aciesd

@ https://ntrs.nasa.gov/search.jsp?R=19670004091 2020-03-16T17:14:26+00:00Z
Cr [

ey

I

WN ‘gdv AvHel HO3L

NASA CONTRACTOR {4
REPORT

L

NASA CR-646

AN ANALYSIS OF CONFINED
MAGNETOHYDRODYNAMIC VORTEX FLOWS

by David E. Loper

Prejmred by

CASE INSTITUTE OF TECHNOLOGY
Cleveland, Ohio

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. « NOVEMBER 1966




TECH LIBRARY KAFB, N

L] T

00LO23y
NASA CR-646

AN ANALYSIS OF CONFINED MAGNETOHYDRODYNAMIC VORTEX FLOWS

T By David E. Loper

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NsG 198/36-003-003 by
CASE INSTITUTE OF TECHNOLOGY
Cleveland, Ohio
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — Price $3.25

T T TS T i T




ABSTRACT*

The vortex flow of a viécous; incompressible and electrically
conducting fluid confined between two finite flat plates (with a
net radial mass flow) in the presence of an applied axial magnetic
field is considered: The details-of the-velocity field including
boundary layer blockage and redistribution' of radial-mass flow are
of primary concern, The analysis is limited to the case of the
separation distance between the two end' plates being small compared
with the radius of the plates; this allows the momentum equations
to be uncoupled from the electromagnetic equations. The momentum
equations are linearized and solved for the velocities and the
pressure as Fourier series. The temperature and electromagnetic
variables are then found. The velocity and temperature results
are plotted and discussed, showing the influence of the magnetic

effects upon the flow pattern.

*This investigation was submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy.
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CHAPTER T

INTRODUCTION

1. Some Previous Investigations

Vortex flows have been of continuiné interest to fluild dynam-
icists for some time. Recently, interest has been focused upon the
problems of vortices confined within finite bounding walls and of
vortex flows in the presence of magnetic fields. This interest has
been stimulated in part by the possibility of power generation by
means of a  magnetchydrodynamic vortex power generator [1] and by
the possibility of developing a gaseous fission rocket [2].

To gain an understanding of the nature of the flow of a vor-
tex in the presence of bounding walls, conslder a free vortex (tan-
gential velocity 1/r) near a stationary flat plate which is perpen-
dicular to the vortex axis. The radial pressure gradient, dp/dr,
away from the plate varies as v%/r or as 1/r3. Near the flat
plate, the tangential velocity 1s slowed forming a boundary layer.
The external radial pressure gradlent 1s lmpressed upon this
boundary layer. Within the boundary layer, the tangential velo-
city is insufficient to counterbalance thls pressure gradient.

This results in a pressure defect which drives the fluld within

the boundary layer radially inward. In thls way strong radial mass



flow is generated near the plate. This radial flow must be com-
pensated by a mass flow into the boundary layer fram the outer flow.
For vortex flow near a single flat plate, conservation of mass 1s
satisfied by an axial flow fram infinity; the radial velocity out-
side the boundary layer 1s assumed to be zero. In an attempt to
describe accurately the Qna’cure of this boundary layer upon the
single flat plate in thel presence of a vortex, a considerable num-
ber of momentum integral analyses have been performed [3,4,5].

Lewellen and King [6] have analyzed this single plate prob-
lem with the addition of an applied axial magnetic field. They
performed a momentum integral analysis of a vortex flow (tangen-
tial veloecity ~ rn) over a finite flat plate under the restric-
tion that the radial electric current outside the boundary layer
be a zero.

In a problem with vortex motlon occurring in the confined
reglon between two stationary flat plates (see figure 1), the
flow picture must be different. The slowing of the tangential
velocity forming boundary layers and the accumulation of radial
mass flow within these boundary layers due to the pressure defect
occurs as described above. If the action of viscosity 1s so great
as to cause the boundary layers to occupy an appreclable fraction
of the volume of the confined reglon, the vortex motion may be
greatly affected. This effect is referred to as boundary layer
blockage. In the single plate case, the boundary layer mass flow
1s compensated by an axial flow toward the plate. With the addi-



tion of a second plate, this axial flow is blocked; conservation
of radial mass flow within the boundary layers must be satisfled
by a decrease in the radial velocity in the inviscid region between
the two plates. Therefore, the radial veloclty outside the bound-
ary layers cannot be assumed to be zero as was done in the single
plate probiem described above or else it will be impossible to
satisfy conservation of mass.

In order to maintain physically the vortex flow, the net radial
velocity must be directed toward the axis of rotation. A large
fraction of the total radial mass flow may be drawn into the bound-
ary layers by the action of the pressure defect. If the fraction
of radial mass flow diverted into the houndary layers 1s greater
than unity, the radial velocity outside the boundary layers must
change direction from toward the vortex axis to away from the axis.
In this case, the vortex motion breaks down and the flow picture
becomes more complicated.

Many of the single plate analyses referenced above have been
made in an attempt to describe the flow of a vortex confined by
two flat plates. However, since the conditions of the two
problems are basically different as described above, it 1s not
apparent that an analysis of the single plate problem yields
results applicable to the two plate problem.

Vogelpchl [7] was the first investigator to attempt an

analyslis of 'a confined vortex. He considered the flow of a vis-



cous incompressible vortex confined by two flat plates placed
perpendicularly to the vortex axis (figure 1). He obtained an ex~-
act solution for the tangential velocity under the restrictive as-
sumptions that the radial velocity was completely independent of
the axial coordinate (that is, it varied inversely as the radius)
and that the axial veloclity was zero. The assumption that the
radial velocity does not vary with the axial coordinate precludes
the accumilation of the radial mass flow within the boundary
layers due to the action of the pressure defect. Thus his solu-
tion is not an accurate representation of the vortex flow between
two flat plates.

Loper [8] analyzed the two plate problem for the case of the
plates relatively close together using a momentum integral analy-
sis. The integral method was modified from the form used in the
single plate analyses to account for the fact that the radial
veloclty outside the boundary layers is not zero. This method is
a more accurate representation than Vogelpohl's in that it allows
redistribution of radial mass flow into the boundary layers.

Rosenzweig, Lewellen and Ross [9] also analyzed the two
plate configuration. They essentlally limited their analysis to
the case where the tangential velocity is much larger than the
radial velocity and the separation distance between the plates 1is
larger than the radius of the plates. Thelir expansion technique
forced them to divide the region of interest into inviscid,

boundary layer and central core regions and to patch solutions at
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the boundariles of these reglions. Unfortunately, they were not
able to obtain good experimental correlation.

The momentum integral technique, used almost exclusively
for the above boundary layer analyses, does not yield many de-
tails of the flow fleld. Also its accuracy depends upon the pro-
per choice of velocity profiles in the boundary layer. With the
addition of magnetic effects to the two plate problem, this
technique becomes too cumbersome to be employed successfully.
Therefore, another method of solution will be employed in the
analysis of the governing equations in Chapter IITI. This is the
linearization method of Oseen and Targ [10]. This method does
not require the boundary layer velocity profiles to be assumed
beforehand and it yields more detailed information concerning

the flow.

2. Subject and Scope of Present Work

In the following, the vortex flow of a viscous, incompress-
ible, and electrically conducting fluid between two finite flat
plates (figure 1) in the presence of an applied axlal magnetic
field will be analyzed. The region of interest 1s bounded radi-
ally by two coaxial cylinders which also act as electrodes con-
nected by an external resistive load. The influence of the two
end plates upon the vortex flow is of particular interest.

The basic governing equations, Navier-3tokes, conservation

of mass, energy, Maxwell's and Ohm's Law, will be simplified with



the help of certain assumptlions enumerated in the following sec-
tion. These equations will then be further simplified by consid-
ering only the case for which the radius of the outer cylinder
(R) is much larger than the separation distance between the two
plates (b). The boundary layer interaction is most prbnounced
for thls configuration. Also, this geometric restriction allows
a considerable simplification in the governing equations; it is
possible to express the magnetic body force terms in terms of
the veloclty components and thus eliminate Maxwell's equations
and OChm's Law from immediate consideration. In addition, this
assumption allows a unified analysis of the region of interest
rather than a split-up requiring patching of soélutions.

The non-linear terms of the simplified Navier-Stokes equa-
tlons will be linearized in the manner of Oseen and Targ [10].
This linearlization uncouples the equations to facllitate their
solution, These linearized equations may be solved exactly to
yield Fourier series solutions for the velocity profiles. These
profiles will be calculated numerically and plotted on graphs
for various values of the governing parameters.

With the velocity distribution known, the energy equation
may be simplified and solved for the temperature distribution.
Finally, parameters such as voltage, electric current ard

magnetic fields will be obtained.
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3. Assumptions' and Limitations

A number of assumptions will be made concerning the nature
of the working fluid. Some of them are well justified on.physical
grounds but others must be rather arbitrarily-made in order that
the problem become mathematically tractable,

It is assumed that:

a., The fluid is Newtonian; that is, the fluid is of one species
which obeys the Navier-Stokes' equations,

b. The flow is steady and axially symmetric.

c. The flow is laminar.

d. The fluid is incompressible.

e. The properties of the fluid are constant.

f. No body force other than the magnetic body force acts on
the fluid.

g. The fluid is non-magnetic and has no polarization.

h. The conductivity is a scalar constant.

i. Radiation effects are negligible.

j. The flow speed is small compared to the speed of light,

The first assumption is basic to fluid flow problems but
might not be valid if ionization and dissociation effects become
important., The second is well founded physically due to the nature
of the boundary conditions prescribed below.

The validity of assumption ¢ depends upon the value of the

Reynolds number. If the flow is turbulent, the solution may be



roughly approximated by a laminar solution by the use of a combined
eddy viscosity. Assumption d is very good if the working fluid is
a conducting liquid but is not good if the fluid is a hot gas. As-
sumptions d and e allow the energy equation to be uncoupled and
make the set of equations a bit more manageable.

Assumptions f and g form part of the magnetohydrodynamic ap-
proximation and are generally true for most fluids. Assumption h
means that the Hall and ion slip effects are neglected. The last
assumption 1s not good for very high temperatures but must be

made for mathematical simplicity.

b, A Discussion of the Boundary Conditions

A. The Velocity Boundary Conditions

The end plates are stationary and impermeable and there is
no slip of the fluid at the plates. With the end plates separated
by a distance b and with the coordinate system shown in figure 1,
these conditions may be expressed mathematically as:

At z¥ = 0, u¥ = v¥ = w¥ = 0

and
At z¥ = b . u¥ = v¥ = w¥ = 0
where the asterisks denote dimensional variables and all symbols
are defined in the List of Symbols.
Since the configuration is symmetric about the midplane be-
tween the two end plates, further conditions may be expressed

at z¥ = b/2:



y ® ou¥ _ av¥ . _
At z =b/2; 2% = 3% w 0

These conditions are not independent of those stipulated above but
are more convenient to apply in certain circumstances.

Iet the region of interest be bounded radially by the two cyl-
Inders at r* = ¢R and r¥ = R where ¢ is a positive number less
than one. In order physically to maintain the vortex flow there
must be a radially inward velocity. However, if the fraction of
radial velocity drawn into the boundary layers is greater than
one, the radial velocity outside the boundary layer will reverse
direction and the vortex will break down. This vortex breakdown
occurs first at the inner radial bound of the region of interest
and progresses radially outward as the parameters causing this
breakdown are increased. This analysis will not deal with the
region where the vortex breaks down; that is, the analysis will
only be valid for the portion of the region of interest where the
inviseid radial velocity is directed toward the vortex axis.

The working fluid may enter the region of interest at the
outer cylinder by belng injected tangentially through slot jets,
by being blown through a rotating porous cylinder or by some
equivalent method such that the velocity boundary conditions at
the outer cylinder are:

At r¥ = R; u¥ = v v¥ = \V w¥ = 0
where A 1s a positive constant representing the ratio of the inlet
tangential velocity to the inlet radial velocity. These boundary

conditions prescribe the driving force of the problem.



It is assumed that the inner cylinder at r* = eR marks the
boundary of ﬁhe region of interest and acts as one electrode for
the electrical circult but does not present an obstruction to the
flow of the fluid. This assumption does not allow fhe prescrip-
tion of velocities at the inner cylinder and therefore precludes
consideration of a radial boundary layer on this cylinder. This
assumption is compatible with the neglect of the second order
radial derivatives in the Navier-Stokes equations in Chapter II.

The analysis will not be concerned with the mamner of exit
of the fluld from the central core. The ejection of fluld from
the boundary layer which was discussed by Rosenzwelg, Lewellen
and Ross [9] is assumed to occur in the central core r¥ < ¢R and

thus is not included in the present analysis.

B. The Electromagnetic Boundary Conditions

The applied magnetic field 1s in the axial direction and the
fluld flow 1s primarily in the tangential direction, therefore an
electromotive force is induced in the radial direction. For the
device to operate as a power generator, the end plates must be
insulators and the cylindrical walls must be conducting electrodes
connected to an external resistance.

For mathematical simpllicity, assume that this external resist-
ance consists of two flat plate resistors laminated onto the end
plates. This model retains the symmetry about the plane z* = b/2
aﬁd also maintains the axial symmetry. Thus, in effect, radial

sheet currents exist at z¥* equals 0 and b in the mathematical

10



model. This means that the tangential camponent of the magnetic
field is discontinuous at z* = 0 and b. However, the radial and
axial components of the magnetic field remain continuous at the
boundaries because no other sheet currents exist.

The fact that the end plates are insulators requires that the
axial component of the current is zero at z* = 0 and b. Thus

At z* = 0 and b; B*r, B;, are continuous

* = |
J 7 0

The presence of axial currents within the cylindrical elec-
trodes will agaln cause the tangential component of the magnetic
field to be discontinuous but the other two components are still
continuous. Further conditions at the cylindrical electrodes need
not be stipulated since they are not necessary for the analysis.
Thus

At r* = ¢R and R; B;, B; are continuous

As the distance from the device becomes very large, it is
assumed that the electric and magnetic fields approach their
applied values.

Thus
As z*2 + r*#2 —0 o
B* —— Bz

E*  —— 0



C. The Temperature Boundary Conditions

There  are two possible forms for the' temperature boundary
conditions on the end plates. The first is that there is no heat
flow axially at the end plates. This condition may be expressed

as:

(i) At z* = 0 and b; aT* | 0
> 3z*

The second condition is a prescribed end-wall temperature, it

may be expressed as:
(i1) At z*¥ = 0 and b; T#* = Tw

At the outer cylindrical wall, it is assumed that the
fluid enters the region of interest with' a' uniform  prescribed

value:
At r* = R; T = T

In the development of the equations, the energy equation,
like the Navier-Stokes' equations, will be simplified to
parabolic form, Thus no temperature boundary- conditions will
be specified on the inner cylindrical wall. This agrees with
the assumption that the inner cylindrical wall is not a real

obstacle to the flow.



CHAPTER TII

DEVELOPMENT OF EQUATIONS

1, Basic Equatlons

The steady laminar motion of an incampressible electrically
conducting fluid in the presence of a magnetic field 1s governed
by the followling equations:

Conservation of mass
div# !* = 0 I1-1
Conservation of momentum

p(!* . V)_\_f_* = - gradfp* + HV*ZI.* + J* x B* II-2

Maxwell's equations

curl* B* = y J#¥ II-3

aiv# B* = 0 II-4

curl® E¥ = 0 II-5

aivk E¥ = po*/e, II-6
Ohm's law

:]'_* = O(E_* + !.* X E*) I1-7

Conservation of charge

dive J* = 0 II-8

15



Conservation of energy

1
g

DT#*

pcl-)t_* = Ry¥2T% + né¥ 4+ il N ,_J'_l I11-9

where ¢ 1s the viscous dissipation term and will be deflned below.

Te asterisks are used to indicate dimensional variables.

2. The Non-Dimensionalization

The governing differential equations will be non-dimensional-
ized by choosing characteristic values of the varlables appearing
in the problem. When these governing equations are written out in
cylindrical coordinates, the unknowns are functions of two spatial
variables, the radius r* and the axlal dimension z*. There 1s no
dependence upon the azimuthal angle since the flow 1is assumed to
be axisymmetric. The characteristic radial dimension is chosen
as the radius of the outer cylinder, R, while the characteristic
axial dimension is the separation distance between the two
plates, b.

