GPO PRICE \$	REMARKS ON A PAPER OF LEIGHTON
CFSTI PRICE(S) \$	
in the second seco	by
Hard copy (HC) $//00$	â
Microfiche (MF) 20	John S. Bradley and John T. Varner, III ²
1 653 July 65	

1. <u>Introduction</u>. Recently Leighton [1] obtained some interesting conditions for a solution to a differential system $y^{"} + py = 0$, y(a) = 0 to have a zero in an interval (a,b]. The primary purpose of this paper is to present counterexamples to Theorems 2 and 4 of [1] and to show how the hypotheses of those theorems may be strengthened so that the conclusions are valid. We also present a different proof of a part of Theorem 3 of [1] since the proof there relies on Theorem 2. At the same time, we present modest generalizations of those and other theorems of [1]; in particular, the requirement that the coefficient function p be of class C' and convex, or concave in one theorem, is replaced by the conditions that p be continuous and satisfy a certain integral inequality.

2. <u>A generalization and extention of Sturm's Comparison Theorem</u>. The following generalization of Sturm's Comparison Theorem was proved in [1] for the case r(x) = 1.

(THRU) CATEGORY

¹This research was partially supported by NASA Grant NGR 43-001-029. Portions of this paper formed the basis of the second author's Masters Thesis at the University of Tennessee.

²Present address: Department of Mathematics, Wofford College, Spartanburg, S. C.

THEOREM 2.1 Suppose that p, q, r, are continuous on [a, b], r(x) > 0 on [a, b], and that z is a nonnull solution of the system

$$(r(x)z')' + q(x)z = 0 \quad z(a) = 0 = z(b)$$
. If

$$\int_{a}^{b} \left(p(\mathbf{x}) - q(\mathbf{x}) \right) \mathbf{z}^{2}(\mathbf{x}) \, d\mathbf{x} \geq 0 ,$$

then a nonnull solution y of the system

$$(r(x)y')' + p(x)y = 0$$

 $y(a) = 0$

must have a zero on the interval (a, b] .

PROOF. First note that the limit of z/y exists at a, and that (yz' - zy')/y is not the zero function on (a, b]. To verify this last statement suppose that ([yz' - zy']/y)(x) = 0for all x in (a, b]. This implies that $([yz' - zy']/y^2)(x) = 0$ for all x in (a, b] and hence

$$0 = \int_{b}^{x} (yz' - zy')/y^{2} = \int_{b}^{x} (z/y)' = 0 \text{ for all } x \text{ in } (a, b],$$

which implies that z(x) = 0 for all x in (a, b]. But this is contrary to the hypothesis.

Suppose that $y(x) \neq 0$ for all x in (a, b]. Then

(2.1)
$$\int_{a}^{b} (z/y) \left[y(rz') - z(ry') \right]' = \int_{a}^{b} (p-q)z^{2} \ge 0$$
.

Integrating the left member of (2.1) by parts yields the inequality

$$(z/y) (yrz' - zry') \Big|_{a}^{b} - \int_{a}^{b} (yrz' - zry') (yz' - zy')/y_{2} \ge 0$$

which implies that $\int_{a}^{b} r \left[(yz' - zy')/y \right]^{2} \leq 0$ which is impossible.

The next theorem and the lemma used to prove it are apparently sufficiently well-known that references to them in the literature are scarce; we include them here for completeness.

LEMMA 2.1. Let p be continuous on (a, b], p_1 continuous on [a, b] and $p_1(x) \ge p(x)$ on (a, b], let u be a solution to y'' + py = 0 on (a, b], lim u(t) = 0 = u(b), and suppose that there exists a deleted right neighborhood N of a such that u'(t) is positive for all t in N. If v is a solution to the system $y'' + p_1 y = 0$, v(a) = 0, then there exists a c in (a, b] such that v(c) = 0.

PROOF. Suppose v is not zero on (a, b], and note that

(2.2)
$$(v u' - uv')' = v u'' - u v'' = u v (p_1 - p)$$

Assume v(x) > 0 for all x in (a, b] and that u(x) > 0 for all x in (a, b); hence, u'(b) < 0 and v'(a) > 0. Integrating (2.2) from t to b one has

(2.3)
$$v(b) u'(b) - v(t) u'(t) + u(t) v'(t) = \int_{t}^{b} (p_{1} - p) uv \text{ for } t \text{ in } (a, b].$$

For t sufficiently near a the left member of (2.3) is negative, which is impossible since the right member is non-negative. Hence v will vanish in (a, b].

