2.2 - 1.9 

13.0 

13.6 14.7 

14.1 15.5 

18.2 16.5 31.9 

+l2.5 + 0.8 - 5.9 

19.2 

- 7.7 

29.7 33.2 39.3 - - 

+l2.9 

26.0 

20.8 25.5 

20.8 26.3 

- 2.1 

33.9 

34.7 

35.0 

38.65 44.3 54.4 

+ 0.4 + 2.1 - 9.3 

+ 1.0 

38.9 47.8 60.0 

38.5 43.4 - 

ModalNumber 

Calculated 3, 
(Fm-Free) 
No slosh 
No axial load 

% Error 
(Nearest 
EXper.1 

$Ermr 
Nearest 
Exper.1 

Ref. 2 
(a-cable 
EGUSpWlOIl) 

Table VI: Sunmary of Bending of Saturn I 
Calculated & Test Natural Frequencies (cps) 

lC@ Full Condition, Principal Axis No. 1 

1 2 3 4 

8.6 

- 5.4 

a.8 

- 3.3 

9.1 

9.1 

9.1 

10.7 Il.5 15.0 

0 - 0.9 

5 

21.83 

+15.5 

10.9 l-l.7 15.3 

- 1.8 + 0.9 

10.5 

22.2 

+17.35 

la.4 

10.7 - la.7 

Il.1 u.6 18.9 

- 6 7 a 

28.9 34.9 37.7 

-5.5 - -8.3 

29.4 - - 

- 3.9 - - 

30.6 - - 

30.0 - 41.1 

30.8 - 41.5 



Table VII 
Saturn I - Summary of Internally Balanced 

Mode Frequencies (cps), 4% Full Condition 

Modal No Sloshing With Sloshing, 
Number No Axial Load lg AxialLoad Kind of HAion 

1 I-2.7 14.3 First Radial, Fuel Tank 

2 17.3 18.0 First Tangential, Fuel 
Tank 

3 25.2 29.3 First Radial, LOX* 
Tank 

4 35.4 37.6 First Tangential, LOX* 
Tank 

5 36.9 36.9 First Rocket Engine 

blustered Body 

Table VIII 
Saturn I - Summary of Internally Balanced 

Mode Frequencies (cps), lOO$ Full Condition 

Modal No Sloshing, 
Number No Axial Load Kind of Motion 

1 8.7 First Radial,Fuel Tank 

2 10.9 First Tangential,Fuel 
Tank 

3 13.4 First Radial,LOX* Tank 

4 19.4 First Tangential,ICX* 
Tank 

5 34.1 Second Radial,Fuel Tank 

6 37.0 First Rocket Engine 
Bending 

*Clustered Body 
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Label 

LOC 

M 

Mw 
1 MSTAR 

I L 
EI*lOq 
AEJclOM 

GHTWO6 
A 
I 

m* = total liquid mass in a given clustered tank 
c = length between successive mass points 

El.. = EI!lC? 
= AE;.l(p 

bending rigidity assumed constant between successive mass points 
AL e 

%l 
ensile-compressive rigidity constant between successive mass 

Ght = &I(?. 
PO ts 

effective web height and thickness 
A = Axial load in g's (i.e. to obtain force,multiply by 386.4 “/set ) 

I = mass moment of inertia in bending about an axis thou the center-body 
center line 

SLOSH = an indicator to tell program at what station to include slosh effects 

SPARE Not used 

Table IX 
Interpretation of Column Labels Used in Tables III and IV 

IWaning for quantities 
in JOINT matrix 

Meaning for quantities on nose, center-body, cluster-body and tail (he Appendix E: 1 

= location in inches 
the rocket engine 

of the mass station measured forward from the end of 

m = mass of the tank plus the mass of the liquid assumed concentrated at a 
given station MS 

= mass of the liquid concentrated at a given station tt 

Ghtd 
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Figure 140. 1st Natural Made Shape - Saturn I, 48% full, motion of A 
bodlcs 
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Figure 14b. 1st Natural Mode Shape - Soturn I, 48% full, matlon of B 
badles 
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Flgure 14~. ist Natural Made Shape - Soturn I, 48% full, motlon of 8 
badles, resolved porollel and perpendicular to the vehicle 
bending plone 
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Figure 150. 2nd Natural Mode Shope - 
bodies 