It is not obvious what the characteristic velocity should
be. The tangential velocity v*1is introduced into the region of
interest with a different value than the radial velocity. However,
postulation of differing characteristic velocitles for these two
velocity components only leads to a more complicated analysis and
does not shed any light on the ordering procedure. Therefore, the

tangential and radlial velocities are given the same characteristic

veloclty. The value of the radial veloclity at the outer cylinder,

1k



denoted by V, is chosen as the characteristic-velocity. It is
reasonable that the characteristic axial velocity be the same as
the characteristic radial velocity since the axial velocity is
induced by conservation of mass to compensate for redistribution
of the radial mass flow.

The pressure is nondimensionalized by a characteristic
pressure P. This characteristic pressure will be chosen such
that the dimensionless pressure p will be of unit order for all
values of the variables, this choice- is made in section 3 below.
The characteristic temperature is chosen as the inlet fluid
temperature TR°

The characteristic value of the magnetic field is chosen
as the value of the applied axial magnetic field, B. The electric
field and electric current are induced by the (v ' x B) term appear-
ing in the Ohm's Law equation. Thus, obvious characteristic values
for the electric field and current are VB and oVB respectively.

The dimensional variables may now be written as:

r* = Rr a Tk = TRT e
z% = bz b B* = BB f
vk = Vv c E* = VBE 1I-10
P* = Pp d J* = gVBJ h
X = -
p* peeoVB/R i

The governing equations II-1 through 1I~9 written in

dimensionless form and in cylindrical coordinates are:

15
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5 Es 5 + RmN [JI'Bda BrJ¢]
IT-14
12w 1w, o 92w ]
Re'3rZ " 7 or B3z2
S_ 3By - -
- ﬁﬁ‘? Jr I1-15
s_29B 1 3k, _ ;. -
B 5z ~ Bmoor. ¢ 11-16
1 1o _ -
fn 7 ar Fo¥ =z He
13 3E_ _
Lan (rB) +s52=0 I1-18
ok, _
- .a__iq; =0 I1-19
oFE eE, _
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%%; (rEy) = 0 II-21
%g—r_' (rE) + s g—gz = pa 1I-22
Jr =E,+ VB, - wB . IT-23
J¢ = WBI' - UBZ II-24
J,=E 4-1;13¢ B I1-25
B B d e 1R
+ RuN Ec[J2 + Ji +J2 ] + [( ) + (s %"Zi : 11-27
+(s 2 )+()+(az ?rv')"%-"g'}-]

where s is the shape parameter, Re is the Reynolds number, E is
the Euler number, Rm is the magnetic Reynolds number, N is the mag-

netic pressure term, Pr 1s the Prandtl number and Ec 1s the Eckert

number:
s = R/ a N = Bz/ulmpv2 e
Re = pRV/u b Pr = uc/k £ T1-28
E = P/pV? c Ec = V2/cTp g

Rmn = umchV d
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Note that equations II-19 and 21 plus single valuedness of

the potential yield

E, = 0 -
¢ II-29

The boundary conditions for the problem as described in

section I are

At z =0 and 1 u=v=w=20 a,b,c
(1) T=Te/T, or (i1) =0 d
R 9z
J =0 e
z
B, B continuous f
r’ "z

The physical configuration is symmetric about the plane
z = 1/2, The dependent variables are either symmetric or anti-
symmetric with respect to this plane of symmetry. For those which
are symmetric, their first (and all other odd) derivatives are
zero at z = 1/2. For those which are antisymmetric, the variables

(and all even derivatives) are zero at z = 1/2:

At z = 1/2 3%-(u,v,T,Bz,Er,Jr,J¢) =0
I1-31
(W’Br’B¢’Ez’Jz) =0
These symmetry conditions are not independent of conditions
I1-30 at the end plates but may partially replace them for conven-
ience in determining the admissable forms of solutions for the
variables.

The radial boundary condition is

18



At r=1 u=-1 a

V=2 b
w=20 c IT-32
T=1 d

B, B continuous e

r Z

The parameter A 1s the ratio of the inlet tangentlal vel-
ocity to the inlet radial velocity. It 1is expected that the term
vBz in equation II-23 wlll govern the radial current flow and that
uBz in equation II-24 will govern the tangential current. The rad-
i1al current 1s the component which flows through the external cir-
cult producing useful electric power whlle the tangential current
is entlrely dissipated as ohmlc losses. For power applications, it
is desirable to maximize the radlal current and minimlze the tan-
gential current. This means that in a practical power generator
A will be much larger than one. However, the subsequent analysls
will not be restricted to this case but will retaln 2 as a general
constant.

The electromagnetic boundary conditions far from the device

are:
At 22 + r?2 = = Br =0 a
B¢ =0 b 11-33
B =1 c
2
E =0 d
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3. Expansion in Powers of 1/5

With the energy equation being uncoupled, the flow pattern
and electromagnetic field are functions of the coordinates z and r,
and of s, Re, E, Rm, N and A, six dimensionless parameters. As
the equations stand at the mament, their solution borders on the
impossible; some simplification must be Introduced. The usual
method employed, and the one to be employed presently, is to
assume that one of the dlimensionless parameters has a value either
much greater than or much less than unity. The terms of the equa-
tions are then ordered with respect to thls parameter and only the
dominant terms are retailned.

The Intent of this analysls is to investigate the influence
of the end walls upon the flow pattern within the region of inter-
est . Since this Influence is most pronounced when the plates are
relatively close together, and since there 1s a significant simpli-
fication of the equations for this case, consideration will now
be given to the case for which s is much larger than one; that 1s,
when the radius of the outer cylinder, R, is much larger than the
separation distance between the two plates, b.

That 1s, consider now that

s >>1 IT-34

The first step in the simplification of the eguations is

to expand the dependent variables in powers of 1/s, a small

quantity:
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u=ug +-—-u) +-§2 uy +e.. a
1 1
v =vy+ s V1 + 52 V2 +... b
1 1
v =Wy +swl +82 wy +... c
1 1
T = Ty +S Ty +52 Ty +.se d
I1I-35
1 1
P=po*+g P+ 2 p2 ... e
1 1
B =By +7 B +72 B +... £
E=E0+-1-E1+i2§2+... g
- = s — s
J.'QO"'%QI"';SL'ZQ""" h
= + = + 1 + i
Pe ™ Peo e; 852 Pey, 7ot

Now the components u Bri’ etc., are assumed to be of unit order

i?
for any s >> 1. These components may not be completely indepen-
dent of s; their shape (but not magnitude) may still depend on s.
The ordered components with subscript zero will satisfy the
boundary conditions II-30 through II-33. All other components
will satisfy analogous conditions but with boundary values of zero.

Substitution of equations II-35 into equations II-11 through

II-27 and grouping terms with equal powers of s yields:

I11-36
dwg awy 9w
1 .19 1,13 -
9z + s [r ar (upr) + 9z + 32[r or (ur) + 3z ] +... 0
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" Re oz Re YTor 3¢ T 372 tee
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Z0 1l.1l29 z1 =

3z + E'[r 5;'(rBr0) + 9z 1+ ... 0
J3E

ro 1 9E oE

+ = rl ro0 -

9z s [ 2 55 14 0o =20
°E oFE

20 . 11 3 Z1

52 1 s ‘v ap (rEro) Pz 1t Pe
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The method of solution of this set of equations II-36
through II-50 will be to solve for the zeroth order unknowns of
several of these equations and use these results to simplify the
remaining equations.

Consider first equations II-36, 43, 44, 45 and 49. Each of
these equations contalns only the dimensionless parameter s and
the dominant term of each is a single variable differentiated
with respect to z. The terms of these equations, and all the other
equations, have been constructed to be of order one, independent of
s. Thus in each of these equations, each set of terms multiplied
by a different power of s may be set equal to zero.

Thus the lead term of equation II-36 1is

awo

2 -0
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Immecdiate integration giveé

Wy = fl(r)

Applying the boundary condition II-30-c, the result 1is
wog = 0 II-51

This 1is an Interesting result. In most analyses, it 1s
assumed a priori that the terms of the continuity equation are of
the same order. In the above analysis, this assumption was not
made and the result 1s that the axial veloclty is not of the same
order as the other two velocity components; that is, while the
radial and tangential velocities are of unit order, the axial vel-
ocity is of order 1/s. It 1s physically reasonable that the axial
velocity be small since it 1s prescribed zero on all boundaries
where velocities are stipulated and since 1t has no primary driv-
ing force such as an imposed axlal pressure gradient.

However, the fact that the zeroth order axial velocity wy
is zero does not mean that all the inertla terms contalning the
axial veloclty can be automatically ignored. Inspection of the
momentum equations II-37 and 38 and the energy equation II-50 re-
veals that the inertia and convection terms contalning the first
order axial velocity w; are of the same order as the inertia and
convection terms contalning the zeroth order radial and tangentlal
velocitles. This means that these inertia and convection terms

containing w;, are of importance when the other terms are ard that
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the first order axial velocity w; must be considered along with
the zeroth order radial and axial velocities. |

Returning to the continuity equation II-36, it is seen that
the terms multiplied by (1/s), when set equal to zero, form an
equation for the zeroth order radial velocity uy and the first or-
der axial velocity w;. Since w; must be considered along with ug
and vy , this equation is of use 1in determining these unknowns
and will be employed below.

Similarly, the lead term of equation II-43 yields, upon inte-

gration,

BZO = fz(I’)

The equations which govern the flow inside the device are
satisfied for any f,(r). Outside the device Bzo satisfies Laplace's
equation. It is known from the boundary conditions that Bzo is
continuous at the fluld-solid interface and 1s equal to one at

22+ p2 = w
Thus the solution for BZo outside the device 1is determinant for
any f5(r); the function f,(r) may be chosen so as to simplify the
subsequent analysis. The most convenient cholce is fo(r) = 1. Thus

B = 1 II—52
z0

This means that, to the zeroth order in 1/s, the axial mag-
netic fleld 1s undistorted by the presence of the two flat plates
and the fluid contained between them. It is physically reasonable

that if the plates are relatively close together, the distortion
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of the axial magnetic field is small. Note that equation II-52
has been obtained without limitation to small magnetic Reynolds
number.

The zeroth order term of equation II-44 ylelds

E,, = f3(r) 11-53

Again, as in the case of Bzo’ the equations within and out-
silde of the device are valid and determinant for any value of
f3(r)° However, in this case there 1ls an additional restriction
on the function f3(r); Ero must be such that Ohm's law for the ex-
ternal circuit is satisfied. Ohm's law states

ke = T X TI-54

where AE* is the potential difference applled to the external cir-
N Y

cult, I* is the current flowing through that c¢ircuit and R is the

resistance of the external circuit.

In terms of the variables within the device,

~ 1
I# =2tR oVBb [ r J dz 1I-55
0

v 1
AE* = ~ VBR [ . E.dr 11-56

where the minus sign in equation II-56 is introduced to account
for the fact that Er is an Induced electric field and Aﬁ* is an
applied electric field.

Written in dimensionless form and retaining only the domin-

ant terms in powers of 1/s, equation II-54 becomes
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1 b )
je f3(r)dr = - 27 obR jo rJ,, dz 1I-57

where equation II-53 has been used to replace By

Thus it is obvious that f3(r) cannot be arbitrarily chosen
as f7(r) was, Equation II-57 will be developed further when the
ordering procedure ylelds further Information concerning the rela-
tion between f3(r) and Jro'

Next, equation II-U5 ylelds

- 4
EZO = £, (r) + f Deodz

The problem posesses symmetry about the plane z = 1/2 and Ez is

antisymmetric. Thus, by equation II-31,

z
E = I1-58
26 Il.oeodz 5
2

Lastly, equation II-U49 yields

JZO - fS(r)

or, since the end plates are insulators, if 1s obvious that

J o= O I1-59

The zeroth order terms of equations II-36, 43, 44, 45 and 49

have been solved for Wy, B E E 0 and Jzo respectively. Equa-~

z0® "ro* Tz
tion II-U5 ylelded a relation between Ezo and the still unknown P
The remalning zeroth order unknowns, still undetermined, are ugy, vy,

Po» Bro’ B¢0, Jro’ J(b0 and Tp. In order to solve the governing

28



equations for these zeroth order unknowns, it 1s necessary to solve
simultaneously the equations for one first order unknown, w; since
it appears in the momentum, continulty and energy equations where
wo would normally be expected to appear. For convenience, the set
of unknowns ug, Vg, Wi, Pos Bos Ep and Jy will be referred to as
the zeroth order set of unknowns.

The analysis will now be concerned with completing the deter-
mination of the zeroth order set of unknowns. For this purpcse,
equations II-36, 37, 38, 39, 40, 41, 46, 47, 48 and 50 will be
analyzed further. Equation II-42 will not enter into this consider-
ation since, for general magnetic Reynolds number, its dominant

terms involve a higher order unknown:

s_1
Bmn r

3_

ar (rB¢0) =J

zl

For magnetic Reynolds number of order one or smaller, the solution

for the tangential magnetic field B 0 found from equation II-40

¢
will automatically satisfy equation II-U2.

Note that the leading non-linear term 1n each of equations
II-37, 38, and 39 disappears since wy = 0. Equations II-36, 37,
38, 39, 40, 41, 46, 47, 48 and 50 may now be written with the high-

er order terms neglected.

Bwl

(U.OI‘) + ‘a—z—- = 0 II—60

13
r or
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3u u v 2 P, 2 32u0 '
U 57— ¥ W13z ~ T YE3m TR ez YRWNJ, II-61
v v u,v 92y
0 0 0°0 _ s2 0 _
Yo 5=+ W1 57 Y= ~ Re 9zZ RN Jro II-62
P, s %W
sk EE— = Re 327 + RmN [JrOB¢0 - J¢OBP0] II-63
9B
_S__¢0 _
Fm 23z Jro 11-64
oB
S Yo _
Rn 8z J¢o 11-65
JrO = v, + fa(r) II-66
J¢0 = - uo II—67
0 = uoB¢0 - VOBI,0 + JZ pedz II-68
1
2
ATy aTo s2 To 2 2
Upse— * W1 5, = Repp g2 * BN Ec (I, "+ J %)
Vv o1
s2 0,2 0,2
+ Ec 3 [(E-) + (s—z—) ] I1-69

The axial mamentum equation II-63 may be directly simplified
by consideration of the Euler number E = P/dvz. In the non-dimen-
sionalization of the pressure in equation I1I1-10, the character-
istic pressure P was chosen such that the dimensionless pressure p

would be unit order for all ranges of parameters considered.
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Consider the radial momentum equation II-61l. The pressure

- term is the driving force in that equation; if there is no radial

pressure grac}ient, the radial velocity becomes zero. Therefore,
the term (E ;—iﬂ) must be as large as the largest of the remaining
terms in the radial momentum equation II-61. Since all the vari-
ables have been non-dimensionalized to be c_)f unit order, this is
equivalent fo saying that the Euler number, E, must be equal to
the largest of 1, s2/Re and RmN,

Thus
E>s2;E >RiN; E> 1 1I-70

Re -

Now consider the axial momentum equation II-63 in the light
of equation II-70., Comparison of the pressure term with the mag-
netic term in equation II-63 shows that the pressure term is
always at least of order s larger than the magnetic term. There-
fore, the magnetic term in the axial momentum equation may be neg-
lected,

By a similar comparison, it is seen that the pressure term
is always at least of order s? larger than the viscous term in the
axial mamentum equation even within a boundary layer. Therefore,
the viscous term may also be neglected and equation II-63 i1s re-
duced to

9p,
9z

= 0 II- 71
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This result is also obtained in a single plate analysis by
assuming a large Reynolds number. In this case 1t was obtalned
as a result of the geometric restriction to large radius compared
with separation distance; there is no restriction upon the size
of the Reynolds number.

Equatien II-71 stating that the zeroth order pressure is
independent of the axial coordinate, was gained by neglecting the
second order axial derlvatives in the axlal momentum equatilon.
Now the governing equations only contain a first order axial der-
ivative of the axlal velocity.

In the single plate problem, this neglect caused no diffi-
culty since there was only one axial boundary condition specified
"on the axial velocity, w(r,0) = 0. The axial velocity far from
the plate was not specified.

Now let a second plate be introduced to confilne the vortex,
Thls plate has two effects upon the conditions of the flow. The
first is that 1t requires a second axial boundary condition for
the axial velocity on the form of w(r, 1) = 0. The second effect
is that the radial pressure gradient dp/dr (r), which was known in
the single plate problem, is now an unknown.

