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SUMMARY

A general matrix-Holzer method is developed for predicting the free
vibration modes of clustered launch vehicles. The problem is so formulated
that it can be adapted to the analysis of clustered structures capable of
vibrating in various types of modes. A complete theoretical analysis of the
fully~coupled vibrations of the Titan ITIC launch vehicle is followed by
analysis of the transverse bending vibrations of the Saturn I. The latter
is a simplification of the fully-coupled case specialized to the Saturn
cluster boundary conditions. The first six transverse bending modes of the
NASA Saturn I 1/5 scale model are calculated and compared with test results.
A procedure for predicting the longitudinal vibration modes of Saturn I is
also presented, and represents a second specialization of the rfully coupled
case.

The formulation minimizes numerical operations by invoking symmetry
where possible and by postponing satisfaction of compatability of deflections
at cluster attachments until the last steps. Any kind of cluster boundary
conditions can be represented in such a matrix-Holzer analysis, as illustrated
by the two examples studied. Not only do the cluster boundary conditions of
the Titan ITIC differ significantly from those of the Saturn I, but different
cluster boundary conditions are also encountered in the same vehicle
(Saturn I) depending on the direction of motion considered.

The method developed here can account for (1) cluster bvody motion,
longitudinal as well as in and out of plane of the centerbody motion; (2)
cluster attachment flexibility; (3) various clusterbody end conditioms,
differing amoung cluster bodies from end to end and between bending planes;

(L) steady axial loads; (5) liquid sloshing; (6) shear deflections and

rotary mass moments of inertia; (7) structural elements overhanging from the
main body of the vehicle such as rocket engines and cluster body overhangs
forwam of the forward cluster attachments and aft of the aft cluster attachments;
(8) discontinuities in bending and torsion properties at staging joints.
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INTRODUCTION

The importance of the dynamic deformastions of large missiles, and in
particular knowledge of the natural frequencies and mode shapes, can be
related to several continuing problems. Structural natural frequencies
should be placed, for example, so as not to excite fuel-sloshing, or premature
rocket engine cut-off could occur. The minimum bending slope points should be
known so that control system gyros can be placed where they will sense rigid
pitch and yaw, which are indicative of the vehicle's course, rather than
flexible body motion. Structural loads resulting from response to dynamic
excitation, such as wind shears, must be predicted for design purpcses, and
the natural modes are basic inputs in such structural calculations, as they
are for control system stability analyses. Methods for predicting the natural
frequencies of launch vehicles at the earlies possible design stage, therefore,
continue to be actively pursued.

Clustered configurations, where a number of tanks are arranged in a
concentric ring or in a "piggy-back" arrangement on a central tank, heve recent-
ly come into use, and will be of interest whenever it seems profitable to gang
existing boosters to achieve still higher thrusts. Such arrangements, from a
structural viewpoint, comprise closed, branched-beam systems, and there is
relatively little experience with the dynamics of such systems.

It is usual to assume that launch vehicles have symmetry about a plane
through the longitudinal axis of the configuration. The cross sections of
individual bodies, in fact, are very close to being polar symmetric, and the
array of cluster-bodies is generally symmetric about the center-body. The
attachment of clustered bodies to the center-body, however, 'is usually such
that deflections relative to the center-body in the radial direction differ,
in general, from those in the tangential direction. As a result, unless the
motion of a cluster-body support point is solely in a radial or tangential
plane, that cluster-body will respond in two planes. This has been evident
in reports of shake tests conducted at NASA, Langley (References 1 and 2).
If, however, one or more of the bodies lacks axial symmetry or if the cluster
array is unsymmetrical, then the entire array may not only experience
oscillatory bending in two planes, but couple with torsional and extensile
vibrations, as well. Even in the simpler, symmetric case, the lateral offset
of the clustered body's neutral axis from the vehicle center-line suggests
that longitudinal compression and extension are essential to the mathematical
model, whether or not additional degrees of freedom need to be included for
such motion. It follows that flexibility of cluster-body supporting structure
must also be accounted for, and that the special joints often used at such
attachments must be properly represented.



In addition to characteristics unique to clustered configurations, other
effects encountered in the design of more conventional vehilcles must still be
considered. First stage booster rockets, for example, can deliver high
longitudinal accelerations near burn-out. The resulting longitudinsl compress-
ion loads can have an appreciable effect on the first stage effective stiffness
characteristics, and hence on the vehicle's natural modes and frequencies.

In addition, cluster-body supporting structures are likely to have rotary mass
moments of inertia sufficiently large to require that the analysis be capable
of accounting for such mass properties. PFurther, the depth to length ratio
of certain sections of the vehicle such as the "barrel" in the Saturn model
(see figure la), strongly suggests that transverse shear deflections may not
be ignored. Finally, the coupling effects of fundamental fuel sloshing and
rocket engine natural frequencies considered as subsystems mounted to "ground"
should be represented.

All these "secondary" effects are more likely to affect branched systems
than their simpler counterparts. There is a tendency for ome or more of the
system natural frequencies to fall relatively close to a natural frequency of
a cluster-body or center-body considered separately from the rest of the
vehicle. Small changes, then, due to any of the usually small effects dis-
cussed above, can in such cases have appreciable influence on the system
natural frequency and often result in really substantial differences in the
associated mode shape. This pertains particularly to the motions which might
normally be assumed uncoupled by virtue of neglecting small disymmetries.

One of the earliest published theoretical attacks on this problem is
in a paper by Hung and Stone (Reference 3). The Myklestad method was applied
in matrix form to the vibrations, in a single plene, of a beam with two branches
mounted on a center tank. Shear deflections were taken into account, but
extensile loads and motions of the bodies off the neutral axis, flexibility of
attachment structure, and subsystem degrees of freedom, were not.

The special case of four uniform beams of circular cross section, coupled
symmetrically at their ends thru pinned joints, and undergoing torsional
oscillations about a longitudinal axis thru the center of the cluster, was
analyzed by Lianis and Fontenot (Reference 4). They used a continuous system
approach. The uncoupled, differential equations for bending and torsion were
coupled by the boundary conditions and led to a 40 x 40 transcendental
characteristic determinant for natural frequencies of modes in which torsional
oscillations are coupled with radial and tangential bending. A lumped parameter
approach was also described briefly. Apparently influence coefficients were
obtained and a Dynamic Matrix (The "D" matrix in the notation of Bisplinghoff,
Ashley and Halfmen, Reference 5) set up, which yields the natural frequencies
of four non-uniform bodies in the same arrangement.
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Analysis of the Titan ITIC (Fig. 1b) three-body configuration¥,
emphasizing the effects of attachment flexibility, was carried out by Storey
(Reference 6). Offsets of the centers of gravity of cross sections of indivi-
dual bodies from their centerlines were neglected. The oscillatory behavior
of the system could thus be simplified to three uncoupled motions; (1) bend-
ing of the centerbody in the plane of the clustered bodies coupled to
extensile motion of the cluster-bodies plus their bending in the same plane;
(2) twisting and bending of the cluster-bodies normal to the plane of their
attachment, in concert, plus similar bending of the center-body; and (3)
opposed bending of the clustered bodies, normal to the plane of their attach-
ment, plus torsion coupled to center~body torsion. This formulation calculates
flexibility influence coefficients by energy methods, eliminates redundant
losds by requiring compatibility of deflections at joints, and forms a
Dynamic Matrix which is used to calculate the eigen-values. The order of this
matrix, of course, is the total number of degrees of freedom in the represent-
ations; e.g. even presuming symmetry, using 10 mass points for bending and
5 for longitudinal motion of the cluster-body, and 20 for bending of the center-
body, leads to a 35 x 35 dynamic matrix for this case of two clustered bodies.

Milner (Reference 7) carried out a multiple-beam analysis of the Saturn I,
using a Rayleigh~Ritz approach, and a generalized coordinate approach to
clustered configureations was recently published by J.S. Keith et al (Reference
8). In an appendix of the latter reference, the NASA 1/5 Scale Saturn I model
is analyzed for lateral vibrations using the suggested approach. Although
complexity in analysis is like beauty, i.e. it exists only in the eye of the
beholder, the number of subformulations required, and the number of modes which
must be used as coordinates to insure accuracy, detracts from this method as
a means of analyzing clustered configurations.

A1l of the usual methods for analyzing non-uniform systems can be thought
of as either (1) requiring the assumption or precalculation of deflection
shapes for the system or its subsystems (e.g. Rayleigh-Ritz, Lagrange's equations
with normal modes as generalized coordinates); (2) setting up a Dynamic Matrix
through the calculation of either stiffness or flexibility influence co-
efficients; or (3) establishing transfer matrices preparatory to applying the
holzer technique. As mentioned regarding References 7 and 8, a rather large
number of modes must be used for clustered configurations in the first approach.
Perhaps more important, this method is best adapted to situations for which
there is a background of considerable experience. The number of variations
possible with clustered arrangements exposes the analysist using the first of
these approaches to the danger of neglecting some significant but inobvious
mode of motion.

*Throughout this report reference to "Titan ITII" implies the clustered "C"
configuration.



PAYLOAD ————‘—‘—Q

#1
7/
#2 SECOND STAGE —
)
2 SPIDER —=| _ ]
#2
A FIRST STAGE FIRST STAGE
CLUSTER BODY . ~—CENTER BODY

\

Y/

LIQUID LIQUID
Sy OUTRIGGE R —==| ]
#£1 or #2 /LA
AZIMUTH SIGN CONVENTION ROCKET
ENGINES IR

Figure 2. Cluster Configurations aond Principal Axis Convention
FIG. 3a. CLUSTERED LAUNCH VEHICLE BREAKDOWN

FOR ANALYSIS (SATURN TYPE)



Comparison of the relative advantages of the last two methods fills the
literature, but it is profitaeble to review the :important points here. The
Dynamic Matrix method is adapted to an iteration procedure which guickiy
converges to the first mode. The first mode .results must be used, however,
if the same iteration scheme- is to work for hlgher modes, This is often
cited as a disadvantage, since the errors of the lower modes creep successively
into larger errors for succeeding modes. Actually, the higher modes could be
solved from the original dynamic matrix by other schemes, such as de-
terminant expansions with a series of trial values assumed for the unknown
‘frequency. In this way, the evaluation of each frequency would be independent
of the other, as it is'in the Matrlx-Holzer method,

A more pertinent benefit in using the Matrix-Holzer approach stems from
the fact that the bulk of the numerical work can be performed independent of
‘boundary conditions. Imposing boundary conditions at the last steps of the
calculation, has a distinct advantage for systems where more than one set of
boundary conditions may be of interest. Furthermore, where bodies are )
duplicated, and/or have polar symmetry and are free to move in two planes,
the "transfer" from one end of such bodies to the other need only be done once.
The reduction in labor achieved by using this technique for clustered con-
figurations will become apparent. Most important, the ease with which
representation of very complex systems can be formulated using the Matrlx-Hblzer
approach is a powerful argument in its favor.

In the follow1ng sections, the general approach is described; transfer
relations are written in matrix form, drawing on previously published material
where possible; and application is made to two clustered launch vehicles, the
Titan IIIC and Saturn I. The Titan IIT case is a fully-~coupled formulation,
specialized to that vehicle., Sufficient symmetry exists on Saturn I so that
no significant increase in complexity is entailed in presenting an analysis
capable of handling configurations with from two to eight clustered bodies,
either all the same or consisting of two kinds, (see figure 2). TIn this
case lateral bending vibraetions of the center-body in one of two planes of
symmetry is emphasized. The analyses are capable of. accounting for the
effects of: : . : :

1. independent bending motions of clustered elements in and out of the
plane of motion of the center-body, torsion and longitudinal motion .

2. flexibility of clustered element attachments.

3. various end conditions of cluster-body attachment, differing among
clustered element types, from one bending plane to another , and from
one end of the clustered bodies to another,

k., steady axial loads in all elements due to either accelerations or
preload.

5. coupling due to fundamental sloshing and rocket engine natural
frequencies.

6. shear deflections and rotary mass moments of inertia.

T. discontinuities in bending and torsion properties at staging Jjoints .

8. structural elements overhanging from the points of support of the
clustered bodies.
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I. ANALYTICAL DEVELOPMENT

A. General

In review, it is noted that the Matrix-Holzer or transfer-matrix pro~
cedure (References 9, 10, 11) is simply an adaptation of the Holzer or
Myklestad method in matrix form. The first step in the approach is to
"break down" the continuous system into (a) mass properties considered in-
finitesimal in length i.e. "lumped", (b) lengths of massless, elastic
members of various flexibilities, and (c) special concentrated elastic elements
such &8s may occur at staging Jjoints. "Transfer matrices" are written for each
such element, relating the pertinent quantities (deflections, forces, moments)
on the left of the element to those on the right, or relating bottom to top,
in the case of launch vehicles. These guantities are usually arranged in
columns, sometimes called "state matrices". The"state" of the left hand side
of one element is, of course, also that of the right hand side of the next
element to the left. Thus, by continuous substitution for these common "state
matrices", in the case of an unbranched system, one relates the important
quantities at one end of the system to those at the other. At this point the
known boundary conditions can be applied and the unknown quantities evaluated
if the equations are non-homogeneous. If natural frequencies are sought, the
set is homogeneous and the natural frequency appears as an eigen-value. The
procedure, then, is to assume values for the natural frequency; the boundary
conditions provide a test to show whether the assumed value is correct.

In adapting the method to clustered launch vehicle analysis, the points
where the clustered bodies join the center-body are at first thought of as
the ends of unbranched systems (See Figure 3b,c ). The"assembly" then proceeds
as follows: starting from Station I in figure 3b,c and traversing downward,
the system '"branches" at Station II. The deflections at the upper (or right-
hand) end of all of the branches, Station ITI A, B or C are, of course, equal
to the center-body deflections at Station II. A certain number of unknown
forces and moments ("redundants", if you like) must be introduced here, however,
since the clustered bodies will carry as yet unknown portions of the loads from
the part of the system between Stations I and IT. Whatever the number of these
"intermediate unkmowns", the requirement that there be compatibility of
deflections at Station VIII provides sufficient simultaneous algebraic equations
to eliminate them. The procedure then continues as though the system were
unbranched.

