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Lou CeRN;rSG 
'IIIE SERIES OF WORKS BY R. VERNIC ON 

THE REGULARIZATION ANI) THE PERIODICAL SOLUTIONS OF THE 
1)flOBLEM OF TlIKEE BODIES 

Byulleten' Teoreticheskoy Astronomii (BITA) 

. 1956. 
by G. A. Merman 

.. 

In a series of his works (Vernik, 1952; VerniC, 1953a; Vernic 1953; 
Vernit, 1954; Vernik, 1955) ,  the author asserts that he succeeded in finding 
the transformation of the independent variable, which fully eliminates all 
the singular points of the solution of the three body problem over the entire 
complex plane. Besides, the author obtains a paradoxical result, consisting 
in the absence in the problem of three bodies of solutions, aside from the 
Lagrange. 
the present paper. 

The inconsistency of both these assertions by Vernik is shown in 

1. Vernid formulates the following theorem (Vernik, 1953a, p. 86, Theorem 
5): "Transformation of the Sundman-type independent time variable 

dt = S (r) du, 

where S (r) = S ( T o ,  rl, r2) is a symmetrical homogenous first power function 
of all distances, simultaneously regularizing all double and triple collisions 
in the problem of three bodies". 

This transformation is a generalization of another Vernic transformation 

d t  = R du, 

2 2  

where R2= z, which must regularize the triple collisions. 
i-0 

In order to demonstrate the last assertion, the author takes advantage of 
the limit relations obtained by Sundman in 1907 for  triple real collisions: 

I- 
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where E + 0 during the approaching of the triple collision. From these 
relations it follows 

With reference to these limit relations the author writes (Vernii, 1953a, p.84) : 

m r  

Having shown by which method one may find 

the author then reaches the conclusion that R, as well as all other unknowns 
of the problem of three bodies (coordinates and velocities) are represented 
by series, disposed by whole positive powers of - u ot t@. 

only to real triple collisions, inasmuch as the limit Sundman relations are 
obtained only for them. Further, it follows from these relations only that 

Note in reference to thisdemonstration, first of all, that all this refers 

2 
/3 R = c , + E ) ~  , 

but not, by any means, the expansion of R by whole powers t1’3and, so much the 
more, the regularization of the triple real collision. In order to establish 
the legality (validity) of coordinate expansion by whole powers of u, one ought 
to consider the differential equations of motion transformed to a new indepen- 
dent variable, In vectorial form these equations may be written in the follow- 
ing form: 

2 

After transition to the variable - u they vi11 take the form: 

The iimit Sundman relations show that at time of triple collision the 

* The author derives this formula without demonstration, though it is not 
evident, for it cannnot be obtained by simple differentiation of formula 

1 

r4 = I?( i-q 4 ‘# 
1=0 since the derivative from an infinitely small quantity must 

However, the formula for i?i , sought for, not necessarily be infinitely small. 
may be obtained with the aid of the 1907 Sundman formula Rid-Rr,=r@# whence 
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R coefficients of these equations d E * R ,  I, (v=o, 1, 2) approach specific limits. 
If it could be demonstrated that vectors 
approach specific limits, one might assert on th&" basis of the Cauchy Picard 
theorem the existence of a solution ?" (u) , regular at u = 0 ,  whence the validity 
of the expansion by whole positive powers of t13 would be stemming. 

For certain particular types of motions, and namely for Lagrange motions, 
the above-indicated properties are hown a riori, for in these cases the problem 
of three bodies degenerates into Zproblems -+- o two bodies and the triple collisions 
disintegrate into double collisions, for which these properties have been esta- 
blished by Sundman. But in the general case it is impossi'iie to establish these 
properties, since for the problem of three bodies the coordinates in the vicinity 
of the triple collision are represented by series, disposed by irrational powers 
these being algebraic mass functions (Wintner, 1941). This means that if we 
attempt to formally satisfy the differential equations by series of the form 

f i t , ,  3 (direction cosines) also 

we would obtain for the factors at) particular values corresponding to Lagrange 
motions (i. e. to the problem of two bodies at e 5 I>, and, therefore, its gene- 
ralization too, that is, the above-mentioned theorem 5 ,  is valid only for Lagrange 
motions, and also for such particular values of mass ratios, for which the above 
algebraic mass functions are reduced to rational numbers of the form n/3. 