THEOREM 2.2. Let p be continuous and decreasing on $(x_1, x_4]$, and let u be a solution to $y^n + p(x) y = 0$ with lim $u(t) = 0 = u(x_2)$. Suppose there exists a deleted right $t \Rightarrow x_1$ neighborhood N of x_1 such that $u^1(t)$ is positive for all t in N. If v is a solution to $y^n + p(x)y = 0$ with consecutive zeros at x_3 , x_4 , where $x_1 \le x_3$, then $x_2 - x_1 \le x_4 - x_3$.

PROOF. Let $t = x + x_1 - x_3$. Define z by $z(x) = u(t) = u(x + x_1 - x_3)$, and g by $g(x) = p(t) = p(x + x_1 - x_3) \ge p(x)$. For x in $(x_3, x_4]$, z is a solution to $z^n + g(x)z = 0$ with $\lim_{x \to x_3} z(x) = \lim_{x \to x_1} u(t) = 0$, and v is a solution to $x \to x_3$ $v^n + p(x) = 0$ with $v(x_3) = 0 = v(x_4)$. Since the first zero of z(x) after $x = x_1$ is $x = x_2 - x_1 + x_3$, it follows from Lemma 2.1 that $x_2 = x_1 + x_3 \le x_4$.

3. <u>Distribution of zeros</u>. Throughout this section y = kx + mwill be an equation of the line joining the points (a, p(a)) and (b, p(b)), where p is the coefficient function in the differential equation $y^{n} + py = 0$. The proof of the following generalization of Theorem 1 of [1] is accomplished using basically the same techniques as used in [1], but our proof does not rely on the concept of principal solution as does the proof of Leighton's theorem.

THEOREM 3.1. If p is positive and continuous on [a , b] , and y is a nonnull solution to the system

$$y^{n} + py = 0$$
, $y(a) = 0 = y(b)$

for which

$$\int_{a}^{b} (kx + m - p(x)) y^{2}(x) dx \ge 0,$$

then

$$kp(b) \ge k \left[\left(p(a) \right)^{\frac{3}{2}} + 3 \alpha k/_2 \right]^{\frac{3}{2}}$$

where a is the first positive zero of the Bessel's function $J_{1/3}$ (a is approximately 2.9).

PROOF. The conclusion is obvious if p(a) = p(b), hence we assume that $p(a) \neq p(b)$. A nonnull solution to the differential system $z^{"} + (kx + m)z = 0$, z(a) = 0, must vanish again on (a, b] by Theorem 2.1. Following Leighton, we make the change of variable t = kx + m from which it follows that z is a solution to $z^{"} + (kx + m)z = 0$ if, and only if, y defined by y(t) = z(x)is a solution to $y^{"}(t) + t/k^{2}y(t) = 0$. Hence, any solution z to the equation $z^{"} + (kx + m)z = 0$ may be written as

(3.1)
$$z(x) = (kx + m)^{\frac{1}{2}} \left[c_1 J_{1_3} \left(\frac{2}{3k} (kx + m)^{\frac{3}{2}} \right) + c_2 J_{-1_3} \left(\frac{2}{3k} (kx + m)^{\frac{3}{2}} \right) \right].$$

Suppose $a \ge 0$, let z be of the form (3.1) and suppose z(a) = 0. Suppose the next larger zero of z(x) occurs at b_1 .

Let a_1 and a_2 be given by

(3.2)
$$\alpha_1 = \frac{2}{3k} \left(ka + m\right)^{\frac{3}{2}}, \quad \alpha_2 = \frac{2}{3k} \left(kb_1 + m\right)^{\frac{3}{2}}.$$

Since α_1 and α_2 have the same sign and since the zeros of $J_{\frac{1}{3}}$ and $J_{\frac{1}{-\frac{1}{3}}}$ are symmetric in the line x = 0, the assumption that $a \ge 0$ and α_1 , α_2 are both positive does not sacrifice generality. It follows that α_1 and α_2 are consecutive zeros of a linear combination of $J_{\frac{1}{3}}$ and $J_{\frac{1}{3}}$, since $kx + m \neq 0$ on $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ are independent solutions to $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

(3.3)
$$x^2 y'' + xy'' + (x^2 - \frac{1}{9}) y = 0$$

and that the transformation $y = u(x)/\sqrt{x}$ transforms (3.3) into

(3.4)
$$u^{ii} + \left(1 + \frac{5}{36x^2}\right)u = 0$$
.