Suppose it is presumed at the outset that there will be coupling of some
kind among all the motions possible. Cross sections of each of the bodies mak-
ing up the vehicle, however, will be assumed to retain thelr shapes, so that
shell effects are neglected. The motion of a cross section can then be assumed
to include that due to



(1) radial bending involving the guantities:

transverse shear force (#F), positive
down

where: V

bending moment ( 3 in.), positive with
upper fibers in tension

bending slope (radiens), positive when
it causes an increase in Yy, ,

compared to Y .

vy = bending displacement (in.), positive down

™
4’

1S

2]

« 9 X <

(2) tangential bending, with the same four quantities, but differentiated
from radial effects by a prime; i.e.

where: 1relationships with radial quantities are

I@l 2 shown in figure b4

“ B X <

(3) torsion, described by

where: T = torsion moment (4:in.) positive forward,
A T considered as a vector

’Ul = 6 = torsion angle (rad.) positive forward,
6 considered as a vector

and

() extensile rotion, involving

F where: F = longitudinal force { # ) positive forward
lx, A 2 = longitudinal displacement ( m.) positive
F 4 forvard

i'u significant loss of generality will be suffered if one restriction regarding
the coupling between these different motions is made; namely that elastiec coupl-
ing will exist only in the attachments of the clustered bodies. This is a con-
sequence of the near polar symmetry of the elastic characteristics of the
individual bodies about their longitudinal axes, and tle fact that all deflections
are assumed to be small, first order.




B. Basic Longitudinal Tfansfers

Using Targoff's Notation (Reference 9), the change in all the quantities
of interest across a length of one of the component bodies, considered as a
massless, elastic element of uniform properties, can be written as

B e 1 |3
23/ {?é] 251
7 [ 7
| g Bl |2
1+ — =1 J+ 4 Eq. (1)
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=

=

length of the elastic element ( in )

steady axisl load (# ), positive in tension

3 EI/6hte*

Young's modulus ( #/m~ ) of the material

shear modulus ( #/in> ) of the material

effective shear area of cross section (in™ )

second moment of area of the cross section referred to the
neutral bending axis ( In*)

torsional stiffness characteristic of the cross section ( n* )
effective compressive-tensile area of the cross section ( in* )

Here and throughout the paper, zero matrix elements will be omitted unless
there is danger of confusion. The diagonal nature of this partitioned matrix
reflects the lack of elastic coupling. The bending elestic matrix is an
approximate form for small axial loads, i.e. where

uwnnnun

>y HIOMIps

nn

In general, nmost elements of the array become hyperbolic or trignometric
functions of

2 %a
{a
EI

depending on whether (A is positive or negative, respectively. The vehicle
breakdown will usually be fine enough to meke [E,]l a good approximetion; how-
ever, the complete bending tranfer is derived in Appendix A.

The transfer of quantities across a mass element, considered to be
infinitesimal in length, can be written by inspection using Figure k.
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W = the vibratory frequency (radians/sec)
m; = mass at the {Y station (lbs sed/in. ) acting in bending

I¢,. = rotational mass moment of inertia at the i*P station
! ( Ib.in. se® ) about the radial bending axis

I;_ = rota‘bion%.l mass moment of inertia at the i*" station
' ( lb.in. sec” ) about the tangential bending axis
i th

It.- = torsional mass moment of inertia at the station

' ( Ib. in-sect)

My = mass at the |th station ( lbs sel/in ) acting longitudinally
The gquantities M, I‘f’i 5 Iqs‘ » and It; and My. can all be thought
of, when it is convenient to do so, as "effective" or frequency-dependent
mass properties. In the simplest cases, there may be a flexible local
attachment so that part of the total mass Mg; is mounted at station |
thru a spring. If the natural frequency of that soft-mounted mass, My is

‘Dn' , when the station i is considered fixed, then
1
2
(.’ﬁ mp,
_ Wn; '
m, = m,. +

The mass term in the longitudinal sub-matrix, WMy; , is purposely differentiated
from mM; , since liquid mass would not generally be included, except for
stations where there is a transverse bulkhead. All the liquid mass between a
transverse bulkhead station and the next one forward, would be considered as
lumped at the aftmost one. Similarly, liquid contributions to Iti would

be largely neglected, except where there are segmented tanks. Portions of the
liquid near a free surface, and"overhung" parts of the structure such as the
rocket engines in Figure la and the clustered body noses in Figure 1lb require
special treatment, and are discussed in later sections. The transfer across
the (th mass and elastic length on any of the bodies comprising the clustered
vehicle is thus written as

-~

B
B

- [e] [

x 9 & 6

T
L
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Referring to Fig. 3b, transfer and state matrices can be associated
wlth specific parts of the launch vehicle by using the subscript N for
quantities associated with the length between Stations I and II; C for
those between Stations V and VI on the center-body; T for those between Stations
IX and X; and A®> or B on the ith cluster-body of one or the :other of
two types between Stations V and VI. Clearly then

3 B
b’ _ 3/ Eq_' (3)
T - [6-] 7
i (N’C)A)B'T)
(mLye, wA® e x) (z,v¢, v A7 x)
where:

4

o] e T leln),

The summation in Eq. 3 assumes that the first mass in each body is identified
as =1 . Tt should also be noted that the number of masses, n ,
may be different from one section of the system to another. Most important,
however, [o’] need only be obtained once for each kind of cluster-body,
regardless of how many of such bodies there are. Furthermore, for a free-free
condition of the launch vehicle

\V4 o
M o
v’ _ o
M’ ° Eq. (1)
T o
F o

(r.X)

Thus [m]aN may be taken as a 12 x 6 matrix consisting only of those columns
of the general mass matrix multiplying the deflections; i.e. ecolumms 3, k&, 7,
8, 10, and 12, Similarly [5] may be taken as a 6 x 12 matrix consisting
n
T
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of the rows corresponding to the zero forces and moments; namely rows 1, 2, 5,
6, 9, and 11. By postmultiplying (from the right) to obtain [l and
premultiplying (from the left) to get 17 this application of the
boundary conditions saves half the numerical steps which might otherwise have
been carried out in obtaining these two products.

C. Jolning the Branches

At Station III the structural attachments of the clustered bodies may
individually experience transverse shears, extensile loads, bendin,, moments
and torgues, irrespective of the particular motion assumed for the center-
body. If, for example, the center-body is undergoing only bending in one plene,
the shears and moments in a normal plane can exist on individual attachment
"arms"”, so long as those components cancel among them. One can, of course,
state unequivocably and cuite generally that

v \9 \% \Y;
M M M M
v’ _ v’ V' v’
M’ B M’ - Z M/ "Z M’
T T i T i T Eq. (5)
F F F i F :
pAe Ir I A o &%’
Similarly
Vv v v v
M M M M
v’ Vv’ v’ \A
M’ = w M Z w’ * Z M’ Eq. (6)
T T i T | T
F F F : F :
XT wc vm AY v &
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The forces, moments and torques at Stations IIA(n,ep> . are the
"intermediate" unknowns of this problem. It is important to note that
Egs. (5) and (6) imply that these quantities are in the same axis system
as the center-body; 1if, as shown in figure 2, the cluster-body axis system
is reached by rotating thru an angle, Y , this must be reflected in the
transfer from stations T, gth to IV, W, D) and from

VL 4ch, gl to WL u¢h, ptid . The"intermediate"
unknowns ultimately are eliminated for the most part by equations which
are companions to Eq. {6), expressing the compatibility of displacements at
the aft attachment of the clustered bodies. That is

¢ $ 4
y N Yy

/ 1 ¢l
¥ = |? = {7 Eq. (7)
y y y
6 e o
z z . z ,

YIic v A ym B¢

Exceptions to making complete use of these equations will ie clcar in specific
ceses. The conditions at Station MC will be expressible in terms of the
unknown deflections at the nose of the vehicle and the"intermediate" unknowns
thru the use of Egs. (3) and (5). Thus, Eqs. (6) and (7) may be rewritten as

Vv ¢$ v \Y
M y v v’
v’ $' \ T Z Al
— - | =
M’ [vi] y' L ']c Z M T L m
T ) 1M \ v
F
F z W) F 3))
< T oA ILB
Vv \Y
M M
V' A
+
+ X ™' Z ™’
F , F .
v AY YT g
Eq. (8)
-17-
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¢ $ v v
Y y v’ v
¢l ¢I T T
Y’ = [Ug_] y! - [G-Ql-]c Z M +Z M
o 6 Y i oim
F E
z 2 .
X I ( I]IAU) ]]TBCDJ
¢ ¢
J Y
_ ¢’ K
Y’ y'
) 6
z . 2 ; "Eq. (9)
where [w] 2 rows 1, 2, 5, 6, 9, 11 of [»]
[Va] 2 rows 3, 4, 7, 8, 10, 12 of I_—_V:I

[ & B [+ [, [,

[7] 2 columns 1, 5, 9, 2, 6, 11(in that order) of [«_—]c
Ez] 2 columns 3, 4, 7, 8, 10, 12 of [‘JC
<

Er.]N rows 1, 5, 9, 2, 6, 11 (in that order)of [?]N

[E]N columns 3, L4, 7, 8, 10, 12 of [G]N

[G:JN rows 3, 4, 7, 8, 10, 12, of [?-]N
Eﬂc 42 rows 1, 2, 5, 6, 9, 11 of [&ﬂc
["z](_ 2 rows 3, 4, 7, 8, 10, 12 of [o‘ﬂc
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The arbitrary rearrangement of forces and moments at Stations M AWM

and Hlgés will prove convenient in later steps. Now if the quantities

at T 6y, g0 can be similarly expressed in terms of the unknown

deflections at Station I  and the intermediate unknowns, there will be as

many sets of Eqs. (8) as there are cluster-bodies  ACD or B .

This provides a total number of egquations equal to the number of intermediate

unknowns, so that the latter can be eliminated In terms of the nose deflections.

To relate quantities at ML pzh,ach _ to those at Station T, ,aeh
requires transfer matrices for the forward and aft structural attachments,

These expressions may take different forms depehding on the kind of attachment
configuration encountered, and depending on whether test data or data from
previous static structural calculations is available., Rather than attempt

to generalize, several examples are given in presenting the analysis of the
Titan ITIC and Saturn I vehicles in the sections to follow.

1. Titan ITIIC Fully Coupled Motion

a. General

Titan ITIC consists of two large Solid (propellant) Rocket Motors ( SEM's)
clustered about a modified Titan IT liquid rocket. Thus, using the general
notation, the  ASH and A(z) bodies correspond to SRM 1 and SRM 2,
respectively, and there are no g bodies. PFigure 1b shows two
Thrust Vector Control bodies (TVC's) attached to the two solid rocket motors.
It may be noted that in the convention shown in Fig. 3¢ the AM (i.e.
SRM 1) properties are identical to those of AGD (i.e. SRM 2).
Nevertheless, the presence of the TVC bodies has the important effect of
coupling the torsion of the cluster bodies with their bending in both the rad-
ial (‘yaw) and tangential (pitch) planes. Thus torsion is a mechanism for
coupling between the two kinds of bending. In addition, there may be mass
coupling between pitch bending and torsion in the center-body, due to apparent
asymmetry of upper stage tanks. (See Figure 1b).

The cluster arrangement is such that regardless of the mass offset of
individual bodies from their elastic axes, antisymmetric longitudinal motion
of the cluster bodies couples with yaw-bending of the vehicle. Similarly
if their tangential motion is in-phase in the convention of Fig. 3c (i.e. in
opposite directions), the effect is to excite center-body torsion. IFf the
tangential motion of the cluster tanks is out-of-phase (i.e. in the same
directions), it excites bending of the center-body in pitch.

Suppose, as in Ref. 6, eccentricities in the individual bodies are

ignored. Uncoupled analyses could then be conducted and would result in four
distinct kinds of modes, a2ll of which involve center-body motion, viz.:
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a) Center-body torsion, coupled with in-phase cluster-body
tangential bending-torsion.

b) Center-body yaw-bending, coupled with out-of-phase cluster-body
radial bending and extensile motion,

c) Center-body pitch-bending, coupled with out-of-phase cluster-body
extensile motion and yaw bending.

d) Center-body extensile motion coupled with in-phase cluster-body
extensile motion and yaw bending.

It is not clear that the mass-offset couplings can be ignored, however,
and the resulting analysis cannot take advantage of symmetry. All twelve
state quantities must therefore be carried on center-body and clusters, and
distinction between state matrices on A® from those on () must be made.

b. Cluster-body attachments

The forward attachments of the cluster-bodies on Titan ITIC differ
significantly from those aft. The forward "strap and slip-joint" arrange-
ment can transmit shear loads and torsion, but not axial loads or bending
moments in either the pitch or the yaw sense (See Fig. 5a). However, the
aft truss is capable of carrying not only shears and torsion, but also bend-
ing in the pitch direction,and longitudinal force at the truss attachments
points (Pl and P2 in Fig. 5b)}. Since F,Mor M’ . cannot be transmitted at the
forward attachments, the system variables Z,¢,¢'on the AD bodies will e
discontinuous with respect to the corresponding quantities on the center-
body at those points. These quantities on A and A®), therefore, replace
the six "intermediate unknowns” (F,M,M)r,¢> , which are known to be
zero in this case. This explains why the forces and moments at Stations

T 56y p i) were rearranged and the corresponding state matrices parti-
tioned as they are in Egs. 8 and 9. Similarly, since no moment,M , can
be sustained at the points Pl and P2 in Fig. 5b, the slope, ¢ , may be
discontinuods here. These points do require, however, that the displace-
ments ¥ and % be compatible with those on the center-body.

