
I
u_

O

m

_c
U

_c
,--4

¢

<

o,_

U_
O0

O

0

o_
k
0

Q)

.r..#

0

0

k

I

Report No. TE 12-67

N 67 13216
w

=° '-' kj7 -"J
(PAGES) (CODE)

3

(NASA CR OR'_MX OR AD NUMBER) (CAT Y)

FINAL REPORT

THERMIONIC RESEARCH PROGRAM

Contract 951262

August 1966

by

S. Kitr ilakis

D. Lieb

F. Rufeh

L. van Someren

GPO PRICE $

CFST| pRICE(S) $

Hard copy (HC)_

Microfiche (MF)_

ff 653 July 65

_.JO
/. _-"

Prepared for

Jet Propulsion Laboratory

Pasadena, California

https://ntrs.nasa.gov/search.jsp?R=19670003887 2020-03-16T17:16:42+00:00Z



to

eq
o

4-*

X=
_9

.=
q_

>

g_

°,.4

to
oo

=-
O

"Z

O
f_

O
_9

o,-4

..4

O

_9

O

b_

Report No. TE13-67

This work was performed for the Jet Propulsion Laboratory,
California Institute of Technology, sponsored by the
National Aeronautics and Space Administration under
Contract NAS7-100.

FINAL REPORT

THERMIONIC RESEARCH PROGRAM

Contract 951262

August 1966

by

S. Kitr ilakis

D. Lieb

F. Rufeh

L. van Someren

Prepared for

Jet Propulsion Laboratory

Pasadena, California

S. Kitrilakis _

Research Manager



THI[RMO ELECTRON

ENGINEERING CORPORATION

Chapter

I

II

III

TABLE OF CONTENTS

INTRODUCTION ........................

SUMMARY ...........................

TEST VEHICLE AND INSTRUMENTATION ..........

A. General ..........................

B. Converter .........................

1. Spacing .........................

2. Reservoir .......................

3. Collectors .......................

4. Dial Indicators .....................

C. Base Plate ........................

D. Top Plate .........................

E. Instrumentation ......................

1. Temperature Control .................

2. Data Collection Equipment ..............

F. Experimental Procedure .................

1. Par allelization .....................

2. Emitter Work Function ................

3. Collector Work Function ...............

4. Parametric Data ....................

a. Variable-Cs-Reservoir-Temperature Families

b. Variable-Spacing Families ............

I-I

II- 1

III-1

III-1

III-1

III-1

III-1

III-2

III-2

III-11

III-11

III-12

III-1Z

III-13

III-14

III-17

III-18

III-18

III-20

III-ZO

III-21

iii



THERIIIO ELECTRON
[ N G | N [ [ R I N G CO R P 0 RAT I 0 N

TABLE OF CONTENTS (continued)

Chapter

IV

V

EMITTER PREPARATION .......................

Ao

B*

C*

Tungsten ..............................

I. Materials ...........................

2. Surface Preparation ....................

3. Heat Treatment .......................

4. Examination of Emitter Surfaces ...........

5. Conclusions .........................

Rhenium ...............................

I*

2.

3.

4.

5.

Discussion --Electroetched Rhenium Emitters

Materials ...........................

Surface Preparation ....................

Heat Treatment .......................

Examination of Emitter Surface ............

Conclusions .........................

ADDITIVE STUDIES ...........................

A*

B.

Introduction ............................

Theoretical Analysis ......................

1. The Interdependence of Cs and Additive Effects . .

2. The Rate Equilibrium and Coverage Relations for
Adsorbed Additives ....................

3. Desorption Energy .....................

Page

IV- 1

IV- i

IV- 1

IV- i

IV-4

IV-4

IV - 9

IV -9

IV -9

IV-ll

IV-ll

IV-I l

IV-16

IV-16

v_ l

V-l

V-4

V-5

V-8

V-f1

iv



THERMO ELECTRON
_, N G I N E [ R J N G C 0 R P 0 R A T I 0 fl

TABLE OF CONTENTS (continued)

Chapte r

C. Cesium Fluoride Investigations ..............

1. Contaminant Control ..................

2. Surface Studies with Purified CsF ...........

a. Test Vehicle Design and Assembly .....

b. Filaments .....................

c. Outgassing .....................

d. Work Function Experiments ............

e. Steady-State Results ................

f. Desorption Energy .................

g. Coverage Relations ................

3. Converter Studies ...................

a. Experimental Procedure .............

b. Experimental Results ...............

4. Glass Tube Studies ...................

a. Experimental Procedure ..............

b. Experimental Results ...............

D° Oxygen Surface Additive ..................

1. General .........................

2. Oxygen Adsorption Constants .............

3. Chemical Equilibrium .................

4. Critical Experiment ..................

5. Oxygen-Additive Test Vehicle .............

V-15

V-15

V-18

V-18

V-20

V-20

V-24

V-34

V-36

V-36

V-42

V-42

V-44

V-59

V-60

V-60

V-68

V-68

V-68

V-70

V-74

V-77

v



THERMO ELECTRON
( N G i N ( [ II I N G CO R P 0 RAT I 0 N

TABLE OF CONTENTS (continued)

Chapter

VI

VII

E. Conclusions .........................

1. Cesium Fluoride ....................

2. Oxyg en .........................

References ............................

THE OUTPUT CHARACTERISTICS OF AN ELECTROETCHED

RHENIUM SURFACE .......................

A. Introduction .........................

B. Bare Work Function .....................

C. Cesiated Work Function ...................

D. Parametric Performance Data ...............

Reference ............................

INERT GAS STUDIES ......................

A. Introduction .........................

Bo Selection of Plasma Additives ...............

C. Experimental Apparatus ..................

D. The Ignited Mode in Presence of Inert Gases .......

I. Introduction .......................

2. Theory ..........................

3. Experimental Approach .................

4. Experimental Results and Conclusions ..........

V-95

V-95

V-95

V-97

Vl-i

VI- 1

VI- 1

VI-4

VI-9

VI-19

VII-1

VII- I

VII-3

Vii-6

Vll- i0

Vii- I0

Vll- I0

VII- 15

Vll- 16

vi



THERMO ELECTRON

[JiG | N [ [ R I 11 G CO R P 0 R A r I 0 N
J.

TABLE OF CONTENTS (continued)

Chapter

E. The Overall Effect of the Inert Gases on the Output

Characteristics ......................

1. Introduction ......................

2. Experimental Procedure ...............

3. Experimental Results and Conclusions ........

References ...........................

VIII ELECTRON SCATTERING IN THE BOLTZlViANN REGION.

A. Introduction ........................

B. Theoretical Analysis ...................

1. Long-Mean-Free-PathSolution, d/X<< 1 ......

2. Short-Mean-Free-Path Solution, d/k>> 1 ......

C. Experimental Technique and Results ...........

D. Comparison of Experimental Results with Theory ....

E. Conclusions ........................

References ...........................

VII- 24

VII- 24

VII-Z5

VII-26

VII- 57

VIII- 1

VIII- i

VIII- 2

VIII- 5

VIII- 6

VIII- 9

VIII- 11

VIII- 21

VIII- 23

vii



THERMO ELECTRON
[ N G I k E [ R I N G C 0 R P 0 R A T I 0 N

Figure

III_ 1

III- 2

III- 3

III- 4

III- 5

IV- 1

IV-2

IV-3

IV-4

IV- 5

IV-6

IV-?

IV-8

IV-9

IV-10

IV-I I

V-I

V-4

LIST OF ILLUSTRATIONS

Test Converter and Base Plate ................

Cross Section of Test Converter ................

Emitter Temperature Correction ...............

Schematic of Guard Balance Control .............

Ideal Emission .........................

Emitter W9 after Electropolishing, 310x ...........

Emitter W10 after Electropolishing, 310x ..........

Emitter W9 after Heat Treatment, 310x ...........

Emitter W10 after Heat Treatment, 310x ...........

Interference Fringe Pattern from W9 after Heat Treatment,

Showing Edge, 74x ......................

Interference Fringe Pattern from W10 after Heat Treatment,

Showing Edge, 152x ......................

Interference Fringe Pattern from W10, Showing Polishing

Defect, 152x ..........................

Emitter Re31 after Electroetching, 310x ...........

Another Area of Re31, 310x ..................

Re31 after Heat Treatment, 310x ...............

Another area of Re31, 310x ..................

Experimental and Theoretical Cesiated-Surface Work

Work Functions with Electronegative Additive ........

Bare-Work-Function Shift Produced by Oxygen Additive .

Oxygen Pressure Required for Substantial Coverage as a

Function of Surface Temperature ...............

Mass Spectrometer Analysis of CsF Outgassing .......

ix

Page

III-3

III-5

III-15

III-16

llI-19

IV -2

IV-3

IV-5

IV-6

IV -7

IV-8

IV-10

IV-12

IV-13

IV- 14

IV-15

V-9

V-13

V-14

V-17



THERMO ELECTRON
I_ N G I II E E it I N G CO R P 0 R A T I 0 N

LIST OF ILLUSTRATIONS (continued)

Figure

V-5

V-6

V-7

V-8

V-9

V-10

V-II

V-I2

V-13

V-14

V-15

V-16

V-17

V-18

V-19

V-Z0

V-21

V-22

V-19Drawing of Surface Studies Device ...............

Filament Temperature as a Function of Heating Current

and Influence of End Connections onTemperature Uniformity . V-21

Outgassing Set-up for Surface-Studies Device ......... V-22

Circuit Diagram for Emission Measurements ......... V-25

Left Filament Work Function, No Liquid Nitrogen Cooling V-26

Right Filament Work Function with Liquid Nitrogen Cooling. V-29

Typical J-V Characteristic Showing Ion Currents ....... V-30

Emission Current Transient for Step Change in Filament

Heating Current, No CsF .................... V-31

Emission Current Transient for Step Change in Filament

Heating Current, Constant CsF Arrival Rate .......... V-32

Emission-Current Transient for Constant Filament Heating

Current, Quenched CsF Reservoir ............... V-33

Surface Work Function of a Tungsten Filament in the

Presence of CsF Vapor ..................... V-35

Characteristic Decay of CsF Coverage for Several Filament

Temperatures ........................... V-37

Decay-Time Constant for CsF Coverage as a Function of

Filament Temperature ..................... V-38

Surface Work Function Change Produced by CsF Coverage V-39

CsF Arrival Rate Required to Maintain Half a Monolayer

Coverage at a Given Surface Temperatre ........... V-41

Saturation Current vs Reciprocal Emitter Temperature for

Bare Surface ........................... V-45

Variable-Spacing, Current-Voltage Family .......... V-46

Time and Temperature History of CsF Converter (500) .... V-47

X



____ THERlUO ELECTRON
£ N G I N E'ER I N G C 0 R P ORA TIO N

4r

LIST OF ILLUSTRATIONS (continued)

Figure

V-23

V-24

V-25

V-26

V-27

V-28

V-29

V-30

V-31

V-32

V-33A

V-33B

V-33C

V-34

V-35

V-36

V-37

V-38

Time and Temperature History of CsF Converter (500) .

CsF-Only Work Functions in Converter 5000 ........

CsF Arrival Rate as A function of Temperature, Low

Pressure Range ........................

CsF Arrival Rate as a Function of Temperature, High

Pressure Range .......................

Cs + Ion Current, Showing Space-Charge Limiting ......

Electron Current Peaks Due to Cs Coverage Changes

with Heating and Cooling of the Emitter ...........

Comparison of Cesiated _b for Vario_as CsF Converters.

Typical Glass-Tube Press with Electrodes .........

Typical Glass-Tube J-V Characteristic ...........

Work Function Change Produced in CsF Glass Tube .....

Micro-Photograph of Tungsten Filament Eroded in a Glass
Tube ..............................

Micro-Photograph of Tungsten Filament Eroded in a Glass
Tube

o • * o o • o o o o • o o o * o • * • * o ° • * o o o • ° °

Micro-Photograph of Tungsten Filament Operated at High

Temperature in Vacuum ...................

Oxygen Pressure in Equilibrium with Various Metal Oxides

as a Function of Temperature ................

Cesiated-Surface Work Functionvs T/T R in the Presence

of Cs20 and Cu20 .......................

Performance Envelope with Cs20 and Cesium

Schematic of Parametric Converter Showing Additive

Reservoir ...........................

Cesiated Collector Work Function Comparison With and

Without Oxygen ........................

V-48

V-51

V-52

V-53

V- 54

V-55

V-57

V-61

V-6Z

V-63

V-65

V-65

V-65

V-75

V-76

V-79

V-80

V-83

xi



THERMO ELECTRON
[ N G I N E £ R IN G C 0 R P 0 R AT I 0 N

LIST OF ILLUSTRATIONS (continued)

Figure

V-39

V-40

V-41

V-42

V-43

V-44

V-45

V-46

V-47

V-48

VI- I

VI-2

VI-3

VI-4

VI-5

VI-6

J-V Family with Cu20 Additive, T E 1760°K .......... V-84

J-V Familywith CuzOAdditive, T E 1760"K .......... V-85

J-V Family with Cesium Only, TE 1750°K ........... V-86

J-V Family with Cesium Only, T E 1750°K ........... V-87

Performance Envelope Comparison Cs Only and Cs plus

Cu20, TE 1960"K ........................ V-88

Performance Envelope Comparison Cs Only and Cs plus

Cu20, TE 1850°K ........................ V-89

Performance Envelope Comparison Cs Only and Cs plus

Cu20, Te 1750°K ........................ V-90

Power-Density Comparison of Cs Only and Cs plus Cu20,
TE 1960°K ............................. V-91

Power-Density Comparison of Cs Only and Cs plus Cu20,
TE 1850°K ............................ V-92

Power-Density Comparison of Cs Only and Cs plus Cu20,
T_ 1750°K ........................... V-93

Typical J-V Characteristic used for "Bare" Work Function
Determination ......................... VI-2

Typical J-V Characteristic used for "Bare" Work Function

Determination ......................... VI-3

Plot of Richardson Equation .................. VI-5

TypicalJ-V Characteristic used for Cesiated Work Function
Determination ......................... VI-6

TypicalJ-V Characteristic used for Cesiated Work Function

Determination .........................

Work Function vs Surface-to-Reservoir Temperature Ratio
Plot of Cesiated Work Function Measurements ........

VI-7

VI-8

xii



THERMO ELECTRON
[ II G I N E E R I N G C 0 R P 0 R A T t 0 N

LIST OF ILLUSTRATIONS (continued)

VI-7 Comparison

Ele ctr opolis

VI- 8 Summary of

VI-9 Summary of

Vl- i0 Summary of

VI- 11 Summary of

Vl- 12 Summary of

VI- 13

VI- 14

VII- i

VII- 2

VII-3

VII-4

VII- 5

VII-6

VII-7

VII-8

VII-9

VII- i0

Vll- 11

VII- 12

VII- 13

of the Work Functions of Electroetched and

hed Rhenium .................... VI- 10

J-V Families at 1560°K .............. VI-12

J-V Families at 1650°K .............. VI-13

J-V Families at 1740°K .............. Vl-14

J-V Families at 1860°K .............. VI-15

J-V Families at 1960°K .............. VI-16

Fully Optimized Performance Map .............. VI-17

Fully Optimized Electrode Power Output Map ......... VI-18

The Modified Cesium Reservoir ................ VII-7

Schematic of the Standard Gas Injection System ........ VII-8

Modes of Discharge ....................... VII-11

Typical Variable-Spacing Electrical Output Characteristic VII-14

Plot of Variable-Spacing Families According to Equation (15). VII-17

Variable-Spacing Families According to Equation (15) .... VII-18

Plot of Variable-Spacing Families According to Equation (15). VII-19

Plot of the Focal Points According to Equation (18) ...... VII-20

Collision Probability of Electrons with Argon ......... VII-22

Effective Collision Probability of Electrons with Argon .... VII-23

Variable-Reservoir-Temperature Envelopes at

TE = 1863°K and d = 20 mils .................. VII-27

Variable -Reservoir- Temperature Envelopes at

T E = 1863°K and d = 10 mils .................. VII-28

Variable-Reservoir=Temperature Envelopes at

TE = 1863°K and d = 2mils .................. VII-29

xiii



THERMO ELECTRON
( N G | II [ E R IN G ¢ 0 R P 0 R AT I 0 N

LIST OF ILLUSTRATIONS (continued)

Figure

VII- 14

VII- 1 5

VII- 16

VII-17

VII- 18

Vll- 19

Vii-20

VII-21

VII- 22

VII- 23

VII- 24

VII-25

VII-26

VII- 27

VII-28

VII- 29

VII-30

Variable-Reservoir-Temperature Envelopes at

T E = 1740°K and d = 20 mils ..................

Variable-Reservoir-Temperature Envelopes at

TE = 1740°K and d = 10 mils ..................

Variable-Reservoir-Temperature Envelopes at

TE = 1740°K and d = 2 mils ..................

Variable-Reservoir-Temperature Envelopes at
T[ = 1645°K and d = 20 mils ..................

Var iable-Keservoxr- Tempe rature Envelopes at
TE = 1645°K and d = 10 mils

* _ o o ° ° ° . ° , , o o ° , • ° •

Variable-Reservoir-Temperature Envelopes at
TE = 1645°K and d = 2 mils

o o o o • . • • • ° o • ° • • • •

Cross Plot Corresponding to Figure VII-11 ..........

Cross Plot Corresponding to Figure VII-12 ..........

Cross Plot Corresponding to Figure VII-13 ..........

Cross Plot Corresponding to Figure VII-14 ..........

Cross Plot Corresponding to Figure VII-15 ..........

Cross Plot Corresponding to Figure VII-16 ............

Cross Plot Corresponding to Figure VII-17 ..........

Cross Plot Corresponding to Figure VII-18 ..........

Cross Plot Corresponding to Figure VII,-,19 ...........

Fractional Current Attenuation by Argon for Cesium
Pressure of 1 Torr and Several Interelectrode

Spacings ............................

Fractional Current Attenuation by Argon for Cesium
Pressure of 2 Tort and Several Interelectrode

Spacings ..............................

Page

VII-30

VII- 31

Vii-32

VII-33

Vli-34

VII-35

VII-36

VII- 37

VII-38

Vii-39

VII- 40

VII-41

VII-42

VII-43

VII-44

VII-48

VII-49

xiv



THERIIIO ELECTRON
E K G I N E £ R I N G C 0 R P 0 R A T I O N

LIST OF ILLUSTRATIONS (continued)

Figure

VII- 31

VII-32

VII-33

VII-34

VII-3 5

VII-36

VII-37

VIII- 1

VIII- 2

VIII- 3

VIII-4

VIII- 5

VIII- 6

VIII- 7

VIII- 8

Fractional Current Attenuation by Argon for Cesium

Pressure of 4Torr and Several Interelectrode Spacings

Fractional Current Attenuation by Krypton for Cesium

Pressure of 1 Tort and Several Interelectrode Spacings

Fractional Current Attenuation by Krypton for Cesium

Pressure of 2 Torr and Several Interelectrode Spacings

Fractional Current Attenuation by Krypton for Cesium

Pressure of 4 Torr and Several Interelectrode Spacings

Fractional Current Attenuation by Xenon for Cesium

Pressure of 1 Torr and Several Interelectrode Spacings

Fractional Current Attenuation by Xenon for Cesium

Pressure of 2 Torr and Several Interelectrode Spacings

Fractional Current Attenuation by Xenon for Cesium

Pressure of 4 Torr and Several Intere!ectrode Spacings

Boltzmann Region .......................

Schematic of the Cesium Diode ................

Variation in Collector Work Function with Spacing.

TE = 1314°K, Tc = 609°K, TR = 543°K ...........

Variation in Collector Work Function with Spacing.

TE = 1313°K, Tc = 611°K, T_ = 554°K ...........

Variation in Collector Work Function with Spacing.

TE = 1298°K, Tc = 618°K, TR = 572°K ...........

Variation in Collector Work Function with Spacing.

TE = 1308°K, Tc = 621°K, TR = 593°K ...........

Variation in Collector Work Function with Spacing.

(a) Tc = 628°K, (b) Tc = 628°K, (c) Tc = 627°K

(d) Tc = 827 °K, (e) Tc = 623°K .................

Plot for Obtaining Electron Mean Free Path .........

Page

VII- 50

VII- 51

VII- 52

VII- 53

VII- 54

VII- 55

VII- 56

VIII- 3

VIII- 10

VIII- 12

VIII- 13

VIII- 14

VIII- 15

VIII- 16

VIII- 17

xv



THERMO ELECTRON
E N G I N E E R I N G C 0 R P 0 R A 1" [ 0 N

LIST OF ILLUSTRATIONS (continued)

Figure

VllI- 9

VIII- 10

V III- 1 1

Plot for Obtaining Electron Mean Free Path ...... ".... VIII-18

Electron Mean Free Path in Cesium Vapor .......... VIII-19

Recommended Correction for Collector Work Function

Measured by Retarding Technique ................ VIII- 7.2

xvi



__, THERMO ELECTRON
E N G I N E E R i N G C 0 R P 0 R A T [ 0 N

LIST OF TABLES

Table

V-I

V-2

GLASS TUBE EXPERIMENTS AT TEECO ...........

SUMMARY OF DATA ON OXYGEN ADSORPTION

V-67

V-71

VII- 1 EFFECT OF ADDITION OF 1 TORR OF INERT GAS IN

A 10-MIL WIDE PLASM.A AT 1000°K ............. VII-9

VIII- 1 COLLISION CROSS SECTION OF ELECTRONS WITH Cs

ATOMS ............................. VIH- 20

xvii



THERIIIO ELECTRON
ENGINEERING CORPORATION

CHAPTER I

INTRODUCTION

This report covers work performed by Thermo Electron for NASA/JPL under

contract 95126Z/NAS7-100 during the one-year period ending in June 1966. The

program is a continuation of a research program which has been in progress for

several years. It consists of applied research in thermionic energy conversion

and includes experimental and analytical tasks.

