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ENGINEERING ASPECTS OF CONTROL SYSTEM DESIGN

VIA THE "DIRECT METHOD" OF LIAPUNOV '_

Richard V. Monopoli, Ph.D.

The University of Connecticut, 1965

A control system synthesis procedure for linear or nonlinear, time

varying, single-input, single-output plants is developed into a useful engi-

neering design technique. In contrast to many others, it can be applied

systematically even though plant parameter variations are large and rapid.

Controller design is based on Liapunov's "direct method." It results in

control action which guarantees that the plant output approaches the output of

a model reference. The model is such that its output for a given reference

input is the desired plant output. Information required for design is a

knowledge of the plant equations, the form of its nonlinearities, and the

bounds on its parameter variations. It is usually necessary to assume that

the control signal magnitude is unconstrained.

Problems entailed in practical application of the synthesis technique

are investigated, and some solutions are found. Among the most serious

problems are plant gain saturations, transducer noise, and disturbance inputs.

Methods are developed which allow the technique to be used for a class

of plants with soft saturation gain characteristics, under any operating

conditions, and for plants with hard saturation gain characteristics with

some restrictions on operating conditions.

Though transducer noise cannot be eliminated, exact and approximate

techniques are developed which substantially reduce its undesirable effects

on system performance. The former include techniques which obviate the use

of higher-order plant output derivatives in generating the control signal.

One of these, called the reduction-of-order technique, allows design to be

based on a lower-order equation than the plant equation. It is applicable to

linear plants with slowly varying parameters. The approximate techniques are

based on approximating system equations by neglecting instrument dynamics,

and using approximate values for certain signals and controller parameters.

Designs using the approximate techniques yield acceptable performance if

initial conditions, and the magnitude and power spectral density of input

signals are suitably restricted.

*This dissertation was submitted in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy at the University of Connecticut.
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It is shown that the synthesis technique does not lend itself to de-

signing for a specific disturbance response, but under certain conditions

disturbance rejection can be guaranteed. However, if transducer noise is

present, this guarantee of disturbance rejection is at the expense of an

increased noise level into the plant.

An extension of the technique is introduced which allows designing for

a specified convergence time, i.e. the time required for the plant output to

reach that of the model if the system is started with different initial con-

ditions for each. It is shown that results pertaining to convergence time

design apply as well to the design of a class of quasi optimal systems.

Systems designed using these results are shown to achieve performance closer

to the true optimal than those designed using a previously reported technique.

The techniques developed in the report, shown to be effective by computer

simulation, enhance the utility of the synthesis procedure in practical con-

trol problems.
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CHAPTERI

INTRODUCTION

Statement of the Problem (i.i.i)

Modernday plants, such as high-speed aircraft and missiles, operate'in
an extremely wide range of environmental conditions. As a result, plant
parameters undergo large and rapid variations during operation. Control
systems for these plants are required, but in somecases design techniques
used in the past are inadequate for such systems because of the nature of the
parameter variations.

"Classical" feedback techniques for linear systems, sometimes called
i*

passive adaptive techniques , maynot be applicable if parameter variations
are either too large or too rapid or both. An approach to solving the control
problem for plants with large parameter variation is the use of so called

2-7
active self-adaptive techniques . In this approach, certain controller
parameters are adjusted to compensatefor changes in plant parameters.
Thoughsuccessfully applied to the large parameter variation problem3'4'8,
these techniques have several disadvantages. First, it is often difficult,
if not impossible, to analytically determine the stability properties of the
adaptive loop9'I0. Next, plant identification schemesrequiring complicated
instrumentation are necessary. And finally, instrument noise limits appli-ll
cation of the technique to plants with relatively slow parameter variations

The controller synthesis procedure developed in this report has
been shown to apply to linear plants with large and rapid parameter vari-
ations 12'13, and to nonlinear rapidly time varying plants as well 14'15 The
procedure is based on Liapunov's "direct method". Prior to its introduction,
there were no design techniques suitable for plants with rapid parameter
variations, and no systematic procedures for the design of controllers for
nonlinear plants. Thus, this technique helps to fill a very definite gap in
control system theory.

Superscript numbers in text refer to references listed in Bibliography.

1



Consideration is restricted to controller design for single-input,
single-output plants as shownin figure I-i. The design technique is
generally valid only if the control signal magnitude is unconstrained. The
only information required for design, besides the knowledge of the differen-
tial equations describing plant behavior is the form of the nonlinearites
and the bounds on the parameter variations. The design technique yields a
nonlinear controller which insures that the plant states approach the states

of the model reference. The model is stable, and generally of the same order

as the plant. Its behavior is governed by a linear, constant coefficient

differential equation, and its output is the desired plant output.

Nonlinear compensation schemes are not new, there being many instances

of such schemes reported in the literature 16-19. However, the design tech-

nique for the nonlinear controller being considered here has an important

advantage over many of those cited. It is systematic, whereas many of the

others are of a cut and try nature. In this technique, design is carried

out in the time domain. The desired dynamic performance of the plant is

achieved through specifications on the model. The form of the nonlinear

controller is in turn completely specified by the relatively straightforward

design procedure. In contrast, by other techniques, design is performed in

the frequency domain and it is difficult at best to interpret requirements

on the nonlinear compensating element in terms of performance speci-

fications 20 .

A major objective in this report has been to help fill the gap referred

to above in practice as well as in theory, i.e. to develop the synthesis

technique into one of practical engineering significance which may be applied

successfully to design of controllers for the class of plants described. The

extent to which this objective is achieved is described below.

The synthesis technique is generalized to include plants with types of

nonlinearities commonly occurring in practice. It could not be made generally

applicable to plants with a hard saturation gain, but it is shown that a

suitable design for such plants may be found for a limited range of operating
conditions.

An equation to design for a specified convergence time is derived for a

second-order plant. Though similar results are not obtained for higher-order

plants due to the complexity of the algebraic problem involved, it is shown

how insight obtained from solution of the second-order problem is useful in

decreasing convergence time for a third-order plant. Results obtained for

convergence time design in the second-order case are shown to be directly

applicable to design of quasi time optimal systems. When applied to one

such system and compared to a design using previously existing techniques,

the improvement in speed of response was on the order of two to one.

Transducer noise can lead to an excessive noise level into the plant.

Several very effective techniques are developed for reducing this noise level.

These techniques are based on deemphasizing or entirely eliminating higher

derivatives of the plant output in the control signal. An additional
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technique for reducing noise power _to the plant, based on lowering the gain ,

in part of the control signal, may be employed at the expense of accuracy
in tracking low level reference inputs.

Problems arising from neglecting instrument dynamics in the design of a

controller for pitch axis stability augmentation of the X-15 manned re-entry

vehicle are studied. With far out complex instrument poles neglected in

design, an instability can be excited by any combination of initial con-

ditions, reference input, and disturbance signals that is too large. The

reason for this is that the closed loop system gain is a nonlinear function

of these signals. However, it is shown that an adequate design can always

be achieved if linear compensating networks are used to move the neglected

poles far enough to the left in the complex s plane. Other techniques to

help minimize this stability problem are also presented. Their use requires

that some accuracy be sacrificed in tracking low level or rapidly varying

reference inputs.

Before the development of the synthesis technique is presented, some

brief comments pertaining to the "direct method" and control system synthesis

techniques based on it are made in the following section. The way in which

the report is organized is discussed in section 1.3.1.

Liapunov's "Direct Method" and its Application to

Control System Synthesis (1.2.1)

Alexander Mikhailov Liapunov was a Russian mathematician who presented

a conceptually new approach to the theory of stability of dynamic systems.

}{is work, published in a Russian journal in 1892, was later translated to

French in 1907, and reprinted in America in 194921 . Two approaches to the

stability problem were taken by Liapunov, one quantitative and the other

qualitative, referred to as the "first method" and the "second" or "direct

method" respectively. In the "first method," the study of stability

proceeds from an explicit solution of the equations of motion for the s_stem.

However, it is the "direct method" which offers the more general and powerful

approach to the stability problem, and in fact, " .... has achieved

virtual preeminence in the Soviet Union as the principle mathematical tool

in tackling linear and nonlinear stability problems of the most varied type,

particularly in the theory of control systems. ''22

The "direct method" considers the stability of differential equations

when the form of the equation is known, but not explicit solutions. It is

actually a qualitative approach to the stability problem rather than a

.Vo

Appendix A includes definitions and theorems required for an understanding
of the "direct method."

4



systematic method. Though qualitative, an ingenious user of the approach is

able to gain much useful knowledge about the stability of the dynamical

system under investigation. In the approach, a "fictitious" energy function

is employed. This function, named a "Liapunov function," plays a role

similar to that of the true energy function of a stable physical system, i.e.

it assumes its minimum value at the equilibrium state, and its time rate of

change is negative for all possible states of the system except the equi-

librium, where it is zero.

Though the literature is replete with material involving the "direct

method," little of it is directed toward the synthesis of control systems.

Much emphasis has been placed on analysis of stability problems and the

search for Liapunov functions to use in such problems. Works dealing

explicitly with the synthesis problem include those by Bass 23 Grayson 12'
13

Johnson24,25 26 Of these all but references 12,, Nahi , and the author 14,15

13, 14, and 15 employ the "direct method" to design optimum or quasi-optimum

control systems. Grayson and the author use the "direct method" in the

design of controllers which force linear or nonlinear time varying plants to
behave in a desired manner.

Optimum design of systems has received considerable impetus of late

largely due to the pioneering works of Pontryagin et al. 27 and Bellman 28
,

Bass first suggested a merger of the "direct method" and optimization theory.

A detailed presentation of his utilization of the "direct method" in

achieving a quasi optimum control system design is also included in refer-

ence 22. His design was restricted to linear time invariant plants with the

control variables subject to magnitude constraints. Though the method of

design does not yield a true optimum, it has the advantage of leading to a

system in which only linear feedback preceeds a simple switching type non-

linearity, and one which is guaranteed to be stable. Johnson extends this

method by generalizing the cost function, and treats the quasi time optimal,

quasi fuel optimal and quasi energy optimal problems in detail. Nahi

presents a method of design which leads to true time optimal systems for a

certain class of problems.

Grayson employed the "direct method" in a design context for the control

of linear plants with large, rapid and bounded parameter variations. A model

reference is employed and the design leads to a nonlinear controller which

is not objectionably complex, a charge sometimes levelled at active adaptive

systems. Though not related to the optimization problem, this design is

roughly speaking, an outgrowth of the Bass design. In this case, however,

the control variable is unconstrained and has a magnitude which is a function

of the size of the parameter variations. The model is used to give the

system a reference for desired plant behavior. The difference between the

plant and model outputs is defined as the error. A vector differential

equation in the error and its derivatives is obtained by subtracting the

plant equation from the model equation. Then a quadratic form Liapunov

Function of the error states is formed. The time derivative of this Liapunov

Function is maint : _ negative definite by selecting the control variable



to have sufficient magnitude and the correct sign. Consequently, plant stats"
are forced to approach those of the model. Though Grayson's work is theo- •

retically appealing, it fails to treat the engineering design problems which

arise in practice such as plant nonlinearities, transducer noise, dis-

turbances, instrument dynamics, and design for a specified convergence time.

These problems are dealt with in this report.

Organization of Report (1.3.1)

Chapter II, sections 2.1.1 through 2.2.3, includes a statement of the

general problem and the controller design procedure for linear time-varying

plants. This material is based on the technique given in references 12 and

13, but modifications are introduced which make it more attractive from an

engineering point of view. The modifications make it possible to avoid

impulses in the control signal in plants with zeroes, and also to reduce the

gains required in the control signal. The advantages attendant to these

modifications are examined in section 2.2.2 by comparison to the previously

reported technique. A modification of the technique necessary for plants

without integrators is introduced in section 2.2.3. Sections 2.3.1 through

2.3.3 treat the extension of the controller design technique to include a

wide class of nonlinear plants. Of particular importance in this category

is the problem of gain saturation exhibited to some degree by all physical

plants. The technique can sometimes be applied to nonlinear plants even

though the exact form of the nonlinearity is not known. This can be done if

a bound on the argument of the nonlinear function can be determined from

physical considerations. In these cases it is only necessary to know that

the nonlinearity lies within certain bounds. Since this is often the case

in physical problems, this aspect of the design technique is particularly
appealing.

In section 2.3.3 several examples dealing with the application of the

design technique to nonlinear plants are given. In section 2.4.1 the problems
of disturbance inputs and transducer noise are examined from a theoretical

viewpoint. There it is shown that generally the method does not lend itself

to designing for a specified disturbance response, but under certain con-

ditions disturbance rejection can be guaranteed. The interrelationship

between disturbance rejection and transducer noise is discussed, and a full

treatment of this problem from an engineering viewpoint in included in

Chapter V.

Chapter III introduces a technique for including convergence time as

part of the design problem. The close relationship between the convergence

time problem and the quasi time optimal control problem is discussed. A

change in the definition of quasi optimal from that given in reference 25 is

introduced. It is shown that a design for a quasi time optimal system based

on the revised definition results in performance closer to the true time

optimal than the design based on the original definition.

6



In Chapter IV and V an investigation is madeinto the design problems
arising due to transducer noise and instrument dynamics. Several techniques
are developed in IV for eliminating plant state signals from the control law.
By such elimination, especially of higher order plant states, those mQst

corrupted by noise, the problems associated with transducer noise can be
reduced. In section 4.3.1 it is shown how the model matrix can be manipu-

lated to aid in the noise reduction problem. Section 4.5.1 deals with the

very powerful reduction-of-order technique applicable to linear, slowly time

varying plants with zeroes. A theorem pertaining to the control of such

plants is given in section _.5.1. The reduction-of-order technique is an
ideal solution to the transducer noise problem in that it allows controller

design to proceed from a lower order description of the plant, thereby

avoiding the need for some of the higher-order plant states completely. In

section 4.6.1 the extension of the reduction-of-order technique to plants

without zeroes is considered.

In Chapter V, the reduction-of-order technique is applied to an

engineering problem, the design of a controller for pitch axis stability

augmentation of the X-15 manned re-entry vehicle, which has parameter

variations on the order of a thousand to one. The advantages of the design

using the reduction-of-order technique are brought out through a comparison

with a design which does not use it. An extensive analog computer study of

transducer noise, disturbance response, and instrument dynamics problems is

made. Through this study, design difficulties are clarified and some so-

lutions to these problems are obtained.

7



CHAPTERII

CONTROLLERSYNTHESISTECHNIQUE

The General Problem (2.1.1)

The controller synthesis technique presented in this report is app%icable
to single input, single output plants as shown in figure I-i which can be de-
scribed by the set of n first order differential equations of the form

½. : (i : i, 2, ..... n-l) (2-1)1 Xi:l

1 m 1 m
Xn = f(xl, x2"''Xn' u, u ,...u , r ,.... r , t)

or the equivalent vector differential equation form

x : Ax + B(u + r) + f(x, u, r, t) (2-2)

where r is the reference input, u the control signal, xi the plant output,

and xi+ 1 the ith time derivative of xI. The sum of u and r forms the single

input signal to the plant. Superscripts on u and r denote derivatives with

respect to time. The presence of these derivatives allows for the possibility

of zeroes in the transfer function representation of the plant. Unknown

parameter variations prohibit use of a transformation to remove the zeroes.

From physical considerations, m < n. The first two terms on the right hand

side of (2-2) include all linear terms in _, _, and r. The matrices A and B

are nxn whose elements, in general, may be time varying in an unknown fashion

within known, finite bounds. The function f includes all nonlinear terms in

_, £, and _r" Equations (2-1) and (2-2) represent the open loop plant un-

modified by external linear feedback. Reasons for introducing linear feed-

back prior to generating the control signal, u, with the nonlinear controller

will be discussed subsequently.



The form of (2-1) leads to an A matrix of the form

A

0 i

0 O

a1
I

a2

1 0

0 i

. 0

•

0 1

a
n
m

(2-2-a)

and a B matrix, all of whose elements are zero except for those in the last

row

B

©
b I b 2 ...... b n

(2-2-b)

The importance of the form of A and B to the design procedure will

become evident in the discussion which follows•

The problem to be considered is under what conditions the plant of (2-2)

can be made to behave like a linear model reference described by the vector

differential equation

xd = AoX d + Bo_r (2-3)

where xd is a column n vector with the model output and its first n-i time

derivatives as its components, A is a stable nxn constant matrix of the same
o

form as A, and B is an nxn constant matrix of the same form as B. The
o

elements of the last rows of A and B are a and b respectively, where i
o o oi oj

and j take on values from i through n. The reference input r is as defined

for (2-1) and (2-2).



The problem as it relates to linear time varying plants is treated first;

and then plants with various forms of nonlinearities are considered.

Linear Time-Varying Plants (2.2.1)

For a linear time-varying plant, f _ 0 in (2-2). Let the A and B

matrices be separated into constant an_ tim--e varying parts as follows:

A : A + AA(t) (2-4-a)
o

B : B + AB(t) (2-4-b)
o

where A and B are defined as in (2-3)
o o

It follows from these definitions and what has been said previously about the

forms of A, B Ao, and B that AA(t) and AB(t) have all zero elements except' o

for those in their last rows. Let these elements be denoted by a i and 8i

where s. = a. - a . and 8. = b. - b ..
1 1 O1 1 i Ol

The controller design technique proceeds by defining an error vector

differential equation as the difference between (2-3) and (2-2), i.e.

e : A e - (Bu + ABr + AAx) (2-5) _

where _ = x d - x, the error vector.

When _ = _ = _ = _, (2-5) reduces to the homogeneous equation

e = A e (2-6)
m O--

Since A ° is stable by assumption, then a Liapunov function of quadratic form

exists for (2-6), and its equilibrium, _ = _, is asymptotically stable in the

whole. Let this Liapunov function be

V(e) : eTpe (2-7)

10



where P is a positive definite matrix to be determined.

of. (2-7) is

The time derivative

V(e) = eT(ATp + PA )e (2-8)

In (2-8), let

ATp + PA = -Q (2-9)
o o

where Q is chosen to be a symmetric positive definite matrix. Criteria for

selecting the elements of the Q matrix are considered in Chapters III and IV

relative to convergence time and the transducer noise reduction problem. At

this time, it suffices to arbitrarily chose Q as the identity matrix, I, as

is usually done for convenience in the literature. Because A ° is stable, the

P matrix found from the solution of (2-9) will be positive definite, and

'symmetric since Q is symmetric.