We can thus summarize the intermediate unknowns of this formulation as
(V;V.'T)m- A, A and (4"¢'2)YAQ,A(” for a total of twelve guantities,

There will also be twelve conditions to be satisfied by the state
variables, after traversing the branched part of the system. These are the
compatibility of the six displacements (¢',y',9)m A contained in Eg. 8.
However, instead of the remaining six, (é,y,2) .A"" Al® 5 it will be more
convenient to match (¥:2) Pl, P2 with correspoﬁ:mg 'quantities on the
center-body and require the vanishing of the two yaw-moments Mp;»M.,. These
twelve equations will allow eliminating the twelve "intermediate unknowns"

for the Titan IIIC.
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At this point the flexibility of the attachment structure must be
represented for those loads which can be carried. Iload deflection data does
exist for the forward and aft cluster-body structural attachments and was
provided by NASA Lengley. This informetion is available in a form which
presumes the center-body fixed and the cluster-bodies loaded, that is the
flexibility of the upper attachments fixed and the cluster-bodies loaded; may
be written with the aid of Pig. 3¢, as

ye' A® L lna y = l——[%]"l [_H'J \-;A(‘)

y: - -i {Cu VI
(2] 1 \
9 1 ° ! N L[E]lz ETE-]”J The
T i} ¥
where J [
A — Kyv'  ky'r
k ) ]
It _—
kyr kot ’
{ 1
N — kyv'  Kyp
k -1 ]
12 —k - "
yT o1l ,
[ -1 ]
- — Kyy' Kyg
k i A
12 —_—
Kyt Kot | 2
[ -]
! :l — kKyy' kyt
-
k e
| Ky Kot I
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p; = tangential displacement of Station I¥ 4¢
ky'v . - with respect to StationIL ,fper unit
i A .
tangential shear on Station I¥,( Lin/s)

= +tangentisl displacement of Station I pC)

k.Y'T .. with respect to Station W per unit torque
34 on Station I, [in /binl
1 .
_ = torsional deflection of Station ]IAU) with
K oT respect to Station L per unit torque on
Station I¥ p( [rad/ Vo in]
,f a = distance from center-body centerline to
cluster-body centerline Lin]
and
y AW ! ' (kyV) (k)V 2 V |acn
g |1 7 T V@
* Gy Gid | F
| Ny NKyvdyy |
where )
K = radial displacement of Station I¥ ,() with
yv ’J respect to StationT per unit radial shear
on Station I ,(j [RLTALE

All of the flexibility numbers

< | j !
1 , ,
KT Ket T kyy' )
'

are assumed known and Maxwell's reciprocity theorem has been used to minimize
the number of distinct symbols.
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Now from statics, and accounting for rotation of axes from cluster-body axis

system to center-body.

S <
-~

- <

A®

Thus the desired transfer can be written, using the above flexibility and

equilibrium relations, as:
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are as defined on page 25.
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Now substituting from Eq. (3) in the right hand side of the above transfer,
we obtain: .

v ¢ v
Y I b2 v
\ — } ¢’ I z_ T
Y’ e FI 0—2. y, + F‘ v_ A(')
T N e VI
& "4 z I T
A(I) A(’-)
Eq. (10)
A\ 4) v
g : y
_ ) ¢’ 2 o
v - [ FZ] [6}_] y/ <+ [ FZ] -l A(,)
T N v
o - ° v’
A® A(D
Eq. (11)
where: - | T
F, a Columms 1 through 6 of F;
L — }
and - z_
I:J' = Columns 7 through 12 of Fr
- - Tl 5=, 2).
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e

Now noting that V, W

(10) and (11) can be used in Eq.

~

&b

&q

[

F -] ) ]

A N

where:

(=]

AGD

ks

Note that the disappearance of columns 2, 6, and 11 of [«
consideration reflects the fact that (M'M"F)N'

VR TS

@
yl

[

A

- [

A(L)

columns 3, 7, 12 of

(¢) ¢'a z)!‘ A(’)'ACZ) .
(3) to traverse the clustered bodies, so that

< <

[+

4 < <

4 <<[d <«

columns 1, 4, 5, 8, 9, 10 of [:6-]
A

and T are transferred from Station W +to Station V.,
and introducing the new intermediate unknowns

Egs.

¢
¢ #
Ab\ 2 2
+ | &€ v
Am
A
A
Eq. (12)
&
2 ¢'
SO [}S :] z
2 Y
A® A
A
Eq. (13)

W
<]
Al

A(l') fmm

ACH = (M'M"F)DIAU) = o .

To apply the compatibility of displacements at Stations WILC)> and Pj

and require zero moments M
the aft attachment structure.

forces and torques applied to the SRM’s.

(See Fig. 5b)

at the latter points requires transfers across

Load deflections data at that point is also
available for the Titan IIIC with the center body restrained and shear

This information allows writing
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and where:

} \ | ] | l
’ ’ correspond to k.’ k. k
Kyy'  Kyy Kot yv YT oT

except that the deflections are at Station YL A(i) with respect to
StationIX for unit shears or moments applied to Station N¥IT AGY -

]
Kor o .. tangential displacement of Station MIL (1) with
Ym X respect to Station IX per unit tangential bending
moment on Station VI ALY .

Ko = tangential bending slope at Station ML AC) with
M i J' respect to Station IX per unit tangential bending
moment on Station Y p¢)) .

= tangential bending slope at Station ¥IL ACH with

%¢,T i_j respect to Station IX per unit torque on Station MITA(j
b = longitudinal distance between Station WAL 4C¢) and

Station IX. taken as positive when the latter is
farther out than the former.

Note that this form of transfer across the aft attachment requires that
Station IX be at the same longitudinal station as points P1l, P2. For radial
load-deflection characteristics, two separate relations are available from
the following tests; (1) with the center-body fixed, points P1l, P2 are
loaded and (2) these points are loaded again but with the cemterbody free and
an SRM fixed. The resulting information allows writing

i
X

P } ) Pl
A(I) x
Kyr zF




and

-1 1
y -y Kyv Kye v
z T e i _ : i ez
A12) Kyr Kz
L ~ Bq. (15)

from the results of the second test and

| 1
Yim YA Kyv,, Kyvig Vie
oy Y ! ! Viez
X X
e M2 Vi Eq. (16)
from the results of the first, where:
!
o = radial displacement at Station ¥IL p()
kyv with respect to Station VI ,(1) for a unit
radial shear at Station YL A .
I
= radial displacement at Station ML ()
Kye with respect to Station YL A1)  for a unit
longitudinal force at WL (i) .

= longitudinal displacement at Station I AC()

Ker with respect to Station YIL A()  for a unit
longitudinal force at ymt ALY .
__L_ = radial displacement at point P; with respect to
K)N" Station VI A< for a unit radial shear at
Y point Pj.
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Note that the change in axis system from cluster-body to center-body is in
evidence in these equations. Since the structure is such that there is
virtually no flexibility between points P1,P2 and Stations ¥IL 5¢h, ¢ for
% motions, the following kinematic relationship can be written

I

2 [p z A(!) i _ 4! o)
+ (ea." a.) |j A
=]

z Z,@ $
P2 A ()
e wm Ea. (A7)

From statics, and again accounting for the rotation of cluster-body axes back
into the center-body system, it is clear that
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and

F F F Flur
A") A2

From the first of each of the Egs. (15) and (16), and the last of the static
equilibrium relations, :

1 | 1 -1

X * X X ° v
Y A{l) Y AN yv vy YF ivY Flam
MR N | [ ! l ; N
Yift Yo 7( o X + 7< AL

pAZYY yv W, J<:y/: i
L ]
Eg. (19)

From (17) and the second of each of the two Egs. (15) we can write

! t
FA) 4 A
A AN o o 1 4
Z ) 1w o 0 E B A
YL YIL Kye  Kar Iﬁ? i

Eq. (20)

The last two matrix relations express the compatibility of the displacements
Y and % at points P).P2 in terms of forces and moments at Stations VL oC)
and deflections at Station WIT z¢) . Together with Eq. (14)they represent 10
of the 12 equations needed to eliminate the intermediate unknowns. The re-
maining 2 are easily written as follows

A\
M
0o b I -4 o 4 °
M P _ [ A(l)
- [o] B (o] o o b ) - v
Mlpa M
FlaR)
In
Eg. (21)
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c. The PFrequency Determinant

Now if Egs. (14), (19), (20) and(21)are assembled into one matrix
equation of 12 rows, there obtains the matrix equation shown below

vhere the matrix[Mis as defined on the next page.
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Equations (12) and(13) are available to substitute into the right hand side
of this equation and for the left-~hand side it is merely necessary to again
note (Filg. 3c) that the conditions at Station¥IC are identical to those at

Station IX
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Hence, thru the use of Egs. (12), (13), and (9) we may write
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where

2]

[6-.') ACI').

It

first three colums of E;.] .

rows 1, 2, 11, 5, 6, 9, 4, 12, 7, 8, and
10 ( in that order) of ;
1

This equation can now be rearranged as follows
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By matrix inversion we may now write

V
v'
T mAﬂ)
v ¢
by
l UIA(Z) _ 4’4
¢ = [« [r] ] _
¢ e Eq. (22)
_Z_YA(‘) z
P I
¢I
j2|TA®

To complete the transfer from end to end of the Titan III, it is first
necessary to use Eq. (12) and (13) agein, this time in Eq. (18). The
resulting equation is then substituted into Eq. (8) along with the first
six rows of Eq.(22). A similar step is made by substituting the first six
rows of Eq. (22), into Eq. (9). Finally Egs. (8) and (9), modified in
this way, are used in the right hand side of Eq. (3) to obtain, with the
help of EFq. (4).

\Y o i 7
M © 65 O Fﬂ
VI I LI R B g i R i 1,
! ° [s3] ,, E4
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-, [[|m]R] b0

MR R

Eq. (23)
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where

E\?;] = first six rows of [&]
- =]
[Q,] = second six rows of [&]
and
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Equation (23) shows that for free vibration, a 6 x 6 determinant, which
is a function of #, must be zero. The procedure for obtaining natural
frequencies, therefore, is to assume a series of trial values for @ , calculate
the value of this 6 x 6 determinant, plot them vs. frequency, and interpolate
for the values, Wy,, which make the determinant zero. This is repeated until
the desired accuracy is obtained. These are, of course, the natural
frequencies i.,e. the eigen values for the vehicle,

d. Mode Shapes

After determining the natural frequencies as described in the preceding
section, it is now possible to proceed to get the mode shape of vibration for
any particular natural frequency. qpe procedure is as follows :
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From the 6 x 6 matrix described at the end of Section le, the normalized
"state vector” of the six displacements v.$.9.0,2 at Station I is obtained.
The mode shape can, of course, only be determined to within an arbitrary
factor since we are dealing with an eigen-value problem. It is convenient to
normalize the "displacement vector"”; specifically we will choose the pitch-
displacement ¥ or the yaw-displacement y' of the tip to be unity. The fact
that V,M,Vv,M,T and F are all zero at Station I, enables us to write down
all the twelve state quantities at Station I . Equations (1) and (2)
provide means of obtaining the state vectors at each successive station until
we reach Station I . Equation (22) yields the intermediate unknowns. These
in conjunction with equations (5), (10), (11), and the fact that M,m.mE are
zero at I A(D provide enough information to obtain the state vectors at IIC
and TLAG) . Equations (1) and (2) are again used to traverse the lengths of
the center body and cluster bodies yielding the state vectors at each mass
station on them. Equations (6) and (18) can now be used to get the state
vector at Station IX , where use of equations (1) and (2) enables the determin-
ation of the state vectors at each mass station of the tail section. At Station
X, the vanishing of V\M,V,M)T.F provides a check on the accuracy of the
numerical calculations.

The "mode shape" thus obtained gives information about the displacements
$,y.4,y. & and 3 at each mass station as well as about the forces and
couples V,M,v,M,T and F in all sections of the vehicle.

2. Saturn I Lateral Bending

a. General

Saturn I can be assumed to have eight radial planes of symmetry, if the
small effects of rocket engine mass and those of their support offsets are
neglected (see Fig. la.). TIts center body can undergo bending motions in either
of two distinet planes of symmetry, and neither will couple with center-body
torsion, longitudinal motion, or bending in the other plane. In this case the
clustered bodies carrying fuel will be identified by ;&‘5 and those carrying
1LOX will be associated with the subscript B(D

Figure 6a shows how Saturn I cluster-bodies are supported at the upper end
by eight radial beams. This structure, called the"spider", lies in a plane per-
pendicular to the longitudinal axis. The aft cluster-body support is similar,
but the attachment structures are beam-trusses in radial planes, and are called
"outriggers." It was assumed that all spider-beam and outrigger~truss flex-
ibility in a plane perpendicular to the longitudinal axis of the vehicle could
be ignored based on three facts: (1) adjacent support points from one cluster
body to another are very close (Fig. 6a), (2) the assembly forms a complete
circle, and (3) there are radial members between all cluster-bodies and the
center-body in the plane of the ends of the cluster-bodies. Accordingly, the
model, shown in Fig. 6b, was used to represent the cluster-body attachment-
structure flexibility. These "equivalent” beams are flexible for deflections
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(a) ACTUAL SPIDER BEAM (b) EQUIVALENT SPIDER

ACTUAL
CLUSTERED
BODY
ATTACHMENT
POINTS

(or OUTRIGGER) BEAM

NOTE: Equivalent spider
beams are rigid in the
plane of the paper, but FIRST

flexible perpendicular to
the plane of the paper g't‘)%SYTERED

Figure 6. Cluster-Body Support Structure - SATURN I

NOTE: No difference
in these angles

This model used in
Saturn I analyses

NOTE: Difference in these angles
causes clustered body 1ors\ltﬂ

Figure 7. Effect of Support Flexibility on Cluster-Body Torsion
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in a radial plane, and rigid for motion in a plane perpendicular to the
longitudinal axis. Fig. 7 shows that if bending in the latter plane could
occur, a difference in slope between outriggers and spiders would twist the
cluster-bodies, even though only center-body bending is being considered.

The assumption of rigidity in this plane, however, precludes cluster-body tor-~
sion for the case under consideration. Thus only two kinds of longitudinal
transfers will be necessary in this analysis; namely, bending on center and
clustered bodies and longitudinal motion on the clustered bodies.

b. Specializing the Longitudinal Transfers

Since this is a problem of bending in only one plane, Egs. (1) and (2)
reduce for the center-body to

Eq. (1a)

2

i+ f i+ L

and

o L R A

ol = [+] b
(T, ¥Ic,X) (N,C,T) (I,¥C,IX) Eg. (3a)
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Since bending on the clustered bodies still can occur in two planes and
longitudinal motion can also take place, the equivalent tramsfers for these

bodies merely reflect the lack of mass coupling, as follows:

and

So that

where

X606

e

[es)

[Ee]

[E]

"]

(]|

>
—
hb

Eq. (1p)

Eq. (2b)

Eq. (3b)
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It should be noted that for this case the number of masses, M , may be
different not only from one section of the system to another, but also -
for longitudinal motion as compared to bending. And again, the quantities

[a] and LAl need only be obtained once for each kind of cluster-body,
regardless of how many of such bodies there are, and despite the fact that
two normal directions of bending are involved.

¢. Cluster Attachments; The "Spider"

The attachment of the clustered bodies of the.Saturn I to their supporting
structure is complicated by the fact that there are two kinds of bodies. A
sumary of the end conditions is given in Table I.