The basic objectives of this effort have been to generate knowledge and to

devise techniques for improving the performance of thermionic converters° These

objectives can only be attained through a combination of analysis and experiment°

Using the evidence at hand, hypotheses are formulated, tested experimentally,

improved on the basis of new evidence, tested again, and so on. What is reported

here is a step in just such an iterative process°

At the time this contract was initiated the capabilities of cesium-vapor diodes

were well defined, and it was obvious that any step increases in performance could

only come from significant changes in the nature of the conversion process. As a

result, this program undertook the study of two new regimes of operation°

The first is the use of CsF vapor in addition to metallic cesium in the con-

vertero The presence of CsF causes the Cs vapor to be more tightly bound to the

emitter surface, so that the cesium pressure required to maintain a given coverage

is greatly reduced. This reduction of Cs pressure results in less scattering of

electrons in the plasma, and therefore improved performance° Evidence of these

effects had been obtained in the previous year, and an analytical framework form-

ing the ba6is for further investigation was devised. Questions of stability, however,

I-l
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still remained to be answered before these imDrovements could be put to _c _." .

use. Chapter V of this report gives experimental results which lead to the con-

clusion that water vapor contamination of the CsF had been responsible for the

effects previously observed. Two additional phases of experimental work deter-

mined the true behavior of the CsF additive and demonstrated that oxygen can be

used as a surface additive in a stable fashion and under steady-state conditions.

The second main task of the program was a study of the effects of inert gases

on the characteristics of the converter. There were three reasons for undertaking

this study. Because of the very low cross section of inert gas atoms for low-

energy electron collisions, it was hypothesized that inert gases could act as

diffusion barriers to Cs ions, thus conserving them, while they remained trans-

parent to electrons. It was reasoned that, if Cs ions were indeed conserved,

fewer would be required and the internal voltage loss necessary for ion production

in the converter would be reduced.

The second reason for undertaking this study was that the presence of an

additional gas in the interelectrode space can be used as a tool in the study of the

converter plasma. Experimental and analytical work of this nature proved very

useful in furthering the understanding of the diffusion processes taking place in the

converter.

The third reason for this study was the fact that inert gases are major con-

stituents of the fission products of thermionic reactor systems. As such, they

may be vented, intentionally or unintentionally, into the interelectrode space° It

is therefore desirable to know their effects on converter performance. Studies

of this kind have been made in the past, but the results were inconclusive because

of oxygen contamination. In Chapter VII the results of very extensive experimental

studies are presented, and fairly conclusive answers to these questions are giveh.

I-Z
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The test converter and associated equipment, as well as experimental tech-

niques, are discussed in detail in Chapter III.

Metallurgical data on the preparation and the definition of the emitter surfaces

employed are given in Chapter IV°

In the inert gas studies an etched rhenium emitter was used. This emitter,

when tested with Cs only, to provide a performance reference prior to the intro-

duction of inert gas, showed exceptionally high output. A detailed parametric

study was performed, which demonstrated that this type of surface was indeed

superior to rhenium surfaces previously tested. The results are presented in

Chapter VI.

Chapter VIII presents in a completed form the analysis of converter character-

istics in the Boltzmann region.

Significant results and conclusions of the program are presented in summary

form in Chapter II.

d
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CHAPTER II

SUMMARY

This program depends to a great extent on extensive and accurate experimen-

tal results for the attainment of its objectives. A great deal of effort has there-

fore been expended in the design, construction and improvement of the converters

and other devices and instrumentations used for gathering experimental data. All

parametric-type data have been generated using variable-parameter converters.

These converters employ planar electrodes and an active collector guard ring and

allow variation of all important parameters over wide ranges. The devices and

associated electronic equipment are described in detail in Chapter IIIo In addition

to these converters it became necessary, in the case of the additive studies, to

develop and construct tubes capable of attaining the extremely high vacuums nec-

essary for the experiments. Filament-type metal-ceramic tubes were constructed

which were able to maintain, in operation, vacuums of the order of 10 -10 torr.

These tubes are described in Chapter V of this report. Carefully controlled metal-

lurgical procedures were used in the preparation of emitter surfaces°. These are

described in Chapter IV, and the results of metallurgical and chemical examina-

tions of emitter surfaces are also reported there. It is expected that this informa-

tion will allow a precise definition of the surfaces and will also make possible

their reproduction by this and other laboratories.

Several significant conclusions regarding surface additive have been reached

in the course of this year_s work, Additive effects which previously had been

attributed to cesium fluoride were shown to be the result of water present as a

contaminant in the cesium fluoride charge used in the converters° A specially

designed filament metal-ceramic tube capable of extremely high vacuums was

constructed, and this tube permitted the determination of the true effectsofcesium
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fluoride. At complete coverage of fluoride only about 0° 36 eV of work function

change was observed. In addition, the energy of desorption of fluorine on tungsten

was measured at 3. 3 eV. As a result of this rather small change in work function

and low energy for desorption, it appears that fluorine holds little promise of

improving the performance of converters. To provide conclusive evidence that

the exceptional performance previously observed was indeed due to oxygen, and

furthermore, to allow use of oxygen in operating converters, a study was con-

ducted using oxygen as an additive. It was possible to employ oxygen in the

form of copper oxide for periods exceeding 300 hours with no significant changes

in the operation of the device. The use of the continuous oxygen source appears

to be a feasible method of introducing the beneficial effects of oxygen. The results

with oxygen are considered preliminary at this point, and several areas for future

work are now apparent. While oxygen can be used satisfactorily as an additive,

additional data are desirable to define the mechanism of operation and enable the

selection of other materials which might possibly be more effective and more

easily controlled. The effect of oxygen on the tungsten collector has not yet been

explored, and it is possible that some other material might produce a better collec-

tor under other conditions.

The results of parametric tasks conducted with an electroetched rhenium

surface are presented in Chapter VI. This surface exhibits a bare work function

value of 4. 88 eV, which is about 0. 13 eV higher than the typical values obtained

before with electropolished or mechanically polished rhenium surfaces The para-

metric performance data, representing a total of 1000 volt-ampere characteristics,

clearly demonstrate that the performance of this device is significantly higher

than that of other rhenium emitters. In particular, it appears that the same per-

formance can be obtained at roughly twice the spacing, and that the power output

can be increased by a factor of 2 at the same spacing° The method employed in

preparation of this surface is outlined in Chapter IV.
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The effects of argon on converter output were documented by recording

approximately 1200 volt-ampere characteristics. These data conclusively show

that there is no enhancement of performance under any conditions in the presence

of argon. A gradual decrease in output was observed with increasing inert gas

pressure. However, argon appears to have little effect on the characteristics

at pressures below 20 torr. This result is of particular interest to nuclear

thermionics, since inert gas fission products may enter the interelectrode space

of converters located in a reactor core. Typically, i0 torr of argon would result

in a 10% reduction in the output of the converter. Two torr of krypton or one torr

of xenon would have the same effect.

Chapter VIII presents in completed form an analysis and experimental

correlation of the Boltzmann region of the converter characteristic. This portion

of the characteristic is of practical importance when collector work function

measurements are made.

II- 3



THERMO ELECTRON
E N G I N E E R I N G C 0 R P 0 A A T I 0 N

CHAPTER III

TEST CONVERTER AND EQUIPMENT

A. General

The test converters used in this program are variable-parameter research-

type devices. An active collector guard ring and planar geometry are used.

Parameters whose values can be varied and accurately controlled include the

emitter temperature, the interelectrode spacing, the collector and reservoir

temperatures, and, of course, the output. The active collector guard ring is a

very desirable feature, since it renders the conversion process free from any

radial geometric dependence, and precisely defines the active area of the device.

Elimination of edge effects is possible because the voltage and temperature of

the guard ring can be adjusted to be equal to those of the collector at all times.

Bo Converter

i. Spacin G • The variation of spacing is accomplished by flexing a bellows

joining the emitter and collector structures by means of a mechanism operated

externally to the bell jar. Figure III-l shows how this is accomplished. Three

micrometer spindles (61) are driven by shafts (98) which are geared together

above the top plate. The interelectrode spacing is measured directly on three

dial indicators (l} which are set to measure changes in the relative position of

the emitter and collector structures.

2. Reservoir. A tubulation (18) leads from the emitter support structure

to the cesium reservoir (62). A similar reservoir is used for the cesium fluoride.

The only difference between the two is that the entrance to the tubulation leading

to the cesium reservoir is restricted by a 10-mil orifice. This orifice prevents
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cesium fluoride vapor from condensing in the cesium reservoir at a rapid rate.

In the case of the piasma-additive converter, inert gas is introduced by means

of a tubulation (144) leading from the cesium reservoir to the exterior of the

vacuum envelope of the converter and to the inert-gas injection system.

In the devices constructed in the second half of the program, the

cesium reservoir was modified slightly. The reservoir tubulation was brought

out to the side of the device through the space between the top plate support ring

(17) and the top plate (15). The reservoir was then suspended below the tubula-

tion which entered from the top° It was located at about the level of the bellows

(29)° This arrangement provided better control in the presence of the additive

gases and is described more fully in the section on gas injection in Chapter VI_

3. Collectors. The gap between collector and guard ring, shown in

Figure III-2, is kept to a value close to i rail. The height of the step between

the collector and guard ring is kept at approximately I/Z rail, with the collector

protruding beyond the guard ring surface.

4. Dial Indicators. The dial indicators (1) were relocated well above the

emitter cooling plate through the use of an extension tube (138)o This change was

made because, on some occasions in previous work, the dial indicators were

overheated by radiation from the emitter cavity. Overheating caused them to

jam and necessitated their replacement.

For a description of the individual components of this device more detailed

than the summary given above, the reader is referred to Ref° 19. The changes

made in the test vehicles used in the present program will now be outlined in

detail_
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Figure III- 1

Test Converter and Base Plate
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Figure III-Z

Cross Section of Test Converter
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.

2.

3o

4.

5.

6.

7.

8.

9.

I0°

llo

IZo

13o

14o

15.

16.

17o

18o

19.

20.

20A.

21.

22°

23.

24.}g5.

TABLE OF NOMENCLATURE

for Figures III-i and III-2

Seal

Dial Indicator 26.

In sulato r 27.

Gun Holder 28.

Pin Z 8A.

Filament Support 29.

Sapphire Rod Z9A.

Filament Lead 30.

Filament 3 i.

Emitter 3 Z.

Sight Pipe 33.

Filament Shield 34.

Shield Support 35,

Guard Ring Cooler Adapter 36.

Gun Base 37.

Top Plate 38.

Top Plate Support Rod 39.

Top Plate Support Ring 40°

Ce slum Re servoir Tubulation 41o

Emitter Support Plate 42°

Bellows Adapter 43.

Bellows Adapter Reinforcement 44.

Insulator 45.

Collector to Guard Compression Ring 46.

Compression Screws 47.

48.

49.

Emitter Sleeve

Emitter Shield

Bellows Flanges

Guard Ring Heater

Guard Ring Heater Block

Flexible Flange Retainer

Flexible Flange Adapter

Flexible Flange

Collector

Collector - Guard Ring Spacer

Sapphire Balls

Guard Ring

Guard Ring Heater Support Rod

Guard Ring Cooler

Water Tube

Collector Heater

Pyrometer Support

Ce slum Tubulation

Thermocouple Wire

Collector Heater Support Rod

Collector Cooling Plate

Support Plate

Spring
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50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66°

67°

68°

69.

70.

71.

72.

73.

74.

75.

TABLE OF NOMENCLATURE

for Figures 111-1 and Ill-2 (continued)

Tension Rod

Tension Wire

Wire Retainer

Insulator

Tension Wire

Tension Wire

Tension Wire Insulator

Rod

Micrometer Adapter

Ball Bearing

Ball Bearing Retaining Washer

Micrometer

Cesium Reservoir

Cesium Reservoir Heater

Evacuation Tubulation Adapter

Evacuation Tubulation

Cooling Strap

Water Cooling Ring

Cooling Water Outlet

Cooling Water Inlet

Guide Rod

Compression Spring

Guide Rod Base

Stud

Insulator Shade

Insulator

76.

77.

78°

79.

80.

81.

82.

83.

84°

85.

86.

87.

88.

89.

90.

91.

9Z0

93.

94.

95,

96

97°

98.

99.

100.

101 •

Tension Wire Clamp

Anti-Backlash Plate

Gear

Shaft

Gear

Plate

Bevel Gear

Pinion

Bearing

Spring Retaining Washer

Bearing Housing

Pinion

Bearing

Top Plate

Mechanism Support Plate

Shaft Adapter

Gear Adapter

Gear Adapter

Shaft

Support Rod

Bearing

Bearing Retainer Washer

Shaft

Gland

Shaft

Bellows
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102.

103,

104.

105.

I06.

107o

107A

I08.

I09.

II0.

iii.

i12.

113.

114.

115.

116.

117.

118.

119o

120.

121.

122.

iZ3.

124.

125.

126.

TABLE OF NOMENCLATURE

for Figure s III- i and 111-2 (continued)

Prism

Prism Support Plate

Pyrex Window

Stud

Support Plate Rod

Base Plate

Base Plate Adapter

Water Feedthrough

Water Tube

Base Plate Lower Ring

Lead Wire

Lead Wire Feedthrough

Octal Plug

Octal Plug Adapter

Base Plate Neck

Sapphire Spacer

Zeadthrough Adapter

Water Tube

Bellows

Bellows Adapter

Water Tube Adapter

Water Tube

Bellows Connector

Shaft

Micrometer Adapter

Roll Pins

127.

128.

129.

130.

131.

13Z.

133.

'}34.

135.

136.

137.

138.

139.

140.

141.

142°

143o

144.

145.

146._

147.J

148.

149.

150.

151.

Water Tube Coupling

Bearing Retainer

Heater Connectors

Gear

Shaft

Cesium Reservoir Heater

E.B. Filament Arms.

Bellows Retainer

Ceramic Insulator

E.B. Gun Retainer

Dial Indicator Extension

Dial Indicator Holder

Emitter Output Leadthrough

Standoff

Emitter Output Lead

Output Strips

Inner Gas Inlet Tube

Copper Gasket

Vacuum Flange

F lang e "A dapt e r

Flange Adapter Pipe

Bellows Retainer

Gas Inlet Pipe

/ -
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152.

153.

154.

155.

156.

157.

TABLE OF NOMENCLATURE

for Figures III-I and III-2 (continued)

Guard Output Adapter

Output Strips

Guard Output Lead

Gas Pipe Adapter

Output SLrip Adapter

Cesium Strip Connector

158.

159.

160.

161.

162.

163.

Cesium Restriction Plug

Flexible Tube

Valve Adapter

Inner Gas Inlet Valve

Valve Adapter Tube

Vacuum Flange Adapter
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Co Base Plate

To provide room for the inert-gas injection tubulation, the size of the glass

bell jar around the converter was increased from 8 to 12 inches. This change

required that the base plate diameter also be increased. A new ring (107A) was

added to the old base plate (107). The two were welded as shown in Figure III-1.

In this new ring, large feedthroughs (140) were placed to allow for the passage

of the inert-gas injection tube (151) and the emitter current lead (142). The

guard-current lead (154) was also brought out of the bell jar in the same manner.

An all-metal diaphragm valve (161) was added to the base plate to allow for the

isolation of the interior of the converter from the gas injection system.

D. Top Plate

The top plate diameter had to be increased to allow the use of the larger

bell jar. In this case new top plates were fabricated. An opening was provided

in the center of the top plate to accommodate a Pyrex window (i04); the emitter

temperature observation prism (i02) is located above this window. In the pre-

vious design this prism was located immediately above the emitter cooling ring

(15). With that arrangement the emitter black-body cavity had to be sighted

through the Pyrex bell jar walls, and, since these walls have a certain amount

of ripple, distortion of the black-body hole image always occurred to some ex-

tent0 The present system eliminates any distortion whatsoever of the black-body

hole image, since it is viewed through a ripple-free window. Support for the

pyrometer was also provided on the top plate by a bracket (43), and in this manner

the pyrometer is fixed on the top plate permanently.
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E. Instrumentation

The instrumentation used for the converter studies part of this program

provides for the virtual elimination of edge effects in the device _through tempera-

ture and electrical potential control of the active guard ring. This equipment,

with a minimum of operator attention, maintains the guard and collector elec-

trodes as a single equipotential and uniform-temperature surface. Because of

this guarding action, leakage currents are eliminated.

The actual equipment for these experiments was developed under the pre-

vious program and will be discussed only briefly in this section.

i. Temperature Control. Precise adjustment and control of electrode

temperatures is necessary, if accurate, useful data is to be obtained from the

converter. A multipoint strip-chart recorder connected to thermocouples lo-

cated in significant portions of the device (except the emitter) serves as the

primary means of temperature indication for the experiments and at the same

time furnishes a time and temperature history of them.

The emitter is heated by electron bombardment from a hot filament.

A servo system regulates the bombardment current to maintain constant input

power° Manual adjustment, based on the optical pyrometer measurements, is

required to establish the desired temperatures under the various conditions of

the experiments.

The lens system of the standard Leeds & Northrop pyrometer was modi-

fied so that the image of the 0o 032" black-body cavity on the emitter was larger

than five times the filament width° This change was aimed at improving the

Final Report for the Thermionic Research Program, Task IV,

Thermo Electron Report No. TE 7-66, 2 August 1965.

Contract 950671,
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emitter temperature measurement accuracy. One modified pyrometer was

calibrated by Leeds & Northrop, and a second instrument was calibrated by the

Bureau of Standards against a primary standard. This unit was later used as

a reference. Figure III-3 shows the temperature corrections and includes a

factor for the optical system and the thermal conductivity of rhenium.

Collector, guard, and cesium reservoir temperatures are controlled

by balancing the heat input from a resistance heater on the element against the

losses to a water-cooled sink° A time-proportioning, on-off type of controller

connected to a thermocouple mounted near the heater, controls the power input

and thus regulates the temperatures. Some manual adjustment of the set point

is required to compensate for the varying heat loads during testing.

2. Data Collection Equipment° The two main types of experiments per-

formed under this program were quasi-static, low-power work function and

dynamic, high power performance tests. In each of these, the output was ob-

tained in the form of current density-voltage plots on anX-Y recorder. Valid

data required that there be no electrode temperature variation during a partic-

ular run.

The work function tests are performed at low power densities, where

electron heating or cooling effects are negligible° For this reason, manually

adjusted dc power supplies may be used to sweep over the J-V characteristics

of the converter without causing significant temperature variations. To avoid

leakage effects at the very low current levels necessary, there must be a high

degree of balance between the collector and guard voltages. A separate dc supply

functioning as an operational amplifier provides this balancing action° Resistive

loading and bucking batteries make smooth sweeping possible over the entire

characteristics in both power-absorbing and power-producing regions. Precision
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shunts in series with the collector current lead supply the current signal to the

recorder. Voltage taps, connected directly to the emitter, collector and guard

electrodes, eliminate any voltage drops in the leads and furnish the voltage input

to the X-Y plotter.

In the high power regions the electron-cooling load is significant, and

any variations in converter load current will be reflected in electrode temperature

changes. High-current tests must therefore be performed under dynamic condi-

tions; that is, the entire J-V characteristic must be swept at a rate greater than

the thermal time constants of the electrodes. This was accomplished by using

a transformer-isolated, half-wave rectified line frequency sweeping source, so

that the characteristics were swept in a _eries of 60-11z pulses. A solid-state

follower consisting of an operational amplifier driving a set of series-pass tran-

sistors provides the required balancing action between the collector and guard.

The stability and range of the follower were further improved during this program,

and the modified schematic is shown in Figure III-4. Because of the limited res-

ponse time of the X-Y recorder, the effective sweeping of the tube characteristics

must be slowed to about a one-per-second rate. A sample-and-hold circuit driven

at a rate differing only slightly from 60 Hz samples the current and voltage pulses

from the converter and slows their effective rate of change° Precision water-

cooled shunts provide the current signal for the sampler, and voltage taps at the

electrodes provide the voltage signal. An oscilloscope continually monitors the

actual characteristics and provides the operator with a continuous display of the

behavior of the device.

F. Experimental Procedure

This section will briefly describe the general procedure for the converter

experiments. A more complete description can be found in the report of the
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previous program. Any special techniques specific to a particular task will be

discussed in the appropriate individual sections.

The two main types of measurements used are the quasi-static, low-power

work function and the dynamic, high-power performance tests° The electrical

instrumentation has already been discussed, and therefore this section will de-

scribe the necessary steps for actual operation of the converter.

io Parallelization. AIi measurements assume a value for emitter-collec-

tor spacing, and for this value to be meaningful their surfaces must be flat and

parallel. During fabrication of the test vehicle the surfaces are carefully polished

and ground to produce as flat a surface as possible. Parallelizing of emitter and

collector is then the first step in any of the testing procedures.

Electrode and cesium temperatures are adjusted to establish electron-

rich conditions at a relatively low emitter temperature° The output current is

therefore space-charge-limited and very sensitive to changes in spacing. By

trial-and-error manipulation of the three spacing micrometers, the shape of the

J-V characteristic is made to approach the ideal form as closely as possible

without shorting the emitter to either the collector or the guard. The dynamic-

testing oscilloscope display monitors this process. When the optimum charac-

teristics are obtained, the emitter will short to the collector before shorting to

the guard° It is now assumed that while the actual spacing may change with tem-

perature, all micrometers will be affected equally, and parallelism will be main-

tained. The zero reference for spacing is established with each set of electrode

temperatures by momentarily shorting the emitter to the collector. This opera-

tion must be performed rapidly and carefully to avoid welding of the two surfaces

at small spots, with the subsequent growth of a projection or "pimple" from the

collector surface.
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2. Emitter Work Function. The emitter work function, _E ' is determined

from the emitter saturation current, J , obtained at a given ernitter temperature,
s

T E, by substituting these values in the Richardson equation,

= -kT E in [Js//AT_ ]

where k is the Boltzmann constant and A is the Richardson constant.

