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Con Cermue ,
&=PROPAS THE SERIES OF WORKS BY R. VERNIC ON

THE REGULARIZATION AND THE PERIODICAL SOLUTIONS OF THE
PROBLEM OF THREE BODIES

Byulleten' Teoreticheskoy Astronomii (BITA) | by G. A. Merman
\J &QITtuLé, No.6 (70), pp.408-415,
Mﬁscow-UTSTS*R. 1956.

SUMMARY

In a series of his works (Verni¢, 1952; Verni¢, 1953a; Vernic 1953;
Verni¢, 1954; Verni&, 1955), the author asserts that he succeeded in finding
the transformation of the independent variable, which fully eliminates all
the singular points of the solution of the three body problem over the entire
complex plane. Besides, the author obtains a paradoxical result, consisting
in the absence in the problem of three bodies of solutions, aside from the
Lagrange. The inconsistency of both these assertions by Verni¢ is shown in
the present paper.

* %

1. Verni¢ formulates the following theorem (Vernic, 1953a, p. 86, Theorem
5): "Transformation of the Sundman-type independent time variable

dt = S (r) du,

where S (r) = S (ry, 1y, 1,) is a symmetrical homogenous first power function
of all distances, simultaneously regularizing all double and triple collisions
in the problem of three bodies'.

This transformation is a generalization of another Vernic transformation

dt = R du,

a

where R?= ﬁ%, which must regularize the triple collisions.
=0
In order to demonstrate the last assertion, the author takes advantage of
the limit relations obtained by Sundman in 1907 for triple real collisions:
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where ¢ -» 0 during the approaching of the triple collision. From these
relations it follows

Vrii=— V2l +¢.% (1)

With reference to these limit relations the author writes (Vernié, 1953a, p.84):
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Having shown by which method one may find
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the author then reaches the conclusion that R, as well as all other unknowns
of the problem of three bodies (coordinates and velocities) are represented
by series, disposed by whole positive powers of u ot t

Note in reference to thisdemonstration, first of all, that all this refers
only to real triple collisions, inasmuch as the limit Sundman relations are
obtained only for them. Further, it follows from these relations only that

2
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R=C2+e)t3

but not, by any means, the expansion of R by whole powers ty3and, so much the
more, the regularization of the triple real collision. In order to establish
the legallty (validity) of coordinate expansion by whole powers of u, one ought
to consider the differential equations of motion transformed to a new indepen~
dent variable. In vectorial form these equations may be written in the follow-
ing form:

ﬁ?: M——+m E-—— (v:..—Q, 1, 2).

After transition to the variable u they will take the form:

2 WRRVRA—M(E) 2 om D)L o=0,1,2).
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The 1imit Sundman relations show that at time of triple collision the

* The author derives this formula without demonstration, though it is not
evident, for it cannnot be obtained by simple differentiation of formula
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i=0 since the derivative from an infinitely small quantity must
not necessarily be infinitely small. However, the formula for r: , sought for,

may be obtained with the aid of the 1907 Sundman formula R/ —Rr=sVR, whence
/.




coefficients of these equations VR-R, ';1i (v=0, 1, 2) approach specific limits.

If it could be demonstrated that vectors VR4, £ (direction cosines) also
approach specific limits, one might assert on thé' basis of the Cauchy Picard
theorem the existence of a solution r, (u), regular at u = 0, whence the validity

of the expansion by whole positive powers of t'3 would be stemming.

For certain particular types of motions, and namely for Lagrange motions,
the above-indicated properties are known a priori, for in these cases the problem
of three bodies degenerates into 2problems of two bodies and the triple collisions
disintegrate into double collisions, for which these properties have been esta-
blished by Sundman. But in the general case it is impossible to establish these
properties, since for the problem of three bodies the coordinates in the vicinity
of the triple collision are represented by series, disposed by irrational powers
these being algebraic mass functions (Wintner, 1941), This means that if we
attempt to formally satisfy the differential equations by series of the form

P=3a? (v=0,1,2),

we would obtain for the factors & particular values corresponding to Lagrange
motions (i. e. to the probiem of two bodies at e = 1), and, therefore, its gene-
ralization too, that is, the above-mentioned theorem 5, is valid only for Lagrange
motions, and also for such particular values of mass ratios, for which the above
algebraic mass functions are reduced to rational numbers of the form n/3.

Vernié¢ further asserts that the independent variable u, defined in the theo-
rem 5, regularizes also all the imaginary collisions of the problem of three bodies.
The author's line of reasonings is approximately as follows. The real collisions
may be characterized as taking place in one and the same point of space, for exam-
ple, at coordinate origin if the latter is placed at one of the moving points.