As indicated earlier, the center-body can have transverse shears and
bending moments in only one plane for the postulated motion, and may have no
longitudinal forces. The spider beams, however, may individually experience
transverse shears and bending moments in both radial and tangential directionms,
and longitudinal forces as well, so long as all forces and moments other than
those in the plane of the center-body motion cancel among them.

Transfer from Station II to Station N A(.‘) Ba’; is pictured as taking
place in four steps: !

Step 1: rotation thru the angle ¥ (fig. 6b) from the plane of motion
of the center-body to the azimuthal plane of the equivalent spider beam.
Regarding forces, moments, and small angles as vectors, resolution from one
axis system to another yields:

— —
[ (1 o]
| .
3, cos Y | —siny |° ! 3
o O ]
== | o o VI
I M
F F
III , m o] 111
spider ‘ ' o | center
azimuthel sin Y | cosY body
axis e ©° azimuthal
| 0 9] axis
]

[®]
Note that, wherever possible, advantage is taken of the fact that quantities
in the state vectors are zero.

b2



Table I

Saturn I Cluster-Body End Conditions

! Fuel Tanks

LOX Tanks

1. Radial Bending Moment (M)=0

"Spider" 2. Tangential Bending Moment (M’)=0

Radial Bending Moment (M)=0

Tangential Bending Moment (M)
Cerried

3. Longitudinal Force (F)=0 3. Longitudinal Force Carried

4, Radial Bending Moment (M)=0 L. Radial Bending Moment (M)=0

5. Tengential Bending Moment (M") 5. Tangential Bending Moment (M’)
"Outrigger" Carried Carried

6. Longitudinal Force (F) Carried 6. longitudinal Force (¥) Carried

Note: Radial and tangential shears carried on all bodies at both ends.
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‘ @_ LOX TANK
BEFORE BENDING
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DIFFERENTIALLY BENT
SPIDER BEAMS
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Figure 8. Support Flexibility for Tangential Moments due to Spider
Beam Differential Bending ~ Saturn I
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Figure 9. Mathematical Model for Outrigger Flexibility - SATURN I
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Step 2: "turning the corner” from the longitudinal direction into the
axis of the spider beam (i.e. into a radial direction). Again transforming
coordinates, but noting that twisting of the equivalent spider beam can
occur (See Fig. 8),

[0 0 0 © I
0O ) oo
0 0| o
0O oo o
D ] o o O
> _ © 600 2
- 6 00 o
<l1rx °©° ! F
spider S B LT
spider
arm 6 o -| arm
radial 1o o o azimuthal
axis @ © 0 -~ | axis
system
[n]
Step 3: traversing the length of the flexible spider beam. This is
easily done by defining:
'_l' ~——
3 e 3
7] a b ! ]
B - = 8
ﬁ < 4 )
7 = l
— {‘ l 7
o ol |
z v o o ls | i III
spider
arm | spider
s | arm
radial radial
axis I axi
| xis
L —

LEs]
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Here &®,5,2,d represent splder beam bending flexibility in the direction
of the longitudinal axis of the vehicle, and € is its torsiomal flexibility.
A derivation of these quantities is contained in Appendix B. The length from
the center-body elastic axis to that of the clustered body is 4 .

Step 4: "turning the cormer™ back again, into the longitudinal axis
system of the clustered body, clearly requires multiplication by a matrix,
£7.1 , which is a 10 x 12 submatrix of the inverse of the 12 x 12 form of [T]

-1

] 2 !

1
| ! -

The complete spider matrix is thus obtained by the product

] =] 0 ]

and the desired transfer is

\Y

¥;)

. ™M ¢

’ v’

= [S‘] woo [SZJ y

e A(.‘::Bci) F B} A“-ZB('.) T
Ir A gtid A“’, )
A(\').B(l‘)

Eq. (24)
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where

B 1 o] M o Zo_
[+ i o l $
cos Y o T ~sm Y oL =
Lo e e} |o
SI é r—l o] ﬁ o]
= . \_‘) o 1 os \V o |
Stn 0.zl | € o -z
[0 © [° o]
o =) o ) ]

o] -d cos ¥ o -dsn¥Y|T

[~ [0 o] 7]
cos Y

>

<]

sin ¥

oll'o —0 ol = o
0

cos VY

.o |

d. Cluster Attachments: The "OQutrigger"

| o

A procedure similar to that for the spider beams was followed in
obtaining the transfer across the aft cluster-body attachment. The major
difference is in arriving at a suitable elastic matrix. The outrigger
structures are beam-trusses with jolnts whose dimensions are not negligible
compared to the lengths of the members. For this reason, Turner's method
(Reference 12) was used to compute influence coefficients for forces and
moments in the plane of the truss, acting at the cluster-body attachment,
with the center-body attachment fixed to Yground". The outrigger re-
presentation is shown in Fig. 9. The springs pictured schematically in
this figure represent the following force-deflection relation

a b ¢ v

# = |d -e £ M

4 3 h 4 F
(o) 0]
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Making use of (a) these flexibility influence coefficients, (b) the transfer
required to cross the rigid lengths D and H in Figure 9, and (¢) a rotation-
matrix which is the inverse of the matrix [R] filled out to 10 x 10 form, we
obtaln the outrigger transfer relation

r B ] —_l N Fo ‘o_ 7]
3 H 1 . H ot ~-D o©
cos Y d e siny | o | cos ¥ : o 3
| [ (Hd-a) (He-2) W 1 | 0 o n | CHf-) © | ]
b’ = [ ] 0 7] ] 3’
o N i R E:
-Sin \\} 9]_ e | Cos l{J o | -sin Y £ ° |-
L v gne-s) (He-b W 4] | o H L _QTf_c) o] i
| ~(Dd+ 2) -(be+h) ~p o -(df+1) |
\ Y——\_‘__/
[e] Eq. (25)

It should be noted that both the outrigger matrix (2] and the spider matrices

fs] and [si] are dependent om the angle Y associated with a particular A or
B cluster body. Thus these matrices must be identified by the indices AC)
or B%Y ; state (column)matrices associated with these transfers will, in
general, also have to be so identified.

e. The Frequency Determinant

Consider bending motion along either of the principal axes shown in
Figure 2. Symmetry allows the sum of all moments and forces which are applied
to the center~body by the clustered bodies to be described in terms of
qgquantities on the clustered bodies in only one gquadrant.

The forces we are concerned about here are supplied at the cluster attach-
ments and can be looked upon as consisting of inertia forces (and couples) of
the masses on the cluster bodies and the intermediate unknowns (V,M,v)M,T, F)m

L8
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Table II

Cluster-body Summation Coefficients and Azimuthal Constants = Saturn I

Principal Axis No. 1

Principal Axis No. 2

Total No. | Total No. Body
of of Index o . . . . . C
Bodies Bodies <A(i>) Bo)) Ky g0 | cos YO sin Wi | Ky uip | cos | sin yC
A® 2 1 0 2 0 -1
2 0 A@ 0 - - 0 - -
AW 1 1 0 1 0 -1
3 0 A® P - N30 o 3/2, Vo
AL 2 1 0 2 VWNZ -z
L 0 2@ 2 0 1 2 INZ /NZ
AW L 32 o L o 35
6 0 AP 2 0 1 2 1 0
AW 2 1 0 2 0 -1
A@ 0 - - 0 - -
" 2 0 1 2 1 Q
2 2 B 0 - - 0 - -
A(l) 1 1 - 1 0 -1
A® 2 - NB/p 2 ~B/fp Yo
BY 1 -1 0 1 0 1
3 3 g 2 Yo B/2 2 N3fo. -2
A 2 1 0 ;N YNz \WZE
A® 2 0 1 0 - -
)y L B<» L Wz Y2 2 1 0
B 0 - - 2 Q 1




From a simple inspection, the intermediate unknowns on the two AM
bodies will be equal and so would be those on the two A bodies and
those on the four B bodies. (This is so when bending along Principal
Axis #1 is considered). In order to obtain a similar result for the
inertia forces referred to the center body axis system, it is only necessary
to (1) assume bending deflections ¢ and y along a principal axis, (2)
resolve these displacements into ¢,y,¢,y.2 in the cluster body co-
ordinate system, (3) assume forces and moments V,M,v>M’ and F. in the
co~-ordinate system of each body to be proportional te displacements 4>,y,¢;
v,z and (4) retransform these forces and moments into the center body axis
system.

Alternatively, a completely formal proof would consist of writing out
the azimuthal rotation matrices [R], h,ach and outrigger matrices
K] A<;7,3<i> for all eight bodies, lumping the cluster traverse
matrices together with matrices [Ta] ,[Es] and [T] in the spider transfers for
the three groups of bodies represented by the A™, A’ and ® bodies respect-
ively (See Fig. 2 and Table II) and using the displacement compatibility
within these groups. This procedure establishes Table II.

For the case of the Saturn I, bending in the direction of Principal Axis
#1, thus, the sum of transverse shear forces experienced at the center-body
as reactions from the spider beams would be

zvm'A(l) + 2 VmA(ﬂ + 4 Vm'_BC\)

Similarly the total bending moment for an arrangement with six cluster-bodies
of the same kind, say A-bodies, bending along Principal Axis #2 would be

<+ MHIA‘Z‘) + 2 MI[[AU)

Clearly the choice as to first cluster-body and principal axis direction. is
arbitrary; the angle Y ) must, however, be consistent., To preserve
generality, the numerical coefficients which appear in the above equation

will be called Kyciy gcid + They will be inputs to the problem, depending
on the configuration being analyzed. For the first equation sbove, for example
K, 2
k A® = 2
kg = 4
kb(:_) = O



Table II gives values of kAcb,BCi) and the sines and cosines of
corresponding to Fig. 2. Note that for the Saturn I - axis #1 case we
have reduced the problem to one of three cluster-bodies, A o> and p .

It is now possible to express the transfer across the entire system
using (a) Bqu. (3a), (b) the as yet undetermined forces and moments carried
in the spiders and outriggers, and (c) the summation of such forces and
moments where the cluster-body structural attachments join the center-body.
Thus

v o
= . =
~
" M
M]A™ $ M A
_ Kl I~ “ j - M Kkl N
= [ 4 (M) | - EE N
Mle
N - .
where ['“ZI Eq: (26)
B.] = first two colums of <
Em] = second two columns of EU' ]c
[M]N = first two rows of Eu]N
]:AJ;IN = second two rows of EU'JN
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Note that the quantity inside the brace in this equation 1s the equivalent
of Egs. (8) and (9) specialized to the Saturn lateral bending case. The ,
first step is to evaluate V and M at Station VI \¢h,g in terms of V,M,V,M
and F at Station IIL ath,e and ¢ and ¥ at Station I. If all the cluster-
bodies were "built-in" at the attachment to the spider and outrigger, this
would be a straight-forward matter., That is, we would simply use Egs. (3a),
(3b), (24) and (25) to write

pu— ﬂ )
v [u] ;’:
= k] [ [m 5] v + [ [«
M i Ahzeﬁ) A(u';)BﬁJ m’ Agl  C |y
A(izbﬁ) L [)‘J_ F I .
AB A R
vhere [2] = first two rows of [¢&]

The variety of cluster-body end conditions encountered on Saturn I, and
summarized in Table I, however, requires more detailed treatment. It is
important to keep in mind that the fuel and LOX tanks are associated with
indeces A and B. respectively.

Condition 1 in Table I implies that fwaf,n can influence nothing
"downstream”, and that $yip will constitute three more unknowns,
since they are related to nothing "upstream". Similarly, Conditions 2 and 3
for the fuel tanks in Table I imply that Pz aG) and 2 ¢will be of no
further influence in the transfer procedure, and that qS! At and gy, will
comprise four new unknowns. Old unknowns are therefore exchanged for new in
the following steps.

Step 1: Conditions 1, 2, and 3 for the fuel tanks allow Eq. (2L) to be
specialized to

\
M ° o cosY o -siny o M
vy = |o|] = |o smn¥ o cos¥ O v/
Fly o 0 0 o ©° | M
AD Flo
A
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which leads to the conclusion that

Eq. (27)

Step 2: Condition 1 for the LOX tanks leads to the relation

Fas = Mg cos Yg Y sin
Ly mB A

Eq. (28)

Step 3: Condition 4 applied to Eq. (36) leads to the relation

Mas

_ ﬂz‘
X (AY) B) M TY (ADB)

¥ (A%8) Mga

Where Mij is the element of [4] in the i*" row, j*" column, and Condition 1

has also been used to advantage. It follows that

[ Ma,y Haq
N Mu= M " My = M 7o v
his - Jly
A B - My - M4 AGLB

g May— Mas o Maa - Mas e |

A LB
Lal, o
Eq. (29)
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Using Eq. (28) and the remaining conditions at the outrigger in Table I, the
transfer across the clustered bodies expressed by Eq. (36) is now replaced by

— —

5 _ [a] 2'
z| N z)
Pl O NEL™
B B B
: Eq. (30)
sl [E|El  [EEE]
5 _ [[A| R, (E]EE] l_;jy
L [e]|[e] "AE, [o]) [ A|[-] ’:f?
Tsm [ [0l [] ] _Q o b :
AlD
Fq. (31)

where:

DﬂA first and fourth columns of ['“ ]A

(7] L, = third column of ['“]A

A,

and the last row in each of these equations is an identity.

second column of D‘] A



Substituting Eqs. (24) ang (25)' 1n Egs. (30) ana (31), Vana m
at Station mAcn,B can be expressed in terms of quantities yet to be- . ..
eliminated sna $ and y at Station I, by the equations:

v
™My B
AD
7. o -
F,*D_r ] " i} , =] ]
B 4| gy ||E m I =
A A — z y Am; \N Yy
I Bl | | ]
= A [ ’.Jd Al _ ,
[;(1 @) | .[P]A(U
8 | ' Eq. (32)
I I S
Mgzm; B | ‘[)‘JJB L ::II,[I E% 1
\_V\—/ . .
[, [#] Bq. (33)
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cosy -siny

where: I-_S‘z] = o o
A(lzb sinVy Cos ¥
o o
AW, B
o o
E;: _ o Cos
A(l‘)' B ] o
o siny
AV,

and [ZA]A(;). p 1s formed from [2] A, B by dropping the second column
and moving column three to the last position.