The validity of the results is strongly dependent upon the measurement

of the true value of saturation current density. A sufficiently large electron-

accelerating voltage must be employed to ensure that the emitter work function

is the only barrier controlling the current. Ion-rich temperature conditions

must be established to eliminate any space-charge barrier formation° A further

requirement introduced by back-scattering of electrons in the plasma is that

spacing be held to small values.

For the range of work functions greater than about 2. 9 eV, the current

levels are small and the above conditions are easily fulfilled. The quasi-static

low-current instrumentation is used in these tests.

In the lower range of work function values, the currents are too great

for quasi-static testing, and the saturation currents are determined from the

dynamic J-V plots. In the ignited mode the ions generated in the plasma provide

space-charge neutralization; however, the increased scattering in this mode

limits the usefulness of the technique to relatively small values of current.

3. Collector Work Function. The most useful method of measuring collec-

tor work function is the retarding plot. The J-V characteristic for an idealized

diode, shown in Figure III-5, is made up of two curves; the first is given by:
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and the second by:

J = J for V < V c
s

J = AT_E exp [-(_)c + V/kT E)] for V > V c

Any point on the exponential part of the characteristic can be used to compute

collector work function by substituting J, V and T E in the second equation.

Satisfactory testing with this technique requires low collector tempera-

ture (for low back emission), low emitter temperature (for low ion currents),

and small spacing (because of scattering effects)° The low current levels asso-

ciated with these measurements allow the use of the quasi-static equipment which

at the same time provides the accurate guard potential control necessary to

eliminate leakage effects.

4. Parametric Data. The term "parametric data" describes sets or

families of current-voltage characteristics generated through the systematic

variation of parameters. Such families may be generated by Using, as the vari-

able parameter, emitter temperature, spacing, collector temperature, or cesium

reservoir temperature, all other parameters being held constant.

In general, the range of variation covered included the region of interest

for power production. Therefore the emitter temperature range extends from

1600 to 2050°K, the spacing from 0.2 to 60 mils, and the Cs reservoir tempera-

ture from 540 to 700°Ko Since this is the high-current region of the characteris-

tics, the dynamic test equipment must be used.

a. Variable-Cs-Reservoir-Temperature Families. The variable-T R

family is especially useful for hardware design. The Cs reservoir temperature,
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T_ , is usually the only variable about which the hardware designer has complete

freedom of choice° It is, therefore, very convenient for him to have design data

available in this form°

The experimental procedure used consisted of selecting emitter

temperature, spacing and collector temperature values and then recording J-V

curves at i0 - 15°K intervals of Cs reservoir temperature. The first recorded

curve is at a T_ resulting in current levels considered to be at the lower limit

of interest. The last recorded curve is almost vertical and at the upper limit of

interest. The envelope tangent to all curves in the family is the locus of the max-

imum current obtainable at any given voltage for the condition under which the

family was generated. This envelope {solid line) may be corrected for the volt-

age drop along the emitter sleeve to represent the output at the electrodes. The

correction necessary is 3 mV/ampere, and the resultant curve is shown as a

dashed line on the family. Envelopes for all spacings at each emitter tempera-

ture may be superimposed to form summary plots of J-V characteristics. Fig-

ures VI-8 to VI-12 show such plots° Further, the envelopes of the envelopes

may be drawn and superimposed to present the maximum performance map for

a given emitter material. Figure VI-13 is a map for the etched rhenium emitter°

b. Variable-Spacing Families. This type of experimental result is

particularly suited to analytical work and has, in fact, formed the foundation of

that work in this program. The analytical value of the variable-spacing family

derives from the fact that, when spacing is changed, all other parameters remain

constant,

The experimental procedure used to generate these families was

to set all parameters at selected values and reach equilibrium at some small

value of spacing {approximately i-2 mils). The spacing was reduced until the
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emitter shorted to the collector, and was then increased by an amount just enough

to avoid shorting. The interelectrode spacing under these circumstances is es-

timated to be between 002 and 0. 5 mil. At that point the first J-V curve was re-

corded. The spacing was then varied in a geometric progression and a J-V curve

recorded at each value of spacing.
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CHAPTER IV

EMITTER PREPARATION

The experimental work using cesium fluoride additive was conducted in

a tungsten-emitter converter. The inert-gas additive converter used a rhenium

emitter. This chapter describes the composition, preparation and definition of

the emitter surfaces.

A. Tungsten

Two polycrystalline tungsten emitters have been prepared with electro-

polished and heat-treated surfaces. These have TEECO designations W9 and

Wl0.

1. Mate r ial s

Wrought sheet stock was used for the tungsten emitters. The manu-

facturer, General Electric Co. , Refractory Metals Plant, supplied, and certified,

the following spectroscopic analysis: (all units ppm).

A1 < 6 Fe 13 Mn < 6 Mo 30

Ca < 3 Ni 8 Mg < 3 Co 29

Si 50 Cu < 3 Sn < 6 Zr < 3

Z. Surface Preparation

The stock had a good ground surface. The emitters were first electrical®

discharge machined to shape, then cleaned, and electropolished in a 5% aqueous

sodium hydroxide solution at a potential of 10 volts for about 30 seconds. The

resulting surfaces were photographed, and typical areas are shown in Figures

IV-1 and IV-Z. Slightly different polishing rates on adjacent grains make some

boundaries prominent, and small pits are also visible.
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Figure IV -1. Emit ter  W 9  af ter  Electropolishing, 310x. 
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F igure  IV-2. Emit ter  W10 after Electropolishing, 3 lox. 
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3. Heat Treatment

Each emitter was heated by electron bombardment in a cold-walled

vacuum furnace for 1 hour and 5 minutes at 2.300°Co The temperature was read

with an optical pyrometer (0o65p.1 and was corrected for the emissivity of tung-

sten. The pressure was determined from the current in the Vac Ion pump used

to evacuate the system, and was found to be less than 1 x 10 -6 tort while the

specimen was at temperature° The heat treatment was chosen to duplicate that

used on earlier tungsten emitters in Task IV of this contract.

4o Examination of Emitter Surfaces

After heat treatment the surfaces were again photomicrographed, and

typical areas are shown in Figures IV-3 and IV®4, Grain growth and grain-

boundary grooving have occurred, as expected. The new grain structure is

clearly delineated by the grain-boundary grooves, and faint traces of the old

grain structure are visible_, especially on Figure I¥_4_

Electropolishing tends to produce "roll-off, " or rounding at the edge

of a specimen. In order to study this, interference fringe patterns were made

at the edge of each emitter using sodium yellow light° Figures IV-5 and IV-6

are composite photographs of typical areas at the edge of emitters W9 and W10

at 74x and 150x. Theioll-off is visible as rows of increasingly close-spaced

fringes parallel with and close to the edge of the emitter° Measurements on

these, taking the magnification into account: show that the roll-off is com-

pletely confined within 0°04" of the edge of the emitter. This area faces the

guard ring in the converter, and therefore it will not in any way affect the con-

verter performance° More detailed visual examination showed:
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Figure  IV-3. Emit ter  W 9  a f te r  Heat Treatment ,  310x. 
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Fig1 e IV-4.  Emitt r W 1 0  after Heat Treatment ,  310x. 
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Figure  IV-5. Interference Fringe Pa t te rn  from W 9  af ter  Heat Trea tment ,  
Showing Edge, 74x. 
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F igure  IV-6.  Interference Fr inge  P a t t e r n  f r o m  W10 a f t e r  Heat 
Trea tment ,  Showing Edge ,  152x. 
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1. that the photographed areas were typical, and that in no area was the

roll-off width likely to approach the guard ring width; and

2. that the inner areas of each composite photograph are typical of the

central parts of the emitters, which show no steep gradients (except at

a few polishing defects, such as that in Figure IV-7_ which is about 7 mils

across and 1/4 rail deep) and are fiat to within a micron or so.

5. Conclusions

The changes on the emitter surface which were observed to occur

during preparation were grain growth and grain=boundary grooving° Each of

these changes was expected on the basis of prior experience. Since the emitter

is exposed to much lower temperatures during diode operation, and the rate of

surface change decreases with time_ no further changes are expected to occur

during testing.

etched and heat©treated surface.

1.

B. Rhenium

One polycrystalline rhenium emitter has been prepared with an electro_

This has the TEECO designation Re 31.

Materials

Wrought sheet stock was used for the rhenium emitter. The manu_

facturer supplied and certified the following spectroscopic analysis (all units ppm}:

Ag B Be

A1 <1 Cu <1 Fe 43 Mg <1 Si <1

Mn Mo Na Nb Pb Sn Th Ta V Zr W sought but not detected.
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Figure IV-7. Interference Fr inge  Pa t t e rn  f r o m  W10, Showing 
Polishing Defect, 152x. 

IV-10 



THERMO ELECTRON
E N G I N £ £ II I N G C 0 R P 0 R A T I 0 N

20 Surface Preparation

The surfaces were ground flat and parallel, and the slug was annealed

for 2.8 hours at 2350°C in a cold-walled furnace° It was then shaped by electrical=

discharge machining, and electropolished in the usual perchloric acid/alcohol

mixture at 22 volts (9 amps) for about 20 seconds. It was next electroetched in

the same electrolyte at 5 volts (I. 6 amps) for 80 secso The resulting surface

was photographed, and typical areas are shown in Figures IV-8 and IV-9. The

differential etching rate removes some grains much faster than others, so that

they are not all in focus on the photomicrograph.

3. Heat Treatment

The emitter was heated in the cold-walled furnace for 3 hours at

2420°C° The temperature was read with an optical pyrometer, and is corrected

for the emissivity of rhenium. The pressure at the Vac Ion pump was found to
-6

be less than 1 x 10 tort while the specimen was at temperature. The heat

treatment was designed to duplicate that used on earlier rhenium emitters in

Task IV of this contract.

4. Examination of Emitter Surface

After this heat treatment the surface was again photomicrographed,

and typical areas are shown in Figures IV-10 and IV-11. Only slight traces of

grain boundary movement are visible, because the specimen was annealed prior

to surface preparation and heat treatment. The etched grain boundaries, which

have well defined sharp edges in Figures IV-8 andIV-9_have, as expected, be-

come rounded by the heat treatment. Two small thermally etched flat surfaces

are visible on Figure IV-10 -- one at the center and one near a corner. These

are commonly observed following heat treatment of an etched surface. The

smoothing effect has extended to the surfaces of the grains that had a textured

appearance in Figures IV-8 and IV-9°
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Figure IV-8. Emitter Re31 af te r  Electroetching, 310x. 

IV- 12 



Figure  IV-9 Another A r e a  of R e 3  1 ,  3 lox. 
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F i g u r e  IV-10. Re31  after Heat Treatment, 310x. 
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F i g u r e  IV-11. A n o t h e r  A r e a  of R e 3 1 ,  310x. 
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The surfaces of this emitter are too rough to produce meaningful in-

terference fringe patterns_ and so no detailed study of "roll-off" is possible.

However, there is every reason to believe that it is confined to a narrow band

at the edge, just as it is in tungsten. In any case the "roughness," or depression

of some grains below their neighbors, is probably greater than any roll-off.

5. Conclusions

This emitter surface showed rounding and smoothing of the etched

surface, and faint traces of grain movement exactly as predicted from our con-

siderable experience with rhenium surfaces. As with the tungsten emitter, this

is expected to be completely stable during diode operation.

C. Discussion- Electroetched Rhenium Emitters

As mentioned in the Third Quarterly Report on this program, the etched

rhenium emitter represented a substantial improvement over the electropolished

rhenium emitter studied during the previous year. In particular, it was found

to have a bare work function of 4.88 eV, as compared with 4.75 eV for the pol-

ished emitter. In terms of performance, this meant that the etched emitter

would produce the same power at twice the spacing used with the polished emitter.

Since the raw material for each emitter was polycrystalline rhenium pre-

pared by powder metallurgy and rolling, supplied by Chase Brass and Copper Co. ,

we can account for the difference in performance of the two emitters only in

terms of their surface preparation. Their preparation was substantially the

same except that, after being polished, the earlier emitter was heat-treated for

3 hours at 2380°C, while the later emitter was electroetched and heat-treated

for 3 hours at Z4Z0°C.
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The difference in annealing temperature is probably not significant in pro-

ducing the superior performance. On the other hand, the effect of electroetching

is to remove material selectively from the surface. The fast-etching grains are

those with a high specific surface free energy, and their removal tends to in-

crease the proportion of slow-etching, low-surface-energy grains on the emitter

surface. These latter grains, having surfaces composed of basal or (00. i)

planes, also have a high bare work function; therefore, they bind cesium well,

and their presence enhances the performance of the emitter. So we attribute

the superior performance of the emitter to the fact that its surface is composed

not of the random crystal surfaces exposed by polishing, but of the non-random,

preferentially basal-plane surfaces exposed by etching. Atoms are removed

from the emitter surface in both electropolishing and electroetching, but the

rate-determining steps in the two techniques are different, and so the limiting

forms of the surfaces are different. High-temperature heat treatment allows

the surface atoms to rearrange themselves in a minimum-energy configuration,

and therefore it is of interest to examine the limiting form of the surface under

this treatment. The factor determining the form of the surface after vacuum

annealing is the specific surface free energy, and the limiting form is that having

the minimum integrated free energy. That form will therefore have the maxi-

mum possible area of low-energy basal plane. As mentioned above, such planes

are favorable for emitters, and so heat treatment will tend to improve the therm-

ionic performance of an emitter.

From our observation that emitters with different electrochemical treat-

ments and similar heat treatments differ in performance, we conclude that the

heat treatment used does not have an overriding or determining effect on the form

of the surface, and that the electrochemical treatment is important. The varying

thermionic emission properties of an etched emitter during the course of heat
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treatment have not been studied in this work because it has been of more value

to know that the emitter surface was stable, and to eliminate possible emitter

changes as variables in the analysis of the diode.

We conclude that combined electrochemical and thermal treatment to develop

high-work-function planes can be important in the preparation of rhenium therm-

ionic emitters.
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CHAPTER V

ADDITIVE STUDIES

A. Introduction

The performance of cesium thermionic converters has been well docu-

mented over a wide temperature range and with many different combinations

of emitter and collector materials. It is now possible to evaluate the influence

of electrode material and geometry variations on the power output, and it is

apparent that further improvements in performance will require the introduction

of additional components into the converter system° Electronegative elements

form a suitable group of additives and will act primarily on the electrode sur-

faces° These substances establish an additional degree of freedom for the

hardware designer and enable him to produce an improved device by providing

an independent means for varying the surface conditions.

1
The Rasor-Warner theory of cesiated surface work function shows that

high work functions in the uncesiated or bare condition are associated with low

work functions at any given cesium arrival rate° Electronegative ions adsorbed

on an electrode surface form a negative dipole layer, inhibiting the emission

of electrons; that is, raising the bare work function of the surface. From the

theory, it is expected that sucha covered surface would require lower cesium

pressures to produce a given work function than would the bare emitter material°

2
Part of the preceding program was devoted to defining the relation be-

tween spacing and cesium pressure. In this study, the influence of the spacing-

pressure product on power output was described, and an optimum value for a

wide range of conditions was shown to exist. As the spacing is increased beyond

this optimum, increased scattering losses in the plasma cause a reduction in

V-1



THERMO ELECTRON
F. N G | II E E R I N G CO R P 0 R A T t ON

output power. Thus, if the cesium pressure could be reduced while holding the

emitter work function at a low enough value to establish the required current

density, spacing could be increased, greatly simplifying the hardware design.

The electronegative additives offer this possibility.

Langmuir and Villars 3, in 1931, were probably the first to conduct con-

trolled experiments with electronegative elements and cesium. They studied

the effects of oxygen adsorbed on tungsten filaments, both with and without

cesium vapor, and showed increaseduncesiated work function values and sig-

nificantly lowered cesiated ones in the presence of oxygen. These results did

not arouse much further interest until the advent of practical cesium thermi-

onic converters, when the possibilities of fluorine compound additives were

4 5 6
investigated by Aamodt, Ranken, and Langpape. Actual converter perform-

2,7, 8 9
ance studies had also been undertaken by Thermo Electron and Jester.

Even though the validity of these results may be doubtful as far as the role of

fluorine as an additive is concerned, they have shown that the effects of electro-

negative additives are in accord with the predictions. These experiments are

discussed in more detail later in this report. The literature of the field is

also surveyed briefly in Appendix A.

While CsF is an attractive additive because of the high electronegativity

of fluorine and the compatibility of Cs with present devices, investigations with

CsF have shown consistently poor reproducibility and given unreliable results.

The initial effort in this program was therefore to develop a correlation between

the work function of a surface and the fluoride coverage on this surface. Ex-

periments designed to check the reproducibility and stability of the results

were performed under controlled equilibrium conditions in the research para-

metric converter described in Chapter llI. The experiments were only partially
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successful, and finally the additive became inactive as it had in many previous

cases. At this time the CsF additive techniques were reviewed, and a series

of simple glass-tube filament-emitter experiments was initiated. Glass tubes

provided a convenient vehicle for a number of short-term, low-cost experi-

ments which could determine the effects of various additives, outgassing tech-

niques, and reservoir temperatures, and at the same time eliminate additive

transport problems. The difficulties associated with the previous additive

studies were traced to water contamination in the fluoride and it is believed

that this water was responsible for the additive effects obtained previously --

the fluoride itself being relatively ineffective in the .devices°

The surface-additive work was then subdivided into two tasks.

The first task was to purify CsF enough to permit the determination of

its effect on the work function of tungsten at thermionic temperatures. To

accomplish this, the background pressure over the CsF crystals and in the

test vehicle must be reduced below 10-10 tort. A special metal-ceramic tube

capable of fulfilling this requirement was designed and fabricated. Experiments

were performed which documented the effects of CsF, including measurements

of its desorption energy. This work determined the true effects of fluorine and

furnishes data_to develop a theory explaining the unexpectedly small changes

in comparison with oxygen.

The second task was to utilize the beneficial effects of oxygen. The

thermodynamic equilibrium of oxygen in the converter environment was ana-

lyzed, and the conclusion was reached that the 02 pressure required for cover-

age was chemically compatible with the environment in the vicinity of the col-

lector. Some formation of oxides of Mo may occur but no loss of collector

material is expected at these temperatures. A critical experiment was con-

ducted using Cs20 as the 02 source. In this experiment, 02 was used
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in a converter under steady-state conditions for the first time. The emitter

work function and power output of the device closely resembled those of the

CsF-charged devices. This converter was then tested for stability. A second

converter, specifically designed for oxygen additive using a Cu20 source, was

then fabricated, and it produced consistent and reproducible data. This system

can exploit, simply and directly, the beneficial effects of oxygen under steady-

state equilibrium.

B. Theoretical Analysis

In.this program and in previous work, a considerable volume of data has

been accumulated pertaining to the tungsten-electronegative additive system.

The task of analyzing and correlating these data has progressed concurrently

with the experimental task. As a result of these efforts, a framework has

emerged which allows a phenomenological description of this system. In this

section, the framework is presented and compared with experimental results.

These hypotheses will be used later to analyze the experimental data.

The ultimate objective of the surface additive studies is to formulate a

detailed model of the tungsten surface covered with fluorine, or any other

element_ and cesium° As an interim approach, the possibility of considering

the tungsten surface with a fixed additive coverage as a metal with higher bare

work function and then using the Ras or -Warner theory to predict the cesiated

work function was investigated and proved successful. This result, apart

from helping to correlate experimental observations, is significant because

it implies that the effects of electropositive and electronegative adsorbates,

acting concurrently, are separable in terms of their individual effects. The

dynamics of additive desorption have been considered, and a relation between

coverage, surface temperature, and arrival rate is presented. Finally, using
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a simple electrostatic model, the arrival rate required for a given work function

changes with low coverages is derived°

1o The Interdependence of Cs and Additive Effects. The Rasor-Warner

analysis considers the system composed of two components, cesium and emitter

surface. It postulates a physical model for the surface and develops certain

relationships among the properties of the system° The present analysis pro-

proses to apply the conclusions of the Rasor-Warner theory to the three-com-

ponent system composed of cesium_ electronegative element, and emitter sur-

face° To do this, the hypothesis is made that at constant additive coverage,

the additive-emitter portion of the system is equivalent to an emitter with a

bare (non-cesiated) work function value equal to that obtained when the additive

is the only adsorbateo

Rasor and Warner give the following expression for A¢, the change

in work function of a metal surface when covered with an adsorbate:

1
A_b - 1 -f (_bo+ _io - I - T/TRh - kTLnB/C) (i)

where:

is a fraction of the dipole layer potential drop penetrated

by the ion core of the adatom0

is the normal bare electrode work function.

is the image force binding the adatom to the bare

surface°

is the ionization potential of the adatomo

T/T Ris the ratio of surface temperature_ T, to cesium

reservoir temperature, T_o

h is an activation energy for the evaporation of cesium from

the reservoir°
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B,C

In this relation,

temperature in the region of most interest in thermionic converters°

the equation may be simplified to:

are the constants describing the desorption from the surface

and evaporation from the reservoir, respectively.

all the terms except the last two are practically independent of

Therefore

A@ = A(_b ° + D - hT/T e - kT6nB/C) (g)

Furthermore, the last term may be neglected since the constants B and C are

practically equal, so that 6nB/C _ 0o For two materials differing in bare

work function by a given amount it is possible to relate the T/T, values re-

quired to produce a given work function change, A_b. Let the bare work func-

tion of the reference material be _b° and the change in work function be A(b for

a surface-to-reservoir temperature ratio, T/TR. Now, consider a material

with bare work function equal to _b° + 5_o and assume that it exhibits a change

of work function equal to the reference A_b at a new ratio, (T/TR)o It follows

from equation (2) that

_b° ÷. 8 _b° - h(T/T e )' = (b° .- h(T/T.)

or the ratio of surface-to-reservoir temperature required to produce the same

work function change in the new material as in the reference material is given

by:

T = T/T. +

whe r e h for cesium is 0.76 eV. Substituting this value in equation (4),

/

T- TR + 1"3Z5_o

(3)

(4)

(s)
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The effective work function value, @s corresponding to (T/T.)

terms of the properties of the reference material by

is given in

@' = @ + 6_b ° = (90 + A¢) + 6_b ° (6)

By use of these relations and a 9 versus T/T R plot for tungsten and cesium,

a new plot of the straight=line portion can be constructed for an additive-covered

surface, knowing the 6@o for a given additive coverage.