When the terms in parenthesis on the right hand side of (2-5) are not

zero, an additional term appears in the time derivative of (2-7), such that

V(e, u, r, x, t) = -eTQe - 2eTp(Bu + ABr + AAx) (2-10)

This form of V is a consequence of the fact that P is symmetric.

The control problem now reduces to determining when and how a control

vector, _, can be generated which will cause the inequality

efP(B_ + AB K + AA_) _ 0 (2-11)

to be satisfied. If (2-11) can be satisfied by a suitable choice of _, then

(2-5) will be asymptotically stable in the whole under all variations of the

parameters, i e. the plant will be forced to track the model. The basis for

choosing u is considered in detail below. In Appendix A is a discussion

pertaining to the mathematical justification of the synthesis technique

developed here.

To examine this problem in more detail, it is necessary to write (2-11)

in expanded form, which is

ii



_j + lu] +i r] k]

• • n

n _ (b + 8 ) + _ akX > 0Z Pinei ) J J
i= I I =0 k=l

(2-12)

where p. is an element of the last column of the P matrix. This form, which• in
wzll be referred to as the "factored" form, is a consequence of the fact that

B, AA, and AB have nonzero elements in their last rows only. The term

"factored" refers to the fact that all of the terms involving components of

u, r, and _, are multiplied by the same factor, the summation in Pinei . It

is this fact which makes it possible to generate a u which will cause (2-11)

to be satisfied. Thus, one condition required for generating _, is that A,

B, A , and B have the forms previously specified. Before discussing how u
O O

is generated, further consideration is given to other conditions which must
be met.

In (2-12) Pln and bm+ 1 are factored yielding

n _u m m-i
Plnbm+l ( Z ) +U(m-l) Z

i=l Pinei J=O

m n

c uJ+
j+l Z + Z£=0 d£+ir k=l gkXk_ h 0 (2-13)

where

Pin

Pin =Pln

b
=_i!!

Cj+l bm+ I

6£+1

d£+ I = bm+l

gk=b
m+l

U(m-l) =<i

for (m-l) > 0

for (m-l) < 0

12



• It is shown in Appendix B that Pin > 0 for a diagonal Q matrix. A
condition on bm+I is evident from (2-13), i.e. bm+I # O. This is required

in order that Cj+l, dj+l, and gk be finite. The coefficient bm+l maybe
greater than or less than zero.

Consider the case whenbm+1 > O. Then the control signal must be such
that (2-13) is non negative. A control law, from which a control signal can

be generated, which keeps (2-13) > 0 will be given, and the reason for the

choice will follow. The control law is

m-i m n

m mlr£1u = [U(m-l) 7 Icj+iImlUJl + z Id£+iI + z IgklmlXkl] sign y (2-14)
j=o _=o k=l

n

where subscript m denotes maximum value and y = Z Pinei . Hereafter, ¥ will
i=l

be referred to as the switching function.

The rationale for choosing this control law is that in causes um to have

a magnitude which is greater than or equal to the magnitude of the sum of all

of the other terms in the square brackets of (2-13) for all variations of the

parameters c, d, and g. This being so, the sign of the square bracket term

is determined by the sign of u TM. By giving um the sign of y, (2-13) is made

greater than or equal to zero.

The complete _ vector, and hence the control signal u, can be generated

by successive integrations of um. The control signal so generated will force

the plant output to track the model output. In the control law given by

(2-14), the terms within the braces will be referred to as the magnitude

function, M, since it is composed of magnitudes of variables only, and also

it determines the magnitude of uTM. The restriction previously imposed that

the elements of the A and B matrices be finite is required in order that the

coefficients in M be finite.

If bm+ I < O, then um would be chosen of opposite sign from that of

(2-14). If bm+ 1 varied between positive and negative values, then a re-

quirement of the system would be an identification scheme to determine its

m
si_n so that u could be generated accordingly. In order to avoid this re-

quirement, it is assumed throughout that bm+ 1 > O.

13



FlUgge-Lotz29 has shownthat for equations which have sign functions as
forcing terms, solutions maynot always exist. For this reason, the dis _ "
continuous sign function is replaced by a continuous function, this being
either the saturation function 22'12 or the hyperbolic tangent 25 in previously
reported work. The saturation function is defined as

+i for y > i/k

sat ky = ky for -i/k < y < i/k (2-15)

-i for y < -i/k

where k > O. It can be madeto approximate the sign function as closely as
desired by choosing k large enough. An investigation of the results of
FlHgge-Lotz shows that solutions do exist in somecases. For example, in a
plant described by

x"+ aX + bx = Csign(x + dx) ( 2-16)

in which a > 0 and b > O, solutions exist if C > 0 and d > 0 which bring the
system to one or the other of the "rest points," + C/b, in figure 2-i. Such
solutions are unsatisfactory, however, if the desTred final state is

x = _ = 0. When C < 0 and d > O, there is the possibility that the tra-

jectory intersects the switching line at two successive points on the same

side of the origin such as points P2 and P3 in figure 2-1. The second point,

P3' is called an "end point," and motion is undefined beyond such a point

because motion cannot continue along either of the dashed curves P3A or P3B

since the former pertains only for x + dx > 0 and the latter for x + dx < O.

A phase plane analysis using isoclines shows that "end points" do not result

for C > 0 and d > O. Because neither the "rest points" nor the "end point"

situation is desirable, both are avoided by replacing the sign function with

the saturation function of (2-15) throughout the remainder of this report.

Use of the saturation function avoids the problems discussed above, but

it introduces another not previosuly discussed in the literature, i.e.

asymptotic stability of (2-5) is no longer assured in the region IYI _ i/k.

The reason for this is that Mky may not have sufficient magnitude to maintain

(2-13) > 0. There are two practical consequences of this fact. First,

tracking of the model by the plant may be poor for low amplitude reference

inputs, r. A full discussion of this problem is included in 5.3.2. Second,

limit cycles or constant steady state errors may develop near e = O. It is

shown in Appendix C that such limit cycles or steady state erro--rs _an be

confined to an arbitrarily small region about [ = _ by making k large enough.

14
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For a given k, a conservative bound on the size of the region is established

in terms of the components of [ and xd. Such a region for the second order

case is shown as the cross hatched are---aof figure 2-2. It is defined by the

intersection of the regions IYI _ i/k and R(k). The latter region is defined

in Appendix C.

Comparison to Previously Reported Technique (2.2.2)

The controller design technique for linear time-varying plants given in

section 2.2.1 is quite similar to that presented in reference 12. However,

several modifications can be introduced which should be pointed out. These

modifications offer several advantages from an engineering design viewpoint.

The first modification is achieved by factoring b _, as was done in

(2-13), and by defining coefficients c, d, aria g. ir some relationship

exists and is known between numerators and denominators of these coefficients,

it may be used to advantage in selecting smaller values for the coefficients

of (2-14). This leads to lower saturation level requirements in the con-

troller amplifiers. For example, ICj+llma x should be chosen as I(bj+l)/

(bm+l)Imax rather than l(_j+l) Imax/|(bm+l)Imin. In general it is sufficient

to make the magnitude of u equal to the magnitude of the sum of all terms in

the square brackets of (2-13) other than itself. All available information

should be used to reduce the magnitude of u TM to this sufficient value.

Another modification applies to plants in which m _ O, i.e. derivatives

of input signals appear in the equations. In this situation, the reference

input r is not to be used as an input to the plant, but only to the model

reference. Only the control signal u is to be applied to the plant input.

In addition, the model should be such that its equation does not include

derivatives of r. If both these conditions are satisfied, then derivatives

of r do not appear in (2-14). This is especially important if r contains

step functions for then impulses are avoided in generating um. If r is not

an input to the plant, then ABr of (2-10) and (2-11) is replaced by B r, and
-- o--

the coefficients of rj in (2-12), (2-13), and (2-14) must be changed

accordingly.

Plants Without Pure Integrators (2.2.3)

If m = O in (2-1), and if the plant has no pure integrator, i.e. a I _ 0

in the A matrix, a problem may arise due to the nature of the control signal

given by (2-14). This problem is most easily examined by considering the

reference input to be a unit step. As _ approaches zero, u does too. How-

ever, since the plant has no pure integrator, a steady state input of unknown

16
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magnitude is required to maintain xI = 1 in the steady state. This situation
will lead to limit cycling or a constant steady state error. Note that this

problem does not exist if m # O, for then um goes to zero when_ does, but a
steady state value of u can develop which will maintain xI = i.

In order to circumvent this problem, the following procedure is sugges_a_i
Rather than have only u as the plant input signal, let the input be

$_ udt. With this input to the plant, the design procedure is unchanged.U +

The only modification to be made is that the version of (2-14) for this case

becomes

n

u = [I0/t udt I + Ibol/bllmaxlrl + Z IgklmaxlXkl] satk y (2-17)
k=l

With the integral of u included as an input, a steady state value can develop

at the input to the plant which maintains xI = I.

Nonlinearities In The Feedback Path (2.3.1)

If f # 0 in (2-2), then the design procedure as given for linear time

varying plants must be modified somewhat in a way which depends on whether

or not the nonlinear element is in the forward path or the feedback path.

The two possibilities are depicted in figure 2-3. In either case, there is

a requirement that f be a column vector with all components zero except the

last, in order to obtain the "factored" form of (2-12).

An important distinction between the two cases is the amount of infor-

mation required about the nonlinearity. When the nonlinearity is in the

feedback path, only bounds on f are required. If it is in the forward path,

and m # O, it is necessary to know bounds on partial derivatives of the

nonlinear function with respect to all of its arguments. First, consideration

is restricted to the case f = f_, t), i.e. the nonlinearity is in the feed-

back path. In this situation, the error equation, analogous to (2-5) for

the linear time varying case, becomes

= A e - [Bu+ABr+AAx+f(x,t) ] (2-18)
(_ .....
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The procedure developed from (2-7) through (2-11) is again followed, so that °

now a u must be found such that

efP [Bu_+ABr_+AAx+f(x,t) ] > 0 (2-19)

Because f has all components zero except that in the last row, (2-19) expands

to

m-1 m

c uJ+ 7
Plnbm+l Y [um+u(m-l) Z J+l d_+ir

j=0 £=0

n

+ 7

k=l
gkXk+h(Xl,X2,...Xn,t)/bm+l ] _ 0

(2-20)

where h, the component of the last row of the f vector, is a nonlinear time

varying function. It is seen that (2-20) is in "factored" form as was

(2-13). Therefore, with the same restrictions applied to the parameters as

applied in the linear time varying case, it is again possible to choose

m
u as in (2-14) provided the form of h is known and coefficients in h are

bounded functions of time. For example, if

h : kl(t)xl2+k2(t)xlx2 (2-21-a)

the following additional terms must be included in the braces of (2-14):

tkl(t)/bm+!lmXl2+lk2(t)/bm+llmlXlX21 ( 2- 2l-lo )

where subscript m denotes maximum value.
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From (2-21-b) it is seen that the requirements Ikl(t) I < _ and Ik2(t) I <
' m

must be imposed in order that it be possible to generate u with finite gain

amplifiers. It is important to note that the exact form of h need not always

be known. This is discussed in relation to example 2-1.

Nonlinearities In The Forward Path (2.3.2)

The following discussion pertains to nonlinearities in the forward path

which precede the plant as shown in figure 2-3b. In the figure let

n

y = u+r+ E 6.x. (2-22)
1 1

i=l

where 6.'s are constants.
1

Again it is necessary to assume that the column vector _ has all zero com-

ponents except the last in order that the "factored" form result. This last

component is designated as h(y, t). In contrast to the previous case,

knowledge about partial derivatives of h(y, t) with respect to y and t are

required here if m # O. Therefore, attention is directed to the case when

m = O, i.e. no derivatives of z appear in the equations. It is assumed that

h can be expressed as

h(y, t) = (h(y, t)/y)y = (h(y, t)/y) (u + y') (2-23)

where y' = y - u

If m # O, and for discussion let m = i, then it would be required that an

expression of the form

dh(y,t) = _h dy + 3h = _h__h__(6+#,) + 3h
dt _y dt 3t y 3t

(2-23-a)

could be written where u + y' = y. In order to derive the control law it

would be.necessary to know bounds on both partial derivatives. In addition,

(_h/_y)/y would have to be of one sign (analogous to bm+ 1 in the control

21



laws for previous cases). Since this is muchmore information than has b_ln "
assumedknownabout the plant, this case is not pursued further.

The procedure used leading to (2-11) is followed here with m = 0 to give

the analogous equation for this case which is

efP [ABr_+AAx_+f__(y,t)] >_ 0 (2-24)

The scalar form of (2-24) is

n a'l _ir]

Pln(h/y)y [u+y' +i=IZ h--_xi + _ _> 0 (2-25)

In (2-25) h/y has replaced bm+ I which appeared in (2-13) and (2-20).

Therefore, the restrictions placed on bm+ 1 must also be placed on h/y, i.e.

h(y, t)/y > 0 uniformly in t. Also the coefficients of the variables forming

y' must be bounded. If the form of h is known as well as its maximum ex-

cursion with time, then u can be generated directly to satisfy (2-25) in the

same manner indicated for generating it in (2-14). The general form of u

will not be written out since it is quite obvious from what has been done

previously, and also an example of this type is worked in the following
section.

The restriction that h(y, t)/y > 0 rules out plants with a hard satu-

ration gain characteristic. Since this is a common form of nonlinearity, it

is well to consider what can be said about stability in such cases. In

4.2.2 it is shown that it is sometimes possible to determine an upper bound

U([, xd) such that lul < U. Thus, for a given plant saturation level, the

model a---ndreference input can be adjusted so that lul does not exceed this
level.

Generally it is not reasonable to expect a plant with a hard saturation

gain to track the model since the magnitude of the input signal required may

exceed the saturation level. It is important in such cases to consider the

stability of the plant without regard to its ability to track.

22



" A condition equivalent to hard saturation is that there is a magnitude

constraint on u equal to the saturation level, S, i.e

lul <_ S (2-26)

Since tracking properties are not under consideration, it is assumed that

r = x d = O.

Thus, e = -x

(2-27)

and stability can be investigated by substituting (2-26) and (2-27) into

(2,25) to give

n n _.

Pin(h/y) e.- _ I ei ]y [u- Z 6i I h-_ _ 0 (2-28)
i=l i=l

From this it is seen that stability can only be assured in the region where

n _.

I 7. (6.e. + 1
i=l i I ei)l -< s (2-29)

This region may not be easy to determine in view of the fact that the pa-

rameters are time varying, but one always exists around the origin _ = _.

If the parameters are slowly varying so that a transfer function repre-

sentation of the linear part of the plant is valid, then a describing

function analysis may be applicable if the control signal is generated as

u = S sat ky (2-30)
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rather than as the product of the magnitude function and the saturation

function. This case is shown in figure 2-4 where P(s) is the transfer

function for the linear part of the plant. If the product of P(s) and the

feedback transfer function has suitable low pass characteristics, then a

describing function analysis can be applied. Such an analysis, of course,

is complicated by the parameter variations. In spite of this, it may still

be possible to determine stability over the range of these variations.

Several Examples Using Nonlinear Plants (2.3.3)

To fix ideas, some examples involving nonlinear plants are worked out

in detail. Examples used are taken from references 14 and 15. An example

using a linear plant is taken in Chapter IV in connection with the transducer

noise problem. The operation of the controller design for the nonlinear

plants considered was checked by a simulation of the system either on an

Electronic Associates Inc. PACE 231-R analog computer or the IBM 7040 digital

computer.

In order to permit clarification of ideas while avoiding unnecessary

complications all examples are taken as plants representable by second order

nonlinear and time varying differential equations. Since this is so, a

second order model reference suffices for all examples, and it is chosen to

be

I0 IxI0 (2-31)

If the A matrix defined by (2-31) is substituted into (2-9) and Q is
o

chosen as the identity matrix, then solution of (2-9) yields

5/4 i/4-]
P = (2-32)

i/4 3/8_I
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With P matrix elements deter_nined, the switching function can be written, and

it is

y : e I + l. Se2 (2-33)

The P matrix and y function above are independent of the plant. Therefore,

they will be applicable in all examples which follow.

Example 2-i: This example and the one following deal with plants that

have nonlinearities in the feedback path. Accordingly, (2-20) is used in

each for deriving the control law.

Consider the plant shown in figure 2-5 which has a square law damping

characteristic. The vector differential equation describing this plant is

i = x + (u_+r)+ (2-3_)

For this plant, m : O, i.e. no differentiation of u or r is involved. Be-

cause of this, and also because of the fact that the plant has a pure

integrator, unity linear feedback of x is used, and r is made an input to

the plant The AA and AB matrices can be found from (2-31) and (2-34) to be

AA = ; AB = (2-35)

(K-2) -2)

From (2-34) it is seen that aI : b I - K and bm+ 1 : b I : K. The last term on

the right hand side of (2-3g) is f. Relating thi_ to (2-20) shows that

h(x2, t) = a(t)x22. The bounds on parameter variations are taken as K _ 1
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and la(t)l < i. With the form of h and the bounds on parameter variations

known, application of the design technique is straight forward. The control.

law derived by applying (2-20) and (2-21-b) is

u = [Ir-x l+ 21%1+ x22]satky (2-36)

Since m = O, no integrations are required, and the control law as given by

(2-36) generates the control signal, u, directly. A plot of e and u versus

time is shown in figure 2-6. These results were obtained using a digital

computer simulation with a(t) = sint, r(t) = sinO.it and k = 20. The error,

in general quite small, has the largest percentage value near t = o where xd
is small.