VerniC further asserts that the independent variable u, defined in the theo- 

The real collisions 
rem 5, regularizes also all the imaginary collisions of thg problem of three bodies. 
The author's line of reasonings is approximately as follows, 
may be characterized as taking place in one and the mne point of space, for exam- 
ple, at coordinate origin if the latter is placed at one of the moving points. 
For imaginary collisions, this may not take place either, €or, the expression 
r2 = x2 + y2 may, for example, contrary to the real case, become zero not only 
at x = y = 0 (collisions of first k$nd),  but also for. x = iy # 0 (collisions of 
2nd kind). 
structure does not differ in essence from the real case, and since this last one 
is already considered by Vernie as regularized €or double as well as triple colli- 
sions, the imaginary collision of 1st kind must, by the sale token, be consider- 
ed as regularized. 
may be transformed into a collision of 1st kind by simple transformation of coor- 
dinates, and namely, by transition to the inertial system by way of transfer of 
the origin into the system's center of gravity. 

This final result may not be correct, already because the demonstration of 
the regularization of triple real collisions is inconsistent, as we have already 
seen. But the author's assertion of the possibility of annihilation of imagina- 
ry collisions of 2nd kind by way of transition to the inertial system of coordi- 
nates is also incorrect. 

As to the imaginary collisions of first kind, their analyticial 

Further, the author asserts that any collision of 2nd kind 

Indeed, here attempt is d e  first of all to conduct 

6 * continued from the preceding page. . , (hence) j, '2 R+ - 4;R . R 
Eliminating R with the aid of the limit value for mi, we shall find ;4- 
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the demonstration fo r  the pi-chlem of two bodies and then t o  extend this r e su l t  
t o  Lagrange motions, taking advantage of the f a c t  tha t  i n  the l a t t e r  t h e  problem 
of three bodies degenerates in to  several problems of two bodies, arid f i n a l l y ,  t o  
derive therefrom, as  a corol lary,  the general case of co l l i s ions ,  on the basis  of 
the case,  whereby for  double col l is ions we have two problems of two bodies a t  
l i m i t ,  whereas i n  case of t r i p l e  col l is ions we have the Lagrange configuration. 

Let us analyze these reasonings, s t a r t i ng  with the l a s t  one. As was shown 
by Sundman, the Lagrange configurations (equi la teral  t r iangle  or  co l l inear  mo- 
t ions with constant distance ra t io)  are r ea l ly  limit f o r  t r i p l e  co l l i s ions .  
However, the Sunclman demonstration refers  only t o  the r ea l  motion. 
we are  interested here by imaginary t r i p l e  co l l i s ions ,  the Lagrange 
t ions  have with them no re la t ion  of  any kind. 

Inasmuch a s  
configura- 

Further,  as  we s h a l l  see below, the author 's  demonstration u t i l i z e s  f o r  the 
problem of two bodies essent ia l ly  the case, when a f t e r  t ransferr ing the or ig in  
of coordinates t o  the center of gravity,  the longitudes of moving bodies d i f f e r  
from one another by 180'. In the case of Lagrange motions t h i s  w i l l  no longer 
take place,  for  there the longitude difference w i l l  depend upon the mass r a t i o  
of three bodies (thus,  for  example, for equal masses it w i l l  120'). 

Final ly ,  the s t a r t i n g  point of this chain of reasonings, the demonstration 
fo r  the problem of two bodies, i s  also based upon a misunderstanding. 