The addition of the second plate to the flow plicture adds
one condition w(r,1l) = 0 and one unknown dp/dr. It is apparent
that these two effects are inter-related, The presence of the

second plate, causing the no flow boundary condition, requires
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that the radial pressure gradient be just that unique value which
will allow the no flow condition to be satisfied. 1In actuality,
this second axial boundary condition on the axial velocity is used
to determine the radial pressure gradient. Thls wlll be explained
in detall after the governing equations are further simplified.
Equation II-66 may be combined with equation II-57 to yield

an expression for fa(r) in terms of the tangentlal velocity X

_ Aa 1

f(r) == = [, voaz II-72

where
1

J ] v,ardz

Au = 0 £ l II-73
2nof b + In=

Now the radial current may be expressed as

_ Ao 1

o =7 YV, - fo v, 0z II-74

where the term o) represents that portion of the radial electric
current which passes through the external circult to produce use-
ful electric power and the term (v, - f:vo dz) represents the
eddy currents caused by the varlatlion of the tangential velocity
profile with z.

Since the radial and tangentlal currents are known entirely
in terms of velocities by equations II-67 and II-T4, equations
I1-60, 61, 62, and 69 may be written completely in terms of veloc-

ities rather than contain any electric current terms:

by



1 -
rar M) 3z =0 1I-75
du u, Vv dp, .2 242
0 0_"0 6 _ s 0
Uy 3w, 5% 7 E T &= 5 - RmNu, II-76
v v uv 2 3%y
0 00 _ s 0 ar
Uy 3 + W, 3ot = Fo 552 ~ RN (7S + vy - f v,dz)
II-77
AT, AT, 327

vV, 2 u, 2
2 2
_5 0 sf re 0 =9
U3t W 3 TRy s PEegs L) t(53) ]
Aa 1
+ RN Ec [ug? + (2 + v - [ vedz)? ] I1-78

The applicable boundary conditions are II-30-a,b,c,d; II-31;
1I-32-a,b,c,d.

Equations II-75 through II-78 do not contain any electromag-
netic variables; they may be solved without recourse to equations
II-64 through II-68. After the velocity profiles are determined,
equations II-74 and II-67 yield the electric current components
J. and J, , respectively. Next, equations II-6U4 and 65 may be

I'g 0
solved for B¢0 and Bro' Finally, equation II-68 may be
differentiated and solved for the unknown electric charge
density Pec

There are two axial boundary conditions to be satisfied by

the axial veloclty:

At z

0 and z II-30-c

]
e

=

|
o
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One of these two conditions may be satisfied as a normal boundary
condition on wj;. The other condition may be considered as a fourth
equation, to be combined with the three governing equations II-75,
76 and 77, to be solved for the four unknowns up, Vg, Wy, and

E dp, /dr .

In theory, the set of equations II-75, 76 and 77 may be solved
for the velocity components up, vy, and w; in terms of the govern-
ing parameters A, s2/Re and RmN and also in terms of the pressure
gradient E dpg/dr. This radial pressure gradient is not yet known.
In general, these velocity solutions will not be able to satisfy
both of the condlitions IT-30-c on the axial velocity slince only
the first derivative of the axlal velocity appears in the govern-
ing equations. However, there exists a particular, unique radial
pressure gradient (E dpy/dr) for which both of these conditions
can be satisfied, Thils is the pressure gradlient which will exist
naturally between the two flat plates.

This pressure gradlent may be determined as follows: First
integrate the continuity equation II-75 with respect to z from
z=0¢% 2z =1. Application of the boundary conditions II-30-c
yields

1
,( . %g—r (upr) dz = 0 1I-79

Since the 1limits of integration are independent of the radius r,

equations II-79 may be integrated to yleld
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1 ¢

The boundary condition uy(1,z) = - 1 gives finally
1 1
I , Uz = - % II-80

This is an integral representation of the conservation of
mass equation. It states that the total amount of radial mass
flow at any radial station is a constant (equal to - 1).

Thus, equations II-75, 76 and 77 may be solved for Ugs Voo
and w, in terms of a general (E ggga. The solution for the radial

veloclty

s2 drg

u, = u,y(ryz;RoN, T2 As E a—;—)

may be substituted into equation ITI-80 to yield a solution for
the radlal pressure gradient

dp, _ _dpg 52

E I . s2
a - Bg (rs B, A, 55

With up known in terms of this particular pressure gradient, the
continuity equation II-75 yields a solution for w; which satisfies

both axlial boundary conditions II-30-c.

4, A Discussion of Types of Flow

The type of flow exlsting in the region of interest as rep-

resented by equations II-75, 76 and 77 depends upon the values of
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the dimensionless groups appearing in these equations, s2/Re, RmN
and E. The determination of E is automatic, it is seft equal to the
largest of 1, s2/Re and RiN. Therefore, there are only two indepen-
dent dimensionless groups governing the type of flow. In the follow-
ing, RmN and s2/Re will be assumed small (of order 1/s or smaller),
of unit order, or large (of order s or larger) and the resulting

flow patterns will be briefly discussed.

CASE A
Consider first the case of RmN negligible; the Reynolds num-
ber 1s ordered below. This may be caused physilcally by a weak mag-
netic field or small electric conductivity. Since the governing
equations have been developed by neglecting terms of order 1/s com-
pared with the dominant terms, this is equlvalent to considering
RN < 1/s
In this case, the magnetic terms in equations II-76 and 77 are
small compared with the inertia terms and may be neglected. This
removes any effect that the magnetic field has on the flow; the
flow is hydrodynamic to order 1l/s.
Al
Consider the s2/Re is small in addition to RmN:
RN < 1/s and s2/Re < 1l/s
It follows from equation II-70 that E = 1. The inertia terms
dominate the viscous terms except In two boundary layer regions

near the two end plates. That is, equations II-75, 76 and 77 with
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the terms on the right hand side of the equal signs replaced by
zero approximately govern the flow in the central region between
the two plates. The flow in the two boundary layer regions lying
between this central reglon and the two plates 1s governed by equa-
tions II-75, 76 and 77 without the magnetie terms but with the vis-—
cous terms present since the second order axial derivatives must
be retained to satisfy the boundary conditions on the plates. This
case was analyzed by Loper [8] using a momentum integral analysis.

With the introduction of the parameter s, the normal role of
the Reynolds number Re is replaced by a modified Reynolds number
Re/s?. The boundary layer thickness is of order v s2/Re rather
than /" 1/Re .
A2

Now consider s2/Re is of unit order (this is equivalent to
Re >> 1) while RmN remains small:

RN < %- s2/Re = 0(1)

Again it follows that E = 1. In this case the viscous terms

are of the same order as the lnertia terms and viscous flow fills

the region of interest; there is tangential flow throughout the

region but there is no central core of inviscid flow.

A3
Let s2/Re be large while RmN is still small:
RN < %- s?2/Re > s



A

Now E = s?2/Re. The viscous terms daninate and a Stokes type
of flow results from equations II-75, 76 and 77. The tangential
velocity has a non-zero value only in a boundary layer region near
the outer cylinder. The radial \}elocity is non-zero throughout the
region because of radial mass flow conservation; it assumes a para-
bolic profile away from the outer cylinder (see Appendix III for
details). It is no longer possible to satisfy' the boundary condi-

tion at the outer cylinder in this special case.

CASE B
Consider now that the magnetic parameter is of unit order:
RN = 0(1)
In this case the magnetic terms are of the same order as the inertla

terms and must be considered whenever the inertia terms are.

B1l

nl-

RN = 0(1) s?2/Re < E =1

This case is very similar to case Al; there is a boundary
layer flow but now the magnetic terms must be included. At this
point it 1s not clear what influence the presence of the magnetic
terms have on the boundary layer growth and boundary layer block-
age. Chapter III, which 1s an approximate analysls of these cases,

will describe this influence.
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B2 |
RmN = 0(1) s2/Re = 0(1) E=1

All dimensionless groups are of order one. This case is simi-
lar to A2; there is viscous flow throughout the region but with the

magnetic terms present.

B 3
RN = 0(1) s2/Re > s E = s2/Re

This case is identical to case A3. The viscous terms domi-

nate the inertia and magnetic terms.

CASE C
Let the magnetic parameter be large
RN > s

The magnetic terms are larger than the inertia terms; the latter
may be neglected. With the neglect of the inertia terms it becomes
impossible to satisfy the radial boundary condition at the outer
cylinder since the radial derlvative terms are ignored. In actual-
ity radial boundary layers exist on the outer cylinder. In this
way the radial boundary conditions are satlsfied. The further or-
dering of s2/Re must now be done with respect to RmN rather than

with respect to unity.

Lo



c1l

RmN
s E = RmN

RN > s s2/Re <

In thls case the magnetic terms apparently dominate all
others excepting the pressure term and is the governing term in
the central region of the device. Near the boundaries the viscous
terms became important and boundary layers. occur. The inertia

terms remain negligible.

C2
RN > s s2/Re = O(RmN) E = RmwN

This case is analogous to case A2 but now the viscous terms
balance the magnetic terms throughout the region of interest but

the inertia terms remain negligible.

c3
RN > s s2/Re > RmNs E = s2/Re

This case 1s 1dentical to cases B3 and A3. It is purely a
Stokes type of flow with the magnetic terms as well as the lnertia

terms being negligible.
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CHAPTER III

EXACT SOLUTION OF THE LINEARIZED
MOMENTUM EQUATTIONS

1. The Linearization

In this chapter, the set of equations II - 75, 76 and 77 are
to be solved to yield the velocity profiles and the radial pres-
sure gradient. The most common method of attacking such a coupled
set of non-linear partial differential equations is that of momen-
tum integral analysis. However, for this problem of a confined

magneto hydrodynamic vortex flow, that approximate method of anal-

ysis is too cumbersome to be employed. Some other method of attack

is needed. It 1s desired that this method yield a more exact solu-

tion and more details of the flow than the momentum integral
method can.

Such a method which has been used with some success on non-
linear equations of this sort is the so called Oseen or Targ lin-
earization [10]. This linearization scheme is valid for general
values of the governing parameters. This is the method of the
solution which will be employed in this chapter.

The governing equations are

k2

i

\



13 aw
23wy + ¥ =0 II-75
3 d v2 dp _ s? 32y
(ugptwu -7 +EG ~Reogz - R 11-76
3 ) u _ 8232V Ao !
(u§;+w52+;)v "REET‘M(:-—+V'JOVdZ) IT-77
1
where fe Io vdzdr
‘e = II-73
onolfb + In

€
The subscripts have been dropped fraom the unknowns for convenience;
only the zeroth order set of unknowns will be considered below.
The boundary conditions to be satisfied are given by equa-
tions II-30-a,b,c; II-31; IT-32-a,b,c.
Fquation II-75 1s already linear and need not be altered.
Equation II-76 contains the non-linear operator (u %}+W'%E) as

well as the non-linear term (v2/r), Both of these expressions will

be linearized so that a tractable solution may be found. Similar-

3 .. 2

ly, equation II-77 contains the non-linear operator (u ar+w'§E

+ u/r) which also will be linearized.

In the linearization process, the variables u and w appear-
ing in the non-linear operators are to be replaced by known func-
tions which approximate these unknowns. There is a considerable
simplification in the subsequent analysis if these replacement
functions are purely radial functions. Therefore, let the radial

wveloclty u be replaced by same g;(r) and the axial velocity
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W be replaced by some gz(r) in the non-linear operators where
these functions g1 and gz represent the average values of u and w
respectively within the region of interest:

u ———»-gl(r) I11-1

w— gz(r) I11-2

These functions gl(r) and gz(r) may be represented as the average

of thelr respective functions over z:

1
gl(r) = fo udz III-3

1
J , Mz III-4

g (r)
2
The conservation of mass equation II-80 yields the result for gl,

gl(r) = -1/r II1-5

It has been noted that the function w is antisymmetric with respect
to the midplane z = 1/2. Therefore, its integral from z = 0 to
z = 1 1s identically zero and

gz( ry = 0 I1I-6

Thus the operators becamne

1l 3

9 9

(Wig + wgg) — (-3 5% .
] 9 u 1l 9 1

(Wgg + W +P—>E35 57~ 111-8

This linearization scheme has several fortunate consequences
beyond linearization of the equations. The first is that now

only the even derlivatives of z appear in the mementum equations;



they may be solved by known transform methods. The second conse-
quence of the linearization is that the equations are uncoupled.

The tangential momentum equation may first be solved for v. Next
the radial momentum equation may be solved for u in terms of the

known v and the unknown.Elgg- This result for u in terms of

E dp/Gr may be substituted into the conservation of mass equation
I7-80; this yields the solution for the radial pressure term,

E dp/dr. Finally the continuity equation II-75 yields the solu-

tion for the axial velocity w.

In order that the solution for the radial velocity u may be
found in terms of a simple Fourier series, the non:ﬁr;ear term
(vZ/r) appearing in the radial momentum equation will be linear-
ized in a manner similar to that above. One of the factors v of

this non-linear term will be approximated by its inviscid value

1- 2
5

Case Solutions in Eq. A-19. This linearization is very good for

A/r (1-RmiNa This value is given in Appendix ITI-Special
large Reynolds numbers such that the boundary layers are small.
For smaller Reynolds numbers it is more approximate but remains as

accurate as the linearization process above.

Thus
(-Z) — (-2 @nme Y, II1-9
Equations II-76 and 77 in linearized form are:
-8 X (1 - R ¥)+E%=%§§%‘-i,-m IIT-10
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_lav vy _ s23% Aa !
13v _v, _ Res-?-_?-..HnN(}—-i-v—fovdz) IIT-11

2. Solution of Linearized Tangential
Momentum Equation

The tangential momentum Equation ITT-11 must be solved be-
fore solution of the radial momentum equation III-10 is attempted
since the tangential velocity v appears as a non-homogeneous term
in equation IIT-10. Equation III-11 is linear in the tangential
velocity v since Aa is linear in v. Equation III-11 is a integro-
differential equation; it may be split up so that the differential
and Integral parts can be solved separately. In order to attack
the differential form of equation III-11 first, replace the inte-
gral terms by the symbol AF(r):

I: f; vdzdr

1
AF(r) = , iz - III-12

il L

21rof?b + ln%

The term A is introduced into the definition of F(r) so that it
may be determined independently of A.

With this substitution equation III-11 is now

3 2 32
,%..5%_%2=%é =F - RN (v - AR(r)) IIT-13

This tangential momentum equation may be solved by the finite
sine transform method. The finite sine transform and its inverse

are defined as [11]
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- 1

v, (r,n) = wfo v(r,z) sin mnzdz III~14

v(rsz) = 2 § ¥ (r,n) sin 7 nz I11-15
n n=1 n

The problem under consideration posesses symmetry about the
mid plane z = 1/2.

Thus

v I
= (r,1/2) =0 \ TI-31-b

This condition may be used to simplify the transform equations
ITI-14 and 15. Applying this symmetry condition to equation
ITI-15 yields

;n (r,n) = 0 for n even III-16
Thus only terms with n odd need be considered; equations III-14
and 15 may be written

- 1
Vo1 (ryn) = n fo v(r,z) sin n(2n-1l)z dz I11-17

v(r,z) = %

~ 8

1 §2n—l (r,n) sin (2n-1) =z I11-18

The transform of the second axial derivative may be

written as

32y

—5 L = -2 w27, 11I-13
since v(r,0) = 0 and v(r,1) =0

Equation ITI-13 may be transformed using equation III-17 to

b7



the form

dv v
1 ""on-1 n-1_ .= 2ARmN :
- - = Gnv2n_1 + S F(r) IIT-20
where
G, = (n2s2/Re) (2n-1)2 + RmN ITI-21

The solution of the non homogeneous linear ordinary differ-
ential equation ITI-20 may be easily found by the method of varia-

tion of parameters and is

¥ (rn) =C % eG“r /2 . 2ARmN lf n2F(n)e " T2 dn ITI-22
on-1'"° nr -1 r

The transform of the radial boundary condition II-32-b is

o= = 2
Atr=1 Von-1 Sn-1 TIT-23

This condition allows the constant Crl to be evaluated and yields

for Von-1 :
-G il:Eil 1 -G Sﬂf:ﬁil
= =2A 1 n 2 2 n 2
Von1(rsn) = 50 = [e + RmN frn F(n)e dn]
III-24

The inverse transform yields the result for the tangential

velocity in terms of the function F(r) which has not yet been

determined.
© __G (l_rZ)
4 x sin(2n-1)wz n 2
v(ryz) = 23] Sl
" n=1 2 2
+ RN ], n?F(n)e dn} 111-25
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This completes the solution of the differential portion of
the integro-differential equation III~11. Now the function AF(r),
defined by equation III-12, will be determined. First, the inte-
grals of the tangential velocity v with respect to z and with re-

spect to both z and r must be calculated:

1 8 bt -G ii:fil
% A 1 n 2 >
fov(r,z)dz =D 7 [£=1 a1y © +
. - _a {n2-r?)
1 n 2
RmN I n2F(n)§ e an] ITI-26
Ie =1 (2n-1)2

Note that the infinite series in n appearing in equation

I1I-26 are of the form

—r(Lr2) e M1} 2
RN 1 M(2n-1)

2 Pne1)?

n=1
where M is a non-negative number. This series is highly converg-

ent since

P - 132
) 225%172 eM@-D 12/

for M > 0.