Measurements taken during this program have shown that the additive

increases the bare-tungsten-surface work function by 0o4 to 007 eV, depending

on coverage, the most stable value being about 00 4, and the maximum 0.7 eV.

Figure V-1 shows the _b versus T/TR curve for 9o of 4° 62 eV, corresponding

to tungsten. The two dotted lines show the shift expected for a 6_b° of 0.4 and

0.7 eV and were determined by the procedure outlined above. Experimentally

determined work function values for tungsten in the presence of additive and

cesium are shown as points inthis figure, each group corresponding to a differ-

ent emitter temperature.

These points give excellent agreement with the calculated curves

in the higher T/T R region_ showing that at low Cs coverages the additive modi-

fies the surface to produce a behavior equivalent to that of a pure surface of

the same bare work function. At higher coverages, however, the curves do

not bend so rapidly but continue toward lower work function values°

This deviation is probably a limitation of the Rasor theory rather

than an indication of additive behavior, since it has been observed in non-additive

systems as wello
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2. The Rate Equilibrium and Coverage Relations for Adsorbed Additives

The temperature dependence of reactions such as adsorption or desorption on a

surface may in many cases be described by the Arrhenius equation. This re-

lation associates with the reaction an activation energy which has been inter-

preted as the energy required for the reaction to take place. A knowledge of

this quantity will aid the understanding of the binding between the adsorbed atoms

and the substrate. Furthermore, this relation can provide a basis for calcula-

tions of the arrival rate, and therefore the additive vapor pressure necessary

to maintain a given coverage on the emitter surface.

The rate of desorption, from the Arrhenius equation, will be

-E $/kT(dn
- Ane (7)

dt

where

n

dn

dt

A

E_

k

is the concentration of the adsorbed layer

is its time rate of change

is a frequency factor which is dependent on temperature

is the activation energy for the process

is the Boltzmann constant

T( is the emitter temperature.

To maintain a constant concentration,
dn

rate, _, equal to d'-t- The coverage,

n, it is necessary to provide an arrival

e, is then given by

where n

@ n --_-e
N AN

E $/kT E

is the total number of available sites. This relation may be used

(8)
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Figure V-I. Experimental and Theoretical Cesiated-Surface

Work Functions with Electronegative Additive.
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to determine the arrival rates required for a given coverage at different tem-

peratureso Once the quantity E has been evaluated,

coverage can be calculated. To maintain a given @

T 2, the arrival rates Pl ands2 must be related by

arrival rate for any given

at temperatures T 1 and

_i T1 kT2 kTl
- e

_2 T2
(9)

Equation (9) includes the temperature dependence of A.

Assuming that the surface work function is modified by the formation

of the dipole layer of adsorbed ions and substrate, the work function will in-

crease by the potential drop across this layer. If depolarization of adjacent

dipoles is neglected, the potential may be estimated as

X = 4_rarlq (esu) (lO)

where:

(7

r

q

is the surface charge density per unit area

is the effective distance (in this case, the covalent radius)
-10

is the electronic charge (in cgs units, 4.77 x 10

The covalent radii of both fluorine and oxygen are given in Ref. 10 as about

-'8

0.7 x 10 cm. If we assume that at full coverage, one additive atom con-

tributing one charge is adsorbed for every tungsten atom, (7 will be set equal

to the value of N for (110) tungsten (1o4 x 1015 atoms/cm2). Actually, from

the formula for the oxide (WO3) and the relative size of the substrate and ad-

sorbate atoms, the density could be three times this value, Substituting these

values in equation (9) gives a X of about 21 volts. Taking 5_max (the change
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in work function that would result from a monolayer of additive in the absence

of depolarization I equal to the dipole layer potential, the change in work function

at low coverages is then:

6 @o = 6 @max 8 XM exp [E_/kT E] (11)
AN

Equation (11) relates the work function changes resulting from the adsorbed

layer to the coverage and arrival rates° By comparing experimental data with

this expression_ the validity of the hypotheses can be verified.

11,12,13
Using the desorption energy data for oxygen currently available

(135- 160 K cal/g-atom), the arrival rate required to maintain a given coverage

or the equivalent, 6@0_, for various emitter temperatures was calculated from

equation (11)o An average E* of 145K cal/g-atom and anA equal to kTE/h,

as derived from statistical theory, were used for the plot of Figure V-2. Note

that e is of the order of 0o 1_ and the assumption of no depolarization is probably

valid° Figure V-3 is a similar plot, but shows pressure as well as arrival rate.

3. Desorption Energy. One of the objectives of this program has been the

measurement of the energy, E$, associated with desorption for the fluorine-

tungsten system. The theoretical relations necessary to evaluate this energy

from transient experiments will now be developed. A typical experiment starts

with a heated emitter surface in equilibrium coverage with an arriving stream

of fluoride particles. By measuring the changes in electron emission with time,

when the arriving stream is suddenly interrupted, the approach to bare surface

conditions may be related to ESthrough equations (7) and (11) and the Richardson

equation.

Rearranging equation (7) and substituting from equation (8) gives:

dn
-- -E */k TE
dt _ d[_n @L = Ae
n dt

(IZ)
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A time constant, T, may be defined as the slope of _n_ versus

(11) and the Richardson equation, it is evident that

i
t

o

t. From equation

(13)

where the subscript t refers to the value at time t, and o refers to the value in

the bare state. To simplify the time measurement, any time during the delay

may be chosen as an initial state. This is true because the relations are expo-

nential. Then normalizing with respect to the final values gives:

i
t

_n:--
% i

t o

i.
t 1

o J_n m
1

o

(14)

with the subscript i referring to the initial state. Measurements obtained over

a range of temperatures give a set of values for T which can then be used with

equation (1Z) to give a value of E* from the slope of 1/kTe versus _" plot. Thus,

and

£n T = _nA - E$/kTE (15)

d _nT

1
d--

kTE

- -E* (16)

These techniques were used with the surface studies device to determine the

desorption energy of fluorine additive on tungsten.

Those same experiments make it possible to approximate the initial

coverage if the initial arrival rate is known. A plot similar to that of Figure V-Z
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may be constructed for fluorine using the observed values of 6_. Assuming an

exponential decay, the initial rate of decay of the number of atoms adsorbed,

o Then, with n the origi-dno/dt , must be equal to the original arrival rate, _o o

nal adsorbed layer density,

Since T

dn n
o o

dt - _o = "_- (17)

has been determined as described above, the initial coverage is simply

n

e o
o - N - _F_o (18)

This series of experiments assumes that the coverage is always small and de-

polarization negligible.

Co Cesium Fluoride Investigations

The original objective of this program was to develop and characterize

the use of CsF as an electronegative additive. As in the past, the behavior of

this additive in the converter was found to be erratic, and finally the effect

was lost. Rather than detail in chronological order the experiments performed,

this section will discuss the results of a careful study of CsF behavior and

interpret its earlier performance in the light of these studies.

1o Contaminant Control. Langmuir_s work 3 on oxygen and water vapor

has shown that extremely small amounts of these substances are enough to modify
12

the surface work function of a tungsten emitter° Engelmaier and Stickney have
-8

also shown that at 02 pressures as low as 10 torr there is an observable effect

on work function below 1900°Ko It follows then that surface studies require great

care to ensure a clean, oxygen-free environment for the tests° In cesium-filled
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devices these effects are not usually observed, since the cesium quickly getters

the limited amounts of oxygen present. Two dominant sources of oxygen must

be considered in additive investigations: the additive and the test vehicle itself.

With the CsF additive, experiments were performed to evaluate the

time and temperature characteristics and the type of contaminant appearing

during outgassing. As a start, a getter ion pump was connected to a pinched-off

copper tube containing a charge of CsF. As the charge was heated the pressure,

time, and temperature characteristics of evolved gases were recorded. It was

found that, on heating to 400°C, there was a large pressure rise which, after

a period of a few hours, finally decayed. However, twenty-four hours later

when the temperature was further increased to 500°C, additional gas was still

given off. A second, more definitive test was next performed with a mass

spectrometric analysis of the gases.

The sample of CsF was placed in a vacuum-fired, low carbon-nickel

tube, one end of which was closed while the other was connected to a mass

spectrometer system. A heater was placed around the CsF container and the

entire system exhausted. The temperature of the sample was raised, and

again rapid gas evolution was observed. After an overnight bake at 100°C,

the pressure was found to be steady and finally became low enough to analyze.

In Figure V-4, the partial pressures of the gases detected are plotted versus

time. The left-hand scale corresponds to the partial pressure of each gas in

the CsF container. After each increase in baking temperature the pressures

gradually decayed, but even after fifteen hours at 450°C to 550°C an increase

-5 -6
in the temperature resulted in I0 tort of CO and i0 tort of H 2. This agrees

with the results of the first experiment and shows that particular care in the

fluoride outgassing is required. Up to this time, none of the fluoride used in
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additive investigations had been particularly carefully outgassed and therefore

contained large enough amounts of water vapor to cause work function shifts

and invalidate the tests°

2. Surface Studies with Purified CsF. The experiments discussed above

make it clear that much more elaborate control of the test vehicle atmosphere

is necessary in order to isolate and measure the effects of CsF on the emitter

surface. A new test vehicle was therefore constructed for such experiments.

The new vehicle employed fabrication and testing techniques capable of reducing
-11

residual gas pressure to extremely low values, i.e., 10 torr. This section

gives a detailed description of the device and experimental procedure.

a. Test Vehicle Design and Assembly. The test vehicle shown in

Figure V-5 incorporates two tungsten filaments mounted with springs which

maintain tension on the wire to avoid sagging. Feedthroughs provide connections

for heating current and emission measurements° Guard rings, isolated by ce-

ramic insulators from the active collector, provide for electrical guarding ac-

tion. The entire shell can be immersed in liquid nitrogen to aid in minimizing

gas evolution during tests° A getter ion pump connected to the upper flange

provides continuous pumping, The CsF dispenser is heated electrically by

passing a current through its shell. Its orifice is arranged to form a beam of

CsF molecules which will deposit on the filaments in the region of the collector.

Assembly of the tube was accomplished by first brazing together the

guard rings, ceramics, flange, and upper feedthroughs. The filaments with

their attached springs were then spot-welded to the feedthroughs. The additive

dispenser with the attached tubulation was next welded into place at its outer

edge and remained connected to a separate ion pump until after outgassing.
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b. Filaments. The filaments were constructed of 0. 005"-diameter

tungsten wire about 6 inches in length. Since the filaments were not visible

in operation, their temperature was inferred from the heating power input. Using
14

the Langmuir-Jones relations for a tungsten filament 0. 005" in diameter,

Figure V-6 was plotted giving filament temperature as a function of heating

current. This relation assumes no gas cooling and an accurate knowledge of

the wire diameter. A check on the calculation was performed using a dummy

filament in a glass bell jar. The results agreed with an optical pyrometer

reading to within 20 ° at 1800°K

Non-uniformity in the temperature may arise because of end- cooling
15

effects. From the calculations of Langmuir, MacLane and Blodgett , a plot

was made of distance from the end connection for 99. 9% of maximum tempera-

ture versus temperature. This plot is also shown in Figure V-6 and assumes

that the lead connection is at room temperature. It is seen that lead influence

extends less than 0°5 cm from the connection for all temperatures° Clearly,

the temperature will be uniform in the collector region.

c. Outgassing. The entire tube assembly with its ion pumps was

mounted in a vacuum enclosure during this process to avoid oxidation of the

envelope. Figure V-7 is a schematic of the outgassing arrangement. The CsF

is contained in the trap formed by the _U _ bend in its tubulation and may be

heated and pumped separately from the test vehicle body. Most of the gases

given off were, therefore, rapidly exhausted without entering and contami-

nating the actual test vehicle or its pump. Since cesium fluoride normally

contains large quantities of water, the baked fluoride samples obtained from

the outgassing and mass-spectrometer experiments described above were

used to charge the test vehicle. A glove-bag with a dry nitrogen ambient

reduced water pickup during this charging procedure. Dry nitrogen was also
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forced through the test vehicle until the additive ion pump was attached, again

minimizing possible water and carbon dioxide absorption.

The device was then pumped through the roughing tubulation. When

the pressure was low enough to start the ion pumps and their operation appeared

stable, this tubulation was pinched off. Pumping was continued with the device
-7

at room temperature until a pressure of the order of 10 torr was reached.

The enclosure was then evacuated, and heat was applied to the test vehicle to
-6

raise its temperature until a pressure of 3 x 10 torr was reached at about

200°Co When the pressure rise had leveled off, the additive tubulationwas

heated but maintained at a lower temperature. A slowly rising pressure only

remotely responsive to the test vehicle temperature appeared after a short time.

This was traced to heating of the ion pumps by direct conduction through the

flanges in the absence of convective cooling with the vacuum environment° Water

cooling was provided for both pumps and heating was continued. The tube itself

was finally maintained at 5000C for 18 hours and the fluoride at 300°C for 17

hours. The fluoride was raised to 500°C for 1/2 hour preceding the final bake.

Since at this level the evaporation rate becomes significant, the temperature

was reduced to avoid excessive losso The pressure in the hot tube was 10-7torr,

-10
which dropped to 5 x 10 tort after cooling° This was considered a satisfac-

tory value, so the additive pump was pinched off and the test vehicle removed

from the vacuum enclosure.

During testing, pressure in the tube was monitored by recording the

ion pump current. Because of the close coupling of the pump to the tube, the

readings were an accurate representation of the actual tube pressure. This

measurement was limited by the pump leadthrough leakage current, which was

_estimated under actual vacuum conditions by removing the pump magnet and
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determining the residual current. The pressure corresponding to this leakage

-13
was less than l0 torr and was considered negligible.

d. Work Function Experiments. Surface work function was calculated,

using the Richardson equation, from measurements of emitted current at specific

surface temperatures. Since the accuracy of the result is dependent on the cur-

rent density, both area and emitted current must be well defined. The guard

structure used in the device eliminates leakage currents and at the same time

provides a precise active filament length for use in the calculation of area. Since

direct observation was not possible, filament temperature was determined from

the Langmuir-Jones tables using the filament heating current. A diagram of

the electrical circuit used in these tests is shown in Figure V-8. The precision

voltmeter was necessary because of the strong dependence of temperature on

current. The electrometer ammeter, as well as measuring collector current,

provided a low-impedance guarding circuit and furnished the required following

action for the guard electrodes. The output I®V curves were plotted on the X-Y

recorder, providing a complete graph of the characteristics from which satura-

tion currents could be determined.

The completed test vehicle, after outgassing, was inverted in such

a manner that the CsF pellets fell into the pinch-off rather than down into the

tube itself. The objective was to evaluate the bare work function values of

the filament before admitting additives to furnish a control. First, the fila-

ments were cycled several times to about 2000°K and soaked at this tempera-

Lure for about an hour. This treatment further outgassed the device by cleaning

the filaments. The preliminary runs without liquid nitrogen, showing approxi-

matel 7 the expected tungsten values of about 4. 7 eV, are plotted in Figure V-9.

Note that the plot is parallel to the work function lines, indicating that there is
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no temperature dependence. These results validated the assumption that the sur-

faces were clean and that nothing significant was being evaporated from the fila-

ment at the higher temperatures. Near the saturation knee an unusual bump

appeared in the curves. With different filament polarity the character changed

and became a smooth decrease. This effect is unexplained, but may be connected

with the magnetic field of the pump.

The test vehicle was then immersed in liquid nitrogen for further testing.

Figure V-10 shows the plots of these results. Only a small change was produced

by flashing the filament 2600°K for five minutes between runs. The pressure

during the flashing rose to 5 x 10 -8 torr and then fell to about 10 -9 torr during

the run° A control run using both a hot and a cold filament was made by heating

the additive reservoir but not the tubulation. No change was observed in the

characteristics of either filament indicating that heating the empty CsF reservoir

had no effect on the emission. These experiments completed the control evalua-

tion of the test vehicle°

The test vehicle was prepared for additive tests by dismounting and

tipping it so that the CsF pellets fell from their trap in thetubulation bend, down

into the reservoir. Since the pellets could be heard dropping into place, their

presence was verified.

Before each day's run, the filaments in the test vehicle were held at

about 1900°K for one-half to one hour. The resultant heating of the test vehicle

removed adsorbed gases from the walls and filaments. A burst of gas to about

10 -7 torr was observed initially, followed by a recovery to 10 _9 torr. The

-8
pressure then rose slowly to 10 as the walls became heated, and recovered

-9
to 10 near the end of the heating time. After cooling to liquid nitrogen tem-

-11
perature, a final pressure of 10 torr was obtained. A final flash to 2600°K
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for three minutes stripped the filament of any adsorbed layers prior to testing.
-10

Throughout the testing the maximum pressure observed was 5 x 10 tort, but
-11

the pressure was below 5 x 10 most of the time. Since these pressures were

two orders of magnitude below that required for oxygen effects, the device was

considered clean.

In steady-state experiments, the reservoir was heated to the desired

temperature, and the J-V characteristics at each of several filament tempera-

tures were determined. The presence and arrival rate of CsF were evaluated

from the current in the ion-accelerating portion of the characteristic. Figure

V-1 1 shows typical curves for two different filament temperatures. The ion

current change is due to a drift in reservoir temperature and not to the filament

temperature change.

Transient behavior was examined in two different groups of experi-

ments. In the first_ a step function current change was applied to the unheated

filament, and the emission current was plotted as a function of time. Plots

were made both with and without the CsF beam, and samples are shown in

Figures V-12 andV-13. A variable delay, dependent on the time since the

filament was last heated, appeared in the bare runs° By following a specific

cold, preheat, and final current time schedule for each run, the variations were

held to about 0. 1 sec. In the second group, equilibrium was first established

between the additive arrival rate and the heated filament. The CsF dispenser

was then quenched, abruptly terminating the arrival of CsF onto the filament°

Again current was recorded as a function of time. In this case, since the

filament temperature is constant during the desorption, it is easier to evaluate

the desorption energies° A typical run is shown in Figure V-14. Initially,

steady-state conditions prevailed under a fixed CsF arrival rate, as is indicated
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by the constant value of the emitted current. When the CsF dispenser was

quenched, the current increased exponentially, and eventually it reached a final

value corresponding to _bare" tungsten emission. Runs were taken over a

range of surface temperature from 1380°Kto 1650°K, these limits being imposed

by the restrictions in available arrival rates and current-measuring techniques.

At the lower temperatures the signal-to-noise ratio deteriorated, while at the

higher limit coverage became so small that the work function changes were not

detectable.

eo .Steady-State Results. Data from these experiments was analyzed

for work function values. Both covered and bare levels were calculated, and

they are plotted in Figure V-15. These points show a maximum change of about

0.3 eV. The arrival rate for these tests was 0.3 _a/cm 2 and was evaluated by

measuring the cesium ion current produced by the dissociation of the CsF on the

hot filament. It is assumed that at these surface temperatures virtually all the

incident fluoride molecules are dissociated and form cesium ions which are in

• I6, 17
turn emitted. The corresponding particle arrival rate and pressure must

1012 particle/cm 2 torr. At these lowthen have been 1. 9 x -sec and 2 x 10 -8

values, the question arises whether traces of oxygen contamination could be

responsible for these results.

There are several factors which reinforce the conclusion that it was

actually fluoride effects that were observed. A calculation of desorption energy,

to be described below, indicates much too low a value for oxygen. The work

This assumption had also been verified in these experiments by showing that

there was no increase in ion current when emitter temperature was increased

above a threshold value. See Figure V-11 also.

V-34



c_ T._===° ....=.=o.
4V

66-R-5-46

e_
E
u

m

Z
El
a

I--
Z
LU

a

Figure V-15.

TE'°K

2000 1700
m

I I I I I
1500

i I
1300

I

CsF Arrival Rate

o- 0.3 _/A/crr_

•- None

IO, O00/T E

Surface Work Function of a Tungsten Filament

in the Presence of CsF Vapor.

V-35



THERMO ELECTRON
ENGINEERING CORPORATION

function shifts are also much less than those usually found with oxygen. Finally,

in the first group of experiments, where the filament was maintained at a low

temperature while the additive was allowed to cover the surface, if any oxygen

had been present a pronounced decrease in work function of about 0. 7 eV would

have been observed° In addition, this change would have remained evident for

the long period of time required for the oxygen to desorb from the surface. At

1850°K, Langmuir found lifetimes of the order of 30 minutes for this desorption.

In our experiments at these temperatures, no work function change at all was

observed. These factors indicate that the cesium fluoride was responsible for

the observed phenomena.

f. Desorption Energy. The relations developed in the theoretical dis-

cussion may now be used to evaluate thedesorptionenergyo Figure V-16 shows typical

plots of normalized coverage versus time and was obtained through the use of

equation (14). The logarithm of the time constants T obtained from this chart

are plotted as a function of 1/kT for use in equation (16)o Figure V-17 shows

this plot. The desorption energy from the slope of this curve is about 3.3 eV.