Indeed, the author writes i n  the problem of two bodies the t ra jec tory  equa- 
t ions a f t e r  t ransferr ing the  or igin of the coordinates t o  the system's center of 
gravi ty  as follows (Vernic, 1953a, Theorem 13, pp 95-96): 

P' 1 '= 1 -t- b C O S "  x' = r' cos v ,  . y'= /s in v ,  
#, \ ' 

x ~ ~ = - r l ' c o s v ,  y"=-r"sinu, r"= 1 - c cos v 

whereupon the sign (-) i n  the l a s t  formula is  probably determined by the circum- 
stance tha t  the center of gravity i s  the left-hand focus of the e l l i p s e  descris 
bed by the second body. 
= 0 .  
t h a t  any co l l i s ion ,  whether r ea l  o r  imaginary, is  a co l l i s ion  of 1st kind. 
the condition 

The condition f o r  co l l i s ion  consis ts  i n  t h a t  ro E r h  + r; = 
Hence we obtain -rl = rb and consequently, xb = x;, yh = yy, which means 

From 

(p' -i- p") - (p' - p") 6 COS VO - -0 ri 4 r:= 1 - b2 cos2 vo 
the author obtains 

r;- PI- P" 2 - -r i ,  
However, a l l  t h i s  has been computed erroneously. Note f irst  of a l l  t ha t  for -  

mula (2)  is  incorrect .  

In r e a l i t y  if r ' ,  u t ,  r", u" are the polar coordinates of two bodies and i f  
we take t o r  the polar axis the common major axis of both e l l i p s e s ,  w e  may write 
the relat ionship between the Descartes and polar coordinates 
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and the equations of their trajectories: 

Taking into account that both bodies are always located 011 one straight line 
on either side from coordinate origin, we iiiay write 

u' = v, u" = v + 180°, 

where v - is the angle, counted from perihelion in both ellipses. Then we obtain 

P" P' r'' = x' = r' cos v, x"= -r" cos v, 
l - t c c o s v  ' rr = 

y'= r'sin v, y" = -r" sin v, I +  LCOSV ' 

The condition for collision consists indeed i n  that rb + r'I, = 0, whence -r'; =rb . 
However, hence it does not follow yet that x; = x'h and yb  = y't, , since now 
rb = r'b = 0, while cos vo and sin v become infinite, so that xb , yb , x! , y'i 
acquire then an indeterminate form of the type 0, m yhich must be evaluated. 
into account that 

Taking 

we have 

pl cos v x"= - 
1 4 E C O S V  ' x" = - p" cos  v 

1 -t €COS w ' 

Ilirecting C O S V +  03, we find: 

whence it may be seen that xb# xi, yi #y," 
imaginary collisions of second kind. 

regularizes onlydouble collisions, just as does the Sundman transformation. 

(Theorem 10, pp.259-263). "The Lagrange solutions are the unique periodical solu- 
tions of the general problem of three bodies". 

i .e., we are again confronted with 

Therefore, we may only assert that the Vernid transformation dt = S (ri)du 

2. In his work 1953b) VerniE formulates the following fundamental theorem 
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The author’s deiiioristratiuri consists i n  the following. An a rb i t r a ry  periodic 
solut ion of the problem of three bodies i s  considered with period 1 without col-  
l i s ions .  11‘ a new independent variable u - is  introduced according t o  formula 

d U  
v 

d t  = -, 
where V is a potent ia l  function, our solution w i l l  obviously be a l so  periodical 
by u w i t h  a cer ta in  period w, whereupon T = T (u). 
so lu t ion  of the problem of three bodies, must s a t i s f y  the Lagrange equation 

Our solution, as any other 

where J is  the moment of i n e r t i a  and h i s  the k ine t ic  energy constant. I f  we  
pass i n  t h i s  equation t o  the new VernTk var iable ,  it w i l l  be wri t ten i n  the form: 

In our periodical solut ion V may be considered as a known function: V = V (u) .  
Then the Lagrange equation w i l l  acquire the form of a l i nea r  inhomogenous equa- 
t i on  of second order i n  se l f -ad jo in t  form which must admit the per iodical  solu- 
t ion .  
problem, Vernic reaches the following necessary condition of per iodici ty:  

Considering the finding of th i s  periodical solut ion as a boundary value 

w + 2hT (u) = 0” (3) 