These equations could now be inserted in the complete transfer, Eq. (26),
and thus eliminate all the quantities at Station VIII. But, note, however,
that fifteen intermediate unknowns would remain, namely V,Vv’ atIl, Zat ¥;
and ¢ at VII on A and A®; and V.M,v;M’ @at IL and ¢ at YL on B .
The fifteen simultaneous equations required to eliminate these unknowns are
provided by the conditions that deflections at Station VIII must be

compatible i.e.

+ $

Yy Y

¢ = °

Y o

¢ |y °lvm
AGL B ¢

The left hand side of this compatibility equation is obtained by a process
similar to that leading to Eqs. (31) and (32). The right hand side is available
from Egs. (36), (26), (28), (32), and (33). Thus
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where

.,
4,

(23 is formed frog the 3rd, 4th, Tth, 8th, and
10th rows of 2]- where the 2nd column is
dropped, and coiumn three moved to last
position.

last two rows of E“ﬂc

last two rows of [’“ﬂc

These three simultaneous matrix eguations can now be combined into a
single relation expressing the fifteen compatiblity equations. Thus,

(4]

-~ o~

SRR DR R R
li
I

B Eq. (34)

IECES TN b,

& - o | [BIRIE] ] B,

| 0 Ple | |[B16+ 0]
B |

A
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5] - [elle.
F = |G- Blole|
51- [, [,

[, = [Few 22 27]

sy []

I_ L“i](_ ["2],4 ¥ [”zlc (4] N—I
(-] ]

A new matrix , [g] , to beé used in the next Equation, is defined
as follows :

-_- Keed © 0 0 o Ky © o 6 okyo o oo
o o © o o o oooookbcoo
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Now premultiplying Eq. (34) by [3.] » substituting the appropriate rows
of the resulting equation into Egs. (32) and (33) and all of them into Eq.(26)
we obtain the expression for the transfer across the complete vehicle.

- BIE|
o = Jo] = B BB BB, = [
X 3 [P]

It

A

4B

K] 2] ] )
+ £ [+ o R AR
i B, I

<
VN
[4] N Eq. (35)
I
This shows that for the natural bending frequencies of the complete Saturn

vehicle compared to Eq. (23) it is necessary to find the values of W which
make a 2 x 2 determinant equal to zero.

e

f. Mode Shapes

The procedure for obtaining the mode shapes is essentially similar
to that used for getting the mode shapes of the fully coupled motion of
Titan IIT described in Section I C(d) above. In this case, however, the
procedure involved to obtain the"displacement vector" at Station I does not
involve elaborate matrix operations since the final singular matrix in
equation (35) is of a lower order, 2 x 2 instead of 6 x 6 1in case of the
fully coupled vibrations. Thus either one of the two equations comprising
equation (35) allows solving for ¢, when D=y, and ¥ =) . Thus
the state vector at Station T is completely defined (to within an arbitrary
factor) and equations (la) and (2a) with ®), inserted provide a means for
evaluating the state vectors at successive stations to the branching point at
Station III. There, equation (34), premultiplying by [ﬁ] allows the
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process to be continued, with the successive use of the spider matrix, equi-
1ibrium at Station III, more of Equation (la) and (2a) plus (1b) and (2b) type
of transfers and then the outrigger matrix. At Station VIII, compatibility
of deflections provides a rigorous check of the calculation's accuracy to
that point, a similar test occurs at Station X, whereV and M should be zero.

3. Saturn I Longitudinal Vibrations

a. QGeneral

Though the natural frequencles of longltudinal vibration of clustered
launch vehicles of conventional design are likely to be considerably higher than
those of transverse or torsionsl vibrations, a study of the former is of
considerable interest. A major reason for this is the phenomenon of "pogo"
oscillations which is really an instability involving the rocket engine thrust
variation and structural properties of the vehicle as well as the liquid
sloshing phenomenon.

The effect of coupled shell-liquid interaction is of considerable import-
ance in case of the longitudinal oscillations. The present analysis does not
take this interaction into account. However, many coupled shell-liquid
oscillation analyses employ a generalized coordinate approach and the results
of the present analysis may be found useful in these methods.

Due to the offset of the cluster centerline from the wvehicle axis of
symmetry, bending of the clustered bodies may be coupled to the longitudinal
vibrations of the entire vehicle and provision must be made in the analysis
for accounting for this bending.

The following sections indicate the analytical treatment of these
longitudinal vibrations of Saturn I. A more detailed description will be
found in Reference 16.

b. Considerations of Symmetry

In case of these longitudinal vibrations of the Saturn vehicle, it may
be argued that all the four "A" bodies will behave identically as a group
and so would the four "B" bodies. Pure longitudinal motion, however, is not
the only type of natural motion of the vehicle. There can be harmonic
oscillation with absolutely no motion of the center-body and higher stages
of the vehicle., These modes are termed the "intermally balanced modes" and
are described in detail later in part D of this chapter.

If, as will be seen, it is possible to have cluster-body motion without
any center-body motion, it will also be possible to have cluster-body radial
bending with only pure extensite motion of the center-body. 1In fact the
existance of non-zero values for the terms ¢ and f on page U7 1is evidence
of a direct coupling between longitudinal motion and cluster-body radial bending.
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While the same argument might be made for cluster tangential bending, it is -
more difficult to imagine & situation in which this kind of motion would exist
as part of a longitudinal mode.

Furthermore, since there is complete polar symmetry, the azimuthal angle
Y loses significance as does the difference between A and A(* and
between 8P and 8. Thus, in this longitudinal analysis, we are dealing
simply with longitudinal and radial bending quantities on un-numbered A and
B cluster bodies.

c. Analysis
Since only longitudinal vibrations of the vehicle are being considered,

the only quantities of interest on the nose section,center-body and tail
section will be F and & . Thus

‘I; = EEI.] IJJ Eq. (1)
I+ ! P+

ll‘; L v lz’: Bq. (2e)
o =D |

\ rucx o LIOGE o 39

As discussed above, the transfer matrices for the cluster-bodies can be
simplified from the form in Eq. (3b) to

3 [~ 2
& pri D‘] & ¥

AB AB AB Eq. (34)
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The matrices representing the transfer across the spider arms, involve
only f[%],[(&)] and (%.] metrices, which differ from [¥],[Es] and
) (used for the transverse bendin% case) in that no tangential quant-

ities need be carried and E, uses 4 insead of &4,%,¢,d,e (see

Appendix B).
o o o ol1 o]
o | o ofjo ©
— i olo o
e o
o o © o |
-1 olo O
o o onto ol
— —
o o o of1 o
o | o 0}0
— o o O
[T;I 2 o o |
o o o o© -1
| o o o
o o o | o
| ]

The spider matrix for the longitudinal analysis will thus be denoted
by (g], and is given by

€ - FE [E F

satisfying the equation

=2,

Alb AIB

* I 0
IIIA" indicates the cluster-body azimuthal axis system at Station II AL
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The transfer matrices representing the outriggers will correspond to those |
used in the transverse analysis, but again eliminating the rotation matrix CR1]
referred to on page 148 and the tangential quantities. This relation is

[ o o o o o |
H t o ) ~-D o 2
= d e ! ° £ o
Llgm* = |(d-a) (ne-£) H L |f-e) o X|op
AB o o o o I o AB
-(bd+g) -(be-hy -D o |(pf+i |

*
VL, . indicates the cluster-body azimuthal axis system at Station VT, 5 -

Using (a) e2q. (3c), (b) the as yet undetermined longitudinal forces carried
in the spider arms and outriggers and (c) the summation of these forces at
the cluster-body structural attachment to the centerbody, the transfer

across the entire system can be written as

W™ pm [

Fx = o = DI 4 [ely + @] Jnl- 3

I

1] 2

[Ti] Q‘A")* kA(;Q (kg.m + kB“’)—J
Bl = DX+ B9

where

are the first and second elements in columm 2 of DJN s

respectively

[)\' and J_—A;_[ are columns 1 and 2 of
(A C

[»]T = row 1 of [)‘].\.

)\'N and >\2N
[)‘]c respectively
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In order to be able to use equation (26a) to get the numerical
equivalent of the frequency polynomial, we have to express the forces at

mA.B and YL, o in terms of Zp .

The spider matrix [g] in conjunction with Eq. (3c) can be used to
write

;) - M g 2
=B M + BEN%

& ™ Flm*

AR AB Eq. (2ka)

where

np

[=]
[

columns 1, 2, and 5 of [E]

column 6 of [3_]

ne

Since the cluster boundary conditions are the same as in the earlier
case of transverse bending vibrations, equations (27)thru (31) will hold in
this case.

The six intermediate unknowns will be, in this case of longitudinel
motion of the Saturn vehicle,

Via™ vVl o,
M

Ya and e

$|vraA $|vie

Using equations (2ka),(29), (31), and noting from the outrigger matrix on

page 48 that £ E s, we get
wiA " YA

Where —)UA is the first element of [X]A .
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Similarly, using equations (24a), (29), (30), and observing that

Fmg FSELB s
£
we find that Fars = M, \z‘
B ’YB
where DJ& = row 1 of D]B
Noting from page 53 that
Fog = ~1 m*e
S
this becomes
ot \ —a 32
fms = ms ] lM‘m"‘ BN
B Eq. (33a)
where Eﬂ = columns 1, and 2 of [gJ
and [?sf] = column 3 of [g;l

ES-J rows 5 and 6 of _ . ES_;I which is
formed from I:S by adding -{; timescolumn 5
to column 2 and dropping columns 3,4,and

50
Thus, using (32a) and (332) and noting that - Fora=o : Eq.(26a)
simplifies to
Fx = o = [)\‘]T [e] 'ZI - [)‘ﬂ(_ (kB(l) + kB(M) F:DIB

@B(n) + kbtxD

[)\]B Eé:] : : [Eﬂ X, %1

Eq. (26b)
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The six compatibility equations to be used to eliminate the six intermed-
iate unknowns are

¢ N

Y = °

Z\yr Z{VILC
AB '

The longitudinal displacement at Station VIIIC is

2
Came = &y - (W) (Kgo t*em) Fre

n»

where 6 2nd element of [9]

(’\'z)c 2 2nd element of [)\':IC

2

| \
sz = o 1 + —z'; (/\Z)C (ka(l) + ke(“) MIII"*B

B

€p

Using Eqs. (28), (29), (30), (31) the following expressions are obtained for
displacement at V¥,

. mE|l | . [ELE
piry 2
y| = [z] (=], z + [ [o] Ay 2z
» | CP !ZII (@]
A - 4 A L —

[ 71,
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and

([, & [RE]

¢ v
- y 2
y| = [ [ Bl mim* + 2] | [\, B | M 22
: Rk o
wm e s 4 & L _
N ~ — ~ J
B &l
B
where [:51-' = rows 3,4,6, of [-ZJ which is formed from
columns 1,4,5,6,3 of [-a-_‘l in that order
E§z] = rows 1 and 4 of [g:[
[35] = column 1 of [‘5‘2]
[33 = column 6 of I:gaj
I:;;I = rows 1 and 4 of [?‘;I
B = .columns 1 and 2 or [
3] = colum 3 of [33]

The compatibility relations can now be written in the following forms

[%] Zly = B =;
$|em Eq. (34a)
A
and
\'4
B}] M m* = E-'] z'.l: Eq. (3Lv)
Vi
®
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114
o

where [5;[

o*- 5],

(o]
o

6 - [7],

(13

[Ee]

Rl & [, -

€y

-\ -1
Premultiplying Egs. (34%a) and(34b) by [le and Eii;l respectively, and sub-
stituting the results in Eq. (26b),

e M4 [ M BIEL ¥
+ ’Q‘A“”“*“‘)) [ % 9 BB

S ERRGIAL H»J} Bl p %

R gl:,] B B

>

N
A %

Eq. (35a)
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The element A 1in equation (35a) must be zero for free vibrations
of the vehicle.

d. Mode Shapes

The procedure for obtaining the mode shapes will not involve obtaining
the state vector at Station I, since the only displacement there is Z1 .
Assuming Z3=! , the nose section can be traversed using equation (3c);
equations (1lc) and (2c¢) being used to obtain the state vector at each of the
nose stations. At Station III, equation (3ka) allows the process to be con-
tinued with the successive use of the spider matrices, equilibrium of Station
III, more of equations (1c) and(2c), and then the oturigger mstrix. At
Station VITI, compatibility of deflections provides a check on the numerical
work, a similar test occurs at Station X where F should vanish.,

D. Internally Balanced Modes

The symmetry of the usual clustered configuration makes it possible for
the clustered bodies to oscillate in groups so as to achieve equilibrium with-
out motion of the ecenter-body. The simplest of such modes is shown in Figure
10a; this is a sort of dilatational pattern and requires only two symmetrically
arranged clustered bodies. TIn this motion, as well as the others described
below, the cluster attachment flexibility enters, since the points of zero
motion, in general, are at the center-body. The effect of the attachment
structure will be in general, to couple longitudinal and radial motion.

Figure 10b shows how this too can be balanced without center-body motion if
there are at least four clustered bodies. The expressions from which the
natural frequencies of these "internmally balanced modes" can be calculated are
different for fuel and LOX tanks, since their attachment fixities differ.
Using Eq. (3b), and the component factors of, the spider and outrigger matrices
excepting the rotation matrices [R] and [R] s, it can be shown that the
expressions for the natural frequencies of these dilatational-longitudinal
"internally balanced modes" are:

for fuel tanks, i.e. A bodies,

/“2!
May - gy L2
A - j_‘A ‘) Ahas _ _
<27- 12 Ay = gy 220 & "()\m. ¢ -9-) = O
23

T0
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and for LOX tanks, i.e. Bﬁ) bodies,

May
g 2
[)‘2|+ % E—é{%‘, -

Yy a
2.1
l‘/‘n—/“:a rrey
r/“m ~Ma3 /'::2'
a3 . -
I+ 3 —-ail = O

- [An + A‘Z(E-ées):“'/“n“’“‘a %

Eq. (37)

Figure 10c shows a third such patterm, consisting of tangential motion
which requires at least three clustered bodies. The appropriate characteristic
expressions ylelding the frequency of these modes are

for fuel tanks,

/“3|/“43 - M3z Mg = O Eq. (38)

and

for LOX tanks,

Ma(Maz — € paz) ~ Ma (M2~ € 132) = O
Eq. (39)

E. Modifications to the Basic Longitudinal Transfers

The transfer matrices given in Section IB of this report can be used
to properly represent almost all parts of a launch vehicle where shell de-
formations are not involved. There are special situations commonly encountered,
however, which require additions to or modifications of these basic transfers
for a realistic mathematical model. Three such cases are considered here.
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l. Staging joints

Truss work Jjoints, such as exist between the first and second stage
of the Saturn I model, can be handled much like the outrigger structure,
and also result in flexibilities concentrated in very short lengths.
(See Figure 1a) Again, ’'Turner's method (Reference 12) can be used for
obtaining the influence coefficients of such structures; Appendix C de-
rives a transfer matrix, denoted by the symbol [31 , which can simply be
placed in series with the (e,],(€t],[€4] transfers with no other modification
of the method.