It should be noted that if physical considerations allow an upper bound

for Ix21 to be established, then x22 in (2-36) can be replaced by Blx21(see

figure 2-5b). In some instances, this procedure may significantly simplify

instrumentation by avoiding a complicated nonlinear function generator. It

is also of importance in the practical case where the damping is approximately

square law rather than an exact square law. Thus, any nonlinearity with

magnitude less than Blx21 for IX2| < |X21ma x can be handled by using Blx21

in (2-36) rather than the nonlinear function itself.

Example 2-2: In this example, as in example 2-1, the nonlinearity is in

the feedback path. Here, however, the plant, shown in figure 2-7 and de-

scribed by equation (2-37) below has no integrator.

x_ = + Itu__dt+ (2-37 )

- 0 cx 1

In (2-37), c > O, c = O, and c <0 corresponds to a hard spring, linear spring,

and soft spring respectively. Since the plant has no integrator, r is not

used as an input, and the technique discussed in 2.3.1 is employed as

indicated by the second term on the" right hand side of (2-37) which involves

the integral of u rather than u. Employing (2-31) and (2-37) leads to
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AA = [o o](2-b) (2-a)

3
; h_Xl,t ) = _ elM I

Since r is not an input to the plant, B replaces AB in the design equations.
o

With parameters taken as a(t) = slnt, Ibl ! i, Icl ! i, and K _ 1 the control
law becomes

u = [2lr-xzl + Ixzl + 31-21+ IX113+ '-ljtuatl] satk y (2-38)

0

Digital computer results for this example are shown in figure 2-8 for

r = U(t) and k = 20. The error is seen to be very small for all time.

Example 2-3: The plant depicted in figure 2-9 has a nonlinearity in

the forward path, a pure integrator, and a pole in the right half plane. Be-

cause the integrator is present and there are no zeroes, unity linear feed-

back is employed, and r is used as an input to the plant. Linear rate feed-

back is introduced which stabilizes the plant for small inputs, but the

linearly compensated plant, without benefit of the nonlinear controller, is

conditionally stable due to its nonlinear gain and might half plane pole.

For step inputs greater than 2 volts, the output increases without bound.

The function of the nonlinear controller is to circumvent the conditional

stability problem, and cause the linearly compensated plant to follow the

model for any input.

The equation for the plant with linear feedback is

1 0

= x + (2-39)

-- a(t) -- (Xl,X2,u,r)
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where the nonlinear term h is defined in figure 2-9, and la(t)l < i. Since

the nonlinearity is in the forward path, the method of section 2.4.2 is used"

to derive the control law. There are no plant zeroes, so m = O. The

argument of the nonlinear function h is

y : r + u - x I - 1.5x 2 (2-40)

Since y involves a linear term in u, and since h(y)/y > O, the conditions

discussed in 2.4.2 are met and the technique can be applied directly to

obtain the control signal, u. Equation (2-25) for this problem becomes

_u 2(r-xl)+(2+a)x2-_PI2 (h/y) Y +(r-Xl-l'5x2) - _7Y "J A 0
(2-_i)

where r - xI - 1.5x 2 = y'

Utilizing (2-41) and the facts that lh/Ylmin

law becomes

= 1/5, and la(t) I < i the control

u = + 13.51x21]satk y (2.h2)

where k = 200 was used in an analog computer simulation. Computer results

of controller operation are shown in figure 2-10 in the form of phase plane

trajectories. The variables d and d' are defined in figure 2-9.

The results show less than one percent error between plant and model
variables d' and d, and less than 2.5% error in the derivatives of these

variables. Trajectories shown are for a 4 volt step input, but similar

results were observed for inputs up to i0 volts. The system was stable for

any magnitude of input signal.
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Disturbances and Transducer Noise (2.4.1)

A representation of the problem with transducer noise and disturbance

inputs present is shown in figure 2-11. It would be a desirable adjunct to

the design technique to be able to design for a specific disturbance response.

However, as will be shown, this is not possible• The best that can be done

is to insure that lecl is as small as desired. For disturbance inputs this

is a desirable result in that it implies disturbance rejection. For noise,

however, the implication is that the plant tends to track the noise, which
is undesirable.

For the purposes of this discussion, it can be assumed that the plant is

a linear time varying one without loss of generality. As is seen from

figure 2-11, the available signal z is not the true output but is corrupted

by disturbance and noise, i.e.

z = x + d + n (2-43)

o

where d = dl, n = n_,l and d.1 = di+l' n.1 = n.l+l for i = 1,2,...n - i

The plant equation is

x = Ax + Bu (2-44)

From (2-43)

X = Z - d - n (2-45)

Substituting x from (2-45) and x from (2-43) into (2-44) gives

z : Az - A(d + n) + Bu + d + n (2-46)

Subtracting (2-46) from the model equation (2-3) gives

e = A e - Bu + A(d + n) - d - n - AAz + B r (2-47)
c o-c ..... (Y--
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The time derivative of

V(e ) : e Tpe (2-48)
C C C

is

= -ecTQec -2ecTP [Bu-A(n+d)+d+n+AAz-B_ -- o--r]
(2-49)

As a consequence of the specified form of the A matrix, terms in d. and
1

n. for i = 1,2...n do not appear in the first n- 1 equations of (2-46), i.e.

i = for i = 1,2,...n - I. All the d. and n. terms as well as d and
zi Zi+l 1 l n

nn may appear in the equation for Zn" At least the expansion of (2-49) is

in "factored" form. However, since the terms referred to are not generally

measurable, appropriate terms to add to the magnitude function cannot be

generated. This problem can be overcome if bounds for these terms are known.

In this case, a constant D may be added to the magnitude function such that

n

D __> I I a.(di+ni)+dl n+nn (_-50)
i=l

m , i i

Addition of D to M and generation of u in the usual way guarantees that lecl

can be made arbitrarily small. No control over the form of disturbance

response is possible, however, since the model is chosen for desired response

to the reference input. In conclusion, addition of D to M insures dis-

turbance rejection, but forces the plant to track transducer noise in the

process. The disadvantages of including a steady state term in the magnitude

function when transducer noise is present are discussed in Chapter V. Also

discussed there is the fact that the controller may have a disturbance

rejection capability without the constant term above included as part of the

magnitude function. This is a consequence of the sufficiency nature of

Liapunov's theorems. Whether or not to include the constant term must be

decided on the basis of factors present in the particular problem being

considered.
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CHAPTER III

CONVERGENCE TIME DESIGN AND ITS RELATION

TO THE QUASI TIME OPTIMAL PROBLEM

General Comments (3.1.1)

In starting systems with large initial errors, the question of con-

vergence time, i.e. the time for plant states to become equal to model states,

assume importance. This problem, previously considered only from the poinf

of view of analysis, is treated in a synthesis context in this chapter.

If the plant is tracking the model, control action is such that plant

and model outputs differ only slightly, and the difference is reduced to

zero quite rapidly. A detailed examination of convergence time in this

situation is not essential. However, in starting systems with a large

initial error, it would be desirable to know how design parameters can be

selected to reduce the emmor to zero within a specified time.

The convergence time problem dealt with here is in essence the quasi
25

time optimal problem which has received attention in the recent literature .

is the cost function for the latter problem. Because of this, results

obtained are carried over and applied to the quasi time optimal problem. It

is shown that an improved quasi time optimal system can be achieved by using

these results. To demonstrate this quantitatively, techniques developed in

this thesis are applied to an example taken from reference 25.

Convergence Time (3.2.1)

In order to deal with convergence time quantitatively and to determine

an upper bound on its magnitude, a parameter n is defined as

n = min _ V(e_ _ ; e # O (3-i)
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From (3-1) it follows that

v(e,r_,u_,x_,t)_<- n v(e) (3-2)

This last equation can be solved to yield

V(_) _V(e o) E- n(t-to) (3-3)

where

V(eo) = v(ilt=t ) (3-4)
-- O

From (3-3) it is seen that the parameter _ is the reciprocal of the time

constant for (3-2). In order to minimize convergence time, the design should

be directed toward maximizing n. Because (3-2) is an inequality, the best

that can be achieved is an upper bound on convergence time, and not an exact

value.

Since V is a nonlinear, non algebraic function of u, the actual value of

n is extremely difficult to compute. To avoid this difficult computation,

the following quantities are defined:

(e) g___eTQe > V(e,r,u,x,t)
O .......

(3-5)

and

e # 0 (3-6)
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Since no is the ratio of two algebraic functions of the components of the

error vector, computing it is much easier than computing _. However, since

(3-8) is an inequality as well as (3-2), the bound on convergence time based

on _ is even more conservative than that based on n.
o

If (3-6) is written as

eTqe

o eTpe

(3-7)

then it is clear that convergence time depends explicitly on the Q matrix

elements, and implicitly on A , through the dependence of P on A (see
o o

equation (2-9)). Thus, the problem of minimizing convergence time reduces to

the proper selection of the elements of the Q and A matrices. As will be
o

seen below, this selection is generally not easy to make.

If one considers the analysis problem rather than the synthesis problem,

computation of a convervative bound on convergence time is relatively

straightforward Methods are available for such computations, once Q and A• o

have been chosen. One such method is based on the fact that a positive defi-

nite quadratic form is bounded above and below by the inequality

min l. (P) II _II2 < eTpe < max X, (P) llell2 (3-S)
i l .... i z

where I.(P) are the eigenvalues of P for i = i, 2, ... n. These eigenvalues
30

are positive since P is a positive definite matrix The double vertical

lines on either side of e symbolize the Euclidian norm of _. A simple

estimate for n is obtaine--d through use of (3-8). This is

min kj(Q)
J

_ > _O >-- -- max _,(P) '
i 1

for i, J = i, 2 ... n (3-9)
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Although (3-9) allows easy computation for _, and thus an upper bound on

convergence time, it does not afford an explicit relation from which design

parameters can be chosen to yield a specified upper bound on convergence

time. It is not at all clear how this bound relates to the physical problem

since it derives from an arbitrary mathematical function.

The synthesis problem, i.e. designing to minimize convergence time, is

one of maximizing the minimum value of no . To find explicit expressions for

doing this in terms of the elements of the Q and A matrices is not an easy
0

task. This problem is solved below for a second-order system. Though the

algebraic problem becomes too unwieldy for third and higher order systems,

insight can be gained from the results of the second-order case which is

useful in the higher-order problem.

Design for Convergence Time in Second-Order Plants (3.2.2)

In second-order plants, the algebraic problem of maximizing the minimum

value of q is affected by the design parameters, it is expressed in terms of
0

these parameters as

2

qllel +q22e22

qo = 2 2

Pllel +2P12ele2+P22e2

(3-10)

In (3-10) a diagonal Q matrix has been assumed with elements q!l and q22"

If a second-order model is used with parameters aOl = Ko and a02 = -a O, then

solution of (2-9) for P yields the following elements of the P matrix

K a

o (qll o qll
Pll = 27 "T + q22 ) + 2K

o 0 o

qll

P12 = 2_-
o

(3-11-a)

(3-n-b)

qll + q22
P22 = 2K--'--_ --

o o 2a
o

(3-ii-c)
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w

With these equations for the P matrix elements substituted into (3-10), qo

bedomes

2 2

e I + Be 2

qo = I+6K ° a ele2 l+6Ko 2
__ o 2 __+

( 2a + 2-_'-)el + K (2K'-K-_)e2
0 0 0 0 0

(3-12)

q22
where 6 =

qll

The parameter 6 indicates the relative weighting of el 2 and e22 in (e).
O

TO maximize the minimum value of no , its minimum value is found first by

taking the derivatives of (3-12) with respect to eI and e2, and setting these

derivatives equal to zero. Following this procedure with either variable

leads to the equation

2 I_ ° (8Ko)2 ol 6e2 2
el + a 6a ele 2 .... 0 (3-13)

o

Treating (3-13) as a quadratic in el, and solving yields

eI : kle 2 (3-14)

where

kI = -1/2 _l-a6_2oK°2

+ 46
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If (3-14) is substituted into (3-12) the result is

(kI2+B)2K a
oo

no (BK o 2+K o +a o 2) kl2+2aokl+l+ 8Ko

(3-15)

All of the design parameters, i.e. Ko, a o, and 8, are brought out explicitly

in (3-15). However, since n is a function of three parameters, it is not an
o

easy task to maximize its minimum value by choice of these parameters. At

this point the assumption is made that

8K << i (3-16)
o

Since K is dependent on the model used, it generally is not very much less
o

than one. Therefore, (3-16) implies that 6 << i, i.e. less weighting is

than e I in V(_). Use of (3-16) leads to thegiven following simplifi-
e 2

cations

k I _ - i/a ° (3-17-a)

k I _ + 8ao (3-17-b)

which is
The value for k I given by (3-17-b) gives the minimum for no,

(l+Sao2)2aoSKo

n : (3-18)

o (l+6ao2)2+6Ko+82 ao 2Ko (,l+SKo)

If the model parameters are given in terms of the standard damping ratio,

natural frequency nomenclature for second-order systems, i.e.
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2
K = _ (3-19-a)
o o

and

a = 2 _ _ (3-19-b)
o o

then (3-18) becomes

i

2 3)(1+4 _2 8 _o )(4 _ 8 _o
n = (3-20)

_° 2 ) 2 2 2 2)o (1+4 _2 6 2 + 6 _o + 4(_ 6 _o ) (1 + 8 L0o

This constitutes the design equation for convergence time for the second-order

system. From it can be seen that by keeping the model damping ratio constant,

the convergence time can be made as small as desired (q can be made as large
0

2
as desired) by increasing _ while keeping 6 _ constant at a value which

o o

satisfies (3-16).

It should be noted that there is no need to actually change the model

behavior to accomplish the desired result. For example, let the model be

described by

xd+aoXd +(Ko+a'ol)xd = Kor+a'olX d
(3-21)

With the model described in this way, qo can be increased by increasing a'ol.

The model behavior is as though a'ol were absent. However, the term a'olXd

must be included as an additional term in the magnitude function of the

control law. Clearly, the decreased convergence time is gained at the

expense of an increase in the control signal magnitude.
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The weighting of the error states in the _ function can be interpreted
in terms of the switching line in the phase plane defined by the switching
function of (2-14). The equation for this line is

o

e2 = - P22el = l+8K el (3-22)
o

Using (3-16) in (3-22) leads to

e2 _ -aoe I (3-23)

From (3-23) it is seen that the effect of choosing 8K to satisfy (3-16) is
o

to rotate the switching line toward the eo axis, thereby giving its slope the

maximum possible magnitude. The effect of this rotation in decreasing con-

vergence time is illustrated in figure 3-1. The implications of this

switching line rotation in the quasi time optimal problem is considered in
3.3.1.

Higher Order Plants (3.2.3)

The algebraic munipulation required to arrive at (3-20) would be

extremely unwieldy for a third-order system and practically impossible for

systems of order higher than third. This being the case, an attempt is made

here to show how results derived for the second-order system may be carried

over to a third-order one. The arguments justifying this approach are

intuitive rather than analytical.

Since weighing higher order states less in the V function effected a

shorter convergence time in the second-order case; perhaps the same result

can be attained inthe third-order case by the same means. For the third-

order case, this means deemphasizing acceleration and velocity terms in V.

Intuitively, one would expect that such a deemphasis should lead to a faster

transient. To test this intuitive notion, the transient response for the

error was compared using two different Q matrices and a plant described by

the equation
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Equation (3-24) is the vector form of the simplified short period approxi-

mation for the transfer function of the X-15 manned re-entry vehicle 8'31

with an integrator representing a hydraulic motor actuator. This plant is

considered again in Chapter V.
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Figure 3-1: Relation of Switching Line Slope to Convergence Time

47



The desired behavior is given by the model equation

xd =

i 0

0 i

-2.15 -1.3

xd + d)
+1.2 0

r

0

(3-25)

The control law for the system given by (3-24) and (3-25) was derived

using two different Q matrices. These were

Q1 : (1,1,1) (3-26-a)

Q2 = (i,0.i,0.01) ( 3-26-b )

where the numbers in parenthesis are the values of the diagonal elements and
all other elements are zero.

The switching functions corresponding to each of these Q matrices are

and

YI = 0"414ei + 1"23e2 + 1"33e3

Y2 = 0"ql5el + 0'486e2 + 0"377e3

(3-27-a)

(3-27-b)

where YI derives from QI' and Y2 from Q2" It should be noted that further

reduction of q22 and q33 results in negligible additional decrease in co-

efficients of e 2 and e 3 from their values in (3-27-b). The transient response

for e I is shown in figure 3-2, Results in the figure are for initial con-

ditions e I = 5, and e2 = e3 = 0. It is clear that the transient for Q2 is

considerably faster than for Q]. Thus, insight gained from the second-order
problem is useful and can be a_plied to the third-order case.
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Relation to Quasi Time Optimal Control (3.3.1)

The results above relating to convergence time design relate as well to
somerecent work24'25 done in the application of the "direct method" to de-

sign of quasi time optimal systems. In the references cited, it is pointed

out that an advantage of such a design, though not pressing true time opZimal

properties, is that asymptotic stability of the overall system is assured.

Also, the system is quasi optimal according to the following definition:

"Given a linear, stationary plant x = Ax + Bu and a rate of cost function

L (x, u, t) where L is independent--of sTgn ui, then the quasi optimal feed-

back control policy, uQ(_, t) should minimize absolutely the modified cost

function K(x, u, t) = V(_, _) + L(x, u, t) for a given V(_) = xTpx and

I > 0." In"th[ definition it is understood that P is a positive definite

mat--_ix and V(x) a Liapunov function.

The link between what has been previously said concerning minimizing

convergence time and a quasi time optimal design is provided by rewording the

last part of the definition above as follows: " ....... for a V(_) = xTpx

chosen in a way which aids said minimization and I > 0." This wording seems

more appropriate in that it leads the designer to consider advantages which

may accrue through proper selection of the design parameters implicit in the

P matrix. It will be seen in the discussion which follows that proper

selection of the Q matrix elements does lead to such an advantage in the

quasi time optimal design.