This slope has been weighted more heavily toward the low-coverage (high-tem-

perature) points because of the decrease in energy which would be expected as

the surface becomes more fully covered.

g. Coverage Relations. Using the measured arrival rate at the start

of the desorption experiment, together with the time constants obtained from

plots similar to Figure V-16, the actual initial coverage can be determined from

equation (18)o Combining these results with the work function change indicated

in Figure V-15 allows the plot of Figure V-18 to be made. This figure defines

work function change in terms of surface coverage and successfully completes

one of the main objectives of this study°
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These results show that, even where there is significant coverage, the

work function is only slight1 V raised. As the coverage increases, the slope of

the curve decreases, indicating that the adsorbate becomes less effective as the

surface becomes more covered. A similar behavior has been observed with

cesium and is due to the occurrence of depolarization when the adsorbed atoms

become closel V packed. At the higher coverages, the assumption that the decay

is described by a single time constant is no longer valid, and the actual coverage

is probably somewhat less than the calculated value. For the low coverages the

curve may be used to predict the work function at higher temperatures and can

serve as the basis for the development of a surface additive theory°

The coverages shown in Figure V-18 assume that a monolaver consists

of one fluorine atom for each tungsten atom, as discussed in the theoretical

section. While the initial slope of this curve appears to give characteristics

similar to those for oxygen, the curvature of the higher portions seems to indi-

cate that the equivalent changes will not be obtained. In addition, the 3. 3-eV

desorption constant, as compared with 6. 3 eV for oxygen, implies that the

fluorine will desorb much more rapidly than oxygen, and therefore much higher

arrival rates will be required.

The curve of Figure V-19 indicates the CsF arrival rate required to

maintain significant coverage at various surface temperatures and also shows

the reservoir temperature required to establish this pressure, This curve is

similar to that calculated in Figure V-3 for oxygen and can be used to evaluate

the coverage resulting from the reservoir temperatures examined in equilibrium

fluoride experiments° Note that the fluoride ak'rival rate must be 5 to 6 orders

of magnitude greater than that for oxygen for equivalent coverages.

V-40



._ THIERNO IE I. iir C T N O Ni[mllm|[mluo comPomATiom

66-R-7 -33

1020

I019

eo10le

m

Q.

4

l017

j(_16

I
1400 1500

440

-- 420
I I I I I I I I

1600 1700 1800 1900 2000

rE I°K

Figure V- 19. CsF Arrival Rate Required to Maintain

Half a Monolayer Coverage at a given

Surface Temperature

V-41



THERMO ELECTRON
[ N G | N E E R J N G CO R P 0 R A T I 0 N

3. Converter Studies. This study originated during the previous year and

was continued into this year in the hope of performing more controlled experi-

ments and finally extending the greatly enhanced short-term performance of

CsF-additive converters to usefully long periods of operation, Initial tests

examined the uncesiated work function characteristics of the tungsten emitter.

These results were then correlated with the performance obtained when the

device was cesiated. Our hopes were not realized in this test vehicle, but

enough useful data were obtained to direct additional experiments which finally

achieved the desired results.

ao Experimental Procedure. The test vehicle used in these runs was

the research parametric converter described in Chapter III and incorporated a

tungsten emitter opposite a molybdenum collector and guard. The metallurgical

treatment of the emitter is described in Chapter IVo An additional reservoir

similar to that for cesium was used to control the CsF vapor pressure in the

device.

To minimize water absorption while the CsF pellets were being added,

the test vehicle was flushed with dry argon through the cesium reservoir tubula-

tiOno Twelve CsF pellets totaling approximately 0o 6 g were dropped into the

reservoir, the sealed metal Cs capsule was inserted into its reservoir tubulation,

and the tube was pinched off. Outgassing was accomplished through the additive

tubulation in a manner similar to that used in other test vehicles. A one.-liter-

per-second ion pump was connected to the additive tubing and left pumping after

preliminary outgas singo

In order to avoid any significant loss of CsF during outgassing, the

reservoir was maintained at or below 200"C for most of the 24-hour period,.

For a total of three hours, the CsF was outgassed at 300°Co By following this
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schedule we expected to achieve sufficient outgassing with a minimum loss of

additive. A final pressure of about 3 x 10 -7 torr was attained before leak-checking

and pinching-off. The device was then mounted and set up for testing.

Emitter work function values are determined from saturated emission

measurements, using the Richardson equation. The experimental task, then,

consisted of obtaining current-voltage characteristics at known emitter tempera-

tures. The instrumentation used for this task and described in Chapter III allows

tracing of the current-voltage characteristic and plots the characteristic with an

X-Y recorder. The saturation currents are then taken from these plots, and,

together with the surface temperature, they furnish the data for calculations.

For emitter work function measurements, the collector and guard ring

are kept quite cold, around 300°C for vacuum measurements and about 50°C

above the additive reservoir temperature for additive work function measure-

ments. The spacing is kept at a low value, 0. 5-7 mils, and therefore it is

necessary for the collector and emitter surfaces to have been parallelized prior

to testing. The purpose of this is to avoid the presence of a negative space

charge_ which would result in an erroneous saturation current measurement.

Procedures for parallelizing are described in Chapter III. The a_bsence of space

charge is ascertained by varying the spacing and observing that the saturation

current remains virtually constant; that is:

8J18d
s

T E = 0 as d-" 0 (19)

where J is the saturation current, d, the spacing, and T E the emitter tem-
s

perature. Note that condition (19) does not necessarily hold true when Cs vapor

is present, because of scattering. Once all the above conditions are fulfilled,

5-V characteristics are traced at selected emitter temperatures°

V-43



THERMO ELECTRON
£ JI G | N [ [ II I N G CO R P 0 R A T I 0 N

b. Experimental Results. The saturation current values obtained

from these tests have been plotted as a function of reciprocal emitter tempera-

ture° On such a plot work functions are associated with a set of roughly parallel

diagonal straight lines. Any variation in work function with emitter temperature

is shown when the data points cross these lines.

Before raising the additive reservoir temperature, the emitter was

tested for bare work function. The values obtained are shown as +'s in Figure

V-20o Initial readings were taken starting at a temperature of 1900°K and

increasing to 2140°K. As the emitter was then cooled to 1830°K, additional

readings were taken° For these runs the spacing was about 7 mils. From the

plot it is seen that the initial values (4.85) were somewhat higher than would be

expected for bare tungsten, but, as the above cycle was carried out, the values

centered on 4. V6 eV and remained there after cooling. It was believed that

additive probably coated the emitter somewhat during outgassing and was finally

driven off at the higher temperatures. The bare surface value then remained,

even during the cooler portion of the test.

To verify that space-charge effects were not influencing the results,

a variable-spacing run was taken at a Te of 2090°K, the region where these

effects become significant. Figure V-21 shows the J-V characteristics obtained.

At less than 7 mils the effect becomes negligible, as shown by the fact that the

saturation current does not vary with spacing.

To provide a better overall picture of the history of this diode (#5000),

the time and temperature chart shown in Figures V-2Z and V-23 was prepared.

On this chart, electrode and reservoir temperatures and emitter operating hours

are indicated. Cold time was not recorded, but its occurrence is indicated by

arrows on the temperature lines. At the top of the figure, the measured work
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function is indicated by solid lines, and values at other times are approximated

by the dotted lines°

The initial tests with low additive reservoir temperature, TA, produced

approximately bare tungsten work function values, as indicated, up to hour 6.

The additive temperature was then increased in steps, allowing many hours of

soaking at each level. Until hour 77, with a T A of 670°K, the surface remained

essentially at the bare value. At this time, a short-term effect was observed

when the emitter temperature was rapidly increased. However, the bare value

quickly returned, and it was not until a reservoir temperature of 7700Kwas

reached that a long-term stable effect was obtained. It was then possible to

cycle reproducibly between the bare value of about 4.75 eV at a T A of less than

730°K and the somewhat TE - dependent higher values of 5. 2 to 5.4 eV at a T A

of 770°K. This cycling covered the period from hour 83 to hour 158. In prepa-

ration for the next step increase in additive temperature, the collectors were

heated° An increased work function, which decayed back to the bare value after

25 hours, accompanied the Tc increase.

Upon raising T A , a temporary work function increase was observed.

However, after six hours the bare level was again approached, and this level

remained stable until the tube was cooled down at hour 233. Figure V-24 shows

the bare, high, and transient work functions observed. After the decay, at hour

210, the surface remained stable at near the bare work function value and only

short transient effects could be obtained by raising TA, by soaking with Tc lower

than T A and then raising Tc , or by raising T A still further to 910°Ko However,

the original stable values which occurred at a T_ of 770°K could not be reproduced.

During the tests, a large back current, varying with additive reservoir

temperature, was observed, and it is believed to be due to Cs + ions produced by
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the dissociation of the CsF on the hot emitter surface, Using this current, the

presence of CsF pressure may be inferred and compared with the expected

arrival rate° A chart of reservoir temperature, arrival rate, pressure, and

flow for CsF was prepared to facilitate these calculations, and it is shown in

Figure V-25 and V-26. For many runs, however, the current was so large

and the ions so massive that it was not possible to reach saturation. The current

was thus space-charge-limited except at additive temperatures below 750°K.

Figure V-27 shows an ion J-V characteristic with a saturation current of about

3 rnA/cm 2, which corresponds to a T A of 7000K. These observations confirmed

the presence of CsF vapor in the converter even after the additive effect had dis-

appeared.

One implication of the presence of the ion current is that the CsF is

being broken down on the emitter surface and cesium is continuously being formed

in the test vehicle. Cooling the emitter allows any such cesium to cover the sur-

face, and the emitted current will then follow the characteristic Langmuir S-curve

as the surface is heated. From the maximum and minimum points on the curve

an effective reservoir temperature can be calculated. Figure V-28 shows one

such curve with emitter temperature represented by time on the X axis. The

calculated reservoir temperature for this plot was 340 to 360°K and corresponds

to a pressure of i0 -4 to I0 -5 torr. Some cesium was evidently being consumed

in the tube, since higher pressures were obtained immediately after heating the

emitter, and lower ones after a cold period. Because of the high TE/T, ratio

of about 6, the small amount of cesium should not significantly cover the emitter

surface and could not account for the loss of CsF effect. Attempts were made to

drive the cesium into its reservoir, but no change in behavior was observed.

Cesium was finally admitted to the test vehicle by cracking the metal

capsule in its reservoir. Since the cesium pressure could then be controlled
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from its reservoir, any unexpected changes produced by the small amount of free

Cs previously present could be eliminated. Work function values obtained are

plotted versus T E/TR in Figure V-29 and show the "untreated tungsten _ charac-

teristic obtained in earlier work 2 with tube #1000 and tube #3000 after a period

of testing° Loss of additive effect with CsF only in the converter directly corres-

ponds to loss of additive effect when Cs is also present.

Autopsy and analysis of additive converters have shown on several

occasions that, even after the additive has become inactive, the CsF is still

present in the devices° In one case the pellets were still in their original form.

The results obtained from these converter studies can be summarized

as follows :

1. There is an apparent threshold in additive effect; stable

effects do not appear until a certain additive reservoir

temperature is reached, usually about 700°K.

Z. Only two stable work function levels have been observed,

a _bare _'_ one at about 4o 8 eV and an _additive _-_one at about

5. 3 to 5. 5 eVo

3o When a high CsF reservoir temperature is used, the work

function values soon decay to the bare level and a permanent

degradation occurs.

After degradation:

i° CsF is still present in the device with a pressure responsive

to its reservoir temperature

Conditions favoring abnormally high additive coverage, such

as low emitter temperature or a sudden increase in collector

temperature, produce a short transient increase in work

function
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3. Very high additive reservoir temperatures do not produce

signifi,..,:,.,._,..... changes :J.,_.....w ur_- function beyond a shorL transienL.

Two possibilities for the loss of additive effect were proposed at this

point: either a contaminating substance had been introduced along with the CsF

pellets or else the test vehicle emitter had become _poisoned _ and unresponsive

to CsF vapor° As is now known, it was the water contamination contained in

the fluoride which was responsible for the observed results° The effects to be

expected from such water may be summarized as follows and compared with

these actually observed:

Io Depending upon the fluoride outgassing time and temperature

schedule, there will be a certain minimum reservoir tem-

perature above which additional water will be given off.

2. Such water will act similarly to oxygen, and, since there

is only a relatively narrow range of oxygen pressure (about

an order of magnitude) between no effect and maximum

change, the observed values should cluster about the bare

level and a level 0o 7 eV higher.

3o Because of the outgassing characteristics of the fluoride,

even after the water has been gettered at a specific reser-

voir temperature, a further increase in temperature can cause

additional outgassing of water, which will finally be con.-

sumed.

4. CsF vapor itself is relatively ineffective on the emitter

surface and causes only a slight increase (0, 3 eV) in

work function even at close to a monolayer coverage°
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Comparing the reservoir temperatures indicated in Figure V-19 with

those actually used in the converter, it is found that, for the uncesiated runs

where the emitter temperature had to be relatively high, there was insufficient

additive pressure to maintain high coverages. Whenthe devices were cesiated,

however, the tests were performed at the lower emitter temperatures, where

high coverages could occur. In Figure V-29, those work functions obtained

after long periods of operation must have had significant coverage. The in-

creased cesiated values obtained are apparently due to the effects of the CsF

in the devices, but the actual mechanism responsible for the increase is not

understood at this time.

4o Glass Tube Studies. At the time the converter experiments were com-

pleted the phenomena occurring were not understood. A series of glass-tube

filament-emitter devices were constructed which facilitated testing of the various

hypotheses. A brief description of the devices and the experiments performed

is given below,

The glass tube design adopted consisted of an 0. 005 _ tungsten-filament

emitter mounted opposite a molybdenum-ribbon collector. CsF or other additives

were placed in the glass envelope, and the pressure was regulated by controlling

the envelope temperature° In effect, the tungsten _emitter _._was located within

the additive reservoir° The glass tube experiment was expected to eliminate

the possibility of poor communication of the reservoir with the emitter surface

and allos direct investigation of the possibilities of impurities and of chemical

reactions of additives with the converter components° Figure V-30 shows a

picture of a typical filament and collector assembly mounted on a glass press

before being sealed into the envelope.
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a. Experimental Procedure. The tube was outgassed by baking at

200 -400°C in an oven and flashing the tungsten-filament emitter to 24000K.

After 5 to 6 hours of outgassing, the tube was pinched off and J-V curves gen-

erated at various emitter and wall or "reservoir" temperatures. The emitter

temperature was measured with an optical pyrometer. A typical J-V curve is

shown in Figure V-31. It should be noted that, due to the large spacing (about

0o 060") and the fact that the filament was directly heated by dc current, about

I0 volts had to be applied before the emitter current saturated. This type of

heating resulted in a variation in potential along the filament length, and, since

the voltage drop was about two volts, the exponential portion of the J-V curve

was broadened by 2 volts. Neither of the above effects has any influence on

the saturation current which is of interest here.

From the measured saturation currents, work function values were

computed using, the Richardson equation. The emitting area is a possible

source of error. It was estimated by observing the filament pyrometrically

and determining the length at high temperature. The area thus obtained was

consistent with the emission current for bare tungsten. At any rate, an error

of as much as 0. 15 to 0. 2 V was possible, and the absolute value of work

function obtained should not be considered any more accurate than that° On

the other hand, the relative values are self-consistent within much narrower

limits°

b. Experimental Results. The first tests on tube #9000 were per-

formed with a CsF additive at emitter temperatures from 2100°K to 2400°K

and envelope temperatures from 310"K to 710°K. Figure V-32 is a plot of

computed work function versus envelope temperature with an emitter tempera-

ture of 2140°K. A pronounced work function maximum is evident at about

450°K, in spite of the scatter of 4-0. 1 eV in these measurements. The CsF
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Figure V-30. Typical Glass-Tube P r e s s  with Electrodes.  
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pressure corresponding to this temperature (obtained from Figure V-25) is less

-10
than i0 torr. This is a surprisingly low envelope temperature for an additive

effect. Furthermore, the indication of an optimum temperature for maximum

effect was unexpected.

At the higher envelope temperatures the filaments began to be attacked

chemically and finally failed. The second tube (ll000) produced similar results,

and at the conclusion of these runs the glass envelope near the filament region

was coated with a metallic deposit, apparently tungsten from the filaments. Con-

sidering the low filament temperatures (1800-2100°K) used, evaporation could not

be a reasonable explanation, and some sort of chemical mass transport must

have been taking place. Figure V-33 shows comparison micrographs of the fila-

ment from tube 9000 and of a filament evaporated at 2800°K in a vacuum. The

definite pitting observed on the tube filament, as compared with the control in

Figure V-33, shows that there must be processes other than evaporation taking

place. The arrival rate curve of Figure V-25 shows that at the low temperatures

(80-300°C) used, it is highly unlikely that the CsF could cause either the ob-

served chemical attack or the pronounced work function shift.

The maximum possible rate of chemical attack on the filament is

limited to the rate of formation of a monolayer; in the case of CsF at 300°C,

the filament could lose a maximum of 15 monolayers per hour and it would

take about 15 x l04 hours to eat through the filament, assuming a monolayer
O

is of the order of 3A thick. Furthermore, tungsten fluoride compounds break

down at high temperatures to leave plain tungsten, and this system is, in fact,

customarily used in the chemical vapor-deposition of tungsten.

It is reasonable to assume that a coverage which is at least 10% of a

monolayer would be required to cause any work function change, and therefore
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Figure  V-33A. 

Figure  V-33B. 

Figure  V-33C. 
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Micro-Photograph of Tungsten Fi lament  
Eroded in a Glass  Tube. 

66-R- 1-4 

Micro-Photograph of Tungsten Fi lament  
Eroded in a Glass  Tube. 
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Micro - Photog r aph of Tungs ten Fi lament  
Operated at High Tempera ture  in  Vacuum. 
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the CsF cannot be responsible for the observed work function change occurring

at low envelope temperature. For example, at 300°C the CsF arrival rate is

1012about 4 x particles/cm z sec, and at this rate it would take 2. 5 x 102 sec

to form a monolayer consisting of 1015 atoms/cm z. At 80°C, with the arrival

rate of 10 particles/cm z sec, a monolayer would never form during the experi-

mento In view of the above considerations, the thinning of the filament and the

low-envelope-temperature work function changes are almost certainly due to

impuritiespresent either in the glass bulbs or the CsF crystals.

Table V-1 summarizes the glass tube results,. In the first column

are shown the tube number, filament material and relative length, and type of

additive. Outgassing temperature and time for the envelope and additive are

indicated, in some cases with the ultimate pressure at the pump° Note that

this is not the tube pressure because of the tubulation conductance,. The bare

values are indicated where data could be taken; in several devices a stable

bare value could not be obtained until after the envelope temperature (T A) was

raised° Apparently a layer of impurities was being stripped from the filaments.

In each of the normally outgassed devices the maximum work function change

observed was of the order of 0.7 eV. The specially dried fluoride sample

showed a smaller A@maxO

All the devices failed due to tungsten deposits on the walls, making

observation of the filament temperatures impossible. Rapid chemical attack

also prevented testing with the rhenium filaments°

These results are again consistent with the presence of large amounts

of water vapor in the devices° Dissociation of the water at the hot filament to

form tungsten oxide and hydrogen is thermodynamically favorable, and the

volatile oxide will then reach the cold walls, where it will be reduced by the

hydrogen° In this way, a small amount of water can transport a large quantity
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of tungsten. This is the water cycle described by Langmuir. 18 The same oxygen

is also available as an additive and fully accounts for all of the effects observed.

For instance, the A@max of 0.7 eV is typical of data obtained with oxygen under

these conditions, while at these low envelope temperatures, fluoride or iodide

cannot be expected to have any effect.

This evidence, together with that from the outgassing study, leads to

the conclusion that all of the CsF results obtained were in fact due to contaminants

introduced along with the fluoride. It was then obvious that the best approach

would be to initiate a new investigation which could take advantage of the very

persistent effects of oxygen. This program is described in the next section

Simultaneously the CsF study previously described was begun and finally carried

to a successful conclusion.

Do Oxygen Surface Additive

1o General The preceding discussion has presented experimental evi-

dense that the short-lived high converter performance previously attributed to

cesium fluoride was, in fact, due to oxygen contained in the form of water in the

CsF crystals, Pure CsF has been shown to be much less effective than 0 2 in

altering the work function of tungsten and holds little prom._se as a surface addi-

tive. These considerations prompted a re-evaluation of oxygen as an electronega-

rive surface additive, with the objective of exploiting its desirable characteristics

for indefinite periods of time_ avoiding, of course, any deleterious effects.

2 Oxy_en Adsorption Constants. The ability of adsorbed oxygen films

to raise the work function of tungsten and also render cesium more effective in

subsequently lowering it, was first reported by Kingdon 19 in 1924o Since then

several communications have appeared in the literature regarding experiments
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in which the work-function change and adsorption constants for oxygen on tungsten

were measured. By 1935, two new methods of experimental study of oxygen films

13
had been reported. Roberts used the accommodation coefficient of neon on

tungsten filaments to detect the presence of oxygen, and Johnson and Vick 20 used

an oscillograph to measure the time constants of 0 2 desorption. Zangmuir and
3

Villars, in 1931, also published their results with 0 2 and Cs, which they re-

garded as a method of detecting oxygen at extremely low partial pressures. The

phenomenon was the subject of considerable controversy at the time, as is evident
21

in Ao L. ReimannVs communication presenting his own work and attacking

Kingdon's inclusion of the temperature dependence of work function in the pre-

exponential constant. Progressively more sophisticated studies of the adsorption

and diffusion of oxygen on tungsten were performed using the accommodation co-

efficient technique, developed by Roberts, and field emission, first applied by
22

M{_ller Both approaches have been very effective in defining the physics of

the system in the temperature range of 4o 2 to 700°Ko The first significant ex-

perimental advance at thermionic emitter temperatures (above 500°K) since the

work of Langmuir, Johnson and Vick, and Reimann, however, is that reported

Ii
by Engelmaier and Stickneyo These investigators have measured adsorption

energy values and work-function changes under various conditions of coverage.