2. Fuel Sloshing

Reference has been made earlier to the changes necessary to mass
properties in order to properly approximate the dynamics of liquids carried
by the launch vehicle. For the lateral motions,effective mass expressions
were used. The theory adapted was that of a sloshing liquid in a rigid,
cylindrical tank as given by Abramson, Chu, and Ransleben {Reference 13).
They give the following expressions for

(a) side-force per unit lateral acceleration
2h
2 tC"lh <é, d—)

4 (4T ()

M I+

(b) side-force per unit angular acceleration

h 4 2
b tawh (620 ¢ — X %
\ ! (ld) %d—hCOS;T(é'zd—h) ?;d)-‘
M, h — 4
L 2 2
h h 2 IN]
+() L3 (8- (%)
where hdL. = mass of the liquid column of height h
A

1 first sloshing natural frequency =

(rigid cylindrical tank) \/2‘_?_ é" tanh (é, :—h>
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first zero of the first derivative of the first order
Bessel function of the first kind = 1.841

[

?' = acceleration of gravity.

A brief examination of the dimensions involved in the case of the Saturm I
shows that only the first mode of sloshing would have an appreciable effect
on the bending modes of interest.

It seems commensurate with the accuraey of the overall calculation to make
a simple adaptation of these expressions to the flexible tank situation
actually encountered here. The difficulties in so doing are associated with
the facts (a) that various lengths of the fluid column must be represented as
concentrated masses, (b) that each such mass will be undergoing different and
unprescribed amplitudes, and (c) that the farther a part of the column is
from the free surface, the smaller will be the influence of the free surface.

For the case of the two dimensional waves in an infinitely deep liquid,
bounded by plane vertical walls, Lamb (Reference 15) shows that the amplitude
of oscillation in the first mode at a depth hi is proportional to

h;
exp (-7 3)

where d is the distance between the walls. Thus, it was considered reason-
able to limit the liquid column which could be considered to be "sloshing" to
a depth where only 5% of the surface wave motion occurs. Thus

h = _g_r loge 0-05

and 4 is now taken as the tank diameter. The amount of fluid undergoing
sloshing between two stations on the tank, say j-3 to j+i is proportional
to

W*i
5 e“f(-g;) dx
h.
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This amount of fluid is a fraction of the total undergoing sloshing, and
that fraction is expressible as

h_;.,,_'z__
exp (-2 ax h._ s hi.
c b men e )
3 ' h 0-95
g exr(—“g) dx
[o]

Thus, to account for sloshing in those sections of the tanks near a free
surface the (Mg matrices must be written in the form

! o dug  Ftmgeng)]
o 1 o o
M -
J o () | o
o o ° !
where W, = solid contribution to mass at station J
‘_'_ '_‘1_ . 2tanh (‘l-..‘:gh
Jrg J-3m
2 \
él T (‘i.")(ﬁ")
tamm (£20) 4 —_* 2
éu an (él d + .2_b cosh (éz—h 2h
.F i d vd a4
U‘FJ = Mb 2h\2 + 2h /2 dy
4 (3 &2 (B0 (&)



It has been noted earlier that an important fluid effect which is not
accounted for in the longitudinal analysis presented here is the coupling
between longitudinal fluid accelerations and the shell breathing resulting
from "hoop stresses", It appears likely that an extension of the transfer
matrix approach using classical shell theory could account for such effects.

3. Overhanging Structures

The Titan III has SRM engine nozzles and skirt structure aft of stations
Vi 5oc¢i» which contain considerable portions of the SRM bodies and which are
likely to contribute appreciably to the modes of oscillation. Some accounting
is therefore desirable that will represent this structure in the usual form;
i.e. lumped masses and massless elastic elements.

Similar treatments could be used for the forward portions of the SRM's
ahead of Station IV SRM. The revision to the mathematical model is shown
in Pigure 11.

The desired changes can conviently be included as follows: The
continuity of deflections at Stations ITZ-¥ and at Stetlions WI-VII requires
that

$ ¢ $
y y y
¢ $' ¢
y' = Yy = Yy’
) ) 6
2 . z z
IV RARY WO,
and $ ¢ ¢
y Y 3
¢ e _ |®
y' N Y Y
) e e
Z 2 FJ
L, 6 IIIA(,-) VILE )

Similarly the equilibrium of these joints requires

-

Eq. (40)

" X<

m4 2 < X<
MT42<x<

RRO ,m O, )
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and

v \Y \Y}
M M M
v’ v' V!
M! = M’ - MI
T T T
F
F m, iy iy F YIE 4D Eq. (k1)

Since the engines and nose section extremities at SHI.AU) and ?E%AG)
respectively, are free,

v v
M M
] vl
;’4, = |y = O
T T
Fl__ Fl__
NA(j) vir A(\\
The engines can be traversed using
v
M
¢
v Y o
M v’ o
v! M’ o
M = Eﬂ E ¢ - o
T Y’ o
Fl— T o
‘mA(f) 8
£
]
'YEIEAU)

[si]. is ovtainea by taking only the rows 1, 2, 5, 6, 9, 11 of the [s].

12x12)
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This homogeneous set can be rewritten as

v &
M y
v/ -} 4,’
K ESDE E"ZF_ Y’
T SN——— |8}
F b::
VI E , i EUJ ! VI E (i)
Zq. (42)
where |:<sI|E 2 colums 1, 2, 5, 6, 9, 11 of E{[E

(113

columns 3, 4, 7, 8, 10, 12 of [‘JE

],

Similarly for the front overhang between INO,¢i) and EAC‘)

V

M

é
v y o
M v' o
v M o
M' = [?J ¢ = lo
T Yy o
Ei__ T o

ARG )

F

3

NOAG)

Eilo is obtained by taking only the rows 1, 2, 5, 6, 9, 11 of ["]o .
. (12x12)
Note: Since we are moving from left to right in this transfer, the values of
lengths of the elastic elements in the overhung nose section elastic matrices
Eg]l will have to be negative.
}
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Again rearranging gives

v ¢
M Y
V' - 4):
M’ == [6::]0 Bﬂo y!
T N——— |©
Z
] WOA(\') [q-ﬂ pats OAG)

Eq. (43)

where

I

il
Gl

colums 1,2,5,6,9,11 of ]:6;[0

]

columns 3,4,7,8,10,12 of.[‘ﬂo

Equations (40, 41, %2, and 43) allow adding the forces and morents due to
the overhung structures at their pointsof attachment. Tt is thus possible
to modify Eq. (3) for the clustered-bodies and obtain the following equation
for transfer from Station IYAcn to YI[A(;) including the effects of
the overhung sections:

\Y%

@

d Y
) v
7 = [E]A [GJA [O]A ¢|
(2x2) (2xr) (12x3) Y

&L T
VI, ¢i) o

2

B‘Z‘A(.‘)

Where [O._]A and [E]A are defined on the next page.
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II. NUMERICAL RESULTS AND COMPARISON WITH TEST

Table IIT shows the input breakdown for the NASA 1/5 Scale model of
Saturn I at 48% fuel condition. Even after taking advantage of symmetry,
a breakdown this fine results in a system with 114 degrees of freedom; the
largest inverse required, however, is 15 x 15, and the largest frequency
determinant 2 x 2.

Figure 12 is a plot of frequency determinant vs. trial frequency for
this case. The abscissa is linear, but the ordinate is the signed log
(to the base 10) of the determinantal values divided by 10 raised to a
power. This power is determined for each plot as that which leaves the small-
est value greater than unity after all values are so reduced. The natural
frequencies are immediately obvious in this plot, as are the vertical asymp-
totes which indicate the existence of the internally balanced modes, Figure
13 shows the corresponding plots for the natural frequencies which involve no
center-body motion. (i.e. for Egs. (36) thru (39)).

A summary of calculated frequencies, including the effects of fuel slosh
and lg axial loads, is given in Tables V and VI. Comparison with test re-
sults using three different cable-harness suspensions (References 2 and 1k4)
shows reasonably good agreement. None of the internally balanced modes listed
in Table VII were obtained in the referenced tests, since shaking forces were
always applied on the center-body there. Note that the rocket engine natural
frequency is listed; although not all subsystems are sources of internally
balanced modes, uncoupled engine modes can also be in equilibrium without
center-body motion, since there are two similar sets of four identical engines,

Figures 14 thru 27 show modal deflections corresponding to the first six
center-body bending modes of both the 48% full and 100% full conditions. The
theoretical shapes are all normalized to unit deflection of Station 369, the
first mass point in the analysis. The test points, however, are normalized to
enhance the comparison; in a mode consisting mainly of cluster-body motion,
for example, the maximum test deflection is made equal to the calculated value.

These calculations were repeated for Princiﬁal Axis #2 and neither frequen-
cles nor deflection shapes showed significant differences.

A normal reaction to Fig. lha, if unfamiliar with vibrations of branched
beams, is that the shape is too complex for a fundamental mode; there is a
tendency to feel that the cluster-body deflections should line up with the
center-body, more like the test results., Some thought regarding the minimiz-
ation of energy, however, will lead to the conclusion that, for branched
systems, the motion of part of the system can have several nodes and re-
versals of curvature if such is necessary for equilibrium and minimizes the
strain energy of the system.

81



Differences between theory and test for the fuel tank radial motion in
Pig. lka exists mainly because the first two zeros in Fig. 12 are very close
to the fundamental uncoupled fuel tank mode listed in Table VII. Amplitudes
near resonance are, of course, sensitive to small changes in frequency ratio
and damping. The calculation neglects damping and so over-estimates the re-
sponse of subsystems near resonance. The same comments apply to Fig. 15a;
note here that merely changing from spring to link suspension systems in the
Reference 14 test cause a phase change of 180° in the fuel tank radial
motion. This also typifies behavior around resonance, and suggests that the
spring-suspension mode at 14.7 cps really should be grouped with the funda-
mental mode. Note also that the effect of the stagimg joint between station
190 and 200 is noticeable even in these low modes, but might easily be
"faired out" in drawing thru test points. Sloshing reduces the fuel-tank
radial motion shown in Fig. 1lla by a factor of 3 and increases that in Fig.
15a by the same amount.

The third test mode in Fig. 16a shows that the slope in tangential bend-
ing at the aft fuel tank attachment need not be equal to the center-body slope
at that point. Thus, the rigidity assigned to this joint in the basic model
is a poor assuption. The calculated center-body deflection in this area
clearly shows the effect of being "forced" to follow the slope of the near-
resonant (see Table X) fuel tank in tangential bending. This assumption
could be easily relaxed by introducing a “concentrated spring" as the last
station of the clustered bodies. Sloshing increases the first stage motion
relative to second and third stages but the major effect is in improving
frequency correlation (see Table V). Previous comments regarding cluster-
body resonance and aft-attachment tangential bending slope all apply to a
lesser extent to the comparison in Fig. 17. In this case, the flexibility
of the second stage inner tank relative to the missile skin is becoming
evident. Because of this, or perhaps the combination of this plus the
outrigger tangential bending fixity, LOX-tank radial motion is apparently
closer to resonance in the test results. In any event, the modal agreement
is generally good. The effect of sloshing on this mode is rather small and
tends to become still less with increasing modal number.

The fifth calculated matural mode (Fig. 18) has & family resemblance
to the test data; that is, they are both "first antisymmetric" bending of
the center-body. The A radial motion is out of phase with respect to
the translational motion at its end points, since it is being excited above
its uncoupled natural frequency. The assumed rigidity of the outrigger for
tangential bvending slopes, however, forces the slope of the A(® body at the
aft end to be equal to that of the center-body, hence its more complicated
shape.
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Note that the calculated clustered LOX tank motion is in proper phase, but the
tests show much less response than is predicted. Again from Table V the cal-
culated system mode appears close to resonance with the uncoupled tangential
mode of the clusted LOX tank. It is difficult to predict how the relative
amplitudes would change 1f the tangential bending flexibility of +the outrigger
were included. If the response of the B-body were lowered, the balance of forces
and moments would then require increased center-body motion, thus - in all
likelihood - improving the center-body correlation as well.