The following example is taken from reference 25. It illustrates how

use of the reworded definition leads to a quasi time optimal design which is

closer to the true time optimal one than the design based on the original

definition. No disadvantage is suffered. The resultant system is still

asymptotically stable. The only difference in the design procedure will be

to choose P (indirectly through choice of Q) keeping in mind the desired

objective of achieving a design as close to the true time optimal as possible.

The example follows.

Example 3-1: Given a plant with transfer function

_s) = 2
1

(3-28)

s + s + 1

where lul < i, design a controller which yields quasi time optimal performance

in the sens--e of the original definition given above. A phase space decompo-

sition of (8-28) with x = xI gives
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=

x I = x 2

x 2 : -X 1 - x 2 + u

(3-29)

If V(x) = xTpx, then

V(x, u) = x_(ATp + PA)x + 2xTpbu (3-30)

where

In the reference, ATp + PA is arbitrarily set equal to -I. It is at this

point that the procedure suggested by the reworded definition departs from

that of the original• The reworded definition would not allow a completely

arbitrary choice, but instead, ATp + PA would be set equal to -Q, with Q a

symmetric positive definite matrix. This point is pursued further below.

Proceeding with the -I choice, one finds the P matrix to be

_0"5 0 .ii
P = (3-31)

•5 1

This P matrix leads to the control policy

uQ = _ sign(O.5x I + x2) (3-32)

51



Consider now use of the reworded definition in deriving the control

policy. As mentioned above -Q is chosen in place of -I. The cost function

is K(X, u) = V(x, u), _ being zero in the case of quasi time optimal control.

How i[ s[lectio_ o[ the Q matrix elements to be made to aid in minimizing

this cost function? In order to answer this question, the control signal

given by (3-32) is written in general terms as follows

u = - sign(Pl2X I + P22X2 ) (3-33)

From (3-33) it is seen that the switching line equation is

PI2

x 2 - x I
P22

(3-34)

If use is made of (3-ii), (3-34) can be written

qll i

x2 = Xl = - 1+6 Xl (3-35)
qll+q22

where 6 is as defined for (3-12), and the parameter values k° = aOl = i, and

ao : -ao2 = i pertain. From phase plane considerations, it is argued that to

achieve minimum time in traversing from any initial condition to the origin,

it is advisable to have Ix21 increase as much as possible before switching

occurs. To accomplish this, the magnitude of the slope of the switching line

should be as large as possible. Thus, _ in (3-35) should be as small as

possible. Conclusions reached by this line of reasoning are in agreement with

the discussion pertaining to (3-23).

A basis for selection of qll and q22 has been established. The value of

q12 can be taken as zero without loss of generality. It should be noted that

with the constraint on lul, the origin will be reached without overshoot only

for initial conditions in certain regions. In this regard, the switching

line with the larger magnitude slope leads to'greater overshoot for a given
set of initial conditions. These factors must be taken into consideration in

each particular problem.

For the case under consideration, the initial conditions are Xl(O) = 0.5

and x2(O) = 1.0. Use of the reworded definition leads one to choose 8 << i
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to-come closer to the true optimum solution. With 8 = 0.01, the control
policy is

uQ : - sign (0.5x I + 0.505x2) (3-36)

rather than (3-32) where 6 = 1.0 was used. A comparison of trajectories for

the control policies given by (3-32) and (3-36) is shown in figure 3-3. The

time to the origin is approximately 5 seconds for the latter and 9 for the

former. The saturation function rather than the sign function was used in

both cases. It is clear that for the given initial conditions, 6 = .01 is a

better design choice. An additional benefit is that less fuel is consummed

with 6 = .01. The measure used for this is f_ luldt and for8 = 1.0 it is 1.68

whereas for 6 = .01 it is 1.47. It should be noted that making 6 less than

.01 only increases the slope of the switching line slightly. From (3-2Z) it

can be seen that the maximum magnitude for the slope of the switching line is

a = i, and this value is approached as 6 approaches zero.
o
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CHAPTER IV

REDUCTION OF THE TRANSDUCER NOISE PROBLEM

The Transducer Noise Problem (4.1.1)

From an engineering viewpoint, the need to use (n-l) derivatives of the

output in generating the control signal is undesirable since these derivative

signals most likely will be corrupted by noise. Problems which might arise

due to transducer noise are best understood by considering the form of the

control law which is, as seen in (2-14), the product of the switching

function and the magnitude function. Transducer noise in either of these

signals may adversely affect system behavior in the following ways:

(i) Saturation due to noise may occur at the plant input because

of a large gain, k, in the saturation function or large gains

associated with the signals of the magnitude function.

(ii) The control signal may have an incorrect sign due to the

corruption of the saturation-function signals by noise.

(iii) The control signal may have insufficient amplitude due to

noise in the signals of the magnitude function.

(iv) A d.c. bias and/or a beat signal may occur at the plant input

due to modulation effects produced by multiplication of noise

in the sat function by noise in the magnitude function.

The amplitude level and frequency range of transducer noise which cause

these effects to be objectionable in a given control problem depend on the

performance specifications and on the input saturation level of the plant.

In any event, since these noise problems are likely to arise, it would be

advantageous for the'system designer to have at his disposal some theoretical

guidelines for dealin_with them. In this chapter, such guidelines are

developed. In Chapter V, some aspects of the noise problem which fall out-

side the realm of exact theoretical analysis are considered.

Since transducer noise becomes progressively worse in higher derivative

signals, the attack on the problem is directed toward eliminating these

signals from the control law entirely, or at least reducing the gains associ-

ated with them. The general problem is considered first, and then a very

useful theorem for linear time varying plants with zeroes is developed.
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Elimination or Reduction of Plant States (4.2.1)

Except for plants with zeroes, which will be considered later, no way
has been found to eliminate higher order plant states from the switching
function. In fact, since the coefficient of the highest order error state,
en, in the switching function is Pnn' then it cannot be zero since the P
matrix must be positive definite. Thoughhigher order states generally
cannot be eliminated from the switching function, their effect maybe sub-
stantially reduced through judicious choice of the Q matrix elements (and
hence on the coefficients of the switching function) was considered in
Chaper III relative to the convergence time problem. There, reduction of
the coefficients of the higher order error states was introduced in order to
decrease convergence time. Here, it is seen that an additional advantage
accrues, that of reducing problems resulting from transducer noise. In an
analog computer study of a second order system, it was found that the mean
squared noise level into the plant could be reduced by a factor of one half
if 8 (defined in conjunction with (3-12)) is chosen as 0.i rather than i0.

Possibilities for eliminating the higher order plant states from the
magnitude function of the control law do exist. In order to examine these,
the equation for a linear time varying plant with linear feedback is con-
sidered. This equation, similar to (2-2) with f = 0 and F introduced as the
feedback matrix, is

x = (A + BF)x + B(u + r) (4-1)

Following the controller design procedure as given in section 2.2.1 leads to
the following V function:

V(e) = eT(A Tp+PA)e -2eTp [Bu+ABr+(AA+BF)x]
-- -- O O .....

(_-2)

Before deriving the control law from (4-2) in the usual manner, it is

examined for possible ways to eliminate or reduce some or all of the com-

ponents of x in the resulting control law. One is led to suspect that such

ways exist _ecause the first term on the right hand side of (4-2) possesses

"excess negative definiteness" when Q = - (A Tp + PA ) is chosen, as it
O O

usually is, to be a diagonal matrix. The phrase "excess negative definite-

ness" refers to the fact that the cross-product terms are absent from the

resultant quadratic form. To give a quantitative meaning to this phrase,
2 2

consider the quadratic form in two variables allel + 2a12ele2 + a22e 2 .
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2
This quadratic form is negative definite if all < 0, and alla22 - a12 = M > 0.
The quantity M is the measure of "excess negative definiteness." The larger
M is, the more "excess negative definiteness" the quadratic form possesses.

The question, therefore, arises, can this "excess negative definiteness"
be used to absorb someof the other terms in the equations? This might be

possible if the terms to be absorbed are of the type which fit into the

quadratic form, i.e. products of two and only two components of the _e vector.

As (4-2) stands, no terms of this type arise other than those resulting from

-eTQe. In order to generate other terms of suitable type, HlX d is added and

subtracted within the square brackets of (4-2) to give

V(e) = -eTQe--2e__TP E-H le+Bu+ABr__+H_+Hlxd ] (4-3)

where H1 + H 2 = AA + BF

In (4-3), the term to be absorbed is 2e__TpHI_. Since PH 1 is generally not a

symmetric matrix, the following relationship is used:

T
2e_TpHIe = e [PHI+(PHI)T] e__

where PH 1 + (PHI)T is symmetric.

For convenience, let PH 1 + (PHI)T = -Q!

-eTQe it is necessary that

Then, in order to absorb (4-4) into

Q , Q, (4-5)

be positive definite for all variations in AA and B.

Another possibility which is explored is to handle Q' alone rather than

absorb it with Q. When treated separately, it suffices to make Q' positive

semidefinite for all plant parameter variations. When either of these
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approaches is successful through suitable choices for F, Q, and HI, then all"

or some of the plant state variables can be replaced by model state variables

in the magnitude function of the control law. This assumes that H 1 is chosen

such that H2_ is lacking some components of _. With the Q' term elther

absorbed or handled separately, the _ vector must be chosen to satisfy

-2eTp..... [Bu+ABr+H2x+HIX d] > 0 (4-6)

Elimination of All Plant States from the

Magnitude Function (4.2.2)

If it is possible to choose H I = AA + BF, then H 2 = 0 and all components

of theplant state vector can be eliminated from the magnitude function and

replaced by those of the model state vector. This procedure does not auto-

matically assure a reduction of noise level at the plant input, however.

Whether or not noise reduction is achieved depends to a large degree on the

required linear feedback matrix, F, if indeed an F e_ists at all which allows

elimination of all plant states. It may turn out that the magnitudes of

linear feedback gains required are such that no improvement in performance is

achieved over the design with plant states in the magnitude function. Howev_

this is a matter to be investigated for each specific design problem. In

general, it can be stated that necessary and sufficient conditions for re-

placing allplant states by model states in the magnitude function of the

control law are:

(a) H 1 = AA + BF; (H 2 : O)

(b) Q + Q' is positive definite or Q' is positive

semidefinite.

It is only fair to warn at this point that it may be quite difficult to

determine when these conditions are satisfied for higher-order systems.

example of this technique applied to a second-order problem is given in
section 4.4.1.

An

In cases where all components of the plant state vector can be replaced

by corresponding components of the model state vector in the magnitude

function of the control law, some freedom is gained in controlling the size

of the magnitude function by selection of the model. This was alluded to in

2.3.2 in c_nnection with plants having hard saturation gain characteristics.

3ince the magnitude function then only depends on [ and Xd, an upper bound
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on.lu I can be determined such that lul _ U(r, Xd). If the plant has a hard

saturation gain with saturation level, S, then by selecting the model properly

it may be possible to maintain U([, _xd) < S, and thereby avoid operation in

the saturation region.

Elimination of the Highest Order Plant State

from the Magnitude Function (4.2.3)

=

=

I

If it is not possible or desirable using a linear feedback matrix to

eliminate all plant states it may be possible, with a less objectionable

linear feedback policy, to eliminate at least the highest order plant state

from the magnitude function. To achieve this goal, all elements of H 2 in the

last column must be zero. Then, an attempt can be made to absorb (4-4) into

the -eTQe term, or the alternate approach can be taken of making Q' positive

semidefinite.

A procedure for choosing I]1 so that Q' is positive semidefinite is as

follows: If the last column of H 2 has all zeroes, then the element in the

last row and last column of H 1 is the same as the corresponding element of

AA + BF. Let this element be gnn' and then define H1 as

HI = gnn <>
hln h2n . . i

The procedure is based on the proper selection of hln , h2n , ...h(n_l)n. It

can always be applied provided gnn _ O. With this requirement on gnn met,

then Q' will be positive semidefinite if, as shown in Appendix D, the h.
in

terms are selected as follows:

Pin
h. - i = I, 2,...n-i (4-8)
in Pnn
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where the p's are elements of the P matrix. With HI chosen to satisfy (4-7)_

and (4-8), and gnn _ 0, the control law will not involve a term in xn as part

of the magnitude function.

A choice of H 1 useful for eliminating the highest order component from

the magnitude function is

H 1 =

0 0 . gnn
B

(4-9)

where gnn has the same definition as in (4-7). With this choice, conditions

are sought for which Q' can be absorbed by Q and (4-5) satisfied.

Manipulation of the Model Matrix (4.3.1)

In certain cases, the model matrix can be manipulated to effect a re-

duction in the magnitudes of the coefficients of the plant states in the

magnitude function or to extend the range of parameter variations for which

the conditions necessary for elimination of plant states can be satisfied.

The manipulation performed is to write the model equation as

_d : (Do + Go)Xd + Bo_r (4-10)

where A = D + G
o o o

Note that A is still the model matrix, therefore, model behavior is not
o

affected by this maneuver. The manipulation is carried through the time

derivative of the Liapunov function which is written as:

V(_) = eT(D P+PD )e-2eTp [Bu+ABr+(AA'+BF)X-GoX d]-- o o .....
(4-11)
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where AA' = A - D
o

The possibility that an advantage might be gained by this technique lies in

the fact that the magnitude of the elements of AA' might be smaller than those

of AA = A - A . This will lead to lower gains for the magnitude function
o

variables which may contain noise. Also, this manipulation technique can be

employed in conjunction with the techniques discussed in 4.2.1 through 4.4.1.

}{ere the purpose would be to make it possible to satisfy (4-5) or to make Q'

positive semidefinite when it might not be possible with D = A . In this
0 0

case the following definitions would be used in place of previous ones

D Tp + PD = -Q
o o

and

Hi + }{2 = AA' + BF

Application to a Second-Order Plant (4.4.1)

All of the techniques discussed above will now be applied to the same

second-order plant in order that they may be compared. The plant and model

chosen are ones used in an example in reference 13 so that the control laws

found here can be compared to that in the reference. The plant equation with
linear feedback is

x = x + (u+r) +

- 0 0

(_,-12)

where unity linear feedback is indicated by fll = -i in the F matrix. There

is no loss of generality in letting f21 = f22 = 0 because the second column

of the B matrix is zero. The equation for the model used is

(h-z3)

61



Thus

i-I1EIoAA = A-A = - : (4-14)
O -- --

where m = a - 2.

In reference 13, the plant parameter variations where taken as 1 < K < 5,
and 1 < a < i0 or -i < _ < 8. The control law derived there was of the fo_m

u = [Ir-xll + 81x21] satk y (4-15)

where k = 20 and y = e I + 1.5e 2

The coefficient of Ir - Xll used in reference 13 is three. If use is made of

the fact that time variations in numerator and denominator of this coefficient

are related, the procedure discussed in section 2.3.1, then a coefficient of

one is seen to be sufficient.

For this plant, the controller indicated by (4-15) was implemented on

the PACE 231-R Analog computer. A random noise generator with power spectrum

flat to 30 c.p.s, was used to simulate noise in the transducer measuring x..
_q 21

The mean squared transducer noise level was taken to be 1.45 x 10 volts .

This led to a mean squared noise level into the plant of 62.5 volts 2 and a

steady state d.c. error in x. of 0.15 volts. These results are to be compared
below to those using state elimination techniques. A considerable reduction

of noise level into the plant will be noted.

Example 4-1: Elimination of all plant States from the Magnitude

Function.-For the problem under consideration

HI+H 2 = AA+BF = J0 0

-K) (Kfl2-_

(4-16)
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For elimination of all plant states, H2 = 0 is chosen.
Q' matrix are found to be

The elements of the

q' = 2-K)ll -2P12(

= q! =q'12 21 -PI2(KfI2-_)-P22 (2-K)
(4-17)

q, = Kfl2-_)22 -2P22(

where PI2 and P22 are elements of the P matrix with values 1/4 and 3/8

respectively found from the solution of

A Tp + PA = -I
O O

where I is the identity matrix

With Q = I, the elements of Q + Q' Become

(4-18)

qll+q'll = K/2

q12+q'12 = q21+q'21 = (1/4)(_-Kf12)+(3/8)(K-2)

q22+q'22 = 1+(3/4)(_-Kf12)

Conditions required for positive definiteness of (4-19) are

K> 0 (q-20-a)

(K/2) [l+(3/4)(_-Kfl2)] - [(1/4)(e-Kfl2 )+(3/8)(K-2)]2
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The first of these, (4-20-a), is always satisfied if K > 0 is assumed.

Because ' it would be most desirable not to use rate feedback, a check is made"

to see if (4-20-b) can be satisfied with f12 = 0. Unfortunately, it cannot

be if the parameter variations are taken to be the same as those used in

connection with (4-15). Therefore, f12 = -i is tried. With this amount of

linear rate feedback (4-20-b) can be satisfied for K > 1 and -1.5 a < 8.5

which includes the range used for (4-15). Thus, with--fl2 = -I, all plant

states can be eliminated from the control law which then becomes

u : [Ir-xalI + 81xa2I] satk y (4-21)

instead of (4-15). Since this result is achieved using a gain of -i only for

x2 as compared to a gain of 8 for Ix21 in (4-15), a significant reduction of

the noise level into the plant seems likely. For the same transducer noise

used with control law (4-15), the mean squared noise l_vel into the plant

using (_-21) was only 3.5 volts instead of 62.5 volts _. In addition, no

measurable d.c. error in x I appeared as it did when control law (4-15) was
used.

Example 4-2: Elimination of Highest Order Plant State from the Magni-

tude Function.- Here the two techniques for eliminating the highest order

plant state are applied. Results obtained will be compared to those of the

example 4-1. The first technique considered is that relating to (4-7). The

parameter gnn is

gnn = g22 = Kfl2 - a (4-22)

and according to (4-7) and (4-8),

HI = g22

n

0 0

PI2
i

P22

= (Kfl2-a) I20 /3
(4-23)
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Use of (4-23) and (4-16) yield

E° :]H2 =

(2-K) +(2/3) (_-Kf12)

(4-24)

With H I chosen as in (_-23), Q' is positive semidefinite if

g22 _ 0 (_-25)

For the same range of parameters previously considered, (q-25) can only be

satisfied if f12 = -i. Thus, this approach requires the use of linear rate

feedback. The control law resulting is

u = [lr-xll + 61ell + 91xd21]satk y (4-26)

Since it has been previously determined in example 4-1 that use of unity

linear rate feedback allows removal of all the plant states, there is no

advantage of using f12 = -i, and only removing Ix21 from the magnitude

function.