A summary of their data is shown in Tab].e V-2o Inspection of Table V-2 shows

that the maximum reported work function change caused by adsorbed oxygen

varies between 0o7 and 0o 95 eVo Larger differences, as much as io 8 eV, have

23
been reported by Reimann and Gomer and Hulmo Reimann used contact-

potential measurements, while Gomer used field emission; in both cases, the

emitter temperatures were very low, less than 700°Ko It is doubtful that

these low-temperature measurements are applicable to emission at thermionic

temperatures because there is reason to believe that the character of the ad-

sorbed oxygen film is greatly altered when the temperature is increased°
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The desorption energy values listed in Table V-2 vary from 140 to

160 k cal/gram-atom of 02 and are in good agreement with one another. The

most extensive and well-controlled study is that of Engelmaier, who measured

both work function and desorption energy as a function of oxygen pressure and

surface temperature° For the remainder of this discussion the 140 k cal/gram-

atom value of desorption energy will be used. Figure V-3 is a plot of the oxygen

pressure required to maintain full coverage at different emitter temperatures

and is based on this value of desorption energy.

3. Chemical Equilibrium° In the preceding sections experimental and

theoretical evidence was used to estimate an upper limit for the oxygen pressure

required to achieve an '_additive effect" on a tungsten emitter° It is the objective

of this section to examine whether this oxygen pressure can be compatible with

the materials and operating conditions of the converter.

In general_ metals react with oxygen to form oxides in accordance

with the following reaction:

x o z + yM-_MyOzxo (Z0)

A free energy change is associated with the reaction usually referred

to as the free energy of formation of the metal oxide. The free energy of forma-

tion, AF, is a function of temperature and is related to the equilibrium constant,

K, of the reaction by:

-AF = RT £nK, (21)

where R is the gas constant and T is the temperature of the system. Assuming

that the oxygen pressure is low enough so that the perfect gas laws apply and

that the metal and its oxide are solids, the equilibrium constant can be expressed
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TABLE V- 2

SUMMARY OF DATA ON OXYGEN ADSORPTION

Reference

Langmuir,

Kingdon

Phys. Rev. 34,

129 (1929)

Langmuir

Ind. & Eng.

Chem. 22,

390 (1930)

)

M.C. Johns on

F.A. Vick

J. Am. Ch, S,

5___3,486 (1931)

J.K. Roberts

Proc, Roy. Soc°

A154, 464 (1935)

A.L. Re imann

Phil. Mag. 2__q,

594 (1935)

A _max

0.8eV

(at T> 1500°K)

0.7 eV

(at T> 1500)

0. 95 eV

(at T> 1500)

160

147

140

E
O

k cal

gr atom

k cal

gr atom

k cal

gr atom

Type of

Measurement

Emission and

Contact Potential

Emission

transient

Emission

transient

Accommodation

coefficient

of Neon

Contact

Potential

Engelmaier &

Stickney

Phys. El. Conf.

Proceedings, 1966,

Mass. Inst. Tech.

140
k cal

gr atom
Emission
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in terms of the oxygen pressure and the activities,

OeMyO2x
K -

&, of the solid phases.

Since the activity coefficients are equal to unity for the system considered here,

1
K-

pX

O 2

(22)

we may write

In the case of the cesium-oxygen equilibrium where the metal exists

in the gaseous state, the reaction is:

(23)

and

4 Cs + 0 2-" 2Gs 20

1
K -

4

Pcs PO 2

(24)

(25)

It follows, then, that the equilibrium pressure of oxygen above a metal oxide is

fixed, at any given temperature. If the oxygen pressure is increased above

"this equilibrium value, the chemical reaction (20) will proceed to the right,

i. e. , more oxide will be formed until one of two things happen: either the

oxygen pressure is reduced to the equilibrium value, or all the free metal is

consumed in the formation of oxide. If the oxygen pressure is maintained

below the equilibrium value all the oxide will decompose. It is possible, then,

•:o maintain a metal in an oxygen atmosphere at any temperature without any

oxidation taking place if the oxygen pressure is less than the equilibrium

pressure above the oxide.,
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The equilibrium pressure of oxygen above Cs20 , Cu20 , MOO3, MOO2,

and WO 3 was computed as a function temperature using the relations outlined

above and free energy of formation data from Ref. 24. In the case of Cs20 a

cesium reservoir temperature of 400°C was assumed. The results are plotted

in Figure V-34 in terms of pressure versus temperature. A line labeled "oxygen

pressure '_ is also shown in this figure. This line is a plot of the oxygen pressure

required for substantial coverage on the emitter surface, shown in Figure V-3.

For example, at an emitter temperature of 1900°K the oxygen pressure required

is 5 x l0 -8 tort, which is well below the pressure of 0 2 in equilibrium with

WO 3, so no tungsten oxide will form. MoO 3 will not form at temperatures higher

than 1200°K, Cu20 at temperatures higher than 980"K, and Cs20 at temperatures

higher than 900°K. The 1200"K limit is higher than the ordinary operating tem-

peratures of molybdenum collectors. It is, however, close enough to normal

collector operating temperature so that it is not at all clear that it can be con-

sidered a limiting factor on the basis of this rough calculation. A more signifi-

cant oxide is NioO 2 which has a pressure several orders of magnitude below that

of MoO 3. This reaction may easily take place at these temperatures and will be

limited only by the reaction rates. Protection of the collector surfaces may be

necessary to preserve the thermionic character of the surfaces. Actual corrosion

of the material is not expected because of the low oxygen arrival rate.

The cesium reservoir and other cold areas of the converter will cer-

tainly constitute sinks for oxygen. To use oxygen as an additive, it is therefore

necessary to introduce it directly into the interelectrode space continuously and

thus provide for the sustained loss through the gap at the emitter and collector

edges. The amount of oxygen lost in this manner can be estimated by

G = 5.83x 10-2p-_-_ At, (26)
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where G

and temperature T in time t,

-6
P = 10 torr

-2
A = 7.83x I0

is the total mass in grams that flows through area A at pressure P

and M is the molecular weight of oxygen. Assuming:

2
cm (2 cm diameter emitter - 0. 005" gap)

T = 1000°K

t = 3.6 x 107 sec (10,000 hours)

we find that 32 mg of oxygen will be consumed, a very small quantity indeed.

4. Critical Experiment. On the basis of the above discussion, an experi-

ment was devised to determine whether this reasoning was correct. For the

results of such an experiment to be conclusive_ a true steady-state condition

had to be established; i. e. , the addition of oxygen could not be a batch addition_

the effect of which would then decay over a period of time. To provide the
-8 -6

necessary oxygen in the range of 10 to 10 torr continuously and in a con-

trollable fashion, it was decided to use an oxygen compound which would release

oxygen at the proper pressure by reversible decomposition when heated to the

appropriate temperature. Cesium oxide was selected because it satisfies these

requirements, but, in addition, it permitted the use of an existing converter by

oxidizing part of its cesium. A converter equipped with a connection to a gas

injection system was selected° The cesium was first condensed in the vicinity

of the collector and, with the converter at room temperature_ 50 mg of oxygen

was introduced and was consumed immediately in oxidizing the cesium. The Cs20

formed served as the source of O2. Emitter work function measurements were

made with Cs and Cs20, and the values obtained duplicated previous _'CsF_ results

(see Figure V-35). Performance data were generated subsequently_ and a summary

All previous work cited above, as well as power production experiments by
Wilson 25 and Levine 26, used a time transient approach, although the time

constant was long in some experiments°
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of these results is shown in Figure V-36. The two envelopes in this figure, for

Cs and for Cs plus Cs20, show the typical increase in power output caused by

the additive. Once the performance superiority of the converter was established,

the device was placed on a short life test for 130 hours as a check of stability.

No changes in the output of the converter were observed except for apparently

random fluctuations of _:5%. After one week of life test, the converter was dis-

mantled and examined for evidence of chemical attack on the electrode surfaces;

none was found.

Almost all the hypotheses regarding the use of oxygen advanced above

were confirmed by these resultsl giving strong indications that oxygen could be

used as a surface additive on a steady-state basis.

5. Oxygen-Additive Test Vehicle. The success of the critical experiment

lead to the construction of a special converter equipped with an additive reservoir

located below the collector. A tube through the center of the collector connected

the additive reservoir to the interelectrode gap. This arrangement allows oxygen

from this reservoir to flow to the interelectrode space without coming in contact

with any cold surfaces. Figure V-37 is a sketch of the device°

Oxygen was supplied by the decomposition of Cs20 in the critical ex-

periment. In that instance this approach proved satisfactory, but it does suffer

from the limitation that the vapor pressure of 02 in equilibrium with Cs20 is a

very strong function of temperature. Inspection of Figure V-34 will show that

the pressure curve for Cs20 is the steepest in the group. Cu20, on the other

hand, shows a much less steep slope; 0 2 pressure increases an order of magni-

tude every 60°K. Cu20 is therefore a much more suitable compound for our

purpose. It does not evaporate as a molecule at useful temperatures, but
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decomposes instead, which is9 of course, a basic requirement of any 0 2 source.

The copper_ cupric oxide, cuprous oxide, oxygen system is fairly

complex, involving equilibriums between the various components. The reactions

were extensively studied by Roberts and Smyth z7 who found two fundamental

equations important for the system:

2 CuO(s) = CuzO(S ) +_ Oz(g ) - Z A H CuO (27)

CUzO(S) = Cu(s) + _ Oz(g ) - zxH CUzO (Z8)

where _ is positive for dissociation°

The dissociation pressures for these reactions were calculated as

described earlier and were plotted as a function of temperature in Figure V-34.

Oxygen resulting from dissociation according to relation (27) will be at too high

a pressure to be compatible with diode operation. Any cupric oxide (CuO) present

in the converter must be broken down to cuprous oxide before the electrode sur-,

faces are heated° This may be accomplished during outgassing by raising the

additive reservoir temperature while maintaining the partial pressure of O 2 low

enough to allow the CuO to dissociate.

At temperatures below 375_C there is some evidence that the cuprous

oxide slowly breaks up according to the equation:

CuzO _ CuO + Cu (Z9)

If appreciable CuO is formed, difficulties with excessive 02 pressure will arise

when the reservoir is again heated and the CuO breaks down° This reaction J_ay

be limited by moving through the temperature range from 25°C to 400°C rapidly.

The new converter was charged with a Cu20 pellet and cesium° Testing

was started with a series of emitter work function determinations° Emitter work

V-78



TI.I W R NlO IiI. WCTRON

66-R-Z-12

55

50

25

N

E

,#=.

O.

o

I0-

m

0 I
0 0.2

Figure V-36.

Cs Cs + Cs z 0

I I

W- Emitter

TE = 1800OK

Tc= 875"K
d = 2-10 mils

I I I I
0.4 0.6 0.8 1.0 1.2

Electrode Output Voltage, volts

Performance Envelope with Cs20 and Cesium.

V-79



. ..,...=..o.,N III [ | R G C 0 R P 0 t A T i 0 N

65-R-I 1-32A

VACUUM

ENVELOPE

ADDITIVE

RESERVOIF

EMITTER
i
!
I
!
!
I
I
!
I
!

I
I
I

._UARD

I

I

I
I
I

COLLECTOR I
I
I
I
I
I
I

I
I

..J.

Figure V-37. Schematic of Parametric Converter Showing

Additive Re s e rvoir,

V-80



THERMO ELECTRON

[ li G I N E E R I N G C 0 R P 0 R A T I 0 N

function values were determined by measuring the emitter saturation current

under ion-rich conditions (_bE > 2o 7 eV), using small interelectrode spacings

(d< 1 rail) to avoid electron space charge and scattering. A series of runs were

made with the additive reservoir at 675°K, corresponding to an oxygen pressure
-14

below 10 torr. The work function values obtained, shown in Figure V-35 as

open circles, are typical of treated polycrystalline tungsten. The solid line

shown corresponds to a bare work function value of 4. 62 as computed from

Rasor_s theory and has been included for reference purposes.

The next series of runs were taken after heating the additive reservoir
-8

to 950°K, resulting in an oxygen pressure of 10 torr. The first work function

measurements made, a few hours after the additive temperature was raised, are

shown as triangles in Figure V-38. As time went on, the work function continued

to decrease for a given value of T/T, ; iv eo , the additive became more active for

approximately 20 hours. At the end of this period of time, it stabilized along a

line definedby the solid-circle points. This terminal value is somewhat lower

than the data obtained with CsF reported in Ref. 2 and shown as a dashed line in

Figure V-35. Comparison of the cesium-only data (open circles) with the equili-

brium additive data (full circles) shows that the addition of oxygen has resulted

in a reduction of approximately 0o 45 eV in the emitter work function, for the

same T/TR ratio:

The effect of the additive on collector work function was also investi-

gated° Retarding plots were used to measure collector work function in accord-

ance with the precedure described inRefo 2o The results of these measurements

are shown in Figure V-38, which is a plot of collector work function versus the

ratio of the collector temperature to the cesium reservoir temperature. Also

shown in this figure is the work function of a molydenum collector without additive

from Ref. 2. The effect of the additive has been to shift the minimum collector
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work function value from a temperature ratio of 1. 8 to l o45, while the minimum

value itself has remained 1o45 eVo

At the time of completion of the electrode work function measurements,

55 hours of testing had passed since the additive reservoir was first heated to

950°K, and 35 hours since a stable, equilibrium work function value was obtained.

The next series of experiments consisted of performance parametric

data mapping. Figures V-39 and V-40 show data obtained at 1760°K emitter

temperature with 5- and 10-.rail spacing. Similar data from a polycrystalline
28

tungsten emitter is shown in Figures V-41 and V-42. Two significant features

of the oxygen converter characteristics when compared to the Cs-only data are

the greatly decreased Cs temperatures for a given saturation current, as much

as 60°C in some cases, and the steeper slope of the envelopes in the oxygen

device.

Experiments were continued for about 300 hours of operation. Para-

metric data in the form of Cs families were obtained over the range of emitter

temperature from 1760°Kto 1960°K° The electrode J-V envelopes are shown

in Figures V-43, V-44, andV-45 and may be compared with the similar data

from a Cs-only device shown on the same figures Electrode power density

curves for the two devices are shown in Figures V-46, V-47 and V-48.

On the J-.V envelopes in Figures V-43, V-44, and V-45_ the contact

point of each J-V curve with its envelope is identified with the reservoir tem-

perature, and the significantly lower Cs temperatures associated with the addi-

tive device are evident. The reduced scattering at these lower pressures again

results in improved performance of the additive converter. Wide spacing with

the oxygen additives may thus be expected to produce similar performance to

small spacing in Cs-only devices°
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Subsequent to these tests the converter was dismounted and cut apart

to determine whether there had been any erosion or excessive oxidation of the

electrodes. The emitter surface was found to be clean and shiny except for the

small area, about 100 mils in diameter, immediately above the additive-reservoir

opening in the collector. In this area some etching of the emitter was evident, a

shallow (2 mils) depression having been formed. The tungsten from this region

had apparently been oxidized and then evaporated onto the collector. There was

a corresponding deposit of this material around the hole in the collector. Spectro-

graphic analysis confirmed the presence of tungsten in the deposit. A slight oxi-

dation of the collector was also observed, but there was no visible erosion of this

surface. No traces of copper deposits from the additive were found in the device,

either by visual observation or by spectrographic analysis.

In the oxygen pressure range necessary for work function modification,

no corrosion of the emitter surface can take place. The fact that some corrosion

was evident indicates that there was excessive pressure in the converter during

testing. The most likely source was probably the reaction (29) which could take

place during the tests attempted with Cs only. Later increases in temperature

to introduce 0 2 onto the surfaces were based on reaction (28) and any CuO in the

reservoir wouldthen dissociate according to (37), producing the excessively high

pressure shown in Figure V-34 for this reaction. A further cause for excessive

pressure may have been the transport delay at low pressures. This would result

in the choice of too high a reservoir temperature because of the lack of response

at lower temperatures. Calculations show that the desired pressures must have

been exceeded by at least three orders of magnitude for the observed effects to

have taken place. With this experience as a guide, it should be possible to obtain

satisfactory pressure control in future devices.
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E. Conclusions

I. Cesium Fluoride. The studies conducted under this task have deter-

mined the true effects of CsF under thermionic conditions and have shown that

many of the changes in characteristics previously attributed to the fluorine were

actually due to contaminants introduced with the additive. Water was found to be

the principal contaminant and was shown to be capable of producing the observed

effects.

Extended outgassing of the CsF, combined with the construction of a

specially designed surface-studies device, made it possible to determine the

behavior of the pure fluoride. It was found that, at coverages approaching a

complete monolayer, only about 0.3 eV change in work function could be ob-

tained. The energy for desorption was derived from the same experiments and

was about 3.3 eV. With the relatively small change in work function and the high

arrival rates required, it appears that the fluorine additives hold little promise

for improving converter performance.

The relative inactivity of CsF as a surface additive, in spite of its

similarities to oxygen, indicates the need for further theoretical studies in this

field. These data, together with those for oxygen, define boundaries for the

inve stigations.

2. Oxygen. The Cu20 converter experiments have successfully achieved

the objectives of the program and have demonstrated that the enhanced power

output first associated with CsF can be maintained through the use of oxygen

for at least 300 hours of operation with no degradation. The results obtained

agree with the theoretical predictions of lowered Cs pressure and wider allowable

spacing. The feasibility of a continuous oxygen source consisting of the equili-

brium dissociation of a metal oxide has been demonstrated and successfully applied

to a functioning thermionic converter.
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Several areas for future work have become apparent. While oxygen

may be used satisfactorily as an additive, further studies are desirable to define

the mechanism of operation and to predict the behavior of other materials which

might be more effective or more easily controlled. More complete documentation

of the converter performance, and extension to longer periods of operation with

better control of the oxygen pressure, would further the utilization of this additive

in hardware devices. The effect of the oxygen on the Mo collector material has

not been fully explored, and it is not clear whether some other material might

produce better performance under these conditions_
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CHAPTER VI

THE OUTPUT CHARACTERISTICS

OF AN ELECTROETCHED RHENIUM SURFACE

A. Intr odu ction

The parametric diode used in inert gas studies uses an electroetched

rhenium emitter. Its preparation and metallurgical examinations were dis-

cussed in Chapter IV. The surface and performance characteristics of this

diode must be established for reference in the inert gas experiments. These

characteristics are also important in the evaluation of this new method of

surface preparation and its overall effect on the output power and efficiency

of the converter. For these reasons, the bare work function and the cesiated

work function of electroetched rhenium were determined. The volt-ampere

characteristics of the diode were recorded for a wide range of emitter tem-

perature, cesium temperature and interelectrode spacing. The complete per-

formance map is summarized in this chapter.

B. Bare Work Function

The experimental procedure for determination of emitter work function

is described in Chapter Ill. The saturation electron current is measured

experimentally, and the surface work function is obtained from Richardson's

equation and the known values of saturation current and surface temperature.

Typical volt-ampere characteristics are shown in Figures VI-1 and VI-2o In

both plots, a well-defined saturation current is evident° The "observed re-

verse current, however, is unusually high for this type of data° This is ex-

plained by the fact that one of the cesium capsules, contained in an appendage

below the cesium reservoir, cracked during the outgassing of the diode. This
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resulted in the injection of a small amount of cesium into the converter. This

quantity of cesium, is responsible for the observed ion current, although it is

not enough to reduce the surface work function. To make sure that the meas-

ured values of work function are actually those of the bare surface and are not

affected by the low vapor pressure of cesium, the results are plotted as in

Figure VI-3. This is a plot of Richardson's equation in terms of current and

inverse surface temperature. The diagonal lines represent constant values

of surface work function. At high surface temperatures, the data points follow

a constant work function line at 0.88 eV. At lower temperatures, however, the

data points deviate from the constant-work-function lines and tend to give lower

values of work function. In this temperature range, apparently, the tempera-

ture of the surface is low enough so that cesium starts to adhere to the surface.

The data points corresponding to emitter temperatures above 2000°K are there-

fore considered to be valid measurements of the bare work function of this sur-

face°

C. Cesiated Work Function

Figures VI-4 and VI-5 are typical characteristics used for determining

the rhenium work function in the presence of cesium. Again, the well-defined

saturation-current values from such plots are substituted in the Richardson

equation, along with the emitter temperature, and the Richardson work function

values are obtained. With these measurements a plot is made of work function

versus the ratio of surface to reservoir temperature, as shown in Figure VI-6.

Here the cesiated and bare work functions are plotted versus the ratio of sur-

face to reservoir temperature., The curve defined by these measurements in

the presence of cesium smoothly approaches the bare-work-function asymptote

at _b° = 4. 88 eV. This, of course, was to be expected. The scatter in these
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data is surprisingly low. To compare the present results with the data obtained
1

fromelectropolished rhenium in the previous year, Figure VI-7 was prepared.