The author fur ther  asserts t h a t ,  u t i l i z ing  t h i s  equation, one may demonstrate 
t ha t  T (u) is an odd function, and V (u) and J (u) a re  even functions of u. 
The author demonstrates, s t i l l  furthef, t ha t  i n  t h i s  condition, and proviaed we 
assume f o r  the independent variable , 
t h i s  new variable in  the neighborhood of  zero, i. e . ,  f o r  the periodical solu- 
t i on  under consideration the following expansion w i l l  take place: 

J w i l l  be a holomorphic function of 

m 

f = - )7 0, ($. 
V Z O  

1 Subsequently the case is u t i l i zed ,  w l i t : ~ ~ u y  J and - are  homogenous functions of 
mutual distances By the Euler theorem 
on homogenous functions we obtain: 

respectively of second and first’power. 

whence 2a,= YO,, ( ~ - 2 ) a , = O  ; hence it follows tha t  f o r  v f  2 a, = 0 and, 
theref ore 

- yz. 
I t  is easy t o  see tha t  fo r  the Lagrange solutions (ro = r l  = r2 = r )  t h i s  r@a- 
t i on  is f u l f i l l e d :  

J -  3 

* [see the infrapaginal note next page]. 
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Apparently, t h i s  re la t ion i s  f u l f i l l e d  only fo r  the Lagrarige solutions,  though 
the author f a i l s  t o  demonstrate i t .  But t h i s  circumstance i s  not so essent ia l ,  
f o r  the  author 's  theorem would not lose any of i t s  importance i f  i n  i t s  formula- 
t ion  the  words "Lagrange solutions" were replaced by "~olu t io i i s  , f o r  which 
J * V 2  E C O I i S t . " .  

The legitimacy 01' tlie above-written expansion i s  derived by the author 
from the  monotonic and 
a r e a l  function of L, which he tends t o  es tab l i sh  beforehand. Let us note i n  
this c ~ m e c t i z n  tha t  t!iese properties ? r e  by no mems sufficie1it fo r  the holo- 
morphic s t a t e .  
valued over the en t i r e  real axis, but it s t i l l  is not holomorphic i n  the neighbor- 
hood of zero. Ilowever, i t  is qui te  probable tha t  i n  copditions of function's T(u) 
oddity the expansion of  .T by whole posit ive powers of - rea l ly  takes place. 
Indeed, by vir tue of absence of  t r i p l e  co l l i s ions  (the 'double co l l i s ions  are  
regularized by the transfornation d t  = du/V) a l l  the three functions a re  holomor- 
phic by u. Because of oddity of function T (u) ,  the  l a t t e r  is  represented by 
MacLaurin ser ies  containing only the odd powers of u. 
of  T (u) w i l l  include i n  i t s  expansion only even poGers of u ,  I tha t  i s ,  whole 
powers of u* . 

unanibi~~ous properties of the quantity J ,  considered as 
V 

Thus, for  example, t h e  l-unction f (x) = monotonic and s ingle-  

Then 1 / V ,  as a derivative 

I f  only 

(and t h i s  is  the only point which we s t i l l  would be compelled t o  demonstrate), 
t h i s  series could be tranformed and represent u2 
pos i t ive  powers of 1 /V .  

and func t ionfs  1 / V  par i ty ,  J w i l l  be represented i n  the form of a series, contain- 
ing 
t h a t  

i n  the form of series by whole 
On the other hand, on the strength of Lagrange equation, 

only even powers of u ,  - i f  w e  choose the i n i t i a l  moment t = 0 i n  such a way 

which i s  always possible,  since function J ,  as  is w e l l  known, always has a t  least 
one minimum. 
of u2 ,  we sha l l  a r r ive  a t  the represent?+inn f o r  J sought f o r .  

Substi tuting the above-obtained expression i n  t h i s  series instead 

But i n  the demonstration of function's T (u) oddity, brought up by the  author, 
there is  an e r ro r  which it is no longer possible t o  correct.  This demonstration 

* (From the preceding page). The presence of such a condition can be percei- 
ved from the following, Let us integrate the Lagrange equation from t = 0 t o  t = T: 

T w 

1 
a - u' ( r )  - J (011 = Vdr 4- 2hT- J du 4- 2h T=o+2hT. 