In order to see if the highest order plant state can be e&iminated from

the magnitude function without resorting to linear rate feedback, the alter-

nate approach indicated by (4-9) is tried. Thus,

:1 I° :1; H2 =
- (2-K)

(4-27)
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where it has been assumedthat f12 = 0. The Q' matrix resulting from this

choice of H1 is

O P12a_
12a 2P22_J

(4-28)

Thus, Ix21 can be replaced by IXd21 if

Q+Q, =

l P12 _
12a (I+2P22_)J

(4-29)

is positive definite. The requirement for this is that

_(Pl2a) 2 + 2P22 a + 1 = -(1/16)m 2 + (3/h)m + 1 > 0
(4-3o)

This is satisfied for -1.2 < e < 13.2, a range which exceeds that

specified for the contr_l law of--(4-i--5). Therefore, this choice of H I allows

I.21tobereplacedby l'd21even_i_houtuseoflinearratefeedback.The
control law resulting is

u = [Ir-Xll + 81xd21]satky (4-31)

Since neither linear rate feedback nor Ix21 is required in this approach, it

is reasonable to expect that noise levels into the plant would be less using
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(4_31) for control rather than (4-15). Computer results bear this out, and
do show a significant reduction in this noise level. In fact the mean
squared noise level into the plant was 0.45 volts 2 with a transducer mean

squared noise of 1.45 x 10-4 volts 2. This is considerably less than the
noise levels into the plant obtained using either control law (4-15) or
(4-21) of example 4-1. In addition to the reduction of noise level into the
plant, no d.c. error in xI appeared.

Example 4-3: Manipulation of Model Matix.- The range of e for which

(4-30) can be satisfied may be extended for different values of PI2 and P22"

To obtain different values for these elements, the model matrix is manipu-

lated as discussed in relation to (4-I0). Here D and G are taken as
o o

Tp + PD : -I for P gives PI2 = 1/8 and P22 : 5/16. With theseSolving Do o

values used in (4-30), the range of allowable variation in _ is -1.55 _

< 41.55.

Thus, use of this model matrix manipulation technique has greatly

extended the range over which a can vary and still not violate conditions

which allow Ix21 to be eliminated frQm the magnitude function. Note that

this range is valid without using linear rate feedback. For K _ i, the

control law resulting is

u = [Ir- ll + 21ell + I lm lXd2l] satk y (_-33)

where this y differs from those of previous examples since the P matrix

elements are different. Here y = eI + 2.5e 2. Note that the coefficient of

e2.is 2.5 instead of the previous 1.5. This may be disadvantageous from a
nolse standpoint.

It is not intended that results of this example by compared to previous

results on the basis of noise level reduction, but merely to show that a much

greater range of e is attainable using the technique.
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Reduction of Order for Linear, Slowly Time Varying
Plants with Zeroes (4.5.1)

An ideal way to minimize the adverse effects of transducer noise on
system performance is to use a reduced plant and model which are of lower
order than the actual plant. In this way, higher order derivatives can be
eliminated from the switching function as well as from the magnitude function.
Such a reduction of order is possible for linear, slowly time varying plants
with zeroes. Parameter variations maybe large, but within known, finite
bounds. It is necessary to assumethat parameter variations are slow so that

the "frozen system" concept applies and a Laplace transform, transfer

function representation of the plant is valid.

In addition to plants with zeroes, the technique can be applied on an

approximate basis to linear, slowly time varying plants without zeroes.

Approximations involved for accomplishing this, and performance to be

expected are treated in section 4.6.1.

Reduction of order is accomplished by applying the design technique to

the reduced plant transfer function shown in figure 4-1, which is of lower

order than the complete plant transfer function. The prefilter contains

known, fixed plant poles. The number of poles contained in the prefilter is

at most equal to the number of plant zeroes. The presence of zeroes in the

transfer function allows u to be generated in a way which guarantees that the

states of the reduced plant are arbitrarily close to states of a model refer-

ence of order equal to that of the reduced plant. This result is stated in

the following theorem:

Theorem I: Given:

(i) a plant with transfer function

m

K _ (s+zd)

X d=l (4-35)
U (s) = J n

sq [ H (s+pf)][ _ (s+Ph) ]
f=l h=j +i

in which X(s) and U(s) are Laplace transforms of the plant output and input

respectively, K is of one sign and Kmi n is known, the Zd'S and Ph'S may be

_lowly varying in an unknown fashion within known, finite bounds, m < n + q,

q _> O, and the pf's are known constants; and
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(ii) a stable model reference (all roots of its characteristic equation

have negative real parts) with transfer function

Xd(S) ao
m

R(s) k
i

Z ais
i=O

(4-36)

where ak = i, Xd(S) and R(s) are Laplace transforms of the model output and

input respectively, and k = q + n - m for q + j _m, or k = n - j for

q + j < m, and ai = constant for i = 0, i, 2...(k - i); there exists an in-

put, u = _-_(s), which can be generated using model and plant outputs, xd

and x, and their first k - 1 derivatives only such that I_l = /--_e< e .

for t ÷ ®, where the error vector is defined by e I = xd - x, an_ e--i+1 = ei,

for i = i, 2, .. k - i. Proof: Consider the plant transfer function to be

devided into three parts as shown in figure 4-1. The transfer functions for

those parts are as follows,

Pp(S) = Y(s) -- 1 (4-37)

 q-t

m

Pz(S) = W(s) = _ (s+z d)
d=l

(4-38)

Pr (s) = X(s) - t
K

(4-39)
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and'are called the prefilter, zero section, and reduced plant respectively.
The.constants t and 1 are such that

q - t > 0 (4-40-a)

q - t + 1 < m (4-40-b)

1 < j (4-40-c)

Inequality (4-40-b) restricts the numberof fixed poles of known
location which can be included in the prefilter to be at most equal to m.
Constants t and 1 will always be chosen such that equality pertains provided
there are sufficient known, fixed plant poles to do so.

The differential equations resulting from the three transfer functions
(4-37) through (4-39) are

u = y(q-t+_) + aly(q-t+L-l) + .... g y(q-t) (4-41)

where al, a2...a i are constant coefficients of the polynominal resulting from
1

expansion of the productf_ 1 (s + pf).

m (m-l)
w = y + bly + ...bmy (4-42)

where bl, b2 ... bm are coefficients of the polynomial resulting from ex-
m

pansion of the productd_ 1 (s + Zd).

k (k-l) (k-2) t
x + CkX + Ck_lX + ...ClX = Kw (4-43)

where Cl, c 2 .. ck are coefficients of the polynomial resulting from ex-

pansion of the product
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s

Let (4-43) be expressed as

x = (A + AA)x + bw (4-44)
0 _

where A + AA is a kxk matrix, b T is the k column vector [0, O, . .k], and
O -- "

A is the model matrix defined below. Let the model reference be given byo

the vector differential equation corresponding to (4-36), i.e.

Xd : AoXd + bor (4-45)

T
where A is a stable kxk _atrix, b

o o

Xdi = Xd(i+l) for i = i, 2, .. k-i

If an error is defined as

the k column vector [0, O, ... a ], and
0

e: Xd-X (4-46)

then (4-44) can be subtracted from (4-45) to give

e = A e + (b r - bw - AAx)
-- (>-- 0 -- --

Substituting for w from (4-42) into (4-47) gives

(4-47)

= A e - [b(ym + m-io-- blY + ...bmY) - b r + hAx] (4-48)
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A Liapunov function, V(e) = eTpe as in (2-7), is associated with (4-48). It
follows from the development in section 2.2.1 that lel is ultimately bounded,

i.e., le_l <_ for t ÷ _ if

_i k Aa i 1ym bm_jl m lyJl + l_Im Irl + E --K-m Ixi satky (4-49)

j=0 i=l

where subscript m indicates maximum value and

k

y = E 0ikei

i=l

m
With y generated as in (4-49), u can be synthesized as in (4-41) since

all of the required signals besides ym can be obtained through successive

m
integrations of y . Thus, the theorem is proved.

Application of Reduction of Order Technique (4.5.2)

The technique introduced in 4.5.1 is here applied to a plant with transfer

function

u_s) = K(S+Zl)(S+Z2) (4-50)

s(s+Pl)(s+P 2)

in which Pl and P2 are known constants, K, zI and z2 are slowly varying

within known finite bounds, and K > O. The model transfer function can be

first order since two zeroes allow two poles to be placed in the prefilter

position. The reduced plant equation is

p (s) : w_S) = K (4-51)
F
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and the first order model chosen has transfer function

_(S) = a°s_a
(4-52)

The procedure leading to (4-48) is followed to yield for this problem

e + aoe = ao(r-x)-K[y + (Zl+Z2)y + ZlZ2Y ] (4-53)

A suitable Liapunov function for (4-53) is

2
V(e) = (i/2)e (4-s4)

for which

= -a e2-Ke[y + (Zl+Z2) _ + ZlZ2Y - ao(r-x)]
o -_

(4-55)

To insure that le_l is ultimately bounded, 9 is chosen as

a

Y = [IZl+Z21m lyf + fZlZ21 m lyl +IK[ m [r-xl] satke (4-56)

where subscript m indicates maximum value.

The control signal derived using (4-_i) is

,o

u = y + (Pl + P2 )9 + PlP2 y (4-57)
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An analog computer study of controller operation was madeusing the
following parameter values:

K , i,a = i,k --i00,..IZl+Z21- 2,IZlZ21 : l,
-- o max max

Pl : P2 = 0.5 + j/ 3/2. For these values, the control signal becomes

u : y + y + y (4-58)

With this control signal and with r : U(t), a unit step function, the

plant output followed the model output very closely for the several different

zero locations including complex conjugate zeroes on the imaginary axis. The

peak error in all cases was less than one percent of the step amplitude.

An important consideration from an engineering viewpoint is the sensi-

tivity of the response to variations in the location of the poles at s = -Pl

and s = -P2" In many cases, location of these poles may not be known exactly

or may vary slightly during operation. In order for the technique to be

useful, the response must be fairly insensitive to these variations. Several

computer runs were made with these poles moved from their nominal positions

to the positions indicated in figure 4-2. It is to be emphasized that the

control signal remained unchanged for these runs, i.e. u as given by (4-58)

was used. Even under these conditions, the plant followed the model so

closely that the peak error again did not exceed one percent of the input

step amplitude, indicating a low sensitivity to variations in the location of

assumed known, fixed poles.

The Non-Minimum Phase Zero Problem (4.5.3)

The bounds for zI and z2 given in section 4.5.2 do not restrict the plant

zeroes to lie in the left half of the s plane. However, when either or both

zeroes are in the right half plane, certain difficulties arise because of the

nature of the control signal required to cause the plant to follow a given

model. Consider in (4-50) the zero at zI to be in the right half plane at

s = +z I. If R(s) = A/s and the plant is to follow the model of (4-52) then

letting X(s) : Xd(S) gives

Aao(S+Pl)(s+P 2)

U(s) : K(S+ao)(S_Zl)(_÷z2 ) (4-59)
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The inverse Laplace transform of (4-59) indicates that u(t) has a term of the

Zlt
form e , an increasing exponential. This is a consequence of the fact that

the plant is to be forced to behave like a model without a right half plane

zero. If the model had the same right-half plane zero as the plant, this

situation would not arise. However, if the location of model and plant

zeroes are not exactly the same, an exponentially increasing u(t) would still

be required. Though being considered here in relation to (4-48), this

problem is general and could arise in designs previously considered not re-

lated to the reduction of order technique.

In the problem under consideration, the nonlinear controller will provide

the exponentially increasing control signal called for by the inverse of

(4-59). However, saturation levels in the controller and plant limit the

length of time over which control can be affected. When these levels are

reached, the controller must be shut off.

Computer results for system behavior were obtained with zeroes as

s = + .-5, s = -2.0 and also s = -0.25, s = 1.0. Other parameter values used

were as indicated in section 4.5.2. In each case, the bounds previously

indicated for JzI = z21 and JZlZ2J are satisfied. Therefore, The
max max

control signal given by (4-58) served in these cases as well. For a step

input to the model, the plant tracked the model quite closely before satu-

ration levels were reached, and the measured control signal was almost

exactly that given by the inverse transform of (_-59). The length of time

required to reach saturation levels in a function of A and zI. For instance

with A = 1 volt, the controller operated for 65 seconds with z I = 0.05, but

only for 9 seconds with zI = +0.25 before saturation levels within the

system were reached.

Extension to Plants without Zeroes (4.6.1)

In order to broaden the class of problems for which the reduction-of-

order technique can be used, consideration is given here to its extension to

linear plants with slowly varying parameters but without zeroes. The ideas

to be presented are applicable to plants with higher order transfer functions,

but discussion here is limited to a second order plant in order not to obsa/re

results. Let the transfer function for such a plant be

Ks) = _ (.-65)

in which K and a are slowly varying within known bounds and K > 0. In order

to introduce a zero, suppose that this plant is preceeded by a unity pre-
filter of the form
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C(s) =
(s + K)
(s + K) (4-66)

Note that since this prefilter has unity transfer function it need not

actually be instrumented. The overall transfer function then becomes

U_ K (s + K)s) = s(s+K)(s+a) (4-67)

Since K/(s + K) 1 for 0<_ m << K, then over this frequency range a good
approximation to (4-67) is

x (s) s + K
s(s+a) : for 0 ! m << K (4-68)

Thus, with the help of the approximation, a zero has been introduced into the

transfer function without raising the order of the denominator. Application

of the reduction of order technique can be made directly to (4-68). If this

is done using a model with equation

xd + aoX d = a ro
(4-69)

then the control law becomes

u- lul + lalmax Ixl + a Ir-xl] satkeo
(4-70)

The effectiveness of this control signal is causing the plant to track a

given model is dependent on K . as well as the power density spectrum of the
mln

input, r. This is shown in figures 4-3 and 4-4 where C e2dt vs. K for

r = U(t) is plotted in the former, and C e2dt vs. _ for r = sin_t in the

latter. These results were obtained using a digital computer simulation for

the plant given by (4-65) and the model by (4-69). Parameters used were

a = 2, K = i0, a = 2, and k = i00.
o max

78



The curve in figure 4-3 serves as a design curve for a step input. It
can be used to determine what K . is required to meet a given specificationmln
on _ e2dt. If no preamplifier is needed to achieve this Kmin (i.e. the

0
plant gain itself is adequate), then there definitely is an advantage to be
gained by having eliminated e^ and x^ from the control law. If preampli-• . . _ _.
flcation is needed to achleve the requlred Kmin, then an advantage may or
maynot be gained over using the exact control law. This is dependent on
the amount of preamplification required, and whether or not this additional
gain accentuates transducer noise in eI and xI to a level higher than that

which would result using e2 and x2 to generate the exact control signal.
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CHAPTER V

AN ENGINEERING DESIGN PROBLEM

Introductory Comments (5.i.i)

The transducer noise problem discussed in Chapter IV is only one of the

difficulties facing the design engineer in applying the controller synthesis

technique to a real problem. Others which arise are brought out in this

chapter by actually designing a controller for pitch axis stability aug-

mentation of the X-15 manned re-entry vehicle 8'31, and then studying this

design through an analog computer simulation of the system. This problem is

chosen because of its theoretical as well as practical significance.

The extremely large range of parameter variations which are encountered

over the flight regime of the vehicle are as indicated in Table 5.18 . The

parameters listed are those of the short period approximation to the plant

transfer function which is given by

P(s) = e(s) = Ke_a2Ta(S+i/Ta)
2 (5-1)

_(s) s2+2_aWaS+OOa

where 8 is pitch rate, and 6, elevator deflection angle. The actuator for

the elevator is a hydraulic motor. If an approximation to its transfer

function is taken as KH /s, then this combines with (5-1) to give

6(s) KHK(s + z) (5-2)
U(s)

s(s 2 + as + b)
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TABLE 5.1

Variation of Parameters with Mach Number and Altitude

Plant
3ondition

1

4

5

16

17,

18

_21

28

29

30

31

32

33

Altitude Maoh
(feet ) Number

u • •

35.qoq o,_ ,,

40.000 1 ,Q

40.000 ....I,O

70.0o0 ,,, 2.0

100,000 , 4.0

140.000 6.0

120,000 6.0

1 20.0OO 6.0

.60.000 6.0

I0.000. _1.2

10.000 I .0

lO,O0O 0,6

5,000 0,6

0 o.2

160.000 J 6.0

-O. 1 23

-Q, 282

-0.206

-0.088

! o.o366

-0,00794

-0.0184

-0.02585

...0 •325

-2.0X

-_ .975

-0,955

-1,163

-0.0356

-0.00368.]

,m

z6

0.1066

0.312

0,262

0,0583

0.0223

0.00865

0.0198

0.0199

0.362

1.950

3.42

2.03

2.92

0 •00343

0.00394

O. 2064

0.445

Q, 375

o, 1052

0.03.96

0.00823

0.019

0.0276

0.326

2.49

2.31

0.943

1.113

0.151

0.0038

1.988

2.972

2.769

2.6_1

.1.9!9

O.8O6T.

1.203

1.859

4.327

7.492

4.915

2.5708
J

2.550

1.511

0.555

from reference 8
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where KH = gain of hydraulic motor

K = K@ma2Ta

z = I/T a

a = 2_
a a

2
b :_

a

U(s) - Transform of u(t), the control signal into hydraulic motor

The approximation ot the motor transfer function neglects the quadratic in

s which appears in the denominator of the exact transfer function. (Refer

to figure 5-10). Similarly, an approximation to the transfer function of the

rate gyro used to measure 8 is K a constant. A discussion of problems
g'

arising due to these approximations is postponed until section 5.3.3.