The double integral of v 1s

o -G
11 : I 1 n/2 1
| [ v(r,z)dr dz = — } BacT)2 {e [21n =+
e O ’ 2? n=1 an-1) €
g G m _.2m ol G am _ 1 -G_n2/2
] () =1 +2mi+] (A" fnzF(n)e n " an
m=1 mim m=1 mim Je

ITI1-27
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-G
+femi- 2 i a2 e rge D2 ) rrny

m! m

Equation III-12 defining the function F(r) may be written as

w -G {1-r?)

_1 .§ n =

F(r) = > L -2 n_l-(—j)z e 2 a]
(n2-r?)

—RmN j n2r( -G

— n) Z 1 n 2

r o=l z-éﬁ:T)—z dn II11-28

1 1

where J Io v/ dzdr

@ = — T I1-73

2bnol + 1n b

Equation IITI-28 is a Volterra equation of the second kind
The solution 1s iterative. The zeroth approximation is merely
the non-homogeneous term ; the first approximation is that temrm
plus the integral of the zeroth approximation multiplied by the
kermel; etc. The complete solution is

- a-r?)
F(r) = [1 + 5 fJ ["2 = Z (533—)2 e B 2 _ 9] 129

where
2_52
nZ-p
1 .2 ® G =
Klx(2)] = Sy [* 2 x(n)] ey, e B 2 an II1-30
r n=1

The proof that this i1s a conVergent solution 1s glven in
Appendix I. The set of equations I11-25,27,29,30 and II-73 form

the solution of equation ITI-11 for the tangential velocity. In
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section III-4 below, these equations will be simplified to a much

more practical form.

3. Solution of the Linearized Radial Momentum Equation

Since the tangential velocity solution is now known, equation
JTI-10 may be solved for the radial velocity u in terms of the func-
tion F(r) and the pressure gradient E dp/dr. The pressure gradient
1s still an unknown; it is to be determined from the integral form
of the conservation of mass flow equation II-80 after the radial
velocity is found.

Equation ITI-10 will be solved by finite sine transform as
equation ITT-11 was. Again, there is symmetry about the mid plane

z = 1/2 so that only the odd terms in n are retalned:

- 1
u2n_l(r,n) m fou(r,z) sin(2n-1)nzdz ITI-31

u(r,z) = %-2 lE2n_l(r,n) sin(2n-1)wzdz ITI-32
n=

The transform of the second axial dirivative of the radial
veloclity is

32y
g = - vAen-1)? d

U I1I-33

since u(r,0) = u(r,l) = 0. The transform of the tangential velocity
v is given by equation III-24. The transform of the radial momen-

tum equation III-10 is
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ar n2n-1 = 2n-1 2n-1 .3 2
(1~r2) n2-pr2
[e D + RNf nZF(n)e B 2 @n] ITT-34
r
22
where Gn = E---z-—(Zn-l)2 + RuN

The solution of the linear, non-homogeneous, ordinary dif-
ferential equation III-34, found by variation of parameters, is

-G (1—I'2)

- _ n 2 2k l RmNa 1
u, ,(ryn) =e (4, +5— 5T ( (r + ;Q + RmNa) ]

4222 RmNo 1, L 2 n 2
+ 5y RN [—Ar+ r)-- =) fln F(n)e dn

(n2-r2)
A2 n 2

2n-1 dn

1 1
4+ =) =2
(n n) n]nFe

n2-p2

2 r @& . n 2
+ 5 I:" Eg e dn III-35

The transform of the radial boundary condition II-32-a is

2

Uon-1 = ~ 2n1 II1-36

At r=1;

Thls boundary condition allows the integration constant d, to be

evaluated and ylelds

g @-r?)
ﬁzn.l(r:“) = §g:z-e n 2 [Az(%--l— B%N-E(r + %)'f RnNa) -1]
L 22 1 3 RiNa . 1 1 n(ﬂfgzi)
* oy R J [z - ; =5 (o -r - Z)In?F(n)e dn
_g n2=r?
2n-1f nERe 2 an III-37
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The inverse transform of equation III-37 is

' (1-r?) (1-r?)
o -} ——— -0
w(r,z) = g_ 2- sin(2n2r—i]).nz [-e n 2 + 22 N 2
n=1
22+ B o D1+ AR | [—-l+ B (ner + 2 = 53
(n (n2-r2) - n2-r2 }
n2F(n)e Sz dn - f n ERe P 2 gy I1T-38

dn

Equation III-38 gives the radial velocity u as a function of
the pressure gradient E dp/dr. Now the integral form of the conser-
vation of mass equation II-80 may be used to determine the pressure
gradient:

]: udz = - 1/r 11-80

Substitution of equation III-38 into II-80 yields

(n2-r?)
n 2 1

- f n dn ﬂz Z -————32 e dn + =

2_n2
g (nf=r?)

11 121 RmNa 1 8c e 1 2
2 1_1 . 1 2 S
+ AZRmN fr[r s+ (nr o+ =4 )]n F(n)“erl=1 Oz dn

- g (3-r?)
2¢1 _._ RmNo 1 418 1 n 2 _
+(A2(Z -1- S5 Xr + ) + RNa) -11 5, r{:lz-—”l_l > e 0

ITI-39
Equation ITI-39 is a Volterra equation of the first kind.
The integral involving F(r) is a known function from equation
ITI-29. Equation IIT-39 may be transformed into a Volterra equation

of the second kind merely by differentiation:
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2
_Gn(nzgr?‘)
2 -]
2+ %3 (1~ 32 57 p(n) - 19-755:375“ dn
n= _
_A2mf1[l_l+R_ﬂ_Nﬂ(_r+l_l)]2p( )§_§ Gne n @ d}
pr-m 2 " n - op AN T2oy  (2n-l)2 f
. g = _g (n?-r?)
d 1 n 2
+[ nERS T ) € dn ITI-40
r dn = n=1Z2n 1)2

This Volterra equation of the second kind may be solved in the

same manner that equation ITI-28 was:

8 v 1 =G (1—22) A2
E—R = [1+ r%-le 1 ‘r3 + 2 r21=1(2n-1)2 e I G+ =5
(1 - RiNa QELZ) ]+ 22 Gn(l—%+ RSN“ (r + il:) -RmNa )] + Az};mN

3 —G (n2 51"2)
{ [1- nga + 5—;— R;Na] nzF(n);-g-Z 7—2—5—172——— dn - A2RmN j
© G e-GnLn—z—glz'l
(g- 3+ 8 (hr + 22 17 n2p(n)d L el
IT1I-41

where 1 . = G . "Gnnzgrz
K [x(r)] = J'r nx(n) r21=1 _TEn—-_l')_Z'"d” III-42
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The proof that this solution for the radial pressure gradient
is convergent is given in Appendix I.
With the radial velocity u known, it is a simple matter to

solve the continuity equation II-75 for the axial velocity w:

(1-r2)
_ 4§ cos(@n-)nz n 2 2 2yd

G
+ AZRHNO.(E'- ~1- ] (1—1")2)] + rEgE + A2RmN fl[G (n—r)(l-RmNau'"r)
r 2 dr pon 5

g (n?-r?)
- 2ra (nr-1-n2)- %ﬂ nF(n) e " 2 dn - (G r + %)
1 4 n(nzng)
Ir nEa% e dn} ITI-43

Thus solution for the axial velocity is not able to satisfy
the boundary conditions at r = 1 (w(1,2) = 0) since the differential
equations do not contain radial derivatives of the axial velocity.
This is a shortcoming common to boundary layer theory analyses. The
solution for the axial velocity w does satisfy the no flow boundary

conditions at the plates z = 0 and 1 by virtue of the fact that
(n2-r?) (1-r2)
o -} ——— ~G
1 d 1, ¢} dp " n 2 n 2
2:1=1m2 {I‘Ed-‘g' (GnI" + I') I rnEdn e dn + e

[GA2-(1 + A%)(G r + -—) + AZRmNa{l -1~ G (1 r)’ }] + A2RnN J‘

n2-p?)

(
[Gn(n-r)(l'RmN“(lgnr))- Rgﬁa(nr—l-nz)— %]nF(n)e-Gn 2  dn} =

IIT-44
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This equality may be verified by a cambination of (w2r/8)

times equation III-40 and (1/r) times equation III-43.

k, A Further Simplification

Equations III-25, 39 and 43 for the velocity camponents u,v,
and w are valid in general; there are no limitations on the parame+
ters A,.s2/Re and RmN. As these solutions stand, they are too com-
plex for practical use, even for numerical camputations. In this
section, these equations will be simplified to a more practical
form by making use of a certaln approximation explained below.

The function which makes it impossible to transform the inte-

gral equations III-28 and 39 into differential form is

_ 8 1 -Gy x _lE -
£(x) = = 2_1 D)2 © n I1I-45

If this function were approximated it would enable F(r) and g% to be
found in closed form and thus greatly simplify the solutlons. For-
tunately, the series is highly convergent and may be roughly approx-

imated by its first term; therefore assume

f(x) = e ¥ = o~(6HRMN)x III-46

where

6 = w2s2/Re IITI-47

The error introduced by this approximation is fully analyzed

in Appendix II. There is no error if Reynolds number is infinity
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while as the Reynolds number approaches zero, the error asymptot-—
ically approaches 23%.
Now equation III-28 may be replaced by

. 1-p? r
rf(r) = e~(0 + R}~ _ _ RmN-I1 n2F(n) e

2_p2
né-r
~(® + RmN) 5 an
ITI-48
Whereas it was impossible to express equation III~-28 in a differen-
tial form because of the infinite sum, equation III-U8 is equivalent

to the differential equation

(rP)' = r[o(rF) + (RN + 8)a] III-49
The solution of equation III-49 is )
l-r
= ollrd)
_ oli-r?) 2
rF(r) =e & 3 ~ - a - RiNa 28— ITI-50

)

where the constant of integration has been determined by substitut-

ing the form
1-r?
2

-9
rF =~ a(l + B%E ) +c e

into equation III-48.
This closed form solution for the function F(r) greatly simp-

1lifies the solution for the tangential velocity v; equation III-25

is now
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_ LAY sin(Pn-1)nz RN , "% T3 1-e -
v(r,z) = — 2 £=ET—TE§;33_—-[G;:6<6 ~ RulNa 5 )
(1-r?)
+ (-0 + By o 2 Bdllayy III-51
n n n
22
where G = "R: (en-1)2 + RoN and 6 = 72s2/Re

Equation III-51, giving the solution of the tangentlial vel-
ocity v, 1s plotted for various values of the parameters in figures
2 and 3. These figures will be discussed in chapter V.

Equation ITI-51 expresses the tangential wvelocity v in terms
of the external current parameter a. It is now possible to obtaln
an explicit expression for a by using the difinition II-73 and

equation ITI-51. Carrying out+the indicated integration ylelds

the result
: 1 BN -6/2.. 1, 1% &™1-e2™
y fm—s e [In =+ 5§
=1 (2n-1)21G -6 € 21 Mpim
« G (l—-ezm)
+(1- B 241 ] Do)
12 X 1 1 RmN RN -G /2
B—-(2110Rb + 1n ;) + z‘ naiyz {- g (1- G _e)e n
n= n - °n
o GF (1-e2™
23] RO
€ m=l1 2"mi!m n n €
, (B2 122 1 (RaN)? 1 _-e/2 )
G -6 ) e G-6 2° & (et
n m=1 2m mim



This expression for the current a may be greatly simplified
1f use is made of equation III-12 defining F(r) and if a is
approximated to the same accuracy as F(r) is. This ylelds the

simplified result

e -8/2 1ri%-

a = -

1- e

-9/2 . 1 1-e2 -6/2
8 i

)ln-——RmN

N,
2noRb + (1 + €

IITI-53

This parameter a 1s a measure of the electric current flowing

in the external circuit. Thus if the external resistance ﬁ becomes

infinite, a becomes zero. If the external resistance becomes zero
a.reaches a finite maximum limited by the intermal resistance of
the device. The parameter a does not go to zero as the magnetic

term RN becames small. This is not the fault of the analysis but

is due to the nature of the nondimensionalization process. As the
magnetic influence becomes small, the true (dimensional) current

does become small also. Note that In equation III-51 for the tan-

gential velocity the parameter a 1s always multiplied by the magnet

29
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parameter RmN.

The set of equations III-51 and 53 now form the solution to
tangential momentum equation IIT-11; the solution for the tangential
velocity v 1s now known. This solution is applicable for all values
of Reynolds number and magnetic parameter but l1ls more accurate for
large Reynolds numbers than for small (see Appendix II).

In a similar manner, the solution for the radial velocity
I1I-38 may be much simplified. Using the same approximation (equa-
tions ITI-45 and 46) that was employed in equation III-28, equation

III-39 for the pressure gradient is reduced to

n —r2 1-p2
“JHE‘R (6 + R)5— . . ~(6 + RuN)=5- [1+A2(__1+R;Na
1 ! n2 1+ 14n2
-l =~ 2 n” 4 re - _ 1+n<
(2-r r))}+)‘ L-[r(l RmNa 2) n(1- RaNa =—=— )]
n2-p2
RmNF(n)e—(e+RmN) 2 dn + %-= 0 ITI-54

This equatlon may be directly differentiated and solved for

the pressure gradilent:

1-r2
dp _1 , RuN +8 -(o+ Ru)SE ;__ 2
dr r3 + _—r ;"3' 2 [l RHNG ]
2 1 2
+ 2 11- riedLE ) R [ nzre(F RS- g, I11-55

r
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or, employing equation ITIT-50 to eliminate the integral,

o 12 ~eiZ%
1, &+ RWN 1-r? 143
R -1, 280 [1-RmNa-—][ ~RilNe 28 ——2]
III-56

Equation III-56 may be easlly verified as correct for the case
where Reynolds number becomes vefy large. In this case 6 — 0

and

RiE

=31 1-r?.5
=737 5]

RN
3 r

3[1 RmNa

For inviscid flow, u = -1/r and v = A/r (1-RmNa 1-22 ). The non-
linear radial momentum equation II-76 may be solved for E %E-for
this special case; the result is identical to that above. This is
a check on the validity of the analysls to this point.
Substituting equations III-50 and 56 into equation III-38

ylelds the simplified expression for the radial velocilty:
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g {1-r?9) _e<1-.gz)

n 2
u = __z sin(2n—-l)1rz {_ % RmNu)[e -

+ x2<1-g"1_\_16)(1-
n

n=1 2n~1 r
-e(llg—z-) _Gn(l:g_z.)_
+ RiNa %_l - e - - Rz:a 1- er ]
g (=)
+ lz(l - )(1 + RgNG) BmNo (l—r)e n 2 I11I-57
n
1 ¢ (ﬂ.z:.rﬁ

RN y(a AZ(RmNo)Z) e B 2 gy

- (- g gl (GmeAiag 7
: 2 _a(1-n2)
2 R |_ Arlla) r[ o4 )RmN 1o 2

+ A (l— T )[(G 9)(1— )" 5 r e - a—-—%—————]
- (n2=r?)
e M dn}

2
where Gn = 52 %é (2n-1)2 + RN and 6 = 72s2/Re

The solution for the radial velocity u given by equation III-
57 is plotted in figures 4,5 and 6 for various values of the govern-
ing parameters. The results will be discussed in chapter V. The
integrals appearing in equation III-57 may be expressed in terms of
error functions.

The solution for the axlal veloclity w is now, instead of

equation ITI-43,
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These solution equations III-51, 56, 57 and 58 for the veloci-
tles and pressure gradient may be simplified for the various speclal
cases dlscussed qualitatively in section II-l, This simplification

is done in Appendix IIT and the resulting equations are discussed.

63



CHAPTER IV

CALCULATION OF THERMAL AND ELECTROMAGNETIC
VARTABLES

In this chapter, the solution of the zeroth order set of un-
known will be completed. This will involve the determination of
and B In addition, such quantities as heat

T o J

0* "ro’ J¢o’ Ero $0°
conduction at the walls, and external electric field will be cal-
culated. In the following, the subscript zero will be omitted for
convenience; it wlll be understood that the variables are part of
the zeroth order set of unknowns.