Fig. 19 shows a comparison of calculated and test shapes for the sixth
natural frequency. This shows quite good agreement everywhere except for the
first-stage center-body. Again, one can speculate as to how corrections for
second stage inmer tank flexibility and outrigger tangential bending flexibility
would affect these higher modes.
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-

151.0000
13625000
123.5000
102.8000
90.0000
80.2000
65,5000
54,0000

44.0000

00D~ VIS W

-

TAIL -0.0000

[

167.9500_

1/5 Scale Saturn

M

V.01b4
0.0317
v.5025
0.3425
0.3425
0.3425
0.3425
044800
J.0187
0.1651
0.4270
0.4270
0.4270
0.4270
0.4270
0.1513

0.1775

0.0346
0.0347
0.0147
0.0152
0.0152
0.1787
0.1531
Uecict
0.2195
0.2227
0.3212
0.1497
0.2180

0.0000
0.0138
0.0025
0.0067
0.0034
0.0727
0.1993
0.1993
0.1208
0.0121

0.0000
0.0170
0.0477
0.0519
0.0045
0.0045
0.0730
0.2150
0.2150

10,1250

0.0206

0.0000

MW

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

5.2250

0.0000
0.0000
0.0000
0.0Nn0Q
0.0000
0.1750
0.1491
0.2169
0.2138
0.2169
0.3045
0.1148
0.0000

0.0000
0.0000
0.0000
0.0000
¢.0000
0.0720
0.1973
0.1973
D.1166
0.0063

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0720
0.2106
0.2106
0.1108
0.0192

0.0000

MSTAR

0.0000
0.0000
2.0000
0.0000
0.0000
0.000u
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0105

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0g00
0.0000
0.0000
0.0000
1.3910
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.,0000
0.0000
0.0000
0.5895
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00Q0
0.6232
0.0000

0.0000

Table III

I , Breekdown for 48 % Full Condition

L

19.9000
15.6000
8.3000
9.3000
9.3000
9.3000
10.6090
11.5000
13.5000
9.10M0
12.20n0
12.2000
12.20M0
12.20n0
18.2000
0.0000

14,7500

8.6000
16.3000
22.3000
22.7000
14.0000

5.0000

5.6000

6.7000

6.7000

8.0000

8.0000
14,4000

5.5000

7.9000
19.0000
19.2000
22,7000
15.10n0

9.4000
13.6000
11.0000
11.0000

7.1000

5.9500
16.9500
14.5000
13.00n0
20.70Nn0
12.8000

9.8000
14,7000
11.5000
10.00M0

6.1000

T.8000

El=1Qweg

0.4000
1.3000
1.8000
1.8000
1.8000
1.8000
1.8000
8.0000
18.5000
18.5000
18.5000
18.5000
18.5000
18.5000
18.5000
0.0000

4.6000

3.5000
1.6000
1.5000
1.5000
1.5000
1.8000
1.8000
1.8000
1.8000
1.8000
2,6000
4.0000
4.7000

0.2160
0.1600
0.1185
0.1185
0.1292
0.1400
0.1400
0.1400
0.2160
0.2160

0.4570
0.2170
0.2170
0.2170
0.2170
0.2170
0.2630
0.2630
0.2630
0.4570
0.4570

4£.7000

AE#10#46 GHT#10ee6

13.1000
21.5000
24.1000
24,1000
24.1000
24.1000
13.9000

8.8000
44.6400
44.6400
44.6400
44,6400
44,6400
44,6400
44.6400

0.0000

0.0000

28.4000
27.7000
27.5500
26.4000
26.4000
29.3000
33.0000
33.0000
33.0000
33.0000
49,5000
46.0000
49.3000

8.8000
5.9000
5.0000
5.0000
5.2800
5.7200
5.7200
5.9200
13.7200
29.1000

19.3000
9.0500
9.0500
9.0500
8.8600
8.8600

10.7000

10.7000

10,9500

21.2000

22.6000

49.3000

0.0000
0.0000
0.0uu0
0.0000
J.0000
J3.0000
0.0000
2.0000
0.0000
0.0000
0.0000
0.3000
J3.0000
0.0000
3.0000
0.0000

9.4200

5.3600
5.3000
5.2000
4.9800
4.9800
5.5300
6.2200
6.2200
6.2200
6.2200
9.3400
8.6700
9.3000

1.6660
1.1130
0.9430
0.9430
0.9970
1.0800
1.0800
1.1200
2.5900
5.4900

3.6400
1.7080
1.7080
1.7080
1.6740
1.6740
2.0190
2.0190
2.0680
4.0000
4.2700

9.3000

@ See Table IX for interpretation of column labels.

A

0.0164
0.0481
Uad5006
0.8931
1.2356
1.5781
1.9206
2.4006
2.4193
2.5844
3.0114
1.4384
3.8654
4.2924
4.7194
4.8707

0.0006

2.9570
2.9917
3.0064
3.0216
3.0368
3.1968
3.3441
3.5574
3.7707
3.9840
3.3052
3.4549
3.6729

0.0000
0.0138
0.0163
0.0230
0.0264
0.0991
0.2984
0.4977
0.6185
0.6306

0.4871
0.5041
0.5518
0.6037
D.bune
0.6127
0.6857
0.9007
1.1157
1.1329
Leed 19

0.0000

1

0.0000
0.0000
0.uvUL

0.0000
33.3100

0.0000
GeUuuu
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
va.0000
0.0000
0.0000
0.0000
0.0000

0.000L

0.0000.

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

SLOSH

0.0000
0.0000
0.00uu
0.n0NQ
0.0000
0.0000
0.0000
0.0000
Veuuuy
0.0000
0.0VVy
¢.q00q
u.0LO0
0-0000
0.0uuu
0.0000

0.3161

0.0000
0.0000
0.0000
V. lluu
00000
11.0000
12.0000
La.uuut
14.0000
0.0000
00,0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
Zl.U0uu
22,0000
0.0000
0.0000
0.0000

0.0000
0.0000
030udU
n.nnpo
0.000v
0.0000
31,0000
32,0000
0.000C
0.0000
0.0000

0.0000

SPARE

0. 0v0L
0.0000
UsuUL
0.0000
0.0000
0.0000
v.0000
0.0000
U4 000U
0.0000
0.000U
0.0000
0.0000
0.0000
V.0000
0.0000

-0.0088

0.0000
v. 0000
0.0000
0.0VUY
0.0000
0.0buu
0.0000
U. 0000
0.0000
0.0000
0.0000
V.U000
0.0000

940000
030000
10,0000
U.000vV
0.0000
UavuuU
0.0000
Oeuuud
0.000D
0.0000

0.0000
0.0000
ve 000U
0.0000
0.0000
0.0000
LTI
0.0000
[FRYFT e ]
0.0000
0.0000

0.0000



STATICN DATA
Lucép
NCSE 1 379.7000
2 359.400C
3 343.800C
4 335.5000
5 362.2000
6
7
8
¥  285.5000
10 272.0000
11 262.9000
12 250.700C
15 2£38.3000
14 226.3000
15 214.100C
16 195.9000
JOINT 2.4250
CENTFR 1 17349000
2 165.300C
3 149.000C
4 135.2000
5 129.500C
& 1£3.900C
7 118.2000
8 112.500C
9 106-90CC
10 .01.200C
11 95.506C
12 9yu. 0000
13 35.000C
14  79.4000
15 72.7000
16  66.000C
17 58.0000
18  50.000C
19  35.5560
A RCNY 1 173.9000
2 166.000C
3 153.1000
4% 143.0000
5 133.4500
5 124.350C
7 115.2500
o lU6.1500
9  97.0500
1v 90.0000
11 80.600C
12 ©7.000C
13 56.0000
la 45,0000
B BLOY 1 173.9000
2 168.000C
3 158.100C
4 150.0500
5 142.0000
6 133.4500
7 124.3500
8 115.2500
9 106.150C
19 97.050C
i1 vo.00u0
12 80.2000
13 65.5000
14 54.000C
15  44.0uU00
TaIL 1 -0.0000

Table IV

1/5 Scale Saturn I , Breakdown for 100 % Full Condition

v

0.0164
c.0317
C.5025
043425
G.3425
0.3425
€.3425
C.4800
C.01E7
G.1651
0.4270
N.4270
0.4279
C.4270
C.42170
¢.1513

C.1775

C.034¢
€.0347
c.o147
C.1876
C.1876
0.1876
C.1876
€.18176
C.1876
0.1876
C.137¢
€.1787
C.1531
€.2727
C.2185
0.2227
€.3212
C.14a67
c.2180

00000
€.01138
€.0012
c.0012
€.1222
c.1322
0.1322
0.1322
c.1322
c.0727
€.1993
€.1992
c.12c8
c.o12l

£.00C0
C.0170
c.cc17
£.6018
c.CG17
C.1330
C.1330
C.1320
G.1320
£.1330
¢.0730
0.2150
C.2150
0.1250
C.02C6

¢.o0C2

@ See Table IX

L1

0.030C
0.9n0C
0.300C
0.0020C
G.000C
0.0c0C
0.CM0C
0.J1%0C
0.6nCC
0.290C
0.J70C
0.073C
0.370C
0.900C
0.3706
0.000C

5.225C

0.croc
0.d7ccC
0.4000C
0.1738
0.LlR38
0.1838
0.18338
0.183¢
0.1R38
0.1838
0.1938
0.175¢C
0.1491
0.2166
0.2138
G.2169
0.3r45
0.1148
0.CNnGC

0.g60¢
0.0ro0
0.cC00
0.1u"0C
0.131]
Geral
0.1711
0.1311
0.17211
0.972C
0.1373
0.1772
G.118¢
0.0162

0.0r0C
0.0reC
g.Croc
o.Cnec
0.070C
0.,1%11
0.1311
0.1311
0.1711
0.1311
0.972C
0.2116
0.210¢
0.1108
0.0192

.270C

MSTAR

0.00C0
0.0GCOo
0.06CO
€.0GQa0
€.0GGo
0.0GCOo
a.0co0
0.00C0
c.acco
0.0CCO
0.0600
C.00Go
0.0C00
¢.0GCo
0.0000
0.0000

0.01Q5

0.0C00
0.0GCOo
0.0¢Q0
0.0CCO
0.0CCo
0.00¢C0
0.0CCOo
0.0cCo
0.0CC0
0.0CCo
0.06CO
0.0C00
0.0000
0.0CCO
0.0acCo
0.0GCO
0.CC00
2.861C
0.0G00

0.06¢C
0.0C00
6.0C00
0.0CG0
0.0CC0
0.6CCO
0.0000
0.GCCO
0.00CC
0.6CCO
2.0CCO
0.0CCO
1.2450
5.0000

c.occo
0.0Cq0
0.0aGC0o
0.0GCO
0.0GCO
0.0GC0
0.0CCO
0.0CC0
0.0CCO
0.0GGO
¢.0GCo
¢.0CCO
¢.0CCo
1.2797
0.CCCo

€.0C00

L

19.9000
15.6000
8.3000
9.3070
9.3000
9.3000
1C.6000
11.5000
13.50n0
9.1000
12.20"0
12.2000
12.2000
12.2010
18.20Nn0
0.0000

14.7500C

8.6000
16.3000
13.8000

5.7000

5.60N0

5.70n0
5.70N0
5.60N0

5.7000

5.7970

5.5000

5.0010

5.6010

6.70NC

6.70N0
8.00n0

8.0000
14.4500

5.4500

7.9010
12.9000
10.1010

9.55n0

9.1000

9.1000

941010

9.1000

7.0510

9.40N0
13.6000
11.00n0
11,0000

7.1070

5.9010
9.9070
8.0500
8.9500
8.55n0
9.10n0
9.1000
9.1020
9.10Nn0
7.0500
9.8000
14.7000
11.50n0
10.009C
6.1000

7.8000

EI#10nas9

0.4000
1.3000
1.8000
1.8000
1.8000
1.8000
1.8000
8.0000

18.5000

18.5000

18.5000

18.5000

18.5000

18.3000

18.5000
0.0000

4.6000

3.5000
1.6000
1.5000
1.5000
1.5003
1.5000
1.5000
1.5000
1.5000
1.5000
1.5000
1.30C0
1.3000
1.8000
1.3000
1.8000
2.6000
4.0000
4.7000

0.2160
0.1600
0.1185
0.1185
0.1185
0.1185
0.1185
0.1292
0.1292
0.1400
0.1400
0.1400
0.21630
0.7160

0.4570
0.2170
0.2170
0.2170
0.2170
0.2170
0.217C
0.2170
0.2170
0.2170
0.2630
0.2630
0.2630
0.4570
0.4570

4.7000

AE#1Qw#6 GHT#10=s6

13.1600
21.5000
24,1000
24,1000
24,1000
24.1000
13.9000

8.8000
44.6400
44.6400
44,6400
44.6400
44,6400
44,6400
44.6400

0.0C00

0.0000

28.4000
27.7000
27.5500
27.5500
26.4C00
26.4000
26.4000
2644000
26.4000
26.4000
26.4000
29,3000
33.0000
33.0000
33.0000
33.0000
49.5000
46.0000
49.3G00

8.8000
5.9000
5.0000
5.0000
5.0600
5.0000
5.0000
5.2800
5.2800
5.7200
5.7200
5.9200
13.7200
29,.1€00

19.3000
9.0500
9.0500
9.0500
9.0500
9.0500
8.8600
8.8600
8.8600
8.8600

10.7000

10.7¢C00

10.9500

21,2000

22.6000

49.3000

0.0000
0.0000
0.0000
0.00C0
0.0000
0.0000
0.0000
0.0000
0.000G
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

9.4200

5.3600
5.3000
5.2000
5.2000
4.9800
4.9800
4.9800
4.9800
4,9800
4.9800
4.9800
5.5300
6.2200
6.2200
6.2200
6.2200
9.3400
8.6700
9.3000

1.6660
l.1130
0.9430
0.9430
0.9430
0.9430
0.9430
0.9970
0.9970
1.0800
1.0800
1.1200
2.5900
5.490C

3.6400
1.7080
1.7080
1.7080
1.7080
1.7080
1.6740
l.6740
l.6740
1.6740
2.0190
2.0190
2.0680
4.0000
4.2700

9.3000

A

0.0164
0.0481
0.550¢
0.H931
1.235¢
1.5781
1.92C¢
2.40C¢
2.41917
2.5844
3.0114
3.4384
3.3654
4.2924
4.7194
4.8707

0.00C6

2.9517C
2.9917
3.C064
3.1876
3.3e8¢
3.5500
3.7312
3.9124
4.093¢
4.2748
4.456C
4.616C
4.76372
4.376¢
5.1865
5.4032
5.7244
5.8741
6.0921

0.00CC
0.0138
0.3151
0.0162
0.1485
0.28C7
0.4125
0.5451
0.6772
0.75Q0C
G.9492
l.1488
1.2694
1.2815

0.4871
0.5241
0.505¢
0.507¢
0.5092
C.6423
0.7753
0.9082
1.2412
1.1743
1.2472
1.4623
1.6772
1.8023
1.819%

0.20CC

1

0.0000
0.0000
0.000C0
0.00C0
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
6. 0000
0.0000
0.00C0
0.0000
0.0000
0.0000

33.3100

0.0000
0.0000
0.0000
0.0000
0.0090
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
6.0000
0.0000
0.0000
-0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.000¢C
0.0000
0.0000
0.0000
€.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00C0
0.0000
¢.0000
0.0000
0.0000
06,0000
0.0000
0.0000

0.0000

for interpretation of column labels.

SLOSH

0.0000
0.0000
0.0000
0.0000
0.0600
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-0.3161

0.0000
0.0000
0.0000
11.0000
12.0000
13.0000
14.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
21.0000
22.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
31.0000
32.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0000

0.0000

SPARE

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-0.0088

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
£.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
‘0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0000

0.0000



Table V: Summary of Bending of Saturn I
Calculated & Test Natural Frequencies (cps)
484 Pul) Condition, Principal Axis No. 1

Modal Number

Calculated o
(Free-Free)
No slosh

No axiel Load

h

% Error
(Nearest
Expex.)