For imaginary collisions, this may not take place either, for, the expression

r? = x2 + y? may, for example, contrary to the real case, become zero not only
at x =y = 0 (collisions of first .kind), but also for x = iy # 0 (collisions of
2nd kind). As to the imaginary collisions of first kind, their analyticial
structure does not differ in essence from the real case, and since this last one
is already considered by Vernié as regularized for double as well as triple colli-
sions, the imaginary collision of 1st kind must, by the same token, be consider-
ed as regularized. Further, the author asserts that any collision of 2nd kind
may be transformed into a collision of 1st kind by simple transformation of coor-
dinates, and namely, by transition to the inertial system by way of transfer of
the origin into the system's center of gravity.

This final result may not be correct, already because the demonstration of
the regularization of triple real collisions is inconsistent, as we have already
seen. But the author's assertion of the possibility of annihilation of imagina-
Ty collisions of 2nd kind by way of transition to the inertial system of coordi-
nates is also incorrect. Indeed, here attempt is made first of all to conduct

* ... continued from the preceding page... (whence) h-'-"k‘- R+ 7;-5.- .

Eliminating R with the aid of the limit value for Y R R, we shall find r=

wje

r 1) formula (1)
which, by virtue of 7™ ZF{ . +~sR=1 gives/ -
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the demonstration for the problem of two bodies and then to extend this result

to Lagrange motions, taking advantage of the fact that in the latter the problem
of three bodies degenerates into several problems of two bodies, and finally, to
derive therefrom, as a corollary, the general case of collisions, on the basis of
the case, whereby for double collisions we have two problems of two bodies at
limit, whereas in case of triple collisions we have the Lagrange configuration.

Let us analyze these reasonings, starting with the last one. As was shown
by Sundman, the Lagrange configurations (equilateral triangle or collinear mo-
tions with constant distance ratio) are really limit for triple collisions.
However, the Sundman demonstration refers only to the real motion. Inasmuch as
we are interested here by imaginary triple collisions, the Lagrange configura-
tions have with them no relation of any kind.

Further, as we shall see below, the author's demonstration utilizes for the
problem of two bodies essentially the case, when after transferring the origin
of coordinates to the center of gravity, the longitudes of moving bodies differ
from one another by 180°. 1In the case of Lagrange motions this will no longer
take place, for there the longitude difference will depend upon the mass ratio
of three bodies (thus, for example, for equal masses it will 120°).

Finally, the starting point of this chain of reasonings, the demonstration
for the problem of two bodies, is also based upon a misunderstanding.

Indeed, the author writes in the problem of two bodies the trajectory equa-
tions after transferring the origin of the coordinates to the system's center of
gravity as follows (Vernic, 1953a, Theorem 13, pp 95-96):

’
A
— .
X =r'coswv, y'=rsinv, "’ 1_,_”05,, l} 2)
’
x"=-—r"cosv, y'=—r"sinv, r—l_‘cosv |

whereupon the sign (—) in the last formula is probably determined by the circum-
stance that the center of gravity is the left-hand focus of the ellipse descri-
bed by the second body. The condition for C0111510n consists in that ry=ry + 1)
= 0. Hence we obtain —r{ = r{ and consequently, x§ = Xjj, Yq = Yq» which means

that any collision, whether real or imaginary, is a colllslon of 1st kind. From

the condition

P PP —p")ecosvy __ g
ry+rg= 1—s2costyp
the author obtains
'_....p'—P"_ ” '__P""‘P”___ " T
rny=-—jyg =TTy Xy == 96— % Jo=Y,-

However, all this has been computed erroneously. Note first of all that for-
mula (2) is incorrect.

In reality if r', u', ", u" are the polar coordinates of two bodies and if
we take tor the polar ax1s the common major axis of both ellipses, we may write
the relationship between the Descartes and polar coordinates




x'=r'cosu’, x"=r"cos u’

| — : / .
y=r'sind, y'=r"sinu"

and the equations of their trajectories:

’ ,r
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- d — e
1+-ccosu’ T 1—¢cosu

Taking into account that both bodies are always located on one straight line
on either side from coordinate origin, we may write

u'' = v, u"'=v+ 180°,
where v is the angle, counted from perihelion in both ellipses. Then we obtain

’
xX'=r'cosvu, X'"=—r"cosv, , ’ i

S S
y'=r'sinv, y'=—r"sinv, 7 1+ ccosv ’ d l-+¢cosv
The condition for collision consists indeed in that rj + r'y = 0, whence —1r'y =1}, .