1. Solution of the Energy Equation for
Prescribed End Wall Temperature.

Two of the basic assumptions made in chapter I concerning the
nature of the working fluild are that 1ts density and electric con-
ductivity are constant. If the fluld 1s actually compregsible, the
validity of the assumption of constant density depends upon the Mach
nutber and also upon the temperature distribution in the fluid.
Also, if the working fluld 1s a hot gas whose conductivity is based
upon thermal ionization, the conductivity may be a strong function
of temperature. In this case the cooling effect of the end walls

may quench the fluid near the walls and thereby decrease 1lts elec-
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tric conductivity. For these reasons, it is of interest to calcu-~
late the temperature variation in the region of interest and the
heat transfer through the end walls.

The energy equation was developed in chapter II and 1s

aT 3T _ 52 327 s2.c3vy2,  3u,
Uar* W3z T RePr 3z2z T EC w5 * 53 ] 11-78

1
+ RmN Ec [u2+(-’-‘%+v-Jo vdz)2 ]

where the functions u, v, and w are known and are glven by equations
IIT-57, 51 and 58 respectively.
The boundary conditions which the solution must satisfy are
At z=0and 1 T = TW/TR IT-30-4-11
At r=1 T=1 IT1-32-d

Equation II-78 is considerably simplified from its initial
form In equation IT-9. However, as it stands at present, a tract-
able solution is not possible. Some reasonable simplification must

be found.
Let the analysis now be restricted to the range of parameters

which 1s of interest for power generation. That 1s, consider

s2/Re << RmN Iv-1

The flow regime is one of magnetohydrodynamic boundary layer flow.

This assumption allows a considerable simplification in the non-

homogeneous terms in equation II-78.
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with ﬁhi_s approximation 1t 1s seen that the Joule heating
terms, characterized by RuNEc, will be much larger than the viscous
heating terms, characterized by Ec éz/Re, except possibly in the
boundary layers. Therefore, the viscous heating terms will be neg-
lected. _

Now conslider the Jjoule heating terms. With the analysis re-
stricted to the boundary layer type of flow, the joule heating terms
may be close;y approximated by their inviscid values. That is, in-
stead of using equations III-57 and 51 to represent the velocities
u and v, equations A-18 and 19 from Appendix III will be used.
The error Introduced by this approximation tends to cancel the error
introduced by the neglect of the viscous heating terms.

With the same reasoning which accompanied the linearization
of the momentum equations in section IIT-1l, the non-linear convec-

tion terms of the energy equation will be linearized as follows:

] ) 109
(u—+w——)——>(-;-a-r-; V-2

As a result of these simplifications the energy equation II-
78 may now be written

2 2 2 2
__:_L_aT_S aT'i’RnNECl-"AQ

r ar  RePr 3z2 2 V-3

Using the finite sine transform, the solution of equation

V-3 is
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- This solution is valid for small inverse Reynolds nunber,
s2/Re, compared with the magnetic parameter, RmN. This solution
ignores the effect of the velocity boundary layers on the tempera-
ture profile but includes the effect of the end walls in that the

thermal boundary condition IT-30-d-ii is satisfied. This solution

for the temperature is plotted in figures 7 and 8 for r = .7 and
for various values of the govarning parameters, RmNEc(l + AZa?)
and RePr/s?. The results are discussed in chapter V.

The heat transfer at the wall is given by the non dimension-

al heat conduction equ~tion

by 2T

= e (1% = o -
7 g ¢ 3% 115

Employing the known solution for the temperature, equation IV-4,

yields the heat conduction at the wall

T, = 1252 1-r?
il 1 2n-1)2 5=
=-—;2'Z 'é-n—_—z-{(l-—)e RePr( )
—-——(2n—1)2r2/2 @ 242 2
1.1 s (2n-1)
242 L4+
+ RINEc(1 + A2a2)e™® [In =+ 5 Z_ (- &5 =3 )
m=1
1 — p2m -
m!m 1 V-6
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Thils solution has the same range of valldity as the tempera-
ture solution has; Reynolds number rmust be large. The solution for
the heat transfer at the wall is given in table 4 for various val-
ues of the parameters RePr/s? and RNEG(1l + A2q2).

2. Solution of the Energy Equation for
Adiabatic End Walls

For the case of adiabatic end walls, the solution to the

energy equation must satisfy

IT-30-d-1

At =2z Qand z =1

R A

[}
[ o

I1-32-d

At r=1

Repeating the assumptions made in the section above leads
agaln to an energy equation in the form of equation IV-3. The solu-

tion for this case is
= 22 1
T =1+ RN Ec (1+2%e) 1n - V-7

This solution is valid for large Reynolds number; there is
no restriction upon the range of the parameters RmN, Ec and A.
This solution is independent of the axial coordinate; the tempera-
ture distribution is logarithmic in the radius. The strength of
the variation depends upon the amount of Jjoule heating in the

region of interest.
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3. Calculation of Electromagnetic
Varlables

For campleteness, the remaining undetermined electromagnetic

variables of the zeroth order set of unknowns Jr’ J¢, Er and B¢ will

now be calculated.

A, ELECTRICAL CURRENTS
The zeroth order radial current, the component which ylelds
useful electric power, is given by equation II-74
1
Ao

Jo==+v- Jo vdz II-74

The tangentlal velocity v, and external current, « are known

from equations IIT-51 and 53. They yield the result:

1-p2
g = ) sin(n-liwz _2 1 7(RnY [e'e 2
r r ol (2n-1) r (2n-1)2 G -9
n2 V-8
~o35% g r?
R 12— 94 (- By Blle o no 20 Rille 4y
) G -0 G G
n n n
c- 8/2 in 1
a = & I11I-51
X 1-~%2 1 1-¢2 1=8/2
2 S ra— - [
where G_ = 8(2n-1)2 + RmN and 6 = 12s2/Re

The first term on the right hand side of equation IV-8 rep-
resents the electric current which passes through the external cir-

2 _
cuit. The expression (2n0Rb) in the denominator of the soluticn
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for this current III-51 is the ratio of the resistance of the ex-
ternal circuit ﬁ to the internal resistance of the flow region
(1/2nob), If the resistance of the external circuit becomes large
compared with thé internal resistance, the external current be-
comes very small. If the external resistance is small campared
with the internal resistance, the extermal current approaches a
maximum limited by the intermal resistance of the device,

The tangential current J¢ is equal to the negative of the
radial velocity by equation II-77; the radial velocity 1s given by
equation ITI-57. The zeroth order axial current is lidentically

zero from equation II-59.

B. ELECTRIC FIELDS
The zeroth order radial electric field may be expressed in

terms of' velocities by a cambination of equations II-53 and 73:

1
_ Ao I
Er = 5. = I vdz Iv-9

Agalin the tangentlal velocity, v, is known from equation

ITI-51; this yields 1op? e 1-p2
© -6 2
Ao 8 A 1 RN 2 l-e
B=Towrl ame gl T e =]
1or? IV-10
RmN RmN n?2 RN
+ (1~ 5 )l ‘gzg)e - GnaJ }

where a is given by III-53.
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If the sumation in equation IV-10 is approximated as the
radial functions F(r) and dp/dr were in section III-4, the =xpres-

sion for the radial electric current simplifies

-9/2 v fr2/2 1-r?2
2noRbe RN -6r2/2 1 1-g2 -6
E,=- %e o -(1+== )(1-e Jin = -RuN=j=— e 2
2rofb + (1+ RVE2—) 1n 1 —puvige= o™%2
IV-11

The voltage AE applied to the external electric circult as
given by equation II-561s the negative of the integral of radial
electric over the radius fromr = ¢ tor = 1:

-8/2 1n 1

47
A'ﬁ = A 2noRb € £

-6
1l ~-e 1 2
—5——/In = —Rle—i—-i e—e/z IV-12

"
2noRb + (1+RmN

If the external resistance is small compared with the internal
resistance, the voltage applied to the external circuit is zero.
On the other hand, if the external resistance becomes large com-
pared with the internal resistance, the applied voltage approaches

a finite maximum. Equation IV-12 is equivalent to

A = (2nolb) (Ra) IV-13

which 1s the classic Ohm's law relatlionship of basic electricity.
The tangential and axial electric fields are given by

equations I1I-29 and 58 respectively.
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C. MAGNETIC FIELDS

The tangential component of the magnetic field B 6 may be
found from equation II-64, The radial electric current J r is known
from equation IV-8. Since the tangential magnetic field is anti-

symmetric with respect to the plane z = 1/2, it umst satisfy the

symmetry condition.

At z = 1/2 B¢ =0 II-31

Integration of equation IV-8 with respect to z and applica-

tion of the above boundary condition ylelds:

. Aa (1 Rm 8 BRm A ¢ cos(2n-1)nz _
Be= v G-22%5 -m S or 21:1 (2n-1)2 { v-14
1-r? 1-r2
1-r? -0 -G ==
(e ) G -0 G, G

where G = 8(2n-1)2 + RN and 6 = 72s2/Re and & is given by
equation III-53.

This solution for the tangential magnetic fileld is valid with-
in the region between the two plates. At the boundaries, the elec-
tric current flowing through the external clrcuit causes a jump in
the value of B p as it crosses the boundaries.

In a manner similar to the solution for the tangential mag-
netic field, the radial magnetic field Br may be found by a cormbina-
tion of equations II-65, II-67 and III-57. The radial magnetic
field is also antisymmetric with respect to the mid plane z = 1/2

and must satisfy
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At z =1/2 B,=0 I1-31

The resulting solution for the zeroth order radial magnetic
field is

o n -

. Pm 8 cos(Cn-)nz ¢ 1 . 2 RnNy,- ., RmNaye -e
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n r
2.2
Gy

e dn} Iv-15

The change in the radial magnetic fileld Br from one plate
z = 0 to the other z = 1 is closely related to the net radlal mass
flow and 1s

_ _ Bm
4B, = B, (r,1) - B (r,0) = — IV-16

The zeroth order axial magnetic field is given by equation

I1-52, it 1s Just equal to the applied magnetic field.
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CHAPTER V
DISCUSSION OF RESULTS

In this chapter, the solutions for the radial and tangential
velocities and the temperature, as represented by equations III-57,
ITI-51 and IV-U respectively, are discussed. These solutions have
been calculated numerically on a digital computer and are plotted
in figures 2 through 8 for various values of the governing para-
meters, Additional data concerming the boundary layer thickness,
the boundary layer mass flow, the inviscid radlal wvelocity and heat
transfer at the walls are given in tables 1 through 4.

The normalized tangential veloclty, V/A, is a function of
the modified Reynolds number Re/s2? (or of 6 since 6= n2s2/Re), the
magnetic parameter, RmN, and the external electric current, a, as
well as the two non-dimensional spatial coordinates r and z. The
radial velocity, u, is a function of all variables just mentloned
as well as a function of A, the ratio of the inlet tangential vel-
ocity to the 1nlet radial velocity. The temperature 1is a function
of the dimensionless groups s2/RePr and RnNEc (1+A202) as well as
the coordinates r and z.

In all the figures, the veloclty components u and v/A and

the temperature are shown as functions of the dimensionless axial
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coordinate z for a typical value of the radius, r = .7. The shapes
of the profilles for other radial values are quite similar to those
at r = .7 and little would be galned by considering them in detail.
The influence of variations in the radius upon the magnitude of
such quantitles as boundary layer thickness 1s shown in the tables.
All the figures show the boundary layers which exist on the
lower plate; the upper half plane 1s not shown. The profiles in
the upper half plane are ldentlical to those in the lower halfl
plane because of the symmetry of the problem. The value z = 1/2

represents the midplane between the two plates.

1. The Tangential Veloclty

Figure 2 represents a plot of the normalized tangential
veloclty, v/A, versus the axlal coordinate z for the non-magnetic
case, RmN = 0, The axial coordlnate 1s plotted vertically and the
velocity 1s plotted on the horizontal axis. The profiles are
drawn for various values of the modlfied Reynolds number
Re/s2(6=n2s2/Re). For large Reynolds numbers (small 8), the
boundary layers are restrilcted to very small regions near the
plates and the boundary layer blockage is small. This corres-
ponds to case Al discussed in section II-4. Away from the
plates, outside the boundary layer, the tangential velocity

assumes the potential vortex value of 1/r.
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As the Reynolds number is decreased (9 increased), the size
and influence of the boundary layers grow considerably causing an
increase in the boundary layer blockage. Note that for & = 1, the
viscous influence extends to the midplane between the two plates,
z=1/2, at r = .7. In this case the end wall boundary layers
grow rapidly as the radius is decreased from r = 1; they meet at
the midplane between the two plates at some radius greater than
r = .7. For radial values less than the value where the boundary
layers meet, no inviscid core exists. The boundary layers block
the flow and the vortex is significantly slowed. This corresponds
to case A2 in section II-4. Comparison will be made with the mo-
mentum integral analysis by Loper [8] in the discussion of the
table below.

Figure 3 is a plot of the normalized tangential velocity,
v/A, versus the axial coordinate z for values of the magnetic par-
ameters RN and a at r = .7 for a typical value of the parameter
8: 6 = ,01 (Re/s? = 100m2). This figure demonstrates the influ-
ence of the magnetic effects upon the tangential velocity. The
solid curve marked RmN = 0 in figure 3 is the same curve as that
marked 6 = .01 in figure 2 and is a typical non-magnetic tangential
veloclty profile. The remaining profiles show the influence of
moderate and large magnetic effects; this corresponds to cases Bl
and C1 in section II-A4,

The curve in figure 3 marked RN = 1l,a = 0 represents the
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distortion of the tangential velocity distribution with the addi-
tion of a moderate magnetic fleld but with no extermal electric
current. The tangential velocity is a bit larger in the boundary
layer for this case than it is for the non-magnetic éase and the
boundary layer is slightly thinner. In the curve marked RmN = 10,
a = 0 this filling out of the boundary layer profile is much
stronger.

This change in the tangential veloclity profile is due to the
influence of the electric field which now exists in the fluid. The
filuid outside the boundary layers cuts the magnetic field and pro-
duce a radial electric field. This electric fleld 1s impressed
upon the boundary layers exactly as the radlal pressure gradient
is. Within the slowly moving fluid in the boundary layers, the re-

sulting current combines with the magnetic field creating a Lorentz
force. This force acts as a hydromagnetic pump to speed up the
slowly moving boundary layer fluld causing the veloclty profile to
become fuller. As the veloclty profile fills out, the velocity
attains its inviscid value at a smaller value of the axial coord-
inate z causing a smaller boundary layer thickness. This result
is in qualitative agreement with the results of Lewellen and

King [6].

If the external resistance of the electriec circuilt, ﬁ, is set
equal to zero, the current parameter, a, attains a maximum limited
by the intermal resistance of the fluid. The influence of this

current upon the tangential velocity profile is shown in the curves
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marked RuN = 1, a =l.74 and RaN = 10, a = ,222 in Figure 3. While
the application of magnetic fields alone (a = 0) does not affect
the tangential velocity profile outside the boundary layers, addi- .
tion of the external current slows the tangentlal wvelocity through-
out the region of interest. The kinetic energy of the fluid is
transformed into electrical energy and is dissipated as joule
heating.

For this case of appreciable magnetic fields and currents,
the tangential velocity outside the boundary layers assumes 1its
inviseid magnetohydrodynamlic value as given by equation A-19. As
the inviscid tangential velodity is slowed by the application of
the external current, the velocity profile in the boundary layer
1s correspondingly slowed so that the boundary layer thickness re-
mains approximately the same size.

The influence of the independent parameters r, Re/s2, RmN
and a upon the boundary layer thickness is shown in Table 1. The
boundary layer thickness § 1s defined as that value of the axial
coordinate z for which the tangential velocity reaches 99% of its
inviscid value. In the table, the left hand column gives values
of & = 12s2/Re for three radial stations. The other three colums
are values of the boundary layer thickness, §, for chosen values
of the magnetic parameters RmN and a. This table 1s meant to show
the nature of the variation of the boundary layer thickness with
these variables and is not intended to cover the entire range of

the parameters.
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This table shows that the boundary layers are thinnest near
the outer cylinder and thicken as the radius decreases. The
growth of the boundary layer thickness with a decrease in Reynolds
nunber (increase in 8) still approximates its single plate depend-
ence; that is, the boundary layer thickness is approximately pro-
portional to the inverse root of the Reynolds number. The addition
of the magnetic field alone (a = 0) decreases the boundary layer
thickness by a few percent for the cases tabuiated. The addition
of both a magnetic field and external electric current also de-
creases the boundary layer thickness from 1ts non-magnetic value
but not as much as the magnetic field alone does. It appears that
for estimation of the boundary layer blockage for the two plate
problem, non-magnetic values for the boundary layer thickness may
be used as upper bounds for the corresponding magnetic cases over
a large parametric range.