This, again, is a plot of work function versus the ratio of surface to reservoir

temperature. The present data are shown as a solid line together with the

corresponding bare-work-function asymptote° The data of Reference 1 are

shown as the dashed line, again with the corresponding asymptote. These two

sets of data are probably the best illustration of the Rasor-Warner theory ob-

tained to date. Their bare-work-function asymptotes differ by about 130 mV

(the bare work function for electropolished rhenium is 4.75 eV), and they be-

have very much as predicted by the theory in that they cross soon after a small

amount of cesium coverage occurs at a T/T R value of 4.7, and the higher bare-

work-function line falls lower than the other.

D. Parametric Performance Data

The results of the previous section indicate that the bare work function of

etched rhenium is higher than that ofelectropolished rhenium. The cesiatedwork

function of the etched rhenium is about 0. 13 eV lower than the electropolished

rhenium work function at a given T/T R. Or, conversely, in the case of an etched

rhenium emitter, a lower cesium pressure is required to achieve the same cesi-

atedwork function. A significant part of the current in the ignited mode is attenu-

ated by interactions with cesium atoms. Therefore, the output characteristics

corresponding to the electroetched rhenium emitter must be substantially higher

than for electropolished rhenium.

Parametric performance data was obtained on the converter employing

an etched rhenium emitter, covering a wide range of converter variables. Fami-

lies of current-voltage characteristics were generated by varying the cesium
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reservoir temperature, collector temperature, emitter temperature and inter-

electrode spacing. A total of 125 families, representing about 1000 individual

J-V curves, were required to complete the study.

The performance of the device has been summarized using the envelopes

of the variable-cesium-reservoir-temperature families. Figures VI-8 through

VI-12 show this summary. Each figure shows the envelopes of several families

taken at different interelectrode spacings but the same emitter and collector

temperature. The collector temperature indicated was selected near the opti-

mum value corresponding to the emitter temperature used. The dashed line

in these figures represents the envelope of the spacing envelopes corrected

for the emitter lead voltage loss. It corresponds to the output at the electrodes

under fully optimized conditions for the emitter temperature indicated.

The fully optimized performance has been summarized in Figure VI-13,

and the fully optimized electrode power output is shown in Figure VI-14.

Comparison of Figure VI-14 with the corresponding figure for electropolished

rhenium of Refo 1 indicates that the etched rhenium has shown substantial im-

provement. This performance improvement is equivalent to an increase in

spacing by a factor of 2.
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CHAPTER VII

INERT GAS STUDIES

A. Intr oduction

Previous studies of volt-ampere characteristics in the presence of inert

gases have been limited to several scattered operating points, anda very narrow

range of converter variables was examined. 1,2 Moreover, in the earlier experi-

ments the effect of inert gases was usually overshadowed by the interaction of
3

gaseous impurities with the electrode surfaces° Therefore, a more comprehen-

sive investigation of the effect of inert gases on the output characteristics of con-

verters is important for several reasons:

First, the addition of inert gases to the interelectrode plasma provides a

new experimental technique to aid in the analysis of volt-ampere characteristics

in the ignited mode. For example, the collision probability of electrons with

cesium atoms may be compared with the known values for inert gases.

Second, the ionization of cesium atoms by electron impact results in an

internal voltage drop which is observed as a decrease in the output voltage. There

is a possibility that conservation of cesium ions in the interelectrode space may

reduce the voltage drop. The possible ion loss mechanisms include diffusion to

the electrodes, and recombination with electrons, but there is not yet enough data

available to determine which mechanism is dominant. If diffusion is the major

cause, the loss rate may be decreased by reducing the diffusion coefficient of the

ions in the plasma through the addition of another gas. Most of the gases that act

as a diffusion barrier for ions will cause an appreciable reduction in the flow of

electrons. Inert gases, however9 are possible exceptions to this ruie, and there-

fore would be excellent additives for experiments of this type.
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Third, inert gases comprise a significant portion of the gaseous fission

products in nuclear reactors. Therefore, the possibility exists that these gases

will be present in the interelectrode space of converters in nuclear thermionic

reactors. Since a high pressure of inert gases causes an attenuation in electron

current, it is important to know the functional dependence of electron current

attenuation on inert gas pressure.

In the past, an inherent difficulty in this type of experiment has been the

presence of impurities in the inert gases. Even the highest-purity research-

grade gases available contain a high enough percentage of extraneous gases to

prevent the achievement of any meaningful results. It was shown in Chapter V

that the presence of oxygen at a pressure of about 10 -8 tort changes the emitter

work function, and therefore the emission characteristics, appreciably° If 100
-8

tort of argon is injected into the diode, a pressure of 10 tort of oxygen will be

present in the interelectrode space if this impurity is present in a concentration

of only one part per million. The highest-purity inert gases available contain at

least 5 parts per million of impurities.

Another major difficulty in inert-gas studies has been the design of a success-

ful method of control over the inert gas pressure while the diode is operating. If

the pressure of the inert gas can be varied without changing the diode parameters,

this will eliminate any experimental errors that would result from resetting the

parameters. Comparison of the data at various inert-gas pressures would there-

fore be more meaningful.

A thorough literature survey was carried out to select the most appropriate

gas for these experiments. The results of this survey are summarized in Section

B of this chapter° The experimental problems of impurities and pressure control

discussed above were solved (Section C and D-3). An apparatus consisting of

VTT-2
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a parametric diode and a gas injection system was designed and constructed

(Section C). The use of inert gases as a research tool is introduced in Section D,

and their overall effects are discussed in SectionE. The conclusions of these

investigations are summarized in Section F.

B. Selection of Plasma Additives

Selection of the gas additives was made on the basis of their use as diffusion

barriers for cesium ions. The gases appropriate for this purpose usually have a

high scattering cross section for electrons. Therefore, although these gases

form good diffusion barriers for ions, they also attenuate electron current. Inert

gases, however, are an exception to this rule. Ramsauer and Kolath 4 investi-

gated the dependence of the collision probability of inert gases on electron energy.

They discovered that the collision probability has a minimum value in the electron

energy range of 0. 2 - 0.7 eV. Electron energies encountered in the operation of

thermionic diodes are well within this range. Inert gases, therefore, can be

used as diffusion barriers for ions without causing an appreciable attenuation of

electron current.

An extensive literature survey was carried out to select the most appropriate

inert gas for this experiment. A list of the important references is included in
1-18

this report. The values of the transport parameters reported by these authors

were used in a simplified calculation to estimate the relative effects of Ar, Kr

and Xe on the scattering of electrons and cesium ions.

The attenuation of electron or ion current due to scattering by the inert
t

gases is calculated for the short- and long-mean-free-path cases.

tSee Chapter VIII for the derivations.
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J

J_
- exp (-d/k)

J 1

J, 3 d
i+-- --

4 k

for (d/X)

for (d/k)

<< 1

<< 1

J = attenuated current of ions or electrons

J* = incident current of ions or electrons

d = interelectrode spacing

k = electron or ion mean free path

The values of electron mean free path inAr, Kr and Xe were calculated from
4

the values of the collision probability reported by Ramsauer and Kollath. The

mean free p_th of cesium ions in Kr andXe was obtained from the values of

mobility reported by Powell and Brada 6 and for argon from those reported by

Chanin and Biondi°

in inert gases are:

The approximate values of collision probability for electrons

Ar

Kr

Xe

Collis ion Probability

cm2/cm 3 of vapor at O°C and 1 torr

1

2

5

These values correspond to an electron energy of about 0.4 eV.

coefficient is given by

p : n

c 0

where n is the particle density at 0°C and 1
o

particles/cm 3, and o-

The absorption

torr and is equal to 3. 5 x 1 01
6

2
is the collision cross section in cm o
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In general, the mean free path, k, is calculated from the equation

where n is the particle density.

Einstein's relation

n
o 1

k -
n P

c

Mobility and diffusion coefficients are related by

eD
- kT

where _t = mobility of ions

D = diffusion coefficient

T = average gas temperature

k = Boltzmann constant

Diffusion coefficient, in turn, is related to mean free path by

vk
D -

3

where v is the velocity of the particles in cm/sec.

6
The mobility of Cs ions in Kr and Xe, as given by Powell and Brada at

one atmosphere of pressure, is:

Kr

Xe

V
2

cm /sec volt

The value for argon is given by Chanin and Brondi at one atmosphere:

2
= 2 cm /sec volt
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By converting these values to mean free path and calculating the attenuation of

electrons and cesium ions at 1 torr pressure and 1000°K average gas temperature

for a 1 0-rail interelectrode spacing, Table VII-1 is obtained. From examination

of this table, it is evident that argon is the most appropriate inert gas to serve

as an ion diffusion barrier. Although the effectiveness of all three gases as

diffusion barriers is similar, argon was chosen for the plasma experiments

because it produces much less electron attenuation.

C. Experimental Apparatus

The experimental apparatus consists of a variable-parameter diode and a

gas injection system. The diode was discussed in detail in Chapter HI. A modi-

fication in the cesium reservoir was necessary to allow the inert gas to be intro-

duced and its pressure to be changed while the diode is operating.

The principle of operation of the reservoir is illustrated in Figure VII-1.

Pressure equilibrium is maintained between the reservoir and the diode by a

tubulation which is kept at about 500°C. Argon is introduced into the diode through

a series of baffles and a 60-rail orifice. The cesium pressure in the diode is still

determined by the temperature of the liquid in the reservoir, since the liquid-gas

interface area is much larger than the orifice area Any cesium that passes

through the orifice is condensed by the baffles and flows back to the reservoir.

The gas injection system is shown schematically in Figure VII-2. The high-

purity standard gas is stored in a cylinder equipped with a. two-stage regulator.

The gas is introduced into a 75-ccstainless-steel cylinder at a pressure of about

2 atmospheres. A micro-flow valve allows the rest of the system to be filled to

the desired pressure in the range of 0. 2- 200 torr. The inert gas passes through

a cold trap and ahot zirconium trap to minimize the impurities. The gas pressure

in the converter is monitored by a diaphragm pressure gauge. The pumping system
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consists of an ion pump, which can be isolated by an all-metal on-off valve, and

a mechanical pump used for roughing the entire system.

D. The Ignited Mode in Presence of Inert Gases

1. Introduction. Electron scattering is a major phenomenon occurring in

.the interelectrode space of thermionic diodes This process is especially im-

portant in the ignited mode of operation because of the high particle concentration.

In this section, inert gases are used to introduce an extra degree of freedom in

the analysis of the ignited mode.

.

22
by Rasor for the ignited mode, shown in Figure VII-3. The electron current J

leaves the emitter surface, and the current J arrives at the collector. The

difference between J and J is back-scattered to the emitter. The assumption
S

is made that the interelectrode space is composed of a neutral plasma of width d,

much larger than the electron mean free pal:h, bounded by the emitter and collec-

tor sheaths, V and V , of negligible thickness. In the quasi-saturation mode,
e c

as the output voltage V is increased, V is decreased. The transition from the
e

quasi-saturation mode to the obstructed mode takes place when the emitter sheath

height is equal to V'
e

mode.

Theory. In this analysis, use is made of the motive diagram postulated

S

This analysis is mainly concerned with the quasi-saturation

Since there are no appreciable sources or sinks in the neutral plasma,

the diffusion equation is

2
V n = 0

At the emitter side of the plasma (x = 0), the current entering the plasma is

-- _ Pl XI'l+ P2_I'2 _x = Js + -- + --6PlXI'l +_2 _P2 _x 1 - exp(-VE/kTe¢)

(1)

(2)
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Similarly, at the collector side (x = d),

vn 1 1 dn nv 1

4 +6 fiXI, l+P2_I, 2 dx - Jcs + -_ 1  ni[P1 _I'l + P2 _2 dxJ 1 - exp (-Vc/kT e c )] (3)

where v is the average electron velocity, n is the electron density, J and J
$ CS

are the emitter and collector saturation currents, TeE and Tec are the electron

temperatures at the emitter and collector edges of the plasma, P is the pressure

and xI, is the effective collision probability, defined by

co

= _ Pc (E) f(E) dE
0

(4)

where P is the collision probability at 0°C and 1 tort, f(E) is the Maxwell dis-
c

tribution of electrons and E is the electron energy. The subscripts 1 and 2

refer to cesium and argon. The solution to the differential equation is:

where

Cl = 1

n(x) = C 1 x + C 2

Jcs exp [Vc/kT c] -JseXp [T_/kTcE ]

3PI _1 + P2 _2

d

[exp (Vc/kTec) + exp (VE/kTeE) -i] +

(5)

(6)

C 2 = 4J exp (VE/kTcE) +s

[4 exp (V /kTeE ) -2]

J exp(Vc/kTeE ) -J exp (VE/kT e )CS S E

exp (Vc/kT c)+-_ (Pl _1 +_2 _2 )- 1 + exp (V E/kT_E)

(7)

and TeE and Tec are the electron temperatures at the emitter and collector ends
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of the plasma. The net current through the plasma is required by Fick's law to

be

1 dn

J = 3(el _1 + PZ _Z ) _ (8)

Combining equations (4), (5) and (7), we get

Js exp [ V E/kTeE ] - Jcs exp [ Vc/kT c ]

J = 3d (9)

(el 91 + PZ 9Z + exp [Vc/kT c] +exp[V E/kTeE ]_I

In equation (9) the net current through the plasma is given in terms of

plasma parameters. To facilitate comparison with experimental results, this

equation will be simplified.

small and can be neglected,

Neglecting back emission,

The back emission from the collector is usually

subject to the following condition:

[vE]J << J exp -
cs s kT

fc

equation (9) becomes:

(10)

J [vc__SS = exp --

J kTec ,]-vi ]kT - exp
CE

+I

3

+ 7 (el %91 + e2 xI'2)d exp [- V E/kT E]

From the motive diagram in Figure VII-4 we get:

(11)

VE = _E - _C "[" Vc - eV (12)
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Substituting (12) in (11) results in:

where

1 1

J 3
s

+ K exp leVI[3 3 ]L+7 el d+TeZ d

1
K =--

Js

(13)

@_ - #c+Vc]exp - kTeE (14)

Evl, c -I (15)L = exp kT
6C

According to equation (13), a plot of inverse current as a function of

interelectrode spacing yields a straight line for each output voltage V.

3. Experimental Approach. The gas injection system has been described

in detail in Section C. It consists of several bakable expansion chambers and

pressure-regulating valves. The argon used in these experiments is the highest-

purity research grade commercially available. Before injection into the diode,

the gas is passed through a liquid-nitrogen trap to remove condensable impurities.

During these experiments it was noticed, however, that in spite of all these pre-

cautions, the electron emission was increased by several orders of magnitude

when argon was introduced into the system. This was traced to the presence of

a residual oxygen pressure of the order of 10 -8 tort. It is clear that this pressure

of oxygen will result if the oxygen impurity in the argon is more than one part per

billion at 100 torr of argon pressure.

To minimize its oxygen content, the argon was kept in a trap containing

a mixture of zirconium and titanium chips at 400°C for about one hour. This tech-

nique was successful, as indicated by work function measurements. Several sets

of variable-spacing families were obtained after the incorporation of these im-

pr overnents.
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4. Experimental Results and Conclusions. Several variable-spacing

families of volt-ampere characteristics were obtained. The data covers the

cesium temperature range of 533 to 563°K at emitter temperatures of 1675 and

1800°K, and the argon pressure range of 0 to 100 tort, Typical samples of

variable-spacing families are shown in Figure VII-4. The variable-spacing

families are plotted according to equation (1 5) in Figures VII,-5 to VII-7o As

predicted by the theory, the inverse current at constant voltage is a linear

function of the interelectrode spacing° Furthermore, the constant-voltage

lines converge to a single focal point whose coordinates_ according to equation

(15), are given by

1 (16)
J

o s

and

[d o ]
-4L

= (17)
3(e I _1 +ezvz)

Equation (17) is rearranged to give

-I 3 3

[d---]- 4L el _i +-4"-L _2 _2 (18)
o

1

In the absence of inert gases, equation (18) shows that a plot of [d] versus

the cesium pressure P1 is a straight line passing through the origin °. At high

argon pressures, however, there is an intercept which is proportional to the"

pressure and collision probability of argon. The coordinates of the focal points

obtained from plots similar to Figures VII-5 to VII-7 are shown as a function of

cesium pressure in Figure VII-8° This data was obtained at the argon pressures

of 0, 48 and 100 torro There is no significant difference between the datapoints

VlI-I 6



_j_ _,.,,.o .L,c,,,o.N Ill | |il II1| | 0 IIp 0 | A ? I 0 |

I
66-R-5-_8,

I I I w I I

I

0
0

or-I

0

T

VII-17



T H III IllO ILICTNON

66-R-5-6

io

--- _ ,,
ii n

I
o

o

\

I I
o
N

o

I_(Z'"O/Y) ' P/I

I I

l l l

-\
\

I

o

0

9
k
0
u
u

<
m

°r,,i

°v,4

o u

*F,I

N

.S
I

o
T

.r-I

I

o

o

0

o"

kl

VII-1 8



L-','"_, ''-'c''°"

66-R-5-9

I
O

O

I J I

\

\
\

• OJ v ._
t_ I_ o

_,,_
__ -j._ -

u _ 84 88

I I
0J
d

d l(sw_/V)'PAo

I
Q
d

"0

0

0 U

<
II1

.r,i

oF,i

laO

I
o_ ___

°r4

!

VII- 1 9



_i_ THIINImO ILNCTNON

66-R-5-I 1

¢O
m

d

I ! I !

@

I I I

m

6 o

! ! I I I I I I

0 0 x

o*

I I I I I I I

0 co
-- 0 0
d d d

i_(Sl!UJ) '°p/I

I I

i_ t_ i-
t_. L L

0 oO

0000
Oq"

l)xo

m I t

0 0
d d

N.

o.
N

_0

.,.t

m

0

- CO

d

- _0
d

d

- ¢_1

d

0
0

Im
l.-
0

I.

tl
Q

o.

E

in
Q
(,3

00

o
°,-I

cr

o

t_0

o
u
u

°pl

o

o

o

I

°r,l

VII-20



-__ THERMO ELECTRON
ENGINEERING CORPORATION

1
at various argon pressures, whereas the dependence of_- on cesium pressure

o
is observed clearly° This result indicates that even at 100 tort of argon, the

electron scattering by argon is much less than the scattering by the lowest cesium

pressure investigated (_1 = 0. 6 tort), or

P2 _I'2<< P1 XI'l (i9)

The lower bound of the collision probability of cesium is therefore given by the

equation

100
>> _ • (zo)_i O. 6 2

The collision probability of argon has been measured by Ramsauer

and Kolath 4 as a function of electron energy and is shown in Figure VII-9. The

values shown are for monoenergetic electrons. In the ignited mode, however,

there is a distribution of electron energy. The effective collision probability

_I"2, which takes the electron energy distribution into account, is calculated from

equation (4) and Figure VII-9. The effective collision probability for argon is

plotted in Figure VII-1 0. The extrapolation of collision probability to zero
25

energy reported by Pack et al. was also used in this calculation.

For electron energy in the range of 0.3-0o4 eV, the effective collision
-1

probability for argon is about 4 cm The lower bound for the collision proba-

-1
bility of cesium is calculated from equation (20) and is equal to 700 cm

From the results of this section, it may be concluded that: (a) the

quasi-saturation region of the ignited mode is diffusion-dominated, (b) argon

atoms are essentially transparent to electrons of energies encountered in the

ignited mode of thermionic diodes, and (c) the lower bound of the collision proba-

-1
bility of cesium atoms with electrons in the ignited mode is equal to 700 cm
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E. The Overall Effect of the Inert Gases on the Output Characteristics

I. Introduction. The ignited mode of thermionic diodes in the presence

of inert gases was discussed in the previous sections. There are two other im-

portant interactions of these gases with the plasma in the interelectrode space:

(a) There is the possibility that inert gases may form an effective

diffusion barrier for cesium ions, resulting in a decrease of

ion loss to the electrodes. Therefore, the internal voltage drop

consumed in the generation of cesium ions will be kept to a

minimum.

(b) The presence of a high pressure of inert gas in the interelectrode

space results in the attenuation of electron current. Therefore,

an accurate knowledge of electron scattering as a function of

inert gas pressure is important to nuclear thermionics.

A careful and systematic investigation of the dependence of the output

characteristics on inert gas pressure is necessary for a complete understanding

of the process. The possible increase in power output from the use of inert

gases is likely to occur at low argon pressures, less than 20 tort. This pressure

range must be covered in steps small enough to ensure the observation of the in-

crease. The electron current attenuation, on the other hand, must be studied in

the higher pressure range. Therefore, the dependence must be studied carefully,

covering a large range of inert gas pressure in small increments.

The problems concerned with impurities and injection of the inert gas

were solved by the methods described in section C of the chapter. The influence

of the inert gases on the output characteristics was determined in the range of

0-100 tort.
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This pressure range was covered in steps small enough to 'yield the

required information. The results were extrapolated to the pressure of 1000

torr by using theoretical expressions developed in this chapter.

2. Experimental Procedure. The first step in the investigation of the

overall effect of the inert gases is the choice of the type of data to be used for

comparison. One possibility is the use of the volt-ampere characteristics at

various inert gas pressures and at constant emitter, collector, and cesium

reservoir temperatures, and constant interelectrode spacing. The difficulty

in such comparison is that the volt-ampere characteristic is a strong function

of cesium reservoir temperature, with the result that a small uncertainty in

this parameter can cause a large error in the experimental data. A family of

volt-ampere characteristics obtained by varying the reservoir temperature, T R ,

has an envelope which is tangent to each member of the family. The experimental

error in the measurement of T R is therefore eliminated, if the envelope is used

for comparison.

Before the injection of argon into the interelectrode space, a complete

set of parametric data was obtained on the diode to establish its basic performance

characteristics and serve as the basis of comparison. Since this diode employed

an electroetched and heat-treated rhenium surface, the complete performance

map of the emitter was also useful for design calculations. This data was sum-

marized in Chapter VI. A series of more specific data was also obtained for

comparison with the characteristics in the presence of argon.