Calculated Wg
(Free~Free)
With slosh
1lg axial Load

% Error
(Nearest
Exper.)

Ref. 2
(2-cable
suspension)

Ref. 1k
(8~cable
spring

suspension)

Ref. 1k
(8-cable
link
suspension)

13.0

+ 2.2

13.0

13.6

14.1

13.65 18.2 16.5 31.9 38.65 44,3

- Tl +12.5 + 0.8 - 5.9 + 0.h + 2.1

15.2 19.2 29.7 33.2 39.3 -
- 1.9 - T7 +12.9 - 2.1 + 1.0 -

- - 26.0 33.9 38.9 47.8

k.7 20.8 25.5 3h.7 - -

15.5 20.8 26.3 35.0 38.5 L43.4

5b.4

- 9.3

60.0

Table VI: Sumary of Bending of Saturn T
Calculated & Test Natural Frequencies (cps)
100% Full Condition, Principal Axis No. 1

Modal Number

Calculated W,
(Free-Free)
No slosh

No axisl load

% Error
(Nearest
Exper.)

Caleulated "bn
(Free-Free)
With slosh
lg axial Load

% Error
(Nearest
Exper. )

Ref. 2
(2-cable
suspension)

Ref. 14
(B-cable
spring

suspension)

Ref. 14
(8-cable
link
suspension)

8.8

= 3.3

9.1

9.1

10.7 11.5 15.0 21.83 28.9 3k.9

0 - 0.9 - +15.5 ~ 5.5 -

10.9 1.7 15.3 22.2 29.h -

- 1.8 + 0.9 - +17.35 = 3.9 -

10.5 - - 18.4 30.6 -

10.7 - - 18,7 30.8 -

1.2 11.6 - 18.9 30.8 -

k1.1

k.5

871



Table VIT
Saturn I - Summary of Internally Balanced
Mode Frequencies (cps), 48% Full Condition
Modal No Sloshing With Sloshing,
Numbe r No Axial Load lg Axial Load Kind of Motion
1 12.7 1k.3 First Radial, Fuel Tank
2 17.3 18.0 First Tangential, Fuel
Tank
3 25.2 29.3 Pirst Radial, LOX¥
Tank
i 35.h 37.6 First Tangential, LOX¥
Tank
5 36.9 36.9 First Rocket Engine
*Clustered Body
Table VIII

88

Saturn I - Summary of Internally Balanced
Mode Frequencies {cps), 1004 Full Condition

Modal No Sloshing,
Number No Axial Ioad Kind of Motion
1 8.7 Pirst Radial,Fuel Tank
2 10.9 First Tangential,Fuel
Pank
3 13.k First Radial,lOX* Tank
L 19.4 First Tangential,LOX*
Tank
5 34,1 Second Radial,Fuel Tank
6 37.0 First Rocket Engine
Bending

*¥Clustered Body




Table IX
Interpretation of Column Labels Used in Tebles III and IV

Meaning for quantities
in JOINT matrix
Label Meaning for quantitles on nose, center-body, cluster-body and tail (See Appendix ¢)
LoC location in inches of the mass station measured forward from the end of £$
the rocket engine
M m mass of the tank plus the mass of the liquid assumed concentrated at a M,
given station
MW mass of the liquid concentrated at a given station lt
MSTAR m* total liquid mass in a given clustered tank VkFt}
L { = length between successive mass points Lp
ET*¥10%%g El = EIle9 bending rigidity assumed constant between successive mass points ET to°?
AB¥10%%6 AE AE-10 6 Ie)oxicralxgg:i.le-compnassive rigidity constant between successive mass -
-6 -
GHT*10%% | GhL = G.10 . effective web height and thickmess Ght-16°¢
A A = Axial load in g's (i.e. to obtain force,multiply by 386.4 "/sec ) \/k
M
I I mass moment of inertia in bending about an axis thru the center«body I ¢
center line
SLOSH an Iindicator to tell program at what station to include slosh effects (é:—‘r - k—l-)
&y
SPARE Not used 2
("M qub)
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ITIT. CONCLUSIONS

A Matrix-Holzer formulation of vibration problems for branched systems
has been shown to have certain conceptual and operational advantages*. A
fully coupled analysis of the Titan ITIC launch vehicle programmed and allow-
ing for the longitudinal, torsionsl and bi-planer bending motion of up to ten
mass stations each, on the upper stages, first-stage center-~body and first
stage cluster bodles, respectively, can be handled within the capacity
of an IBM 7074 computer. Application of the method to the prediction of the
uncoupled lateral bending of the Saturn I clustered launch vehicle config-
uration resulted in reasonably good agreement for the first eight natural
freguencies and six mode shapes, when compared with shake test resultis.
The effects of staging Joints and fuel sloshing were shown to be appreciable
for the lowest modes, those due to 1g longitudinal loads were not. An
assumption regarding fixity of cluster-body support points for tangential
bending slope was indicated as a source of significant mode shape difference,
in spite of the fact that adjacent tanks were supported by points very close
to one another. There was no appreciable bending mode shape or frequency
difference for the Saturn I configuration between the two distinct planes of

symmetry.

The results of the study emphasize that (1) fundamental modes of clustered
vehicles can have more complex curvature and node points than experience with
unbranched beams would suggest and (2) internally balanced modes can exist in
branched systems which will probably not be found in tests where only the
center-body is excited.

*Just prior to completing this project, a similar approach carried out

under the auspices of MSFC, Huntsville by R.F. Glaser and E.E. Beam, was
called to the first author's attention. From the abstract available, the anal-
yses seem to parallel one another.
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IV, APPENDICES

Appendix A - Derivation of the Elastic Matrix

The approach taken here is to account for shear deflections and axial

loands as though there is no interaction between the two.

Beam theory, accounting for deflections due to uniformly distributed
shear in the web, gives the following expressions for the bending deflection
and slope at the top of a uniform cantilever beam of length £ under a tip

load V , and tip moment M (but no axial load).

where:

From Figure A-1l:

or,

and
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So that substituting the new expression for ¢ . »

> 2
Vidi 0 M; 4 N
Y = 3 Gy o rddied

Now to account for axial load effects, consider a deflected elastic beam
element with constant properties under tension. The governing differential
equation for this beam segment, neglecting shear deflections and second order
terms, is

d1_‘j M (x) M; +Vix - A; [.‘/i - 3(")_-]
ax* EL EL
Where it is understood that X=o at station i and x=4 at station i+! .

Rewriting the equation,

2

dyx A; M; Ay, .
230 Sy = — AN Vg
dx EL EL ET

it is clear that the general solution is of the form

y(x) = A sinh kx + B cosh kx 4+ Cx + D

Substituting this into the differential equation, and expressing (A.B,C,D)

in terms of the quantities (\I\',M(ﬁf’id{) at x= o we get

inh inh
YA = Y = Vi l:i'"__ki‘__i{l_‘_M(. lt“_"s%e. _ALJ_\_ ﬁsnkk& Ty

kA] A|

1+ | \

d _ coshkd | K sinh k& .
ond <— =% = Vi [ ool R Ry v R 4
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where
Aj
Ej

Finally, applying station i+ boundary conditions to the original expression
for moment in the first equation given in this Appendix, and substituting for
Yiey from the above,

Y

sinh k¢

i+ \ K

Thus, from these expressions for

[ o

My o 4’51—\
elastic matrix for a uniform beam under axial tension load, A;

Ai
+ M.- cosh ki 4>i —k"' sinh ki

, and Yir

P41
A [sinh k¢ e sinh k&
-0 (om ) B

Consider the series expansions
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3] s
cosh k& = | + (K'!)L (kl)“-
29 4\.
Thus,
sinh k& > ]
k = -€ [ I -+ —3- _—E_'I_ -, v ceen ]
and (cosh ke -1) _ 2 24 Ay
Ai -— 1_E—I.- + 4\ (E_I)l L

o o
\' ﬂ"-h?k—": cosh ki Ak'— sinh ki s} v
M M
¢ + (cosh ke =) £ siny ke | o ¢
y i Ai y

one can write the

:|-_.
Ve
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which allows the elastic matrix

2
if LA‘ << ‘ ’tO

to be simplified,

ET
) o o
L | LA

ke £
2EL ET '

£ L+
'

3EL 2L

The bending elastic matrix EEI;] to be used in this analysis will be, ac-

counting for shear deflections,

[

where

Ti = [: hi:f?] .
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Again assuming no interaction of the large_steady axial load with in-
finitesima)l extensile motion, we may, of course, write (again from Figure A-1):

o
e I

= |_e

Zz
i+l AE . j+d

which can be written symbolically as

g - B J

141 t+

In like manner, the elastic matrix ,[éﬂ « For torsion is found to have
the form,

{ o
-2 |
aT .
!
which is to be used in the transfer equation,

]
Feal
ey

lgl .- ’7

i+

[P
k-

It is to be emphasized that Vio M7, #i, Y5 T, 6, Fi and ¥ are all small
quantities of the first order, whiléAiis assumed to be large and constant.

For compression loads, that is when A, 1is negative, the approximate
form of the elastic matrix may be used directly. The exact form, however,
would involve an imaginary value of K . This would simply have the effect
of changing all the hyperbolic functions to trigonometric functions.

Appendix B - Derivation of Spider Beam Flexibility Terms: Saturn I

1. Iateral Bending. For lateral bending, the out-of-plane deflection of
the spider beams will be antisymmetric. Thus, half of the beam, pinned at the
center, may be considered, as shown in Figure B-1. The relationships between
the lengths £,,£, and 43 are shown in Figure B-2. Considering the bending
expressions for a beam in antisymmetric bending(for unit shear and moment at
the tip):
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or

>
{:l. + N L
EL 3 ET
2
4 2
EI 2 e
2
.crt,_ + L. 'Q:.
3 EL 2 EX
) ‘?-) ‘Qa_
3 B T ez
22
Yo = Yy o+ b (L) -V, [(4&42)3:1
-?n ‘!2. 19_
My (- D) &
Thus we can write the transfer equation
_] . . .
\Y)
M & 1 oo
¢ a b \ o
7 a 4
= l
| € d s N

Where it is clear that for the lateral bending case, we must write:

ol ol

o

£ 4+ 4,
-11 + {%>
(5 &)

= 1£i-<-%;.ﬁ- 2,8, ﬂ--£§%>
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EI is the bending rigidity of the spider arms for bending in the direct-
ion along the vehicle longitudinal axis and the lengths are defined in
Figure B-2.

Note that this is actually too stiff by the amount of the flexibility of
spider beam arms in torsion. This term will only affect déflections due to
shear (i.e., longitudinal loads) not moments, and can be considered to be a
simple spring in series with a spider arm which has a clustered body attach-
ment point on its torsion axis.

This spring rate is given by 3
G

L

and would modify only the term ¢ to the value

'e:\.(‘et'rez)(‘er\’ %) fz&:

3EI )

0
it

To obtain the torsion flexibility term, e , examine the deflection at the
tip of the antisymmetrically bending spider beam under a unit load. Call this

Iy = BI,E.I <£'£: +£”f)

If we define the distance between the support points for a single cluster tank
as % , then a unit out-of-plane load in opposite directions on these two sup-
port points causes a couple of magnitude 4 , and an angular deflection equal
to

2.
q/V = B‘LEI<‘€'€2+‘€)

Thus, the angular deflection at the tip of an equivalent spider beam under

a unit moment is
2 i 2 3
5 e (W68
and, referring to the equation,

T 2 -2 o (WL td)

9*El
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Here again the expression has assumed that the clustered body attach-
ment is on the torsion axis of the spider arms. To account for the offset,
it is necessary to consider the additional tangential bending slope at the

clustered body, due to torsion of the spider arms. For a unit shear force at

each attachment point the additional angle is

s
Aads
GT

q/

Thus, the total tangential bending slope per unit tangential bending moment
would be

2 1 f ts‘
= ;E—I(M?ME) + oF

and
2 .3 2
2 4£|-t1 +'e'2. + 27_-‘!5
9> 3EI GJI

®©]
I

2. Longitudinal Motion. For the case of longitudinal vibrations,
the spider arm bending will be symmetric, as shown in Figure B-3. 1In the
same manner as for transverse bending, it is possible to arrive at
"equivalent"spider beam Tlexibility members for longitudinal moses. These
are:

‘es = ‘(' “+ ‘{.3

- L@

ol

= _ E‘E(e,uz) N
= = L)) - 12 ds
¢ T 1 6 EAMT T2 GJ
:; =:E%T %EL + {|(Q|*Q2§]

Here the term e will not enter.
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Appendix C -~ Derivation of Staging Joint Matrix: Séturn I

The joint could be represented as a concentrated spring at the top of the
staging joint truss, with the distance between the top of the first stage and
the bottom of the second stage considered as rigid. Instead, the effect of
such flexibilities as the "parachute can" which exists in the Saturn I is
represented as shown in the lower half of Figure C-1.

The matrix representing the change in deflection across the concentrated
spring and rigid beam is arrived at as follows:

We express differences in the slopes and deflections from STA.J.95.86 to
STA 190.635 as in the Appendix A derivation, calling them stations iand i+,
respectively:

Vi M
—‘#\-(— 4>\'+|> - kr—+ + kM¢
vV, M
= , -+
or 4’\'+\ 4" Bl kqu kM+
Vi M;
— Y/
and Y, - yi+| = K + + ¢ ¢I+l> T
! Fy ij
Vi M;
o y- = Y, + ¢ {T JE A .
r 1y ! 14 kFy kMy

= Y 4’{ +V<kF¢ kp_\,> <km4>—ij>

The transfer of bending quantities across the staging joint (i.e., from
station 195.86 to station 173.868), then, is given by

L o o @i £ | £4A o 45 [ o o
ls \-D’iso
o o | © Lo Vi l n
c o ‘cs | 2EL ?; l © | ©
3
‘lb(\ .{:' >
) Ay ( |

\—/\f—\_—,«-/
[3s]
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Note that the mass characteristics ls’Ms omd Is of the spider, assumed to
be rigid, have been lumped with the staging joint. Properties in the
elastic matrix are those of the "parachute can."

Similarly, for longitudinal motions, we can write:

! WM, 1 o | o
1 1
0 N Rl vl Yy
Pl
where
—_ - longitudinal deflection across the joint truss
Kes for a unit longitudinal force = .0617 x 107>
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