In the present analysis, solutions are found only for the
zeroth order set of unknowns from equatlions II-35, which are ex-
pansions of the unknowns in inverse powers of the geometrlc shape
parameters-s. Therefore, the solutions obtained are not functions
of the parameter, s, explicitly. That parameter does appear in
the solution equations but always with the Reynolds number as
Re/s?; this may be thought of as a modifled Reynolds number not in-
volving s explicitly. Since the solutions obtained above are only
the zeroth order solutions and do not depenc¢ expllicltly upon the

shape parameter, s, they camnot be meaningfully compared with the
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results of analyses such as that by Rosenzweig, Lewellen and Ross
[9] which do depend explicitly on the parameter s. The solutions
found in reference 9 are the zeroth order solutions of an expan-
sion in powers of (1/sA)2. This expansion scheme is strictly

valid only if

As >> 1, s <1 and Re > 1
(They maintain both s and A as general parameters in their zeroth
order solutions by making use of the results of an independent
boundary layer analysis by Rott [12]. In patching solutions at
the boundary between the invisclid and boundary layer regions,

A and s appear independently). Atleast the first order set of un-
knowns from the expansions II-35 must be found before meaningful
comparisons can be made with analyses which ineclude s as a general
parameter,

The present results can be meaningfully compared with the
analysis by Loper [8] since that analysis also results in an asymp-
totic solufion without s appearing as an explicit independent para-
meter. Slnce that method of solution was a momentum integral an-
alysis, 1t is most convenient to compare the boundary layer thick-
nesses predicted by the two analyses. The comparison must be made
for the non-magnetic case, RmN = 0, since the momentum integral
analysis was performed only for this case.

The boundary layer thicknesses for the two cases are compared
in Table 2 for a typlcal value of the radius, r = .7. The values

of boundary layer thickness for the present analysis (for r = .7,
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RmN = 0 and o = 0) are listed in the second column while the first
colum lists the corresponding Reynolds nunber. These results are
independent of the inlet veloclty ratic A because of the nature
of the linearization introduced in chapter III; the radial veloci-
ty 1s uncoupled from the tangential momentum equation. On the
other hand, the boundary layer thicknesses found by the momentum
integral method do depend upon the inlet velocity ratioc A. There-
fore, agreement between the two methods depends upon the value of
A chosen, The results have been compared for two values of A,

A =5 and 10. The case of most Interest, a strong vortex, is
characterized by large values of A. The third and fifth columns
list the boundary layer thickness as calculated from the momentum
integral analysis for A = 5 and A = 10 respectively. The fourth
and sixth colums list the percent error between the present re-
sults and the momentum integral results.

The table shows that the thicknesses are roughly the same
order of magnitude but exact agreement 1s not good; the error is
about 50%. The momentum integral analysis consistently predicts
thinmmer boundary layers (for large )A) than the present analysis
does. Agreement tends to be better if the inlet velocity ratio A
i1s decreased; this comparison was not pursued further since the
case of A small is not of primary interest (and because the cal-
culations are involved and tedious).

It would seem that the present analysis 1s the more accurate

of the two for several reasons. The first is that the accuracy of
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the nrhentum Integral analysis depends upon the proper choice of
veloclity profiles. In the two plate momentum integral analysis,
plausible profiles are chosen but there 1s no guarantee that they
are accurate representations of the actual profiles. In addition,
in order to obtain a simple closed form solution, it was assumed
In the momentum integral analysis that the ratio of the maximum
value of the radial velocity within the boundary layers to the in-
viscid radial velocity oufside the boundary layers is a constant.
This assumption limited the form of the radial velocity profile;

no such assumption was made in the present analysis.

2. The Radial Veloclty

Figure 4 is the counterpart of figure 2; it plots the radial
velocity, u, on the horizontal axis versus the axial coordinate z
on the vertical axis. Thls figure is shown for radial station
r = .7 for the non-magnetic case, RmN = 0, for an inlet velocity
ration A = 10. This corresponds to case A discussed in section
II-4, Note that the radial wvelocity is defined as positive for a
radial outflow and therefore is primarily negative in the region
of interest. For r = .7, the inviscid radial velocity is

u=-1.429

With the accumulation of radial mass flow within the boundary
layers, the radial velocity within the boundary layers becomes
quite large, exceeding the inviscid value. This large radial vel-

ocity in the boundary layers is referred to as the radial wvelocity
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overshoot. In order to conserve radial mass flow, the radial flow
drawn into the boundary layers must cause a decrease in the outer,
inviscid radial wvelocity.

This effect is shown in figure 4, For large Reynolds number
(small 6) the amount radial mass flow within the boundary layers
is a small fraction of the total mass flow. - Thus the outer radial
veloclity 1s near its inviscid value of - 1.429. As the Reynolds
nurber is decreased (8 increased), the amount of mass flow in the
boundary layers increases due to the increasing thickness of the
boundary layers. This causes a corresponding decrease in the out-
er radial wvelocity. When 8 = .1, the boundary layer mass flow is
so great as to cause radial back flow outslde the boundary layer.
This is shown as a positive radial velocity for the curve marked
8 = .1 in figure 4. 1In this case, the vortex motion camnot be
maintained and the flow becomes more complicated. The solution
equations III-51, 56, 57 and 58 are no longer strictly valid when
this occurs because of the nature of the linearization performed
in chapter III. However, it is believed that the analysis may
yield meaningful results for very small values of radial backflow
(positive radial flow outside the boundary layers). This is based
on the fact that for small values of radial backflow, the inviscid
tangential velocity is not greatly changed from its value for no
backflow, That is, it still 1s approximately a potential vortex.
This is shown in the results of Rosenzweig, Lewellen and Ross [9]

(see their figure 7). Note that the maximum value of the radial
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veloclty overshoot in the boundary layers is independent of the
Reynolds number.

While the maximum value of the radial veloclty overshoot is
not dependent on the Reynolds number, it is a strong function of
the inlet velocity ratio, A, which was held constant in figure 4.

A value of X = 0 means that the tangential velocity is zero while
A = 10 means that the inlet tangential velocity is ten times as
large as the inlet radial velocity. Figure 5 illustrates this de-
pendence of the radial velocity overshoot upon the velocity ratio
A; it is a plot of the radial velocity, u, versus the axial coor-
dinate, z, at radial station r = .7 for a typical value of 6,6=.01
(Re/s2 = 100%2), for the non-magnetic case. Wheh A = 0, no over-
shoot occurs, as would be expected. In this case, no centrifugal
pressure field is set up to cause an overshoot. As the tangential
velocity 1s increased (A 1s increased), the overshoot increases
dramatically. As the overshoot becames larger, the boundary layer
mass flow correspondingly grows. Thus the external radlal veloclty
becomes smaller and finally reverses, causing the vortex to break
down. This occurs for A = 20 in figure 5. As the velocity ratio
is Increased, the radial boundary layer thickness increases slight-
ly since larger veloclty gradients occur near the outer edge of
the boundary layers.

The influence of the magnetic effects upon the radial veloci-
ty is shown in figure 6. It is a plot of the radial velocity, u,

versus z at r = .7 for 6 = .01 (Re/s2 = 100n%) and A = 10 , This
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corresponds to cases Bl and Cl discussed qualitatively in section
II-4, The curve marked RN = 0 is the same as the curve marked

8 = ,01 in figure 4. With the addition of a moderate magnetic
field but no external electric current (RmN = 1, a = 0), the radial
velocity overshoot 1s decreased a blt. Thls decrease 1ls explained
by the fact that the radial velocity must now do work against the
magnetic field producing a dissipative electric current in the tan-
gential direction. If an external electric current is allowed to
flow (RN = 1, a = .74), the overshoot is lessened even more. This
additional decrease in the overshoot is due to the fact that the
invisecild tangential velocity is slowed upon production of this ex-
ternal electric current as was shown in figure 3. This in tum
decreases the pressure defect which is the driving force of the
radial velocity overshoot. As the amount of overshoot is lessened,
the boundary layer mass flow decreases and the inviscid radial vel-
oclty correspondingly Increases. As the magnetic influence 1is in-
creased (RmN = 10, a = 0 and RN = 10, a = .222), the overshoot is
reduced even more. For the case RmN = 10, a = .222, the radial
veloclty profile begins to approximate its value for very large
magnetic parameter as given in equation A-26 in Appendix III.

Table 3 charts the fraction of the radial mass flow carried
within the boundary layers and also the inviscld radlal velocity
for » = 10 and for various values of the parameters r, 6, RmN and
a. If the fraction of the boundary layer mass flow ls greater

than one, the radial velocity outside the boundary layers reverses

85




and becomes positive. The figures given for this case are not
reliable since the analysis 1s not strictly valid for positive
core radial velocity.

The fraction of radial mass flow drawn into the boundary
layers increases as the radius decreases. This means that the
tendency for the inviscid radial velocity to reverse and become
positive also increases as the radius decreases. Therefore, the
radial backflow (positive radial velocity) will occur first at
the inner cylinder r = ¢. The tendency for radial backflow to
occur is strengthened by decreasing the Reynolds number (increas-
ing @) as seen from table 3. This is explained by the fact that
the fraction of radial mass flow carried within the boundary lay-
ers increases as the Reynolds number decreases. This occurs be-
cause the boundary layers are thicker for smaller Reynolds number
while the radial wvelocity overshoot is independent of Reynolds
nunber, The tendency for radial backflow to occur is also
strengthened by increasing the inlet velocity ratio, A, as seen
from figure 5. The physical reason for this strengthening is the
counterpart of the phenomenon described above. While an Increase
in A does not affect the boundary layer thickness, it does increase
the radial velocity overshoot causing additional mass flow to be
drawn into the boundary layers,

On the other hand, the presence of magnetic fields and elec-
tric currents decreases the tendency for radial backflow to occur.

This decrease is caused in part by the decrease in the boundary

86



layer thickness with the additlon of magnetic effects, but the
main influence is the decrease in the radial velocity overshoot
with the addition of magnetic effécts as seen in figure 6. Thus
a non-magnetic analysis will predict wortex breakdown sooner than

a magnetic analysis will.

3. The Temperature

The solution for the temperature is given by equation IV-4
for the case of prescribed end plates temperature and by equation
IV-7 for the case of insulated end plates. In general, the temp-
erature profile is a function of the two spatlal coordinates r and
z and three dimensionless parameters: 'I‘w/ T., the ratio of the
prescribed end wall temperature to the inlet fluld temperature;
RiNEc (1 + A2a2), the magnetic heating parameter; and RePr/s?, a
modified Peclet number.

Before the temperature profiles are plotted and dlscussed,
it 1s pertinent to determine what range of the magnetic heatlng
parameter RmNEc(l + A2a2) is to be expected. The Eckert number,
Ec, 1s the ratio of the fluid kinetic energy to the fluld thermal
energy. For a problem involving power generation it is reasonable
to stipulate that they be the same order of magnitude. The kinetic
energy of the inlet fluid is of order VZ(1 + A2) while the inlet

thermal energy 1is cTR Thus

V2(1 + A2)= cTp
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Or, introducing the Eckert nunber,

1

fe =1

The heating parameter may now be written as

1+ 2242
R 1 + A2

For power generation, the parax_neter A, being the ratio of the in-
let tangential velocity to the inlet radlal velocity, will be much
larger than cne. Thus the heating parameter may be approximated
by RmNa? for this case. Employing equation III-53, giving the ex-
ternal current, a, as a function of ¢, 6 and RmN, 1t is found that
the heating parameter is of order one at its maximum value. There-
fore, the heating parameter, RmNEc(1l + A2a2), will be varied from
zero (no magnetic heating effects) to one. For convenience the
heating parameter RmNEc(1l + A242) will be denoted by D in the fig-~
ures and iIn the following discussion.

Figure 7 is a plot of the temperature versus the axial coor-
dinate z at radial station r = .7 for temperature ratio T w/'I'R =1
for several values of the magnetic heatlng parameter D (=RmNEc
(1 + 2202)) and the modified Peclet number, RePr/s2. If the mag-
netic heating is zero and the end wall temperature is the same as
the inlet temperature, the entire flow fleld is isothermal: T = 1.
The plot of this temperature coinclides with the z axis in figure 7.
As the magnetic heating is increased from zero, the main body of

the fluld increases in temperature and thermal boundary layers
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form near the end plates. This effect is shown in the curves

1252 1252 -
markedD=l,-R?I;r— =.land D=1, ePr=.Olinfigure 7« The

252
RePr affects the temperature profile just as the para-

parameter

meter n2s2,/Re affects the tangential velocity profile. For small

%;%; the thermal boundary layer is small, the main body of the
fluid is unaffected by the cooling of the end plates and the heat
transfer 1s relatively large. If the Prandtl number is of order
one, the thermal and velocity boundary layers will be of the same
order of magnitude and the cooling effect will only influence the
velocity boundary layer region. If it is desired to cool the vel-
oclity boundary layers to prevent undesirable loop currents but not
to cool the main body of the fluid, the Prandtl number must be of
order one.

Figure 8 plots the temperature versus z at r = .7 for temp-
erature ratilo T@/TR = .2 for several values of heatling parameter
and modified Peclet number, RePr/s?. Only the temperature ratio
was changed from the conditlons given for figure 7. In the case
of end walls cooled below the 1nlet temperature, thermal boundary
layers form even for the case of no heating (D = 0, %E%; = .1 and
D=0, %%%%-= .01). The thermal boundary layers thicken slightly
but remain of the same order of magnitude as the end wall tempera-—
ture is lowered. Therefore, the boundary layers may be further
cooled by lowering the end wall temperature without significantly

affecting the temperature of the main body of fluid.
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Table 4 gives the heat transfer at the end plates, q, for
various values of the governing parameters, r, TW/QR, D (=RmNEc
(1 + A202)) and s2/RePr. The heat transfer is defined as positive
for heat flowing from the fluid to the end plates. The left hand
colum of table U4 gives values of T /T, for three radial stations.
The other six colums are values of the heat transfer,q, for chosen
values of the parameters D (=RmNEc(1l + A2a2)) and n2s2/RePr. For
the cases of no magnetic heating (D = 0) and temperature ratio
equal to one, there is no heat transfer at the end walls since the
fluid is isothermal and no axial temperature gradients exist. The
heat transfer is larger for the smaller values of 2s2/RePr because
larger temperature gradients exist at the walls for the case of
thin thermal boundary layers. As the magnetic heating parameter
is increased, the heat transfer increases since the temperature
difference across the boundary layers increases while the boundary
layer thickness remains the same.

The change in heat transfer with change in radial station is
not as clear cut as the effects described above. This is caused
by the fact that there are two Influences upon the heat transfer
as the radius changes; these influences act in opposite directions.
One influence is the thickening of the thermal boundary layers

with decrease with radius analogous to the thickening of the vel-
ocity boundary layers. This tends to decrease the heat transfer

since the thermal gradients are smaller in the thicker boundary

layers. The other influence 1is the heating of the fluid as the
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radius decreases. The temperature vardes as D In %- outside the
thermal boundary layers. Thus as the radius decreases, the temp-
erature difference across the boundary layers increases, tending
to cause a larger heat transfer at the end plates. These opposing
Influences cause the heat transfer to decrease as the radius de-
creases when magnetic heating effects are small. On the other
hand, these influences cause the heat transfer to increase as the

radius decreases when magnetic heating effects are large.

4, Concluding Remarks

The primary purpose of the present analysis was to describe
the swirling fiow (with a net radial mass flow) of a viscous elec-
trically conducting fluid confined between two finite flat plates
in the presence of an applied axial magnetic field.

Of primary concern were the details of the velocity flow
field including the blockage of the vortex motion by the buildup
of boundary layers on the end plates and the redistribution of
radial mass flow into these boundary layers. The main assumptions
were that the fluid be incompressible with constant properites and
that the flow be laminar, steady and axisymmetric.

The analysis was limited to the case of the confining end
plates close together compared with their radius. With this geo-
metric limitation, the unknowns were expanded in powers of the ratio
of the separation distance to the radius of the plates. It was

then possible to eliminate the electromagnetic unknowns from direct
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cansideration in solving for the zeroth order set of wiknowns.
That is, the Navier-Stokes equations, with magnetohydrodynamic
effects included, were expressed entirely in terms of velocity -
components.,

These simplified Navier-Stokes equations were linearized
and solved for the zeroth order velocity components and pressure
gradient. With the veloclities known, the zeroth order tempera-
ture and electromagnetic varlables were calculated. The zeroth
order velocity and temperature profiles were obtained in Fourier
series form as functions of a number of governing parameters.
These Fourier series were calculated numerically on a digital
computer and plotted in the figures for various values of these
governing parameters.