Saturn I, 48% full, motion of A 
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Figure l5b. 2nd Noturol Mode Shope - Soturn I, 48% full, motion of 8 
bodies 
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Figure 15~. 2nd Natural Mode Shape - Saturn I, 48% full, motion of 8 
bodles, resolved parallel and perpendlculor to the vehicle 
bending plane 
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Figure l6a. 3rd Natural Mode Shape - Saturn I, 48% full, motion of A 
bodles 
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Figure l6b. 3rd Natural Mode Shape - Soturn 1, 463 full, motlon of B 
bodies 
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Figure 16~. 3rd Naturol Mode Shape - Saturn I, 48% full, motion of 6 
bodies, resolved parallel and perpendicular to the vehicle 
bending plane 
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Figure 170. 4th Natural Mode Shape - Saturn I, 48% full, motlon of A 
bodies 
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Figure l7b. 4th Natural Mode Shape - Saturn I, 48% full, motion of B 
bodies 
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Figure 17~. 4th Natural Mode Shape - Saturn I, 48% full, motlon of 8. 
bodles, resolved parallel and perpendicular to the vehicle 
bendlng plane 
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Figure l8a. 5th Natural Mode Shape - Saturn I, 48% full, motion of A 
bodles 

I.C 

0.5 

C 

d I I I I 
0 100 200 300 400 

LONGITUDINAL STATION (in.) 

Figure l8b. 5th Natural Mode Shape - 
bodles 

Saturn I, 48% full, motion of B 
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Figure 18~. 5th Natural Mode Shape - Saturn I, 48% full, motlon of B 
bodies, resolved parallel ond perpendicular to the vehicle 
bendlng plane 
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Figure 190. 6th Natural Mode Shape - Saturn I, 48% full, motlon of A 
bodies 
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Flgure l9b. 6th Natural Mode Shape - Saturn I, 48% full, motion of 8 
bodies 

Figure l9c. 6th Natural Mode Shape - Saturn I, 48% full, motlon of B 
bodies, resolved parallel and perpendicular to the vehicle 
bending plane 
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FIG. 20 

FREQUENCY DETERMINANT INDEX vs. 
TRIAL FREOUENCY - SATURN I, 100% FULL CONDITION 

A-Body Rodiol-Longit,udinal Motion 
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FIG. 21 a 
INTERNALLY BALANCED MODES: 

FREQUENCY DETERMINANT INDEX VS. TRIAL FREQUENCY 
SATURN I, 100% FULL, A BODY MOTION 
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FIG. 21 b 

INTERNALLY BALANCED MODES: 

FREQUENCY DETERMINANT INDEX VS. TRIAL FREQUENCY 

SATURN I, 100% FULL, B BODY MOTION 
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FIG. 22a I st NATURAL MODE SHAPE - SATURN I 
100% FULL, MOTION OF A BODIES 
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FIG. 22b 1st NATURAL MODE SHAPE - SATURN I 
100% FULL, MOTION OF B BODIES’ 

LONGITUDINAL STATION (in.) 

Figure 22~. 1st Natural Made Shape - Saturn I, 100% full, motion of B 
bodles, resolved parallel and perpendicular to the vrhlclr 
bending plane 
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Figure 230. 2nd Noturol Mode Shop8 - Saturn I, 100% full motion Figure 23b. 2nd Notural Mode Shape - Saturn I, 100% full motion 
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III. CONCLUSIONS 

A Matrix-Holzer formulation of vibration problems for branched systems 
has been shown to have certain conceptual and operational advantages*. A 
fully coupled analysis of the Titan IIIC'launch vehicle programmed and allow- 
ing for the longitudinal, torsional and bi-planar bending motion of up to ten 
mass stations each, on the upper stages, first-stage center-body and first 
stage cluster bodies, respectively, can be handled within the capacity 
of an IBM 7074 computer. Application of the method to the prediction of the 
uncoupled lateral bending of the Saturn I clustered launch vehicle config- 
uration resulted in reasonably good agreement for the first eight natural 
frequencies and six mode shapes, when compared with shake test results. 
The effects of staging joints and fuel sloshing were shown to be appreciable 
for the lowest modes, those due to lg longitudinal loads were not. An 
assumption regarding fixity of cluster-body support points for tangential 
bending slope was indicated as a source of significant mode shape difference, 
in spite of the fact that adjacent tanks were supported by points very close 
to one another. There was no appreciable bending mode shape or frequency 
difference for the Saturn I configuration between the two distinct planes of 
symmetry. 