The gas injection system described in section C-2 of this chapter was

outgassedthoroughly for several days. The baking temperature was :about 800°K

for the hot zirconium container and about 500°K for the rest of the system. The

diode volume was kept under vacuum and isolated by a valve while the desired
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pressure of argon was established in the gas injection system. The inert gas

was kept in the hot zirconium trap (at 700°K) and the liquid nitrogen trap for

several hours° Then the gas was injected into the operating diode, and the volt-

ampere characteristic was monitored. A sudden change in the characteristic

was observed, and then equilibrium was reached at the initial conditions after

about 30 minutes. A possible cause for the transient behavior is that the sudden

injection of the inert gas may force an excess of cesium vapor into the inter-

electrode space, causing a transient cesium vapor pressure that does not corres-

pond to the cesium reservoir temperature. Next a complete set of variable-Te

families covering a wide range of diode parameters was obtained. The same

procedure was followed covering argon pressures of 0- 100 tort.

3. ExperimentalKesults and Conclusions° The cesium-temperature

envelopes obtained under various conditions are summarized in Figures VII-11

and VII-19. The pressure range of 0-100 torr was covered in steps of 0, 2. 8,

500, 10. 5, 20, 29, 40, 75 and 100 torr, to ensure the observation of any possible

maxima or minima. Fo_ each argon pressure, the cesium reservoir envelopes

were obtained at emitter temperatures of 1863, 1740 and 1650°K, in order to

resolve possible discrepancies that might arise. Three interelectrode spacings

(2, 10 and 20mils) were studied at each emitter temperature in order to deter-

mine the dependencies on spacing. These 81 families correspond to approximately

1200 single volt-ampere characteristics and are summarized in Figures VTT-11to

VII-19° Each figure shows the envelopes at a particular emitter temperature and

interelectrode spacing, and at several argon pressures. For the sake of brevity,

only five of the argon pressures investigated are shown. The behavior of the other

pressures may be seen from the cross plots (Figures VII._20 to VII-28)o As the

above figures show, there is no output power increase due to the presence of

argon in the interelectrode space° Since argon is the most appropriate inert gas
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for this purpose, it is reasonable to assume that this conclusion applies also to

other inert gases such as xenon and krypton.

We may also conclude, from examination of the experimental data,

that the output characteristics in the power-producing region are not highly

affected bythe presence of argon below 20 torr. This conclusion has signifi-

cance in nuclear thermionics.

Because of the complex dependence of scattering on argon pressure,

cesium pressure and interelectrode spacing, it is not possible to present a more

general correlation in the experimental data. The complex dependence is as

follows: Electron scattering by cesium follows a simple dependence on _i d,

where 91 is the cesium pressureand d is the interelectrode spacing. Electron
I

scattering is also a function of the internalarc drop,V d' since this parameter

acts as a reflector for the electrons that are directed to the emitter. The internal

20
arc drop, however, is also a function of _°ld. Therefore, electron scattering

by cesium atoms can still be correlated with the product P1 d. It is not possible

to find the same type of dependence for argon. Electron scattering by argon is

/ /

a function of P2 d and Vd, where P2 is the argon pressure° The arc drop V d

is, in turn, a function of the product Old. This complicates the dependence of

electron shattering by argon, on the interelectrode spacing, argon pressure and

cesium pressure.

The dependence of electron current attenuation on the inert-gas pres-

sure can be calculated from the theory using the parameters determined in

section D of this chapter. This dependence for argon was calculated using the

plasma properties discussed inRefs. 21 and 22. The experimental data follows

the theory for pressures higher than 30 torr. In the lower pressure range, the

data indicates that electron scattering is slightly higher than that predicted by
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theory° The current attenuation was extrapolated to i000 torr of argon using

the above procedure and is shown in Figures VII-29 through VII-31 for various

parameters, These plots should only be used as a rough estimate. More accu-

rate values for specific diode conditions can be obtained from the results of

section D and the parameters discussed in Refs_ 24 and 25°

Electron current attenuation for krypton and xenon has also been com-

puted in a similar manner, and is shown in Figures VII-32 to VII-37o Electron

scattering by krypton is higher than that by argon b'y about a factor of 6, and the

scattering by xenon is approximately twice that by krypton.

Tn conclusion, the possibility of increasing output power by the use of

argon as a diffusion barrier was studied° No increase was observed in the pres-

sure range of 2- i00 torr. This result indicates either that diffusion is not the

dominant ion loss mechanism or that internal voltage drop is not highly dependent

on ion concentration. The latter possibility suggests the presence of a surplus

of ions in the ignited mode° Volume ionization occurs in this case and a surplus

of ions is produced as long as the emitter sheath height is larger than the critical

I

value, V E .

The electron current attenuation due to the presence of argon was de-

termined experimentally in the pressure range of 0,L i00 torr. At i0 torr of

argon, the attenuation is approximately 5-15%, depending on the specific con-

ditiono This pressure of argon corresponds to about 2 torr of krypton and i torr

of xenon° The data are in agreement with the theory for pressures higher than 30

torr. In the pressure range of 0.-30 torr, however, electron scattering predicted

by the theory is slightly lower than the experimental data. The pressure range

was extended up to 1000 torr by theoretical equations° Based on the results

from argon, the attenuation of electron current by krypton and xenon was also
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evaluated. The fractional attenuation increases moderately with increasing argon

pressure up to 10 torr. For higher pressures, fractional attenuation increases

very slowly with increasing pressure.
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CHAPTER VIII

ELECTRON SCATTERING IN THE

BOLTTMANN REGION

A. Introduction

The first-order analysis of the Boltzmann region was presented in Ref. 1.

At that time there was not enough experimental data available to compare with

the theory. In this chapter, the analytical relations are refined and compared

with the experimental data obtained in this program. The Boltzmann region is

defined 2 as _tthe region where the electrons from the plasma begin to reach

the collector." It is characterized by the fact that the electrons encounter a

barrier consisting of the sum of the output voltage and collector work function.

As a result, the number of electrons that surmount this barrier varies exponen-

tially with output voltage.

B,4, 5,6.
The Boltzmann region has received a great deal of attention m

experimental and theoretical studies because of its importance in the experi-

mental determination of the collector work function and its key role in unignited-

mode operation. However, a number of observations reported in the literature

are in apparent conflict. It is the objective of this chapter to show that these

observations can be reconciled if all the relevant phenomena are considered.

In addition to the physical interpretation given, practical guidelines are furnished

for the determination of accurate values of collector work function.

The cesium ion current (generated by ions released from the emitter sur-

face and accelerated toward the collector) makes study of this region particularly

difficult because it cannot be distinguished from the electron current. In this study

we avoided this complication by conducting all experiments under highly electron-

rich conditions. In addition, the electron density was kept small enough so that
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electron-electron interactions were negligible. Since the dominant effect under

these conditions is the scattering of electrons by cesium atoms, it was possible

to study electron-atom collisions and to determine the mean free path of electrons

in cesium vapor.

Electron scattering occurs in two different forms, depending on the ratio

of electron mean free path, k, to interelectrode spacing, d. When the electron

mean free path is larger than the spacing, an electron which collides with a

cesium atom and is reflected toward the emitter will probably reach the emitter

without suffering another collision_ and therefore it will have a very small chance

of reaching the collector. On the other hand, when the mean free path is smaller

than the spacing, an electron that is reflected toward the emitter will be very

likely to suffer additional collisions, and therefore it will have a greater chance

of reaching the collector.

Because of the above considerations, we have treated the two modes sepa-

rately. However, the scattering cross sections obtained in the two cases must

be in agreement if our model is valid.

B. Theoretical Analysis

In the Boltzmann mode Of operation the barrier composed of the collector

work function and the output voltage is greater than the emitter work function

barrier {Figure VIII®IIo If_ in addition, the electron current emitted by the

collector and the emitter ion current are negligible and the emitted electrons

suffer no collisions, then the output current is given by the Richardson equation:

J = ATE 2 exp [-(_c + eV}/kTE] (I)
o

V III-2



._ T I_e B N Ill 0 IE L IK C'I' N 0 N

65-R-11-31

i

--_X

d

eV

Figure VIII-I. Boltzmann Region.

VIII- 3



THERMO ELECTRON
E N G l N E E R IN G C 0 R P 0 RAT I 0 N

where :

A -- Richardson constant

TE -= Emitter temperature

_bc = Collector work function

V -- Voltage output

k --- Boltzmann constant

e -- Electronic charge

The effect of electron scattering by cesium atoms is determined from the

deviation of the actual current from that predicted by equation (1). This analysis

is based on the following assumptions:

1. Ion current and back-emission are negligible compared with the net

electron current.

2. The electrons can be divided into two groups, depending on whether

their energies are larger or smaller than (_c + eV), and can be

treated separately°

To satisfy the first assumption, the emission must be highly electron-rich

and the collector temperature low enough so that back emission is negligible. The
3

second assumption has been suggested by Hansen and Warner and is justified in

this analysis since, for 8 < 1, the electron density is low enough to render elec-

tron-electron interactions negligible.

Only those electrons that possess energies larger than (_c + eV) need be

considered, since the others will not be able to surmount this barrier and will

return to the emitter without interacting with any part of the system. The number

of these more energetic electrons, J , is given by equation (1}. Of these a
o

smaller number J will reach the collector, and the remainder will be scattered
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back to the emitter. J is related to J by a probability factor, S
0

J = SJ (2)
0

The probability S will be evaluated for the long- and short-mean-free-path cases.

1. Long-Mean-Free-Path Solution, d/k << 1. In the region where the inter-

electrode spacing is smaller than electron mean free path, the incremental change

in the directional electron current, dJ, in the interval x to x + dx is given by:

where:

dJ = -J Eoo dx (3)

J - electron current

_. - macroscopic cross section = NG

N -- cesium atom density

- microscopic collision cross section of electrons with

cesium atoms

x - distance

and 02 is the fraction of particles scattered from an elastic sphere that have a

component of velocity in the negative x direction, i.e. , _0 is the fraction of the

projected area of the sphere that reflects the incident particles by more than 90 ° .

From geometrical considerations,

2
= [sinCw/4)] = ½ {4)

Integrating equation (1) from x = 0 to d,

J = J exp(-d/2k) (5)
O

V III-5



THERMO ELECTRON

EN, GJN[ERING CORPORATION

where k "is the electron mean free path in cesium vapor and is given by

1
_ (6)

NT,

Comparison of equations (1) and (5) shows that when d/k < 1 the effect

of electron scattering by cesium atoms is to reduce the output current by a con-

stant fraction, exp(-d/2k). In a plot of lnJ versus V this amounts to a trans-

lation of the J-V characteristic along the voltage axis. If J is used in equation

(1) instead of J , an apparent collector work function, _bca, is computed as in
O

equation (7):

2
J = AT E exp (_bca - eV)/kTE (7)

The difference between the actual and apparent collector work functions,

A_bc, is given by:

kTL d for d/k < 1 (8)
A_bc = _ca - _c - 2k

Equation (8) gives the deviation of the measured collector work function, _bca,

from its true value _c as a function of interelectrode spacing d, electron mean

free path k, and emitter temperature T E for d/k < 1.

2. Short-Mean-Free-Path Solution, d/k >> 1. In this region, again, only

the more energetic electrons need be considered. Collisions with neutral atoms

cause the motion of electrons in the interelectrode space to become random in

direction. In effect, their motion is diffusion-dominated. For an absorption-free

diffusing medium the diffusion equation is of the form

2
V n = 0 (9)
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where n is the electron density. The boundary conditions are:

vn

At the emitter -_- -_ DVn = J (10)o

At the collector vn
4 +_ DVn : o (11)

where:

v = average electron velocity

D = electron diffusion coefficient in cesium vapor

The first boundary condition states that, at the emitter boundary of the

plasma, the directional current into the plasma is equal to J ; i.e., J fast
o o

electrons enter the plasma from the emitter. The second boundary condition

states that the directional current into the plasma at the collector boundary is

zero. The solution to the differential equation is given by

n(x) = ClX + C z (12)

From the two boundary conditions, the constants C 1 and C 2 are found to be

-4J
o

C1 - 4D + vd (13)

or

C2- D

4J
o 2D + vd /

(14)J4D + vd

4J 4J[o x + o 2D + vd (I5)
n(x) - 4D + vd -D-- 4D +

" VIII- 7
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The net electron current J through the plasma is required by Fick's

law to be

dn
J = -D--

dx
06)

or

J

4J D
O

4D + vd
(17)

The diffusion coefficient D is related to electron mean free path by

Equations (17) and (18) give

D = vk/3

J 1

J 3d

o 1 +4)

(18)

(19)

Algebraic manipulation of equations (1) and (1 9) results in

J = ATE 2 exp - kTE

It follows from equation (1 9) that the effect of electron scattering is

to translate the J-V curve along the voltage axis by the amount

(zo)

3d ) (Zl)kTE in l+_-

The collector work function can be computed using the actual current

J in equation (7) if the apparent collector work function value, _ca, is corrected

by A 9c , as given by equation (22):

Agc = 9ca-9c =kT . in(l + 3_) (zz)
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C. Experimental Technique and Results

In the preceding section we showed that,

current is an exponential function of voltage.

in the Boltzmann region, electron

The logarithmic plot of current

versus voltage is displaced from the "ideal" Bo1tzmann line by a voltage incre-

ment which is a function of d/X.

To test this hypothesis we measured the change in apparent collector work

function as we varied the interelectrode spacing and cesium pressure.

The success of this technique requires that the emitter, collector and

cesium reservoir temperature remain constant while the spacing is varied. To

accomplish this, an experimental procedure was developed which produces a

direct measure of the apparent collector work function as a function of spacing.

This technique is based on the fact that, in the Boltzmann region, where lnJ is

proportional to output voltage, the effect of a spacing change is to translate the

J-V characteristic along the voltage axis. Instead of generating a series of volt-

ampere characteristics at different spacing settings, with the possibility that

changes in the values of other parameters may take place, the output voltage is

recorded as a function of spacing at constant output current. Changes in output

voltage under these conditions are equal to the changes in the effective collector

work function.

Two modifications of the variable-parameter test vehicle 1 were necessary

for the present experiment. First, the variable-spacing mechanism was equipped

with a reversible electric motor so that the spacing could be varied continuously

and at a constant rate from "minimum" to 60 mils. Second, an electric signal

proportional to spacing was generated by using a 1 0-turn potentiometer driven

by one of the micrometer screws that adjust the spacing. The emitter temperature

was continuously monitored by a thermocouple. The diode and these changes are

shown schematically in Figure VTTT-2.
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Figure VIII-2. Schematic of the Cesium Diode.
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A typical run consists of varying the spacing while the electron current is

kept constant at a selected value on the Boltzmann line, usually I rnA. The output

voltage is plotted as a function of spacing by an X-Y recorder, and the entire run

is completed within a few seconds.

To investigate the long- and short-mean-free-path cases, two sets of data

were taken, both covering a cesium temperature range of 510 °-600°K (0.2-4. 0

torr), at T E = 1300°K. In the first set, the spacing was increased from minimum

to several mils. In the second set, the spacing was decreased from 60 mils to

minimum. Several typical runs for the two sets are shown (Figures VIII-3 through

VIII-6 and Figure VIII-7)o The reason for this procedure is that, for the first set,

the spacing range of 0-5 mils was of primary interest, and it was important to

minimize the departure from the state of equilibrium established prior to the run,

while for the second set the larger spacings were of interest and the procedure

was reversed.

D. Comparison of Experimental Results with Theory

According to equation (8), for small spacings A@c is a linear function of

the interelectrode spacing. The experimental data (Figures VIII-3 through VIII-6)

show such a dependence. The slopes of the dashed lines were used to calculate

the electron mean free path, which is plotted as a function of inverse pressure

(indicated by the diamonds) in Figure VIII-10.

The data from the high spacing range should fit equation (12), i.e. , a plot
3

of exp [ A_bc/kTE ] vs spacing should be a straight line with the slope-_ . Such

plots are shown in Figures VIII-8 and VIII®9 for two cesium pressures° The

lower-pressure run (Figure VIII-8) agrees well with the form of equation (1 2)

for d> 35 mils. A small deviation is observed at lower spacings. A case where

" VIII- 11
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the deviation is larger is shown in Figure VIII-9. This is probably caused by

small changes in emitter temperature, since emitter heat loss by cesium con-

duction becomes more important at higher pressures. Although a curvature is

present at high pressures, the maximum variation of the slope of these curves

is not large. The electron mean free path calculated from such plots is shown

as a function of inverse pressure in Figure VIII-10. Scatter bars indicate the

maximum variation in the slope.

The values of the electron mean free path obtained by the two methods are

in satisfactory agreement with each other, and show the expected dependence on

cesium pressure.
kT

The best fit to the data (Figure VIII-10) corresponds to Pk = _ = 1.6 mil-
e(y

tort for the gas temperature T = 960°K, or the electron-atom collision cross

gsection o = 230 ( Table VIZI-1 compares the value of cy obtained here with

values reported or estimated by others for the same region of electron tempera-

ture.

7
TABLE vm-i

COLLISION CROSS SECTION OF ELECTRONS WITH Cs ATOMS

This work (a)

Warner and Nansen (a)

Merlin( a )

Nottingham(c)

Roehling(a)
Stone and Reitz(b)

Zollweg and Gottlieb(a)
Robins on (b)

Harris( a )

Flavin & Meyerand (a)

a = experimental
b = theoretical

c = estimated

230

200

200

400

90

160

400

480

320

310

vm-2o
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fj

As may be seen, the value of _ = 230(A) 2 is quite close to the most probable

value and falls within the range of uncertainty.

E. Conclusions

The experimental evidence we have obtained supports the analytical model

presented. This simple model describes adequately the experimental observations,

provided extraneous effects are either eliminated or accounted for. Of particular

importance is the fact that the short- and long-mean-free-path cases treated have

yielded the same value of electron-atom scattering cross section. The 230(A) 2

value obtained is in good agreement with values obtained in other experiments and

by theoretical calculation.

This method for the experimental determination of collector work function

values has proved reliable. Figure VIII-11 is a plot designed to facilitate the

correction of observed apparent collector work function values for the effects of

interelectrode spacing and cesium pressure.
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APPENDIX A

LITERATURE REFERENCES TO WORK FUNCTION

MEASUREMENTS WITH FLUORINE COVERAGE

A literature search uncovered five references to refractory metal work

function measurements in the presence of either free fluorine gas or CsF. These

references have been abstracted in tabular form in Table A-I andwill be dis-

cussed here. The technical aspects of these investigations will be examined

in chronological sequence, and the relative influence they appear to have had

on each other will be pointed out.

Metlay and Kimball were concerned with the measurement of the electron

affinity of fluorine. In this they were not successful, for reasons that are of no

interest here, but in the process of measuring the ion and electron emission

from a hot tungsten filament they observed an increase in work function which

persisted to temperatures of Z600°K. They attributed this change to a tenaciously

held adsorbed fluorine layer. They also experienced a rapid loss of tungsten,

which they explained by a peculiar dislodging action of fluorine atoms on the

array of tungsten atoms, ignoring the fact that tungsten fluoride cannot exist at

these temperatures. Furthermore, having stated that this tungsten loss rate

was unaffected by filament temperature and fluorine pressure, they ignored com-

pletely the possibility that a third agent might be responsible for the reaction

taking place on the tungsten.

In general, their techniqu'e was not what has come to be referred to as

"vacuum technique," but rather one usually associated with chemical reaction

vessels. The difficulties experienced by the authors are best explained by 0.2

to I% of oxygen contamination in the fluorine gas. This corresponds to 10 -5 torr

" A-I
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partial pressure of 0 2 . Part of this oxygen may have been contained in fluorine

used, but it n_ay very well have been released by the reaction of the pyrex wall

of the vessel with the fluorine.

This work, nevertheless, was probably responsible for all subsequent

halide investigations except for the work of Morgulis which was published in 1956.

Morgulis measured the work function of tungsten coated with CsC1 versus

CsC1 coverage at 600°C using the contact-potential method. He measured cov-

134
erage by using Cs tagged with Cs , which he could count very accurately. The

vacuum technique employed in this experiment was carefully controlled, and, as

a result, the ultimate pressure in the device was l0 -9 to l0 -10 torr. The CsC1

was found to lower the work function of tungsten by a maximum amount of 1.8 eV.

The authors do not exclude the possibility of a "slight dissociation of the CsCl,"

but think it improbable° It is therefore questionable that their results are valid

at thermionic emitter temperatures, where complete dissociation is expected.

Aamodt and his co-workers, probably encouraged by Metlay's results, used

CsF crystals as the source of fluorine. The maximum work function change

(0. 6 eV) and the desorption rates he observed are very much like those reported

for 0 2 by many workers, which are discussed elsewhere in this report. Ranken

continued this work in a metal-ceramic tube, which, of course, avoids the diffi-

culty of water evolution from the pyrex walls at 300°C, but did not outgas his

CsF higher than Z200C.

Chronologically, our program started experiments with CsF next,

work has been discussed in detail in the August 1965 annual report and,

in current reports, so it will not be summarized in this table°

but that

of course,

A-2
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Jester, Langpape and Minor worked at first with glass tubes and later

with metal-ceramic tubes. They also observed maximum work function changes

of the order of 0. 6 eV in tubes which had residual gas pressures exceeding 10 -7

tort. They made steady-state measurements and observed that the "additive

effect" was lost after prolonged testing.

The summary table , .A-I, in conjunction with the results of this program,

strongly supports the conclusions drawn in the body of this report° Perhaps the

single most important factor responsible for the error made by all the investi-

gators of adsorbed halide films, with the exception of Morgulis, is the precon-

ception, shared by all, that fluorine ought to behave like oxygen, only more so.
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