The resulting profiles were discussed and, where applicable,
caonpared with previous works. It was concluded that for esti-
mation of the boundary layer blockage a non-magnetic analysis will
provide an upper bound on the boundary layer thickness for the
corresponding magnetic problem. That is, for a glven set of con-
ditions, the boundary layer blockage is a maximum for the non-mag-
netic case.

The dependence of the radial veloclity upon the various
parameters was analyzed to determine how these parameters affect
the redistribution of radial mass flow. 1t was-found that the
radial mass flow in the boundary layers was largest for*the non-

magnetic cases. As magnetic effects were added, the boundary layer
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mass flow decreased, lessening the tendency for radial back flow
(reversal of radial velocity outside the boundary layers) to occur.
In the discussion of the temperature solution, it was found
that if the Prandtl number is of order one, the velocity boundary
layers may be cooled without affecting the main fluid temperature.
This effect is important if it is desired to quench the boundary

layers to decrease wasteful loop currents.
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APPENDIX I

CONVERGENCE PROOF
The purpose of this appendix is to prove that the solution
for the radial function F(r) glven by equations ITI-29 and 30 and
the solution for the radial pressure gradient E dp/dr given by -
equations ITI-U41 and 42 converge and thus are the correct solutions.

The solution for F(r) found in section III-2 is

hs 8 = (!iifg
= - 1 1 n 2 a _
F(r) =[1+ g;:l KF ][FZI‘ E:lr_—”n-l 2 € - I'] III-29
where g (n2r)
1 2 w n _
Ko [x(r)] = -E-ZRmN f 'nf" x(n) ¥ . € —nonyz I III-30
r n=

where

Gn = 7252/Re (2n-1)2 + RmN

Does this expression yield a finite value for F(r), barring singular
values of the parameters such as r = 0 or RN = «?

Firét, analyze the infinite sums which appear in the above

equations; they are

2_p2)
- (1-r2) - (n2-r?)
1 -G 1 n 2
l TnDee " 2 ™1 tmay

The term (1l-r?) is always greater than or equal to zero since r =1

marks the outer limit of the region of interest. The term (n2-r2)

96



is always greater than or equal to zero also since n 1s a dummy
integration variable with n = r as the lower limit. Since Gn is

always positive,

2 2_n2
<% <5
e <1 ) and e <1 A-1

This means that each of the infinite sums being considered 1s less

than the sum

v 1
)
n=1 2n-1
which 1s just equal to N%/8:
1-r?
=%

e v 1 _ n?
Dz 2L D2 T8 A-2

18

Thus the infinite sums are finite and bounded.

The entlre expression

- (1-r?)
§. .l. Z 1 e—Gn 2 - 9-)
1|'2 r n=1 i2n-132 r

which appears in equation III-29 above is finite and bounded (exclud-

ing the case r=0). A finite number M1 may be chosen such that

- (1-r?)
(8}_ 1 e—Gn 2—9-)<M
w2 r L, (2n-1)? r/ = 1 - A-3

for all applicable values of the parameters r, a, s?/Re and RmN.

Similarly, the expression

6 , = (n2-r2)
. n< 1 n 2
( ;2 RmN r ]ZF-' 1 21’1‘1 2 € )
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which appears in equation III-30 is finite and bounded (provided
r # 0). It may be bounded by a finite number M, for all applic-
able values of the parameters n, r, s2/Re and RmN:

- (n2-r?) -

GzRN 1 (o2 © ) =M, -
n=1

Substitution of these bounding expressions, equations III-29

and 30 yield the lnequalities:

F(r) < RN [1+°{° Kp' 1M A5
m=1
where
1
Klx()] < | Myx(n)an "
r

The first term of the infinite series appearing in equation

A-5 is of the form

Kp OM,]
where M; 1s a constant. This may be easily evaluated by use of

equation A-6 to yield

KF[M1] < Ml Mz(l—r) A-T7
The second term of the Infinite serles in equation A-5 is

Kp (M1 = Ky (Kp(M)7 < Ky, M, (1r) ) A-8

or using equation A-6 again,

Kg? [Mi]< M; M,2 (;—r)i A~9
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Operating in a similar manner, it is easily seen that the

general term of the expansion is

My ey g™ A" A-10
KF 1- =" "2 m!
Now equation A-5 for F(r) may be written as
w m m
F(r) <R M, ] M2 (T) A-11
m=0 m}

But the infinite sum 1In this equation is just the power series ex-

pansion for the exponential function. Thus F(r) is bounded by:

Mz(l—r)

F(r) < RN M, e A-12

This expression for F(r) converges for all finite values of the
parameters RmN, M;, M, and (1-r). Thus the solution for F(r) as
glven by equations III-29 and III-30 is finlte and represents the
solution to equation III-28.

Now consider briefly the proof that the solution for E dp/dr
as represented by equations IIT-41 and 42 converges. It is now
known that F(r) is finite; therefore its integral appearing in
equation ITI-I1 is finite. Thus equations III-41 and 42 are in
identical mathematical form to the solution equations for F(r) equa-
tions IIT-29 and 30. The proof that the solution for E dp/dr con-

verges follows the above proof identically.
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APPENDIX II
ANALYSTS. OF ERROR

The purpose of this appendix is to determine the error intro-

duced in Section III-4 by approximating the function

1 o—(2n-1)2x A-13

. 8 &=
£(x) = 5 ]
" n=1 2n-1)2

H

—r2 2_.
where x = 12s2/Re _(l_g) or ﬂZSZ/Re(ILz_I'Z_)

,» by a normalization
of 1ts first temm

f(x) = =X A-13'

This function f(x) was approximated in section III-4 in order
to obtain simpler closed form, solutions for the velocity profiles.
This function appears in the solution equations for F(r), equations
I11-29 and 30, and for E dp/dr, equations III-41 and 42, and repre-
sents the influence of the presence of the boundary layers upon these
functions. Thus f(x) as given by equation A-13 represents the in-
fluence of the boundary layers upon the outer flow. If Reynolds
nunber becomes infinite, there are no boundary layers present. For
Re = », x =0 and

£(0) =1
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Note that if f(x) were approximated by the constant value f(x)=1,
it would be tantamount to lgnoring the influence of the boundary
layers upon the outer flow entirely.

It is expected that the approximation of this function f(x)
by another function will have little effect upon the tangential
velocity distribution since the boundary layers have no direct
physical effect upon the inviscld tangential velocity. On the
other hand, the approximation of f(x) will affect the outer radial
flow since the boundary layers have a primary effect upon the in-
viscid radial velocity through conservation of radial mass flow.
This effect will be analyzed below.

Turn now to purely mathematical considerations. It is desired
to achieve practical closed form solutions for the radial functions
F(r) and E dp/dr, starting from equations IIT-28 and IIT-39 respect-
ively, by approximating the function f(x) as given by equation A-13.
This function is difficult to approximate by integer powers of x in
the region of x small because df/dx is singular at x=0. The func-
tion (1-c vx )does approximate f(x) remarkably well for small x
but unfortunately does not yield closed form solutions for F(r) and
E dp/dr.

In theory, closed form solutions are possible for F(r) and
E dp/dr if f(x) is approximated by a truncation of its infinite
series. However, if the function is approximated by even its first

two terms the solutions become quite complex and difficult to
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manipulate, Therefore, for ease of calculation, the function must
be approximated by only its first term. Since the infinite series
i1s rapidly convergent, the first term of the series approximates
the function quite well.

The full function f(x) as given by equation A-13 is plotted
versus x in figure 9 along with its approximations by the first
term and the first two terms of the serles. The approximations are
normalized so that f(0) = 1 is satisfied.

The error introduced by approximating the function f(x) by
a constant, its first term and its first two terms is platted versus
x in figure 10. The error introduced by approximating f(x) by a
constant value, in effect ignoring boundary layer effects, becomes
unbounded for large z, corresponding to small values of the Reynolds
number, The first term approximation keeps the error bounded; it
asymptotically approaches 23% for large x (small Re). If the second
term were added to the approximation, the maximum error would drop
to 10%

The actual error introduced into the values of the velocity
profiles, and particularly into the tangential velocity, are much
less than these figures since this is only the error in the effect
of the boundary layers on the outer flow; it is not the error of
the entire. velocity value.

The fact that the function f(x) is not represented entirely

accurately does cause some error in the inviscid radial velocity.
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I

This error may be corrected by calculation of the actual radlal mass
flow in the boundary layers and computation of the proper inviscid
radial veloclty by use of the conservation of radial mass flow con-
dition. This method is used in the numerical calculation of the
radial wveloclty profiles. In this way, the error in the radlal

veloclty 1s much reduced from the values given in figure 10.
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APPENDIX TIT
SPECTAL. CASE. SOLUTIONS .

In section III-U, solutions are found for the velocity cam-
ponents u, v, and w and the pressure gradient E dp/dr and are given
by equations III-51,56, 57 and 58. These solution equations are
quite general; no restrictions were placed on the parameters govern-
ing the flow. These equations are also quite complex; it is not
obvious from these equations what the flow pattern is llke for ex-
treme values of the governing parameters. In this appendix, the
solution equations will be simplified for several of the limiting
values of the governing parameters which were discussed qualata-
tively in section II-4. This will be done to gain a better idea
of the basic nature of the flow pattern existing in the region of
interest for these speclal cases. Also, for the case of very large
Reynolds number, the simplified solution equations may be easily
checked with direct solutlons of the governing equations
I1-75,76 and 77

In several of the special cases considered below, the simpli-
fied solutions may not satisfy all the prescribed boundary condi-
tions. This will occur when the terms containing the radlal or

axial derivatives are negligibly small in the region away from .
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the boundaries.,

In these cases, the simplified solutlions represent

the genéral flow pattern away from the boundaries where the condi-

tions are not satisfied.

Boundary layers will exist on these bound-

aries, allowing the boundary conditions to be satisfied.

a. First consider the simplification that the assumption of neg-

ligibly small magnetic effects gives.
discussed in section II-4.
viscous flow with no magnetic effects.

and 56 now are:
_ 4 sin(2n-1)nz 1, A2
u—;g T e

1 l__n2
[1+ 22"% ]
r

[(2n-1)2-1] J

v = H_A_E sin(2n-1)nz
T 2n-1
w = —-z [cos(2n—1)nz]e{1- ﬂ2+ A2 [e

1

- 21)2 2"
(1~ (i, Ik + o(an-1)2r) [0+ aze
(1-r?)
g _ 1 8, A2 -0
E a = + = + o3 e 2
where 6 = 12s2/Re
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-6(2n-1)2 (3533)

(l-rz)

(1-r2)
2

(1-n?) _
e

This corresponds to case A
The flow pattern is now one of pure

Equations III-51, 57, 58

2
_e(l—g )
e )

A-14

..r)
—2  dn}

A-15

—e(2n 1)2 (1-r?) ]
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These are the solutions which would have been obtained if the
analysis performed in chapters II and IIT was done for the case
RN = 0. These solutions are valid for all Reynolds number
(6 = m2s2/Re) but are more accurate for the large Reynolds number
cases than for the small due to the approximation described in
Appendix II. The solutions for the tangential and radial veloci-
ties A-14 and 15 are plotted in figures 2,4 and 5 for various val-

ues of the parameters 6 and A,

b. Consider now the case of infinite Reynolds number (6 = 0) for
general magnetic parameter. The fluid is now inviscld and the flow
pattern is one of inviscid magnetaohydrodynamic flow. This corres-
ponds to an extreme (since Re = «) example of cases Al, Bl and Cl
discussed in section II-4. In this case, the radial terms in the
solution equations III-51, 57 and 58 are no longer functions of the
summation index n and the summation may be written as a constant
independent of the axial coordinate z. This means that the veloci-
ty profiles are independent of z as would be expected in the invis-

cid case. Equations ITI-51, 56, 57 and 58 now are

=1

u== A-18

2
v =211 - Rua (D1 A-19
r 2

W =0 A~20
dp .1 , RN _ A2 (1-r?)»

E@=mt T 5 [ - Re S5 A-21
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Note that the ablility to satisfy the axial boundary conditions
has been lost in thils simplification. If the original governing
equations II-75, 76 and 77 are solved directly for the case Re = «,
the results are identical to the above equations. This 1s a check
upon the validity of the analysis performed in chapter III.

A rather surprising result is that equation A-19, for the tan-
gential velocity, is identical to equation (15a) in a paper by
McCune and Donaldson [12]; their parameters (J) and (-Su) are
identical to (o) and (RmN) respectively. Their equation was de-
rived for a compressible fluld with the radial viscous terms con-
sldered while the above result was obtalned by considering only the
linearized inertia and magnetic terms for an incampressible fluid.
This is explained by the fact that the compressibility effect does-
n't influence the tangential veloclity and by the fact that the sol-
ution for the tangential velocity is of the form (c;r + c,/r) which

satisfies the radial viscous terms automatically.

b,l. As a special case of case b described above, consider neg-
ligibly small magnetic efrects along with an infinite Reynolds num-
ber; that 1s RmN = 0 and Re = », This case is purely inviscid and
hydrodynamic; the result should be a potential vortex. Equations
A-18, 19, 20 and 21 reduce to

u=-%— | A-22

vV =

ol kg

A-23
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w=0 A-24

dp _ 1+ 22 -
Eer="3 A-25

These are the well known potential vortex equations.

b,2. Coﬁsider one more special case of case b described above;
let the magnetic parameter RmN becomes large. This 1s equivalent
to having a very powerful magnetic field or a very high electrical
conductivity. This corresponds to case Cl discussed in sectopn
II-4, Note that when RmN becomes large, the external current o
becaomes small such that the product RmNa remains finite. 1In this

special case equations A-18, 19 20 and 21 are now

-1 -
u == A-26
v = A/r [1-RmNa Sl%f?)] A-27
w=0 A-28
dp _ 1 = -
ar = E RmN A-29

With the exception of the pressure equation, the above set 1s
identical to those in case b. However, the case under considera-
tion 1s RmN = », In this special case, the equation for the exter-

nal current a, equation III-53, becomes, when multiplied by RmN:
in

—_—E 5
1 1l 1l
s -T

Now the solution for the tangential velocity, A-27, may be written as

RmNa = A-30
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=

r?2 In= +¢2 -1
A e2
V=S — A-31
€

This equation states that the tangential velocity v is equal
to the prescribed value A at the outer cylinder r = 1, diminishes

to zero at radius

- 2
r2 = 28 A-32
and is negative for radius smaller than v 2y ~.1 In fact,
(1~ )/anZ
this solution for v has the property that
1 1
f f vdzdr = 0 A-33

€ ‘0
Since the external current a is proportional to this double inte-
gral, it is very small for large magnetic parameter.

To explain why this extermal current a becomes very small
as the magnetic parameter becomes very large, consider the original
governing equation. For this special case (RmN = Re = «) the tan-

gential momentum equation III-11 essentially reduces to

g—r—_(vr) = A(RmNo)r A-34

This equation states that the effect of the current, caused by the
tangential velocity cutting the magnetic field, in turm causes the
tangential veloclty to decrease as the radius decreases. The
current produced is very small but it 1s just enough that the slow-
ing action continues beyond the point where the tangential velocity

is stagnated. At radlal stations further inward, the current and
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magnetic field act as a hydromagnetic pump, forcing the fluid in

the other direction.

C. Consider now the case for which the Reynolds number is small
(s2/Re is large) with the magnetic parameter RmN unspecified. This
corresponds to cases A3, B3 and C3 discussed in section II-4. In
this case, the inertia terms are negligibly small compared with the
viscous terms; boundary layers exist on the outer radial cylinder.
This case wlll be considered from the simplified governing equations
rather than from the simplified solution equations for several
reasons. The first reason is that for this case, the solution equa-
tions retain the complexity of the radial boundary layers and do
not simplify significantly. The second reason is that, while the
solution equations are valid for small Reynolds number, the error
Introduced by approximations is a maximum for this case.

The governing equations II-75, 76 and 77 simplify to

13 W _
F?I_'(m)." z-0 A-35
2 2
dp . sZ___d%u _ -
a—nﬁdr RermN azZ ~ U A-36
1
2 2
0= ¥ - 2w v A-37

where the momentum equations have been divided by RmN for con-

venience of notation.