0 0 

By v i r tue  of per iodici ty  J ' (T)  = J ' (O) ,  whence follows condition ( 3 ) .  
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, 

consists in the following. 
Then, by virtue of determination of the variable - u, 

Lt:t us compose a function q, (u) = T (u) + T(--u). 

Because of the periodicity condition ( 3 )  
we have 

T (0) = 0, whence J, (0) = 0. Further * I,,&= 0. 

It is easy to see that J = T(u) is a partial solution of a homogenous linear 
equation of second order corressonding to the Lagrange e uation 9 

The author further states: ' I  as a linear combination of partial solutions T(u), 
T(--u) ...., But since this func- 
tion and its first derivative satisfy the initial zero conditions, J, (u) 
whence the oddity of T(u) precisely follows. However, though T(u) is indeed a 
solution of this equation, the same cannot be asserted abaut T(-u), for that 
effect it would be necessary for the function V(u), as a coefficient of that 
equation, to be even, i. e,, the author utilizes here precisely what ought to 
be demonstrated. 

(u) is also . . .  a solution of that equation". 
0 ,  

Therefore, the Vernid theorem, formulated in his work of 1953 (b), may not 
be considered as demonstrated by the author. But hence it does not obviously fol: 
low that the theorem itself is incorrect. 
speaking in favor of the existence of such a theorem, that after Lagrange no one 
had constructed concrete periodical solutions in the general problem of three 
bodies. In respect to the generally well known periodical solutions by Poincare 
the author notes that periodical solutions were really constructed by the Poincare 
and also by numerical methods (Copenhagen school) only in the limited three-body 
problem, and, at the same time, only in a rotating coordinate system. But, at 
passage to the inertial system of coordinates these solutions lose their periodi- 
city (VerniC, 1952). Leaving these author's doubts aside, namely concerning the 
existence of Poincare periodical solutions, let us note, however, that the latters' 
existence may be easily and with sufficient simplicity established in the limited 
three-body problem; they will remain as such even after transition to the inertial 
system of coordinates, basing ourselves upon the following Lyapunov theorem (1950) : 

Vernit himself points to the fact 

If there exists a canonical system 

. m  where 
H= 2N"I 

m=2 

(I-&, being the m-th power mode from x1 ,..., Xn; yl, ..., yn with constant coeffi- 
cients) , to each pair of purely imaginary conjugated roots *xki of the character- 
istic equation 

. ./. . 
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I . . . . . . . . . . =o 

AI' (whereupon ~7 is not equal to either a whole number or zero) 
family of periodical solutions dependent ontwo arbitrary constants c and to, 
whereupon the period is a continuous (and even holomorphic) function of c 
in the neighborhood of c = 0. If we introduce in a plane limited tfireeaody 
problem in. arotatiiig system of coordinates as new unknown functions the dif- 
ferences between the old unknown ones and the coordinates of triangular libra- 
tion points, we shall obtain exactly a Lyapunov system, whereupon the characteris- 
tic equation will have a pair of purely imaginary and a pair of real roots, de- 
pendent on mass ratios. By virtue of continuous dependence on c of the period 
of the thus obtained solutions, there will exist an innumerablemultiplicity of 
solutions, of which the period will be commensurate with the rotation period of 
the coordinate system. This is why such solutions will remain periodical even 
after transition to the inertial system of coordinates. The existence of analo- 
gous periodical solutions in the neighborhood of the Lagrange solutions may also 
be established in the general three-body problem, The difference from the limit- 
ed problem will only consist in that the corresponding characteristic equation - 
will have zero roots, which in the given case is an obstacle for the applicabi- 
lity of the Lyapunov theorem, for with the aid of area integrals the order of the 
system may be lowered by as many units as there are zero roots. After that the 
problem will in no way differ from the case analyzed. 
sidered as demonstrated that the assertion, brought forth by the author about 
the nonexistence of periodical solutions of the three-body problem, other than the 
Lagrange solutions, is erroneous. 

corresponds a 

Therefore, it may be con- 
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