Initially, it is assumed that the motor and gyro are exactly represented by

transfer functions KH/S and K respectively. Designs based on this as-
g

sumption are discussed in sections 5.2.1 through 5.3.2. In section 5.2.1,

the design does not make use of the reduction-of-order technique. This

design is then compared to that of section 5.3.1 which is based on reduction-

of-order. The comparison points out the considerable advantages of the

latter design.

Design Not employing The Reduction-of-Order Technique (5.2.1)

Since the transfer function of (5-2) has a left half plane zero and a

fixed pole at the origin, it is possible to apply the reduction-of-order

technique introduced in section 4.5.1. If applied, the reduced plant trans-

fer function is second-order, consequently a second-order model can be used.

In order to demonstrate the advantages of the reduction-of-order technique,

a design not using it is presented in this section, and then compared to the

design which does use it given in section 5.3.1. An obvious advantage of the

latter design is that the second derivative of pitch rate is not required in

generating the control signal. Other advantages will be mentioned in section

5.3.1.

A block diagram for the design not employing the reductinn-of-order

technique is shown in figure 5-1. Because the plant has a zero, the reference

input 8 is not used as an input to the hydraulic motor. As discussed in

section 2.2.2, this is required to avoid impulses in the control signal when

has finite discontinuities. The state equation derived from (5-2) is
r
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x_Ax+Bu=

w w

0 1 0

0 0 i

0 -b -a

x_+

0 0 0

0 0 0

k 1 k 2 0

u (5-3)

where k I = KHKz, and k2 = KHK

Model selection plays an important part in the design procedure. On_

must be chosen which causes the plant behavior to satisfy specifications, and

also makes the elements of the AA matrix as small as possible. Some trial

and error is a necessary part of this selection procedure.

The specification on responses to step inputs is quoted from reference 8:

" .... the system is required to have less than 254 overshoot and to damp to

one eighth amplitude or less in one cycle when subjected to a step input.

Furthermore, the response time (time to reach 904 o_ the command (reference

input) value) shall be less than three seconds." The specification does not

stipulate how much less than three seconds the response time might be, but

in selecting the model it was assumed that the vehicle could not realistically

be expected to perform the maneuver in too much less time than this. With

this in mind, as well as the goal of keeping elements of AA small, the

following third order model was selected:

-_d _ AoXd + B r =O--

0 i 0

0 0 i

-1.2 -2.81 -1.3

x d +

0 0 0

0 0 0

1.2 0 0

C) (5-4)
--T

The model was intentionally chosen not to have derivatives of e
r

impulses would be avoided in generating the control signal.

so that

According to the design procedure, e is defined as xd - x_ and (5-3) is

subtracted from (5-4) to give
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m

0 i 0

0 0 i

-1.2 -2.81 -1.3

e+

w

0

0

-1.2

m

0

0 X

0
I

0 I
i

1.2[
m

+
r

o 0 ol
I

0 0 0 [u

k I k 2 0

(5-5)

where 8 = b - 2.81 and a = a - 1.3.

The control law required to guarantee that [e__[is ultimately bounded is

u- [cI [6r-Xl[ + c2 [x2l + c3 Ix31 + c4 lull satky (5-6)

where c I =[1.2/k2[, c 2 = [g/k2[, c 3 = I=/k21, and c4 = [kl/k2[. The maxi-

mum value for each of these coefficients is denoted by an asterisk and may be

found in Table 5.2. The coefficient c4 is independent of KH. Coefficients

Cl, c2, and c3 were calculated assuming KH = I. Yf the hydraulic motor gain

is greater or less than one, then c I through c 3 are decreased or increased

respectively. For Q = I, the coefficients of the y function are PI3 = 0.415,

P23 = 1.229. P33 = 1.330. The parameter values found above numerically

specify the control law. The control signal, u, is obtained by a single

integration of u in (5-6).

One engineering design problem is evident from figure 5-2 where instru-

mentation for generating u is shown. Although the gyro used to measure x1

has to a first approximation been assumed to be ideal, x 2 and x 3 are

generated using approximate derivative circuits. It will not be assumed that

_d is chosen large enough to neglect, but instead, _d will be made as small

as practically possible in order to avoid accentuating high frequency noise.

Since the derivative circuit poles were not accounted for in the design, a
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TABLE 5.2

Parameter Variations in Equation (5-5)

1

4

5

9

! 13

16

17

18

21

28

29

3O

31

52

5}

J ,m

o1=I,.2/k21 o2=Ip/k21
| i I

o.]5 0.375

O. 132 0.75

0.123 0.5

0.261 0.9

O. 539 O. 36 .

1,695 __ _ 3.04__

0.771 0.89

0.448 0.2.4_

O. 058 0.76

0,0_28 I .02

O. 0287 Q, 5

O.0854 O. 16

0.735 0.23

5.45* 2.8

_,_ 3.64 7.6*

°3=1=(/ 21

0.244

0,0525

0,054

0.237

0.585

!.8

0.8

0.465

0.0]08

0.0625

0.0805

0.025
--...

0.06

4,65*

3.94

i i

Ill

o4=1k,/%1
I

o.12_ ,

0.282

O. 206

0=088

0, o_66

0.oo734

0.0,184

0.02585

o.395

2.07*

1.975

0.955

1.163

0.q.356

_.0.00368
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stability problem resulted for certain plant parameter values. In particular,

even with _d = i00 rad/sec, a figure much larger than the model bandwidth '

which is only on the order of one rad/sec, the system oscillated at 16 cycles

per second for plant condition 28, probably because this condition has the

highest plant gain, k 2 = 52.5. The amplitude of this oscillation, though not

significant in Xl, was large enough in the derivative signals to cause the

steady state value of x I to be 30% lower than the desired value. The oscil-

lation could be eliminated by setting c 3 to zero in (5-6). Performance with

c3 = 0 was still satisfactory, which points out that conditions imposed on u

by the control law are sufficient, but not necessary. The magnitude function

had sufficient amplitude even with c3 = 0. This coefficient remains zero
for the remainder of the discussion.

Controller performance was checked for values of m d less than i00 in

anticipation of the transducer noise problem. The performance measure used

was the ratio of e , the peak error during the transient response to a stepP

input, to R, the amplitude of the reference step input. Results are shown

in figure 5-3 for plant condition 9. It is seen that sensitivity to md is

quite high for md < 50. An undamped oscillation occurred at a frequency of

1.4 cycles per second when _d was reduced to i0 rad/sec. Even with _d = 20,

a damped oscillation of 3.15 cycles per second occurred during the transient.

The amplitude of this oscillation was approximately 5% of the input signal
amplitude.

Results shown in figure 5-3 will be compared later in section 5.3.1 with

the sensitivity to md for the design based on the reduction-of-order technique.

There it will be seen that _d for the single derivative circuit required can

be reduced almost to the model bandwidth without noticeable deterioration of

performance. Thus, the advantage accrued from this technique in the form of
noise reduction is obvious.

The undesired oscillations and sensitivity to md make the design technique

impractical for this problem if reduction-of-order is not used. However,

when the reduction-of-order technique is employed, much more encouraging
results are obtained. This is considered in the next section.

Design Employing the Reduction-of-Order Technique (5.3.1)

As discussed in section 5.2.1, the reduction-of-order technique is

applicable to the transfer function of (5-2). Employing the procedure of

section 4.5.1 gives the following decomposition for that transfer function:
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IPp(S) = (s) = s (5-7-a)

Pz(S) --W(s) = s + z (5-7-b)

X k2Pr(S) = (s) = 2
s +as +b

(5-7-c)

where the notation of section 5.2.1 has been employed.

A second-order model which meets the specifications regarding response to

step inputs and which has been chosen properly with regard to other factors

previously discussed is

F

xd = AoW d + b r = | 0

-- _ L-0"8
1001x d +

-1.27 -- .8 r
(5-8)

The state equation relating to the reduced plant equation, (5-7-c), is

x-- Ax_+ dw = x + w

2

(5-9)
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The error equation resulting when (5-9) is subtracted from (5-8) is
m

e= e+
0.8 -1.27 [0°I[Ix + - w (5-10)

.8 2

where e = a - 1.27 and B = b 0.8. Forming the Liapunov function for (5-10)

and taking its derivative leads to the control law

y = [ cI 18r-Xl I + c 2 IXll + c3 Ix21 + c4 IYl] satky
(5-11)

where c I : I0.8/k21, c2 : Ib/k21, c 3 = le/k21, c4 : Ikl/k21- Asterisks

denote maximum values. These may be found in Table 5.3 for cI, c2, and c3.

The maximum value for c 4 is found in Table 5.2.

Since the prefilter, (5-7-a), consists of an integrator, the control

signal, derived directly from (5-11) and the inverse transform of (5-7-a),

is U = y.

The coefficients of the y function, found from the solution of

A Tp + PA - ii 0 0= = - (5-12)

o o q22 0.01

are PI2 = 0.625 and P22 : 0.496. The element q22 was deliberately chosen as

0.01 rather than 1.0 to give a smaller coefficient for e 2 in the switching

function, and thereby help to reduce errors due to noise. For the P matrix

93



TABLE 5.3

Parameter Variations in Equation (5-i0)

3ondit_on

_ 1

4

5

9

13

16

1"[

18

21

28

29

30

3t

32

35

o,=1o.8/ 21

0,234

0.088

0.082

o.174

0.359
I

1,130

0.515

0.298
I

0.0387

0.0152

0.0192

0.0569

0.49
I ii

3.64"

2.43

o2=1b/ 21
iiii

1.55

_),905

0.786

J .51

1.64

0.916

0,931

1.300
I

0.898

1.061

0.578

0.47

O. 398

10.4"

0.934

%=I0 /%1

0.21<)

0.04_

0.0.535

0.23

0.214
rl

1,775

0.79

0,456

0.03

0.07

0.08

0.043

0.0585

4.31o

3.82
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elements satisfying (5-12) the switching function becomes y = e I + 0.794 e 2.

If q22 = 1.0 had been used, the switching function would have been y = e I +

1.42 e 2. Thus, use of q22 = 0.01 rather than 1.0 leads to a reduction of

approximately 45% in the coefficient of e 2.

Using the control law derived above, the plant output followed that of

the model very closely for all plant conditions listed in Table 5.1, and the

problems which arose in the design not employing reduction-of-order were

eliminated. Oscillations did not occur for any of the parameter values

listed even though the pole in the derivative circuit transfer function (see

figure 5-4) was again neglected in design. Sensitivity to md was much less

for this design than indicated in figure 5-3 for the design of section 5.2.1.

This result might have been anticipated since the energy content of the

first-derivative signal, the highest derivative required in this case, is

restricted to a lower range of frequencies than the energy of the second

derivative signal. Consequently, distortion in the switching function is

less in this design for a given md' These and other results are discussed

quantitatively below.

Derivative Circuit Bandwidth, Dependence of Transient Response

and Noise on Reference Input Amplitude, and

Disturbance Response (5.3.2)

Introductory Comments.-Since the design of section 5.3.1 based on the

reduction-of-order technique showed promise, it was subjected to an extensive

analog computer investigation to point out clearly the difficulties which

would arise in the transition from the theoretical to the hardware stage.

This study led to the techniques presented in this section for minimizing

some of the difficulties.

The sensitivity of response to derivative circuit bandwidth, Wd, was

determined. The minimum value of m d for which the specifications could be

satisfied was chosen as the design value. It is shown that this procedure

led to the lowest possible mean squared noise level into the hydraulic motor.

The form of the response to step reference inputs was dependent on the

magnitude of the input, i.e. the plant did not track the model well for low

level inputs. For a given low level reference input, tracking could be

improved by either increasing the gain k in the linear region of the satu-

ration function or increasing coefficients of signals in the magnitude

function. The effect that increasing these gains has on the mean squared

noise levels into the motor, and the possibility of a trade-off between

tracking accuracy for low level inputs and this noise level are discussed.
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The mean squared noise level into the motor was larger for larger step

reference inputs because the magnitude function of the control law was larger.

A technique for using approximate signals in the magnitude function is intro-

duced. The approximate signals are such as to reduce the steady state value

of the magnitude function to zero. It is shown that this leads to consider-

able reduction in the noise level.

The controller was shown to have a disturbance rejection capability, i.e.

for step disturbance d = U(t), (see figure 5-4) x I + 0 in the steady state.

The response to disturbance was noted for various values of the parameters

md' k, and c I through c4 This was done in order to determine what trade-

off existed between the form of disturbance response and the mean squared

noise level into the motor.

Derivative Circuit Bandwidth.-The mean squared noise level into the

2
hydraulic motor, u n , is plotted in figure 5-5 versus the derivative circuit

bandwidth, md, for plant conditions 16 of Table 5.1. A one-volt step refer-

ence input signal was used. The level of the reference input is mentioned

because Un 2 is a function of 18rl as is discussed below. It isexplicitly

clear from figure 5-5 that the lowest possible value of m d should be chosen

which allows the specification on response to step commands to be met.

The integral squared error (hereafter referred to as ISE) for a step

reference input was used as a measure for determining how the transient re-

sponse was affected by reducing _ . The form of the response was also noted

to insure that it conformed to th$ specifications. In contrast to results

obtained in section 5.3.1 for the design not employing the reduction-of-

order technique (see figure 5-3), the response in this design was insensitive

to _d for _d > 2 radians/sec. Even for _d = 2, the ISE for all plant con-

ditions given in Table 5.1 was approximately equal to that for _d > 2, and

the slight variations in the forms of the transient responses, most pro-

nounced for plant conditions 16, 32, and 33, were not such as to fail to meet

specifications. Accordingly, _d = 2 radians/second is satisfactory for the

design insofar as the specifications relating to response to command inputs

is concerned. This value for _d will lead to considerably lower noise levels

into the motor than _d > 20, the value which would have been required in the

design of section 5.3.1.

Transient Response Dependence on Reference Input Amplitude.-As mentioned

briefly in section 2.2.1, certain difficulties arise because the sign function

in the control law must be replaced by the saturation function. The origin

of these difficulties is that negative definiteness of the V function is not

guaranteed by the control law in the region where IYI < i/k. The most
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disturbing practical consequence of this is that system performance is de-

pendent on the reference input amplitude. This dependence was manifested by

a failure of the plant to track the model for small input amplitudes. An

inverse relationship was found between the reference input amplitude for which

failure to track occurs and the gain k in the linear region of the saturation

function. The lar_er k was, the smaller the reference input amplitude could

be before this deterioration of performance occurred. However, larger values
2

of k caused an increase in u . Thus, a trade-off had to be made between
n

tracking accuracy for low level inputs and noise power into the plant.

In deciding what trade-off to make, the plant exhibiting the worst de-

gradation of performance was used. The ISE to a step input was used as a

measure to determine that plant condition 16 was the most difficult to handle,

giving the largest ISE_ The next most difficult was plant condition 32 which

has an ISE equal to one third of the previous case. Plant conditions giving

the lowest value of ISE to a step input were 28, 29, and 31. All of these

were approximately one-twentieth of the value for condition 16. A gain k

equal to one was used in making all of these measurements.

In order to demonstrate reference input-amplitude dependence, and the

dependence of the transient response on the parameter k, some computer

results are shown in figure 5-6. There the normalized peak error e /r, where
P

R is the amplitude of the step reference input and e is the peak error
P

during the transient, is plotted versus k and R in figures 5-6a and 5-6b

respectively. From these results it is clear that information concerning

the minimum expected reference input amplitude must be available to the de-

signer if he is to make an intelligent choice of k.

Before a value of k was selected based solely on the considerations

above, further attempts were made to reduce the ISE to a step input by in-

creasing the coefficients of the magnitude function variables one at a time.

Replacing any one of the coefficients Cl* , through cg _ in (5-11) by larger

coefficients led to a reduction in ISE. However, only increasing Cl_ reduced
2

• Because increasing Cl* had this effect a trade-ISE without increasing un

off could be made between Cl_ and k, i.e. Cl* could be replaced by a larger

value and k decreased while the ISE was held constant. The advantage which
2

was gained by the procedure was that u was decreased due to the reduction
n

of k. Results of the procedure are illustrated in figure 5-7. One curve

* = i00 and the other is for k : 1.0 and Cl_ = i0shown is for k = 0.5 and c I ,

The ISE to a step input is the same for both sets of parameters. It is seen
2

that for n < 0.029 volts 2, the former values for k and Cl* lead to lower
2

values of un Thus, decreasing k and increasing ci* gives a clear advantage

only if the transducer mean squared noise level is less than 0.029 volts 2.
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Each problem must be approached with the above considerations in mind t%

arrive at suitable values for k and Cl*. In this problem, k and Cl* cannot

be optimally specified without adding specifications as to allowable noise

power into the motor, minimum expected amplitude for e , and transducer noise
level, r

D_endence of Noise Power into Motor on Reference Input Amplitude.-A

disturbing p_actical problem in the design was that the mean squared noise

2 was dependent on 18 I This is shown in
level into the hydraulic motor, u n , r "

figure 5-8 for plant condition 16 For e o, u 2• = was 0.59 volts 2, a value
r n

too small to be read from the curve.

The explanation of this fact is that the magnitude function of the con-

trol law is a nonlinear, time,varying gain for noisy signals in the saturation

function, and this gain achieves a larger steady state value for larger step

reference inputs. The terms which cause this increased value for the magni-

tude function are c2_IXll and c4ely I in (5-11)• A way to eliminate this

problem is discussed below.

The control signal u theoretically goes to zero in the steady state for

a step reference input because y goes to zero. Since this is the case, it

is reasonable to, ask whether or not the magnitude function might be allowed

to go to zero in the steady state as well as the switching function without

serious consequences. If so, then Un 2 would be independent of lerl , and

wo_Id have the value noted above for e = o. Fortunately, this procedure
r

worked and the advantage was gained.