However, hence it does not follow yet that x} = x'§ and y}j = y'y , since now

rly = 'y = 0, while cos v, and sin v, become infinite, so that xj , y{ , X3 , ¥
acquire then an indeterminate form o% the type 0, which must be evaluated. Taking
into account that

. T . 1
sin v= #V1—costv = 11005‘01/1—' 5
! Cos“ v

we have

NV p cosw N p’ cosv
1-+¢ccosv 1-+c¢cosv

. .
oy dPiCOSV l/ 1 w___  ip'coswv 1
y 1 costo _y T F Ta-ecosv ,1 cosv

1+46cosv

Directing cosv—> o, we find:

. .B: u___'____.&
yo_—:‘_."l k) yo—+l .

whence it may be seen that X,%X;, yo¥y, 1i.e., we are again confronted with
imaginary collisions of second kind.

Therefore, we may only assert that the Vernic transformation dt =S (ri)du
regularizes only double collisions, just as does the Sundman transformation.

2. In his work 1953b) Vernié formulates the following fundamental theorem
(Theorem 10, pp.259-263). "The Lagrange solutions are the unique periodical solu-
tions of the general problem of three bodies'.




The author's demonstration consists in the following. An arbitrary periodic
solution of the problem of three bodies is considered with period T without col-
lisions. [f a new independent variable u is introduced according to formula

at = 44,
\/
where V is a potential function, our solution will obviously be also periodical
by u with a certain period w, whereupon T =T (w). Our solution, as any other
solution of the problem of three bodies, must satisfy the Lagrange equation

dij

;.;2" =2V 4./1i

where J is the moment of inertia and h is the kinetic energy constant. If we
pass in this equation to the new Verni¢ variable, it will be written in the form:

(Vi =2(1+%).

In our periodical solution V may be considered as a known function: V =V (u).
Then the Lagrange equation will acquire the form of a linear inhomogenous equa-
tion of second order in self-adjoint form which must admit the periodical solu-
tion. Considering the finding of this periodical solution as a boundary value
problem, Verni¢ reaches the following necessary condition of periodicity:

w + 2hT (w) = 0% (3)

The author further asserts that, utilizing this equation, one may demonstrate
that T (u) is an odd function, and V (u) and J (u) are even functions of u.

The author demonstrates, still further, that in this condition, and provided we
assume for the independent variable 5+ , J will be a holomorphic function of
this new variable in the neighborhood of zero, i. e., for the periodical solu-
tion under consideration the following expansion will take place:

/=3 (l).

i S . 1 .
Subsequently the case is utilized, wheievy J and — are homogenous functions of
mutual distances respectively of second and first' power. By the Euler theorem
on homogenous functions we obtain:
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whence 2a,=va,, (v—2)a,=0 ; hence it follows that forv# 2 a, = 0 and,
therefore as
=75

It is easy to see that for the Lagrange solutions (rg = r; = r, = r) this rgla-
tion is fulfilled:

* [see the infrapaginai note next page].




Apparently, this relation is fulfilled only for the Lagrange solutions, though
the author fails to demonstrate it. But this circumstance is not so essential,
for the author's theorem would not lose any of its importance i{ in its formula-
tion the words ''Lagrange solutions' were replaced by '"solutions, for which

J V2 = const.".

The legitimacy of the above-written expansion is derived by the author
from the monotonic and unambiguous properties of the quantity J, considered as
a real function of -k, which he tends to establish beforehand. Let us note in
this connection that' these properties are by no means sufficient for the holo-
morphic state. Thus, for example, the function f (x) = /X  monotonic and single-
valued over the entire real axis, but it still is not holomorphic in the neighbor-
hood of zero. lowever, it is quite probable that in cquitions of function's T(u)
oddity the expansion of .J by whole positive powers of -~ really takes place.
Indeed, by virtue of absence of triple collisions (the ¥ double collisions are
regularized by the transfornation dt = du/V) all the three functions are holomor-
phic by u. Because of oddity of function T (u), the latter is represented by
MacLaurin series containing only the odd powers of u. Then 1/V, as a derivative
of T (u) will include in its expansion only even powers of u, that is, whole
powers of u2. If only h
2 {
21‘_1!1_2 (%)Eu:O :74: O
(and this is the only point which we still would be compelled to demonstrate),
this series could be tranformed and represent u? in the form of series by whole
positive powers of 1/V. On the other hand, on the strength of Lagrange equation,

and function's 1/V parity, J will be represented in the form of a series, contain-
ing only even powers of u, if we choose the initial moment t = 0 in such a way
that -

dJ
aaWu = =0

which is always possible, since function J, as is well known, always has at least
one minimum. Substituting the above-obtained expression in this series instead
of u?, we shall arrive at the representation for J sought for.