The results of the study emphasize that (1) fundamental modes of clustered 
vehicles can have more complex curvature and node points than experience with 
unbranched beams would suggest and (2) internally balanced modes can exist in 
branched systems which will probably not be found in tests where only the 
center-body is excited. 

*Just prior to completing this project, a similar approach carried out 
under the auspices of MSFC, Huntsville by R.F. Glaser and E.E. Beam, was 
called to the first author's attention. From the abstract available, the anal- 
yses seem to parallel one another. 
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Iv. APPENDICES 

Appendix A - Derivation of the Elastic Matrix 

The approach taken here is to account for shear deflections and axial 
loands as though there is no interaction between the two. 

Beam theory, accounting for deflections due to uniformly distributed 
shear in the web, gives the following expressions for the bending deflection 
and slope at the top of a uniform cantilever beam of length 4 under a tip 
load v , and tip moment M (but no axial load). 

where: = ‘I 3$&z 
h = height of the web 

'6 = thickness of the web 

From Figure A-l: 

and 
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So that substituting the new expression for +i+r , 

Now to account for axial load effects, consider a deflected elastic beam 
element with constant properties under tension. The governing differential 
equation for this beam segment, neglecting shear deflections and second order 
terms, is 

JY M W Mi +ViX - A i [Yi - Y (‘~ 
-=. -= 
dxz EL F-1 

Where it is understood that X-o at station i and x= 4 at station i+l . 

Rewriting the equation, 

d?(w) -- 
dx’ 

M; -AiY; 

EL + -$X 

it is clear that the general solution is of the form 

y(x) = A sihh kx + B Gosh kx -j- Cx -I. D 

Substituting this into the differential equation, and expressing (A.B,C,D) 

in terms of the quantities (Vi ,Mi,+ibYi) at X = 0 we get 

Y (4) = Yi.j.1 = Vi [+$-+]+Mi[y -&J+$+$$ + y; 

and 4 
0 
- =t+,= 

dx 
x=e 
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where 

Finally, applying station i*I boundary conditions to the original expression 
for moment in the first equation given in this Appendix, and substituting for 
Y. Ii-1 from the above, 

M. ItI = 
sit-th kC Vi - 

k + Mi -Sh kP. + +i $ sinh k-t 

Thus, from these expressions for Mitt 2 +i+\ , and Sri+\ , one can write the 
elastic matr il c 

% sinh k4 0 v sinh kt 

M 
k 

Gosh Ice 

= 
4 \ 

Y 
A; c cash kc -I) -$ Sinh kt I 

I i+l 

Thus, 

c for a uniform beam under axial tension load, Ai : - - 
I 0 0 0 

0 

- - 
Consider the series expansions 

sinh kt = (kQ? (kQ)’ 
kt+T+- 

Sl 
+ . . . ._. 

. . 

cash kP = ( + kg- + L!g + . . . . . . . 
B . 

sihh k4 
= 

k e 
c 

er Ai I f 7i. EI+ . . . . . . . 1 
snd (cash k-t - 0 

Ai 
= sz + P4 Ai 

z-z ‘! (ET-p + - . - .-- 

it& 

i 

1 



which allows the elastic matrix to be simplified, 

if CA, 

EI (4. I ' to 

I 

t 

13 1’ I 0 0 

I 

4’ 0 4 

4A 0 

ZY EL I 0 

-z e I 
2EZ L 

The bending elastic matrix 
counting for shear deflections, 

I 

-c 

4” 
2EI 

i 

Cl Eb to be used in this analysis will be, ac- 

0 0 0 

I <A 0 

e 
EI. 0 

f- 
zx e I 

where 

7i = 
i 
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Again assuming no interaction of the large steady axial load with in- 
finitesimal extensile motion, we may, of course, write (again from Figure A-l): 

11 [ 
I 0 

F F 
= 

i! e 
iti -xE I 1 II z 

i 
it& 

which can be written symkollcaUy as 

i+t 

In like manner, the elastic matrix ,kd . For torsion is found to have 
the form, 

which is to be used in the transfer equation, 

It is to be emphasized that %sMi',*,Yi,T;,ei,F; and'i are all small 
quantities of the first order, whildAiis assumed to be large and constant. 