The solutions to equations A-35, 36 and 37 satisfying the
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axial no flow boundary conditions are

_ _ 1 (sinh (Ha) - sinh (Haz) - sinh (Ha(l-z)) '

u=- gl 2 A-38

sinh (Ha) - iy (cosh (Ha) - 1)

a
v=0 A-39
w=0 A-lo
dp _ _ RN 1 sinh (Ha) ' A-l1
dr E T sinh (Ha) - ép{cosh(Ha)—l ]
a
where a modified Hartmann number has been introduced:

Ha = —-RefmN A-lip

s
In thils case the large viscous forces cause the tangential
velocity to stagnate while the radial veloclity remalns non-zero
by conservation of radial mass flow. To satlsfy the radial bound-
ary condition at r = 1 on the tangential, and radial, velocity,
boundary layers exist on the outer cylinder. This 1s a case where
boundary layers occur because the Reynolds number is small rather

than the normal situation of large Reynolds number,

c,l. As a special case of case c¢; consider now that the magnetic
parameter is negligibly small compared with the parameter s2/Re.
This corresponds to ordinary slow flow and ls assoclated with a
viscous slowly moving fluid. In this case, the modified Hartmamn

nunber becomes zero and the variables u and dp/dr must be determ-
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ined by repeated application of 1'Hopital's rule. This yields

u = g-z(z - 1) A-U3
v=20 A-L“-‘
w=20 A-us
g’R: 1'_2_ E = §-2—

dr r Re A-146

These solutions may be found directly from equations
A-35, 36 and 37 with the magnetic terms neglected.
If the 1limit s2/Re = = is made in the solution for the pres-

sure gradient III-56, the result is

2 2

This result, when compared with equation A-U6, verifies the conclu-
sion of Appendix II that the maximum error in the radial functions

F(r) and dp/dr is 23% for small Reynolds nunber.

d. This final special case solution is a bit divorced from the
above considerations. It is an attempt to calculate the boundary
layers which exist on the outer radial cylinders for the small
Reynolds number case discussed in case Cl above. Thils analysis
might shed light on the phenomenon of a boundary layer in a low
Reynolds number flow.,

Rather than enter a boundary layer analysis and patch flow

solutions, it 1s easier to solve the equations wilth the radial
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2aand

following analysis is valld for Re << s,

term u

also.

viscous terms included in the entire region of interest. The

If Re = 0(s}) the inertia

au
ar

The governing equations for this case are

%g_r(m)+§!2’:’_ = 0 A-U8
dp _1 23 (L2 2u 82 -
dr s2 ar [r 5;(ru)] + Y4 E Re A-bg
1 3 -1 3 32y A-50
0= 3l 7 o7 (rv)] + 337

These equations are still correct to order 1/s. The newly

introduced radial viscous terms are of order 1/s? compared with

the axial viscous terms except wlthin the radial boundary layers.

a,b,c,

The boundary conditlons to be satisfied are equations II-30-

II-31, II-32-a,b,c.

At z=0and z = 1 u=v=w=290 Ir-30-a,b,c
- u _ 3V _ = -
At z = 1/2 5% 7 w=20 IT-31
Atr=1 u= -1 a
v = A b 1I-32
w= 0 c

In addition, conditions must be prescribed on the inner radial

cylinder since the equations contain two radial derivatives and re-

qulre two radial boundary conditions. It is assumed that the in-
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fluence of the boundary condition at r = 1 are negligible at r = ¢

and that the velocities are Jjust those given in case Cl.

At r=¢ u=% z(z-1) a
v=0 b A-51
w=20 c

Other conditions at the inner cylinder could have been arbitrarily
specified; the analysis is not complicated by this condltion.

The momentum equations A-U49 and 50, are uncoupled and each
is linear. Equation A-50 will be solved first since it is homo-
geneous and points the way for the solution of the non-homogeneous
radial momentum equation A-49.

Following the pattern of the finite sine transform, assume
that the tangential velocity v 1is of the form

v = E \7n(r,n) sin(2n-1)nz A-52

n=1
This assumed form for the tangential velocity satisfies the axial
boundary conditions automatically.

Substitution of the assumed form A-52 into the tangential

momentum equation A-50 yields:

9= -
d Vn . 1 dvn
dr? T

= - Vn(%z + (2n=1)2n2s2) = 0 A-53

This equation is easily solved to yield

v, = a I,[(2n-1)msr] + ynKl[(2n~1)1rsr] A-5Y
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where I, and X, are modified Bessel functions.
The constants @ and Yy, My be determined by use of the rad-

ial boundary conditions II-32-b and A-51-b. This yields

o0 . 0_(r,e)
v = 5&_2 sin(2n-1)rz “n A-55

T h=l 2n-1 @n( 1,¢e)
where
en(x,y)511[(2n—1)nsx]Kl[(2n—1)nsy];Il[(2n—1)ﬂsyJK1[(2n—l)nsx]
A-56
This is the full solutlon for the tangential velocity for
the case of small Reynolds number and no magnetic field. The pro-
file will be near zero for values of radius away from r = 1. Near
r = 1 there is a boundary layer like profile.
Now the radial momentum equation A-U49 will be solved for the
radial velocity in terms of the pressure gradient. Assume a form

for u similar to that assumed for v in equation A-52; let

ﬁn(r,n) sin(2n-1)nz A-57

=
]
3 0~18

=1
Again this form satisfies the axial boundary conditions automatic-
ally.

Substitution of the assumed form A-57 into the radial momen-

tum equation A-L9 yields

- -
T + l-dun -u (l- + (2n-1)272s2) = 4s? dp A-58
dp? r ap n'r2 n(2n-1) dr

where use has been made of the fact that



1 =% ‘f Sin(2n-1)nz

()
=1 2n-1

o]

Equation A-58 has a homogeneous solution identical to equa-
tion A-54, The particular solution is easily found by variation of

parameters; the complete solution is
- 42 : dp
un(r,n)=Il[(2n—1)wsr][vn- - II{IE(Zn—l)nsn]ndn dn]
r
r A-59
2
+ Kl[(zn—l)wsr][mn - é%EH:ITQ f Il[(2n—1)nsn3ng§-dn]

€

where the limits of integration have been chosen such that ﬁn re-—
mains finite as n —— =

The constants of integration Vn and w, are determined by

the boundary conditions II-32-a and A-51-a. This yields the solu-

tion for the radial velocity:

__ 47 sinen-lym Sn(rse)  op(1.r) 12
- T on=l (2n-1) z ,95 9 (1 ,ES enZ(on-1)2

1 1

2en(l,r)

a dp o |
+s §;TT:ET On(n,s)nag-dn - g2 en(n,r)nag-dn}

€ r

A-60

where € 1s defined by equation A-56.

The unknown radial pressure gradient may now be determined

by applying the integral form of the conservation of mass equation

1
f udz = - II-80
0

B
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Substitution of the solubtion for the radial velocity equa-

tion A-60 into equation II-80 yields

<

) _
o @ (l r) o (n,e) 1 © @ (n,r‘)
" DT 8 (1 )an “?1 =i
c dn n=1 - € p n n=1 on~
A-61
e (r,e) + 12 e (1,r)
+ L n° ens(2n~1 n? 72 1.,
s2 &, (2n-D)2 0,(1,¢) 82

Equation A-61 is a combination of a Volterra equation of the
first kind and a Fredholm equation, also of the first kind. It
may be transformed into ocne of the second kind (with the unknown
dp/dr appearing explicitly) by differentiating twice with respect

to r. Once will not suffice since @ (r,r) = 0 from the definition.

The result is
12 1
92:3% (9(1",x=:)-i-€1r 5T G)(ll")+8$2
ar B e (1,e)
n=1 n € P
A-62
® 0 (1,r)e (n,e) 1
e S LI SRUC I
n=l n? r =1 B

Following the method employed in section ITII-2 to find the
solution for the function F(r), the solution for the pressure

gradient dp/dr is

12
dr 121:1=l S §=l Op{Lse)

A-63
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Where

- 2 1 « en(l,r) @n(n,E)
Kslx(r)] = s [e nx(n) L On(l,e) dn A-64
and
1 -
K,[x(r)] = -s2 J nx(n) } 6, (n,r) dn A-65
r n=1

Now the continuity equation A-48 may be solved for the

axial velocity
‘Pn(r',e) l?n(l,r') 12

_ HE'E cos(2n~1)nz
R

= +
4 n=1 (2n-1) t 9,(1,e) Gn(l,a) ens(2n-1)7
1
¥ (1,r)
2. 1 s 2 dp
+ s 5;?1:2) an(n,e) "3n dn - s N ?n(n,r) "3n dn

1
s? dp
T BaDwer [ OlnsT) 3y dn}
r
where the variable @ is defined by equation A-56 and

v (X,y) = 11[(2n—l)HSXJKOE(2n—1)nsy]+Io[(2n—l)wsy]K y[(2n-1)wsx]
A- 67
This solution for the axial velocity satisfies the no flow
conditions on the end plates by virtue of the nature of the pressure
gradient. However, equation A-66 cannot satisfy the radial boundary
conditions I1-32-c and A~5l-c since the governing differential
equations A-48, 49 and 50 do not contain radial derivations of the

axial wvelocity.
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APPENDIX IV

CALCULATION OF POWER AND EFFICIENCY
The magneto hydro dynamic device desc¢ribed and analyzed in
the main text might be employed as a power generator. Therefore,
it is of interest to calculate the performance parameters such as

power and efficiency.

1. Useful Power

The useful power ﬁ* produced by the devlice is the product
of the external current E* times the voltage XE* applied to the ex-
ternal circuit. In non-dimensional quantities thls may be written
as

§ =R T AE A-68

The external current is Jjust equal to 2wia. The parameter
a is given by equation III-53 and the applied voltage AE 1s given
by equation IV-12. Thus the useful power is

A2RmN 4n2 oB b e —e(ln %92

\
H=
-6/2
0

l-e

-8/2
2
[2nofb + (1 + RuN ) 1 1-e

- - 2
In = - RIN—TJ— e ] A-69
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2. Total Power .

The total power expended by the fluid will now be calculated.
In the calculation of the temperature distribution, it was assumed
that the viscous heating terms were negligible campared with the
Joule heating terms., This assumption will remain in force for the
following calculations.

It is also assumed that the heat conduction effects are neg-
ligible. That is, the amount of energy transferred by conduction
is assumed to be much smalier than the amount of energy transferred
by electromagnetic means. In the case of precribed end wall temp-
erature, heat conduction influences only small thermal boundary
layer regions near the two end plates while in the case of adiabatic
end plates, there is no heat conduction considered.

With these assumptions in effect, the energy transfer 1is en-
tirely electromagnetic. The power extracted from the fluid, H¥, is
represented by the dot product of the fluld velocity vector and the
magnetic body force vector:

R b
H¥ = - [ J 2nr* v* . (J¥ x B¥) dz¥ dr#* A-T0
eR ‘0
where the asterisks indicate dimensional variables and the minus
sign is included'to make H* positive for power extracted from the
fluid. The difference between the useful power and the total power
is the ohmic loss of the device which appears as joule heating.

In dimensionless form with H* = Rbpv3H equation A-70 is
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1
H = -27RmN [ f rv + (J x B) dzdr A-T1
€
0

Substituting the expansions of the variables in powers of
1/s from equation II-35 and neglecting terms of order 1/s or

smaller yields

111
H= 2%RmN [e [ r(VOJro - qu¢o) dzdr A-T2
0

By use of equations II-67 and 74 this equation may be written

in terms of veloclty components only:

1 1 1
- 2 2 - Aa. -
H = 27RmN [e Io r[uo + V2 Vo Jovodz + Vo o ] dzdr A-T3

Thils expression for the total power may be found in some
generality by use of equations IIT-51 and 57. However, the result
is very cumbersome and difficult to analyze further. In keeping
with the previous assumptions concerning the size and influence of
the boundary layers, H may be approximated to the same degree of

i dp
accuracy that H, E, , R(r) and 5y wWere:

Aze—e(ln%JZ(Eﬂdﬁb + ln%)

i = ari {ln%- tooa 163 11 1-e2 _g/2]2
[2n0Rb + (RmN=—"—pm- )in= - RN —— e
A-TH4
The first term on the right hand side represents the power
lost by the azimuthal current produced by the radial velocity.

The other term represents power produced both within the fluid and



and in the external clrcuit by the net radial current.

3. Efficiency
The efficiency of the devlice, 8, may now be expressed as the.

4
useful power H divided by the total power H:
N
g = H/H A-75

or, using equations A-69 and A-Tl;

A2 2170'§R'b e~® ]_Tll

g = €

~ =8/2 el 2 - "
[(2noRb + (1+RME=S—) Inl - RnN="5- s%2)iaze ®1(2noRo+1n2) ]

A-T76
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Table 1 Boundary Layer Thickness

The boundary layer thickness, §, 1s defined as the value of

the axial coordinate z for which the tangential velocity, v, is

equal to 99% of its inviscid value.

o=122 [ RN =0 RN = 1 RN = 1
Re a=20 a=1 a= .T4
.0001 00497 00494 .004945
p= g 4 001 01288 01238 .01269
.01 0361 03487 .03557
.1 1288 1239 1271
.0001 Q082 0078 .00816
,001 01928 01894 ,01922
r=.7TY .o1 0588 0573 .0586
.1 1928 1893 .1922
.0001 0096 00942 .00959
.001 .0257 02446 .02558
r=-.219 .01 .0804 .0763 .0801
.1 .257 .27 .2543
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Table 2 Comparison of Boundary Layer Thicknesses

The boundary layer thickness for the non-magnetic case as

glven in Table 1 1s compared at r = .7 with the momentum integral

solution {8] for various values of modified Reynolds number and

Inlet velocity ratio

RmN = 0 r=.7
1252 BLT. from M. I. BLT % M, I, BLT z
Re present analysis| ror A =5 error | for A =10 | error
.0001 | .0082 .00336 59.2 .00245 70.2
.001 .01928 .01055 45.3 00775 59.3
.01 .0588 .0327 by i .025 57.5
1 | .1928 1111 w2,4 |.0828 57.2

BLT = Boundary Layer thlckness
M.I. = Momentum integral
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Table 3

Boundary Layer Mass Flow and
Inviscid Radial Velocity

The boundary layer mass flow is defined as the fraction of

the total input radial mass flow which is carried within the bound-

ary layers.

radial velocity will become positive.

If this fraction becomes greater than one, the inviscid

In this case the vortex

breaks down and the flow patterm becames more complex.

If this

occurs, the analysis 1s not valid and the data is not reliable.

This table 1s camputed for an inlet velocity ratio of ten.

2252
0=—Ffg] RN = 0, a = 0| RaN =1, a = 0 RN = 1, a = .74
BLMF Uy v BLMF Yy BLMF Uy
.0001 | .0143 | -1.1062| .01388 | -1.1066| .01343| -1.1071
.001 |.ou34 | -1.0907| .o420 | -1.002 | .0396 | -1.094
r=-9Y 01 |.1287|-1.0m | .1239 | -1.048 | .1267 | -1.085
1 429 | -0.854 | .15 | -0.8723| .388 | -0.90M
.0001 | .0555 | -1.37 | .otg4 | -1.38 | .o421 | -1.39
001 |.1607)-1.24 | .19 |-1.26 | .1236 | -1.30
r=-.7Y.,01 |.s230|-0.774 | .u64 | -0.865 | .384 | -1.00
.1 h,su +1.26 [1.38 | +0.87 [1.108 | +0.33
0001 | .269 | -3.76 | .218 | -3.98 | .126 | -4.15
.001 |.878 | -o0.64 | .78 |-1.48 | .07 | -3.13
r=.29 01 p.85 pwo.4 |pos |74 h2r | +1.6
.1 7.35 [65.0 6.13 4+50.0 3.50 +25.0

BIMF = Boundary layer mass flow

u

4y = inviscld radlial velocity
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Table 4 Heat Transfer at the End Plates
The heat transfer at the end plates, q, is defined as posi-
tive for heat flowing from the fluid to the end plates. If the end

plates are insulated, the heat transfer is zero.

RaNEc(1l + 2242) = D

1 0 0 .00519 | .00503{ .0519 | .0503
.5 245 1 232 |.250 .238 .296 .283
.2 .391 ) .372 |.396 . 377 443 423

2}
I
-3

.2 .385 | .354 |.403 371 .560 .520

1 0 0 .0787 L0748 | .787 <TU8
5 .238 | .211 |.316 .286 |1.025 .952

T
Tp.
1 o 0 0174 | .0165 | .17s | .166
5 | .om | 221 |.258 238 | 5 | .387

.2 .380 | .337 |.459 412 11.167 1.086
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