Means for accomplishing the results above are as follows. Instead of

generating y from y by a true integration, a network for approximate inte-

gration is used which has the transfer function

Y
i (5-13)

y-_S) = s-T_

where the subscript a is used to denote approximate value. If b in (5-13)

is small enough, Ya approximates y closely enough over a long enough time to

give controller behavior identical to that obtained when y is used in the

magnitude function• But unlike y, Ya goes to zero in the steady state since

y goes to zero. The step response of the system was unaffected when Ya re-

placed y with b = 0.03 in (5-13).
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AS for the signal IXll , it was replaced hy IXla I where Xla was generated

using a network with the following transfer function

Xla_sx1 ) = _s+d

(5-14)

With d small enought, Xla approximates x I closely enough during the transient

period, and in the steady state it goes to zero. A satisfactory value for
d was found to be 0.01.

With these approximate signals replacing the exact signals in the magni-
2 2

rude function of y, u was reduced to 0.54 volts , independent of lerln

Disturbance Response.-In section 2.4.1 it was shown that one is generally

unable to design for a specific disturbance response. This is an unfortunate

restriction in the case of the X-15 problem since there is a specification

on disturbance response given in reference 8, which is quoted here: "As far

as gust disturbance response is concerned, the requirement is that such dis-

turbances will be damped to less than one-fourth amplitude in one cycle."

Though the controller given by the control law of (5-ii) could not be

designedto satisfy the disturbance response specification quoted, it provided

rejection to step disturbances, d = U(t) in figure 5-4, under all plant

conditions of Table 5.1. For these plant conditions, the disturbance response

exhibited a damped oscillatory character with x. + 0 in the steady state.l
Two extremes in terms of frequency of the response to a step disturbance are

shown in figure 5-g for plant conditions 16 and 28. Table 5.4 gives values

of ISE with a one-volt step disturbance for all plant conditions except 5,

17 and 30. These were excluded because of their similarity to 4, 18 and 31

respective.y In order to determine whether or not some control could be

gained over the form of the disturbance response, the same parameters which

were varied in connection with the noise studies were again varied. What

was being sought was the basis for a trade-off between disturbance response

and mean squared noise level into the plant.

For plant conditions 16 with er = 0 and d = 1 volt, _d was varied from

2 to 20 radians. For m d > 5, the ISE remained essentially equal to 0.86

volt2-seconds. For _d = 5 it was 0.88 and for m d = 2 it was 1.15. The form

of the response was almost identical in all cases. For _d = 2, the peak

overshoot was approximately 40% greater than for m d _ 5. Thus, though

2
md = 2 was previously chosen on the basis of minimizing un , it may not be

the best choice from the point of view of disturbance response because of the

larger overshoot.
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TABLE 5._

Integral Squared Error for One Volt Step Disturbance
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When the gain k in the saturation function was varied from 1 to i0, the

ISE was reduced by only 16%. The form of the response was generally the

same fop these values of k. However, for k = i0 the frequency of the damped

oscillation was 0.5 c.p.s, and it persisted for three cycles, while for k = 1

the frequency was 0.134 c.p.s, and only one cycle occurred.

Varying the coefficient Cl* and replacing x I and y by approximate values

in the magnitude function changed neither the form of the disturbance resp<nse

nor the ISE.

The parameter _d and k, then, do provide some basis for a trade-off
2

between u and the form and ISE of the step disturbance response.
n

Design Including Hydraulic Motor Dynamics and

Gyro Dynamics (5.3.3)

The complete system, i.e. one including hydraulic motor and gyro complex,

far out poles, is shown in figure 5-i0 along with its component transfer

functions and the overall transfer function. The overall transfer function

is seventh-order instead of the third-order one used for the incomplete

system which excluded motor and gyro far out poles. Use of the reduction-of-

order technique for the complete system would lead to a sixth-order reduced

plant transfer function since one zero and a fixed pole at s = 0 are involved.

Even with a sixth_order description, exact application of the controller

design technique would require time derivatives of x I up to and including the

fifth. Since it is impractical to generate these higher order derivatives,

a way is sought to apply the design technique without them. Necessarily,

such a solution must be based on an approximation to the actual system dy-

namics. As will be discussed and demonstrated by computer results, it is

possible through suitable linear compensating networks to make the approxi-

mate dynamics quite close to the true dynamics. Whether or not this is

practical in a given situation is dependent on the power density spectrum

of the transducer noise.

A look at the open loop pole zero plot of figure 5-11 leads to the con-

clusion that if the natural frequencies of the gyro and motor are large

enough, then the system transfer function can be adequately approximated by

the pole, zero cluster around the origin of the S plane, i.e. these will

dominate the system's dynamics. In this case, the complex poles of the gyro

and motor might be neglected, and the controller design would proceed exactly

as in section 5.3.1 because the approximate plant transfer function would be

just that of (5-2). The gyro and motor may have high enough natural fre-

quencies for this approximation to be valid. If they do not, then linear

compensating networks can be used to cancel gyro and motor complex poles and

place poles further out in the s plane. However, if compensation must be

used a problem may arise due to accentuation of high frequency transducer

noise by the differentiating characteristic of the required networks. For
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example, if _ is too small, then the necessary compensation has the form
g

(s/_) 2 + (2_ /_)s+l
C (s) .... 2 (5-16)
C ! !

(s/_'g) + (s _ g/m g)S+l

where _ ' > _ . The asymptotic Bode diagram for (5-16) is shown in figure
g g

5-12. If transducer noise is restricted to a range of frequencies well below

, then there is no problem. However, if the noise is not so restricted,
g

the rising characteristic of G (s) in the range from _ to _' may cause
c g g

excessive noise levels at the input to the hydraulic motor.

In order to examine problems which arise from approximating system

dynamics by neglecting far out poles, the complete system was simulated on

the PACE analog computer. With far out poles neglected, the required con-

troller for pitch axis stability augmentation was that designed in 5.3.1

(control law (5-11)). Because the design is only approximate, the possi-

bility exists that the system will become unstable for high closed loop gains.

Factors of this closed loop gain are the magnitude function of the control

law, the gain k in the linear region of the saturation function, and the

2T The first of these is time-varying and nonlinear and
plant gain, K_ _a a"

the last is dependent on altitude and mach number. The computer simulation

verified that a stability problem did exist. For certain plant conditions

and reference input signal amplitudes, sinusoidal oscillations in the output

x I occurred. This oscillation is not a limit cycle arising from approximating

the sign function by the saturation function which is discussed in section

2_2.1. It is an output mode associated with the neglected far out poles.

Since the forms of the nonlinearities in the controller are not amenable to

describing function analysis, computation of the amplitude and frequency of

oscillations is impossible. However, some qualitative observations can be

made. The loop gainis signal dependent since it is partially determined by

the signal dependent magnitude function of the control law. Consequently,

instability can be excited if initial conditions and/or the reference input

and disturbance signal amplitudes are large enough to make the closed loop

gain too high. In practice, then, an extensive computer investigation would

be required to determine regions of initial conditions, x I (0) and x 2 (0),

which do not lead to the unstable condition. The size of these regions

would vary with plant conditions, reference input magnitude, and disturbance

signal magnitude. Operation would have to be restricted to the most con-

servative region. If this region is unsatisfactory, it must be extended by

using the linear compensation networks to move the neglected poles further
out.
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To put some of these ideas on a quantitative basis, the following com-

puter study was made. With initial conditions Xl(O) = x2(O) = O, step

functions of different magnitudes were applied to the system first as

reference inputs and then as disturbances. The step magnitude resulting in

instability was found to be a function of the far out pole location. The

results of this study are presented below.

In the computer study, the gyro and hydraulic motor were assumed to have

the following characteristics 31 Sh, m = 70, _ = 0.5, mh = 150, and = 0.5.
g g

The gain for the linear region of the saturation function was taken as k = i.

It was found that the stability problem did not arise for plant conditions

16, 32, and 33, the three with lowest gains. Step inputs up to i0 volts were

employed, (the maximum compatible with computer saturation levels), but no

sign of instabilit F appeared. For these three plant conditions, the response

to a step reference input or step disturbance input was nearly identical'with

or without the far out poles in thesystem. One change only was required in

the controller. The derivative circuit bandwidth, md' had to be increased

from 2 radians/second used in section 2.3.1 to 5 radians/second when far out

poles were in the system.

Plant conditions other than 16, 32, and 33 were not so easily handled.

Of the others, plant condition 28 was the least stable. Step inputs of 0.2

volts would excite steady oscillation for this condition. Let this value of

reference input be denoted by I@rlc, the critical magnitude. For reference

inputs less than ninety percent of the critical magnitude, the system oper-

ated as desired. Magnitudes of the reference input between ninety and one

hundred percent of the critical magnitude led to damped oscillations during

part of the transient period. Input magnitudes greater than critical re-

sulted in sustained oscillations.

An appreciation of the reason for the difference between the situation

for plant condition 16, 32 and 33 and plant condition 28 can be gained by

comparing the Bode diagrams for each shown in figure 5-13. It is not intended

here that the Bode diagram be used as a tool for an exact stability analysis

of the nonlinear system. Arguments presented are qualitative rather than

quantitative, However, as will be shown, computer results bear out the fact

that there is a strong correlation in this case between results obtained for

the nonlinear design and results which would be predicted for a linear

system using the classical Bode diagram method of stability analysis. From

figure 5-13 it is seen that since IP(j_)/(j_)I is negligible for m > 5 for

plant conditions 16, 32, and 33, and since gyro and motor dynamics c--ontribute

little phase angle in the region where m <5, an effective separation exists

between dominant and far out poles. On the other hand, IP(jm)/(j_)l for plant

condition 28 is appreciable beyond _ = 5, and the motor and gyro do con-

tribute significant phase lag in that range of frequencies. Thus, for

condition 28, the separation does not exist, and one is led to suspect that

a stability problem will arise when the loop is closed. Since it did arise

for plant conditions other than 16, 32, and 33, a design was sought which
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would be suitable for these troublesome plant conditions. It is not un-

reasonable to have a different set of controller parameters for plant con-

ditions 16, 32 and 33 than for the others since the former are easily

identifiable by the pilot as two extremes of altitude. In fact, this was

found to be the most practical approach to the design. A single design

suitable for both sets of plant conditions could not be found short of

moving the neglected poles extremely far out.

Since plsnt condition 28 was the most easily excited into oscillation,

it was used in searching for an improved design. Ways were sought which

would avoid oscillations and give proper controller operation for large step

inputs. Because the amplitude of the magnitude function was part of the

reason for the problem, the first step taken in an attempt to solve it was to

reduce this amplitude. This was possible for a desisn excluding plant con-

ditions 16, 32"and 33, for then the coefficients of |er-XlI, IXll , and Ix21

could be reduced to 0.515, 1.64, and 0.79 respectively, (seeTable 5.3.)

This improved stability somewhat but did not increase 18 I sufficiently to
' r c

be satisfactory. The reduced coefficients were retained for the remainder

of the computer study.

A reduction of the gain k in the linear region of the saturation function

was tried next. This also improved stability, but again not sufficiently.

An approximate inverse relationship was noted between k and 18rlc, i.e.

if I_ I = 1 volt produced sustained oscillations with k = I, then for k =
r c

8r became approximately two volts. This approach could not be0.5,I Ic
carried to its logical conclusion, i.e. reduce k enough to avoid oscillations

for the largest expected value of l_rl, because then the behavior for small

values of lerlWOuld not be satisfactory. This problem was discussed in

section 5.3.2.

Since neither of the measures taken above solved the problem completely

the poles of the gyro and hydraulic motor had to be cancelled and new ones

placed further out with appropriate compensation networks. Compensators of

the form of (5-16) were placed in cascade before the hydraulic motor and

following the gyro. With the far out poles placed such that _'g = mh' = 333

and _ : _h' : 0.455, then, for plant condition 28, 16rlcwas 3.5 volts for

k = I. If k was reduced to 0.5, the critical magnitude was found to be 7

volts. However, with 18rl = 1 volt, plant condition 17 exhibited a longer

transient and larger transient and steady-state errors with k = 0.5 than with

k = 1.0. Condition 17 was the worst in this regard. With k = 1.0, the

steady-state error was two percent of the step magnitude, but it increased to

four percent for k = 0.5. The specification does not state what the ac-

ceptable steady-state error is. However, if four percent is not objectionable,

then specifications can be met for the range of input levels 1 ! 18rl _ (0.9)(7)

with the initial conditions being considered.
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" To emphasize the usefulness of the Bode diagram as an aid in design, it

is .now shown how it was used to improve on the above results. The damping

ratios 5' and 6' were reduced by a factor of one half so that phase-angle
g h

contribution of the far out poles at the crossover frequency was reduced. A

considerable stabilAzing influence was noted. The critical magnitude was

increased to 6 volts from 3.5. Reduction of these damping ratios by a factor

of one quarter increased the critical magnitude still further to a value of

7 volts. The results noted were obtained using k = 1.0. Reducing k to 0.5

approximately doubled the critical magnitudes given above.

The use of approximate signals for xI and y, discussed in section 5.3.2

relative to noise reduction, proved to be another measure which could be used

to advantage in the, stability problem. The critical magnitude, lerl c, could

be increased by replacing IXll and IYl in the magnitude function with their

approximate values as given in (5-14) and (5-13) respectively. The improved

stability can be attributed to a reduced closed loop gain due to a reduction

in the magnitude function amplitude. Transient responses using exact and

approximate values for IXll and IYl are compared in figure 5-14. It is seen

there that use of exact values of the variables x I and y caused a six cycle

per second oscillation with a peak-to-peak amplitude equal to seven and one

half percent of the eight volt reference input level. When approximate

values of the variables were used, these oscillations were eliminated.

Though the stability problem has been discussed relative to step refer-

ence inputs, similar results were observed for step disturbances. For examp_

_r was found to be ? volts forin the design presented above in which I Ic

k = i, oscillations were not induced for Idl < 7 volts either. However, with

Idl = 8 volts, a steady-state oscillation of nine cycle per second and 0.5

volts peak-to-peak amplitude resulted. Again plant condition 28 was the least

stable. Therefore, the upper bound of seven volts is conservative for all

other plant conditions_ Similar to results for reference inputs, the dis-

turbance responses with and without the far-out poles in the system were

practically identical provided Idl was less than seven volts.

It is well to conclude with a discussion of the nature of the stability

problem which arises due to neglecting instrument dynamics in the design. Is

it basic or does it arise simply because the state of the art of instrument

design is not sufficiently far advanced? In the case of the gyroscope, the
latter is the case. The transfer function for the rate gyro as given in

figure 5-9 is that for a single degree-of-freedom (SDF) device. With the
advent of new two degree-of-freedom (TDF) gyros 34 such as the electrically

suspended gyro (ESG) invented by Dr. A. Nordsieck of the University of

Illinois, and developed by Minneapolis Honeywell and General Electric, the

problem considered above no longer exists. This is so because the TDF and

SDF gyros differ in their dynamic properties. In the SDF, the rotor precesses

in response to a displacement input. Thus, rotor inertia and restraining

spring lead to the quadratic denominator term in the transfer function. OD
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the other hand, the TDF gyro rotor remains fixed in inertial space under all

opegating conditions; hence the displacement to voltage transfer function is

simply a constant.

Development of improved hydraulic motors, or other type drives, could

lead to higher natural frequencies for these devices. Even if mh cannot be

appreciably increased through development of improved drives, the compen-

sating network required to move the poles of the hydraulic motor to a

suitable location is not nearly as objectionable as that required to move

the poles of both the gyro and motor. Fo_ example, with no gyro poles present
! =

the hydraulic motor poles need only to be moved to the location where _h

_h ' = _' =224, and ' : 0.336 to get the same results obtained above with _h g

' = _' = O.114. The compensator to do this places a high frequency333 and _h g

gain of 2.25 between gyro output and motor input, as compared to a high-

frequency gain of 106 needed when both gyro and motor must be compensated.
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CHAPTERVI

CONCLUSIONS

In this report, a controller synthesis procedure based on Liapunov's
"direct method" has been taken from the realm of mathematical theory and
developed as a useful engineering design technique. The technique is
applicable to nonlinear as well as linear plants whoseparameters maybe
rapidly varying in an unknownfashion within knownfinite bounds. In tran-
sition from theory to practice, several significant modifications and ex-
tension of the procedure were made. Design problems resulting from trans-
ducer noise, disturbances, and instrument dynamics were investigated by
analog and digital computer simulation of complete systems. In certain
cases, ways were found to eliminate or minimize these problems. In others,
the problems could not be eliminated or minimized, but the study at least
revealed their existence.

Modifications of the theoretical procedure which are significant from
an engineering design point of view include techniques for avoiding impulses
in generating the control signal, and for reducing controller amplifier gains.
Extensions of the procedure were madein the areas of design for nonlinear,
time varying plants, incorporating a specification of convergence time as
part of the design problem and eliminating plant state variables from the
control signal to reduce adverse effects of transducer noise. Results re-
lating to convergence time were shownto be directly applicable to improving
the design of a class of quasi time optimal control systems.

The extension to allow designing for a specified convergence time is of

importance when starting systems with large initial errors. Though a design

equation was obtained for second-order systems, the complexity of the alge-

braic problem prohibited an exact solution for higher-order cases. However,

it was shown by computer simulation that insight gained from the solution of

the second-order case was useful in reducing convergence time for a third-

order system. The design equation for the second-order case was applied to

a quasi time optimal control problem. Performance was improved by a factor

of two over a design not employing these results, i.e. the time to reach the

origin froma given initial condition was reduced by a factor of one half.

Techniques introduced for replacing plant state variables by model state

variables in the magnitude function of the control law were shown to lead to

significant reduction of the transducer noise problem. In one example, the

mean squared noise level into the plant was reduced by a factor of one

hundred by employing these techniques.
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A theorem was introduced relating to control of linear, slowly time

var_ying plants with zeroes. Its use permits controller design to be based

on a model and a reduced plant of lower order than the actual plant. For

example, a third order plant with two zeroes was made to follow a first-

order model by using only the plant and model output signals to generate the

control signal. A third order model would have been required, along with

first and second derivatives of plant and model output signals had the

reduction-of-order technique not been employed. This technique is an ideal

way to minimize transducer noise problems since it avoids the need for higher

derivatives in generating the control signal. By example it was shown that

the reduction-of-order technique can be applied on an approximate basis in

some cases to linear slowly time varying plants without zeroes.