For compression loads, that is when Ai is negative, the approximate 
form of the elastic matrix may be used directly. The exact form, however, 
would involve an imaginary value of k . This would simply have the effect 
of changing all the hyperbolic functions to trigonometric functions. 

Appendix B - Derivation of Spider Beam Flexibility Terms: Saturn I 

1. Lateral Bending. For lateral bending, the out-of-plane deflection of 
the spider beams will be antisymmetric. Thus, half of the beam, pinned at the 
center, may be considered, as shown in Figure B-l. The relationships between 
the lengths a,& and 1, are shown in Figure B-2. Considering the bending 
expressions for a beam in antisymmetric bending(for unit shear and moment at 
the tip): 
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Thus we can write the transfer equation 

V 

M = 
+ 
Y 

Outb'd. 

I 0 0 0 
V 

es I 0 0 M 

a 6 I 0 9 

c 27 4, ’ 
Y 

Inb'd. 

Where it is clear that for the lateral bending case, we must mite: 



EI is the bending rigidity of the spider arms for bending in the direct- 
ion along the vehicle longitudinal axis and the lengths are defined in 
Figure B-2. 

Note that this is actually too stiff by the amount of,the flexibility of 
spider beam arms in torsion. This term will only affect deflections due to 
shear (i.e., longitudinal loads) not moments, and can be considered to be a 
simple spring in series with a spider arm which has a clustered body attach- 
ment point on its torsion axis. 

This spring rate is given by 
GJ 
42G 

and would modify only the term c to the value 

To obtain the torsion flexibility term, e ,examine the deflection at the 
tip of the antisymmetrically bending spider beam under a unit load. Call this 

I 
Y, =- 3hI ( 4,-e,' + 42 

J 

If we define the distance between the support points for a single cluster tank 
as (L, then a unit out-of-plane load in opposite directions on these two sup- 
port points causes a couple of magnitude q,, and an angular deflection equal 
to 

2 yv 2 I 
- = -- 

e 3 %EI ( x,4; + P:) 

Thus, the angular deflection at the tip of an equivalent spider beam under 
a unit moment is 

2 I 
3 T2EI 

and, referring to the equation, 



Here again the expression has assumed that the clustered body attach- 
ment is on the torsion axis of the spider arms. To account for the offset, 
it is necessary to consider the additional tangential bending slope at the 
clustered body, due to torsion of the spider arms. For a'unit shear force at 
each attachment point the additional angle is 

Thus, the total tangential bending slope per unit tangential bending moment 
would be 

and 

2. Longitudinal Motion. For the case of longitudinal vibrations, 
the spider arm bending will be symmetric, as shown in Figure B-3. In the 
same manner as for transverse bending, it is possible to arrive at 
"equivalent"spider beam flexibility members for longitudinal moses. These 
are: 

= b = 
= 
C = - 

Here the term e will not enter. 
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Appendix C - Derivation of Staging Joint Matrix: Saturn I 

The joint could be represented as a concentrated spring at the top of the 
staging joint truss, with the distance between the top of the first stage and 
the bottom of the second stage considered as rigid. Instead, the effect of 
such flexibilities as the "parachute can" which exists in the Saturn I is 
represented as shown in the lower half of Figure C-l. 

The matrix representing the change in deflection across the concentrated 
spring and rigid beam is arrived at as follows: 

We express differences in the slopes and deflections from STA.195.86 to 
STA 190.635 as in the Appendix A derivation, calling them stations iandi+l, 
respectively: 

and 
Vi Mi 

Yi-Y’;+I = - 
kFY 

+ - + c- #(+,) 4, 
k"Y 

Mi 
or Yi+l = yi + pi+, 4, - v; - - 

kF~ k”Y 

= yi + +i ‘T + ‘i 
-b -L 

q 
kFY 

The transfer of bending quantities across the staging joint (i.e., from 
station 195.86 to station l-73.868), then, is given by 

0 0 0 
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Note that the mass characteristics fS,Ms and '5 of the spider, assumed to 
be rigfd, have been lumped with the staging joint. Properties in the 
elastic matrix are those of the "parachute can." 

Similarly, for longitudinal motions, we can write: 

I &, 
[ 1 0 I 

i 

I 

4D 
-TE 

I 0 

L I I -- 
kFL 

i 

where 

- 
k' 

= longitudinal deflection across the joint truss 
Ft for a unit longitudinal force = .0617 x 10m5 
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