But in the demonstration of function's T (u) oddity, brought up by the author,
there is an error which it is no longer possible to correct. This demonstration

* (From the preceding page). The presence of such a condition can be percei-
ved from the following, Let us integrate the Lagrange equation from t = 0 to t = T:

by w
LU=y @)= Vdt+2hT= [ du 20 T=w--2AT.
"0 °

By virtue of periodicity J'(T) = J'(0), whence follows condition (3).



consists in the following. Let us compose a function y (u) = T (u) + T(--u).
Then, by virtue of determination of the variable u,

dpiuy 1 - 1
du T V(u) V(—u)

Because of the periodicity condition (3) T (0) = 0, whence v (0) = 0. Further
we have

dY {u) =0

du u=0_. :
It is easy to see that J = T(u) is a partial solution of a homogenous linear
equation of second order corressonding to the Lagrange eqyation

a4\ _g

EANE”
The author further states: ' as a linear combination of partial solutions T(u),
T(--u)...., (u) is also... a solution of that equation'. But since this func-

tion and its first derivative satisfy the initial zero conditions, ¥ (u) =0,
whence the oddity of T(u) precisely follows. However, though T(u) is indeed a
solution of this equation, the same cannot be asserted about T(—u), for that
effect it would be necessary for the function V(u), as a coefficient of that
equation, to be even, i. e., the author utilizes here precisely what ought to
be demonstrated.

Therefore, the Vernic¢ theorem, formulated in his work of 1953 (b), may not
be considered as demonstrated by the author. But hence it does not obviously fol-
low that the theorem itself is incorrect. Verni¢ himself points to the fact
speaking in favor of the existence of such a theorem, that after Lagrange no one
had constructed concrete periodical solutions in the general problem of three
bodies. In respect to the generally well known periodical solutions by Poincare
the author notes that periodical solutions were really constructed by the Poincare
and also by numerical methods (Copenhagen school) only in the limited three-body
problem, and, at the same time, only in a rotating coordinate system. But, at
passage to the inertial system of coordinates these solutions lose their periodi-
city (Vernié, 1952). Leaving these author's doubts aside, namely concerning the
existence of Poincare periodical solutions, let us note, however, that the latters'
existence may be easily and with sufficient simplicity established in the limited
three-body problem; they will remain as such even after transition to the inertial
system of coordinates, basing ourselves upon the following Lyapunov theorem {1950):

If there exists a canonical system

dxi _ 0H dy;__ 0H
dt T g Y de o oxg !
where &,
H= > H,
m==2
(Hp being the m-th power mode from X;,..., Xpu; ¥;,..., Yp With constant coeffi-
cients), to each pair of purely imaginary conjugated roots:)yi of the character-
istic equation
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0°Hy 2z 92H,
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(whereupon x‘ is not equal to either a whole number or zero) corresponds a
family of perlodlcal solutions dependent on two arbitrary constants ¢ and tg,
whereupon the period is a continuous (and even holomorphic) function of ¢

in the neighborhood of ¢ = 0. If we introduce in a plane limited three-body
problem in. arotating system of coordinates as new unknown functions the dif-
ferences between the old unknown ones and the coordinates of triangular libra-
tion points, we shall obtain exactly a Lyapunov system, whereupon the characteris-
tic equation will have a pair of purely imaginary and a pair of real roots, de-
pendent on mass ratios. By virtue of continuous dependence on ¢ of the period

of the thus obtained solutions, there will exist an innumerable multiplicity of
solutions, of which the period will be commensurate with the rotation period of
the coordinate system. This is why such solutions will remain periodical even
after transition to the inertial system of coordinates. The existence of analo-
gous periodical solutions in the neighborhood of the Lagrange solutions may also
be established in the general three-body problem. The difference from the limit-
ed problem will only consist in that the corresponding characteristic equation -
will have zero roots, which in the given case is an obstacle for the applicabi-
lity of the Lyapunov theorem, for with the aid of area integrals the order of the
system may be lowered by as many units as there are zero roots. After that the
problem will in no way differ from the case analyzed. Therefore, it may be con-
sidered as demonstrated that the assertion, brought forth by the author about

the nonexistence of periodical solutions of the three-body problem, other than the
Lagrange solutions, is erroneous.
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