The reduction-of-order technique was used to design a controller for

pitch axis stability augmentation of the X-15 manned reentry vehicle. Com-

puter results showed that the performance of the controller for a third-

order system which excluded the complex poles of both the gyro and hydraulic

motor was quite good. The outline of a design procedure for the system in-

cluding these poles was presented. Since the resultant transfer function is

seventh-order in this case, the procedure had to be approximate since trans-

ducer noise precluded use of higher derivatives to make it exact. The

approximation made was to neglect the complex poles of the gyro and motor

transfer functions, and assume that the system dynamic response was dominated

by the same three poles used in the design referred to above. It was shown

that stability of the approximate design was dependent on initial conditions

of the plant output and its first derivative as well as the magnitude of

reference and disturbance inputs. Hence, part of the design procedure would

be an extensive computer study to determine the stable operating conditions.

Stability can always be assured for all operating conditions by using linear

compensating networks to move the complex poles neglected in design far

enought out to the left in the s plane. However, such compensation may

result in an increased noise level into the hydraulic motor. A limited com-

puter study demonstrated the validity of the approximate design procedure

by showing that the controller performed quite well for operating conditions

which did not lead to instability. Techniques were introduced which extended

the range of stable operating conditions, while not increasing the noise
level into the motor.

Possible fruitful areas for further research which came to mind while

performing the research for this report are the following:

i. Generalizing the reduction-of-order technique to plants with

rapidly varying parameters, and/or to plants without zeroes.

2. Finding additional technqiues which allow control with less than

the total number of state variables.

3. Finding a way to track low level reference inputs other than

increasing the gain in the linear region of the saturation
function.
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4. Applying the technique to control problems which are not

amenable to other techniques.

Any of the above, if successfully accomplished, would greatly extend the

usefulness of the technique.
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APPENDIXA

DEFINITIONSANDTHEOREMSPERTINENT
TOTHE"DIRECTMETHOD"

Emphasis in this report is on application of the "direct method" to
controller design rather than on the intricacies of the method itself. Con-
sequently, only those definitions and theorems required to understand the
design approach are presented. The theorems are stated without proof except
for theorems A.5 and A.6. Proofs for these are given because they are the
basis of the synthesis technique presented herein. A full treatment of the
details of the theory, including proofs of theorems, maybe found in refer-
ences 22, 24,and 32.

The "direct method" can be applied to dynamical systems governed by the
vector differential equation

= f(x, u, t) (A-l-a)

This is equivalent to the set of n scalar differential equations

i 2 m
x.i = f'(xl'i x2"'''Xn' u, u , u ,...u , t) i = i, 2,...n

(A-l-b)

The vector x is the plant state vector, and its componentsare the state
variables. --In this report, the componentsof the plant state Vector are
always taken as the plant output and its first n-i derivatives. The vector
u is the control vector, and it too is taken throughout as the control signal
u, and its first m derivatives.

If u(t) _ O for all t, then (A-l-a) is called "free" or "unforced" and
it becomes

x = f_(x,t) (A-2)
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It is assumedthroughout that the function f is continuous, and is such that °
solutions of (A-l-a) exist, are unique, and--are continuously dependent on the
initial value x (t) at any t .

--o o o

The following definitions, due to Liapunov, are quoted from reference 22.

Definition A-l: An equilibrium state x of a free dynamic system is stable
--e

if for every real number 6 (e, t ) there exists a real number e > 0 such that
o

lifo - Xell < 6 implies

II__(t;_o, to ) -Xel I < E for all t > t
-- -- 0

where ¢ (t; x , t ) is the unique solution to (A-2) for the initial conditiors
--o o

x, i.e.
---o

(i) _(to;_o, to) = x--o

(ii) __(t;_o, to) = f(__(t;_o, to),t )

Definition A-2: An equilibrium state x
--e

totically stable if

of a free dynamic system is asymp-

(i) it is stable

(ii) every motion starting sufficiently near x converges to
--e

X as t _ _
--e

The above definitions are local in nature, i.e. they refer to behavior

near the equilibrium. If 6 is independent of t, then the stability is termed

uniform stability. In addition, the local nature of the concept of asymptotic

stability can be removed if in (ii) of Definition A-2, "sufficiently near"

includes all points x from which motion originates. In this case, the
--o

equilibrium is called asymptotically stable in the large 32 and if "suf-

ficiently near" allows all points in the phase space, the equilibrium is

said to be asymptotically stable in the whole.

Further definitions required prior to the statement of theorems are
taken from Hahn.

Definition A-3: A function V(_, t) with V(_, t) : 0 is called positive
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(negative) definite if a function @(r) of class K exists such that the
re lat i on

v(x,t) > _(Ixl) (_<-_(Ixl))

is satisfied in Kh,to.

Remark A-3: The statement @(r) belongs to the class K means that _(r) is a

continuous, real function defined in the close interval 0 < r < h and that

0(r) vanishes at r = 0 and increases strictly monotonically with r. The

notion;_Iindicatestheabsolutevalueofthevector£,i.e */_*.The

region Kh,to is the semicylindrical domain of the motion space,

ioeo

Kh, to [x,t Ixl < h,t > tol

Definition A-4: A function V(k, t) is called radially unbounded if inequali_

of definition A-3 is valid for arbitrarily large h and when _(r) increases

unboundedly with r.

Definition A-5: A function V(_, t) is called decrescent if a function _(r)

of the class K exists such that in Kh,to

IV(x, t)l ! ¢ (x)

is valid.

Definitions A-I through A-5 suffice to quote without proof the following

theorem from Hahn. The theorem is due to Barbashin and Krasovskii.

Theorem A.I The equilibrium is asymptotically stable in the whole if there

exists a function V(x, t) which is everywhere positive definite, radially

unbounded, and decrescent, and whose total derivative for (A-2) is negative

definite.
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Definition A-6: A function V which satisfies the conditions of theorem A.I
is called a Liapunov function for the differential equation (A-2).

A theorem for linear autonomousfree systems which is used in the design
procedure is quoted from reference 22.

TheoremA.2 (Liapunov) The equilibrium state x
--e

free, linear, stationary dynamic system

: 0 of a continuous-time,

x = Ax (A-3)

where A is a constant matrix, is asymptotically stable (a) if and (b) only

if given a symmetric positive-definite matrix Q there exists a symmetric,

positive-definite matrix P which is the unique solution of the set of

n(n + 1)/2 linear equations

ATp + PA : -Q l (A-4)

and xTpx is Liapunov function for (A-3).

Further theorems for linear stationary plants which are useful in the

design procedure are quoted from reference 24.

Theorem A.3 The equilibrium of (A-3), (detA#O) is uniformly asymptotically

stable in the whole if all the

_, : Re{s } < 0 for j : 1,2,...k < n
] J

where s. is an eigenvalue of A and k is the number of distinct eigenvalues.
]

Theorem A.4 If the equilibrium of (A-3) is uniformly asymptotically stable,

then any real, symmetric, positive definite matrix Q, there exists a quad-
m

ratic form V(x) = x Tpx which is a Liapunov function for (A-3) in the sense

o_ Theorem A.I where -Q = ATp + PA.

Two theorems which pertain directly to the synthesis technique con-
33

sidered herein have been recently reported by Grayson . The first supposedly

provides a theoretical justification for the synthesis technique, and the

second a basis for selecting the control vector. This author disagrees with

these claims. These theorems are presented so that the reasons for this

disagreement can be discussed.
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TheoremA.5 If, for the systems

_x= g(x, z, u) (A-5)

and

: f_(y) (A-6)

where f(0) : g(O, O, O) : O, scalar functions V(x) and Vl(Y) exist such that

the following conditions are true,

i.

,

,

4.

V(x) : Vl(Y _) for all x : y is an open region

D about the origin

Vl(Y_) is positive definite

(d/dt) VI([) is negative definite

V(x, z, u) < VI(_) for all _ = [ in D then

(A-5) is asymptotically stable; i.e. x÷0

as t_ _

Proof: System (A-6) is asymptotically stable with respect to the equilibrium

y = 0 by conditions 2. and 3. and Theorem A.I. Also, for x = _o-- --O

t t

V(x) = V(_xo) + ft V(x,z,u)dt _< Vl(Y_o) + ft Vl (y)dt
o o

= Vl(Y)__ for t > t-- O

But Vl(Y) ÷ 0 as t ÷ =. Hence, since V(x) is positive definite, V(x) + O

as t -_ =; therefore, x + 0 as t ÷ =. Q.E.D.

125



Grayson contends that theorem A.5 is necessary to provide mathematical

justification for the synthesis technique because (A-5), the form of equatioh

arising in synthesis, "does not possess an equilibrium state at x = O - a

tacit assumption in the theorems of the second method." But since x--÷ O,

the _ + O also. Therefore, the theorem simply states that x = 0 is--an equi-

librium state. It should be noted also that Grayson's prooT is--incorrect

because the inequality used relies on condition 4 which is not necessarily

true unless x = [. However, in general x ¢ [ for t >t . Therefore, V may
-- -- O

be greater than Vl for t > t . The conclusion that x + 0 as t + _ is correct,
O

however, since V(x)_ is positive definite by conditions 1 and 2 and V (x,z,u)
is negative definite by conditions 3 and 4.

The theorem given in reference 33 for extending theorem A.5 into a

method of design for a class of systems by suitably selecting u is the
following:

Theorem A.6 Given the systems

x = f(x) + z(t) + u (A-7)

and

Y = f__(Y) (A-8)

where f(O) = 0 and (A-8) is asymptotically stable, then (A-7) is asymp-

totically stable, i.e. x ÷ _0 as t + _, if (grad x V).(z_ + u) < 0 or

u.l : - Izi([)Imax sgn(grad x V) i, i : l,....n

This theorem is invalid since the u. 's selected are such that solutions
I

to (A-7) may not exist 29. This problem is discussed at length in section

2.2.1 of Chapter II. To insure that solutions exist, the discontinuous sign
function is replaced by a continuous function. Here the continuous function

used is the saturation function. Because of this substitution, _ may not

approach zero as t increases, but, as shown in Appendix C, Ixl can be made
arbitrarily small as t ÷ ®.

With the control vector selected so that solutions of (A-5) exist, it is

felt that this synthesis technique is mathematically justified and that the

development of the technique in Chapter II and Appendix C adequately demon-
strates this.
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APPENDIXB

SIGNOFELEMENTIN FIRSTROWAND
LASTCOLUMNOFP MATRIX

Consider the symmetric positive definite diagonal matrix, Q,

Q

w

qll Oq22

qnn

(B-l)

and the nxn matrix A
o

all of whose eigenvalues have negative real parts

A I

o

w

0 1 0 . . .

0 0 1 . .

aOl a02 a0n

(B-2)

The P matrix is defined as the solution of

A Tp + PA = -Q
o o

(B-3)
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The equation for Pln is, therefore

-qll

Pln- 2aOl
(B-4)

Since Q is positive definite and A has eigenvalues with negative real parts

then qll > 0 and aOl < O. Therefore, from (B-4)

Pin > 0
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APPENDIXC

STABILITYIN THELINEARREGIONOFTHE
SATURATIONFUNCTION

To investigate the stability properties of (2-5) in the region where
IYI < i/k, consider the expandedform of V, (2-20), which is

n m-i m n
V--- Z el2 [um+u(m-1) Z c.,_uJ+ Z d_+lrE+ Z gixi ] (C-l)

i=l -Plnbm+iY j=O 3t± £=0 i=l

where it has been assumedthat Q = I, the identity matrix. The term in-
mvolving u always makesa negative contribution to V, therefore it can be

neglected in the following considerations and the results obtained will be
conservative. The remaining terms of V must satisfy the inequality

m-i m n
n 2 +luJ+ B£+ir£+- Z ei -Pin Y [U(m-l) Z b. Z I _kXk] < 0

i=l j--0 3 £=0 k=l
(C-2)

Whenm = O, (C-2) becomes

n 2 n n
- I eI -PlnY [81r+k=El_kXdk-iZ=l_iei] < 0i=l

(C-3)
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in which the model states have been added and subracted within the square

brackets in order to introduce terms in e i and Xdi. The reason for doing

this is that the upper bound

l n l8.r+ Z e.x.. < M < _

± k=l K akl --
(C-4)

can be established for a bounded input, r, whereas a similar bound could not

be established in terms of plant states without making the unwarranted

assumption that the plant is stable. Another upper bound which can be estab-
lished and which is useful is

i n I n n nei2 )
i__Zleiei _< (l_ilm)( Z leil ) _< (leilm) ( Z 1/2

i=l i=l
(c-5)

= M@X {fail} for i = i, 2,...nwhere fail m z

The last inequality of (C-5) can be shown as follows:

n

( Z el)
i--i

-_<el<+_

n

_< ( 7. leil )
i=l

n

:( Z ei)

-_<ei<+_ i:l O<ei<4_o

(C-6)

The last summation in (C-6) can be expressed

n n

Z ei:K ( Z ei2)i/2 ; for e i _> 0, i=l,2...n
i:l i:l

(c-7)
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where K is dependent on e..
1

To determine the maximum value of K, set

This is

_K

n

Z e i
i=l

n 1/2

(i_lei 2)

= 0 j=l,2...n (C-8)

J-i n

Z ei (ei-ej)+ Z ei (ei-ej)

_K = i=l i=i+I = 0 (C-9)

( Z ei2)3/2
i=l

Since (C-9) must be satisfied foe all e. including the smallest, it can only
1

be satisfied if

e. = e, for all i, j from i to n (C-10)
i ]

Use of (C-lO) leads to

K = /-- (c-n)
max n

Hence

n n ei2)i/2Z e i ! (n Z
i=l i=l

; e i _ 0 for i=l,2...n (C-12)
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Use of (C-_) and (C-5) leads to the conservative inequality

< -R2(k) +PlnY [M + _ _ R(k)]-- i max (C-13)

where

rl

R(k) = ( I ei2)i/2
i=l

In the region where I¥I < i/k

V < -R2(k) + aR(k) + b (C-14)

where

Pln

a =--_- I_ilma x

and

b _

Pln M

From (C-I_) it can be seen that

(c-is)

everywhere outside the spherical region
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P

a 1
R(k) < "_ + y a2_+_b (C-16)

By choosing k large enough R(k) can be made arbitrarily small. It can be

concluded that as t ÷ _, u will cause e to be within the region common to

R(k) and IYI < i/k. Asymptotic stabi--lity cannot be concluded. Limit

cycles or a constant steady state error may exist, but can be made arbi-

trarily small by choosing k large enouth.

In the event m _ O, (C-3) must include the additional terms

m-i m

bj+luJ +Z Z 6£+ir
j:o _:i

(C-17)

within the square brackets.

If r and its derivatives are finite, then (C-_) becomes

I !06£+ir£ + n
Z <M< oo

i:l _ixdi --
(c-z8)

Again an upper bound has been established, so the additional terms arising

due to derivatives of r are handled without complications. If the restriction

that derivatives of r be finite is prohibitive, the problem can always be

formulated in a way which avoids derivatives of r as was discussed in 2.2.2.

The additional terms appearing in (C-3) due to u and its derivatives do

present a problem, however.

Since these terms are functions of the plant output and its first n-i

derivatives, an upper bound for them cannot be assumed to exist. A way to

handle this problem is to make k a function of these variables as follows:

k = kl+k 2 bj+ llmax

m-I

luJl
j=O

(C-19)
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Ibj+1 = Mgx]{Ibj+ll}whe_ k I and k 2 are constants, and Imax

for j = 0, l,...m-i

Thus, the equivalent of (C-14) for this case becomes

< -R2(k) + aR(k) + b + c (C-20)

Pln _ n , b = PlnM

where a = kl lailma x kl

Pln
, and c =

k 2

From (C-20), V < 0 outside the spherical region

a 1
R(k) < _ + -_ V'a2+4(b+c ) (C-21)

This region can be made arbitrarily small also by choosing kI and k2 large

enough•

A procedure similar to that directly above may be followed for nonlinear

plants• For instance, consider example 2-1 in section 2.4.3. In this case

V = - (e12+e22) +2P12Y [-Ku- (K-2) (r-Xdl) -2x d2+ax22- (K-2) el+2e 2 ] (C-22)

and the appropriate choice for k is seen to be

2
k = k I + k2x 2 (C-23)
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For this choice

where

R(k) < a/2 + 1/2

4P12
a =

kI

2PI2M
b =

k I

/a2+4 (b+c) (C-24)

C --

i

k 2

Instrumenting the k's given by (C-19) or (C-23) considerably complicates

the controller and is not justified unless a computer study of the system

indicates that a problem may exist. In all of the examples used in the

report, no difficulties were encountered even though a constant k was used

throughout.
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APPENDIX D

PROOF OF SEMIDEFINITENESS OF A

QUADRATIC FORM

With the matrix H 1 chosen as

H1 = = 1

in . 1 Pnn in P2n Pnn

(D-l)

Pin

where hin = for i = 1,2...n-l, and Pin' for i = 1,2...n are the
Pnn

elements of a symmetric positive definite matrix, it turns out that

PH 1 + (PHI)T = 2PH 1 (D-2)

since PH 1 is symmetric.

Thus, in order to show that PH 1 + (PHI)T is positive semidefinite, it

suffices to show that

w

Pll P12

PI2 P22

Pln

• Pln

• P2n

• Pnn Pln

O
P2n " Pnn

w

all a12

a12 a22

aln

• aln

• a2n

a
nn

--A (D-3)
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is 2ositive semidefinite. The elements a.. are given by
l]

aij = PinPnj
(D-4)

Therefore, the quadratic form eTAe is

n n

Z ZlPin p nei ei=l j= J J

(D-5)

which can be expressed as

n

( I e) 2
i=iPin i

(D-6)

Since (D-6) _ 0 for all ei, then PH 1 + (PHI)T is positive semidefinite.
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