For x > 0 the general solution of (3,4) may be written as

$$u(x) = x^{\frac{1}{2}} \left(c_{1} J_{1}(x) + c_{2} J_{1}(x) \right) \cdot \frac{1}{3} + c_{1} J_{1}(x) + c_{2} J_{1}(x) + c_{1} J_{1}(x) + c_{2} J_{1}(x) + c_{$$

Since $u(x) = x^{\frac{1}{2}} J_1(x)$ is a solution of (3.4) satisfying $u(0) = 0 = u(\alpha)$, α_1 and α_2 are consecutive zeros of a solution of (3.4) and $0 < \alpha_1$, it follows from Theorem 2.2 that $\alpha \leq \alpha_2 - \alpha_1$. From (3.2) one finds that

(3.5)
$$a = \frac{1}{k} \left(\frac{3k}{2} \alpha_1\right)^{\frac{2}{3}} - \frac{m}{k}, \ b_1 = \frac{1}{k} \left(\frac{3k}{2} \alpha_2\right)^{\frac{2}{3}} - \frac{m}{k}.$$

Since $b_1 - a \le b - a$, it follows from (3.5) that

$$\mathbf{b} - \mathbf{a} \geq \left(\frac{3}{2}\right)^{\frac{2}{3}} \cdot \frac{1}{k^{\frac{1}{3}}} \left(\alpha_2^{\frac{2}{3}} - \alpha_1^{\frac{2}{3}}\right)$$

or, since $\alpha + \alpha_1 \le \alpha_2$ and since the assumption that α_1 and α_2 are positive implies k > 0,

$$b - a \geq \left(\frac{3}{2}\right)^{\frac{2}{3}} \frac{1}{k^{\frac{1}{3}}} \left[\left(\alpha_{1} + \alpha\right)^{\frac{2}{3}} - \alpha_{1}^{\frac{2}{3}} \right].$$

After using α_1 as given by (3.2) and observing that ka + m = p(a) , a straight forward calculation yields

$$kp(b) \geq k \left[\left(p(a) \right)^{\frac{3}{2}} + \frac{3\alpha k}{2} \right]^{\frac{2}{3}}$$

The following theorem gives a sufficient condition which is related to the necessary conditions given in Theorem 3.1.

THEOREM 3.2. Let p be continuous on [a, b], positive on (a, b), let $p(a) \ge 0$, $p(b) \ge 0$, and $p(c) \ne p(b)$. If z is a solution to the system z'' + (kx + m)z = 0, z(a) = 0 for which $\int_{a}^{t} \left[p(x) - (kx + m) \right] z^{2}(x) dx \ge 0$ for all t in (a,b], if

(3.6)
$$\operatorname{kp}(b) \geq \operatorname{k}\left[\left(p(a)\right)^{\frac{3}{2}} + \frac{3\pi k}{2}\right]^{\frac{2}{3}}$$

and

(3.7)
$$p^2(a) > \frac{-3\pi k}{2}$$
,

then a solution to the system y'' + py = 0, y(a) = 0 will vanish again on (a, b].

PROOF. The conditions (3.6) and (3.7) imply that

$$\frac{2}{3k}\left(p(b)\right)^{\frac{3}{2}} - \frac{2}{3k}\left(p(a)\right)^{\frac{3}{2}} \geq \pi ,$$

which may be written as

$$\frac{\frac{2}{3k}(kb+m)^2}{\frac{2}{3k}(ka+m)^2} \ge \pi$$

Thus, since the distance between consecutive zeros of solutions of Bessel's equation of order $\frac{1}{3}$ is less than \mathcal{T} , the solution to the system $z^{"} + (kx + m)z = 0$, z(a) = 0 given by

$$z(\mathbf{x}) = (\mathbf{k}\mathbf{x} + \mathbf{m})^{\frac{1}{2}} \left[c_1 J_1 \left(\frac{2}{3k} (\mathbf{k}\mathbf{x} + \mathbf{m})^2 \right) + c_2 J_1 \left(\frac{2}{3k} (\mathbf{k}\mathbf{x} + \mathbf{m})^2 \right) \right]$$

$$z(\mathbf{a}) = 0$$

will have a zero on (a, b]. Hence the conclusion follows from Theorem 2.1.

COROLLARY. If p is positive, concave and of class C' on the interval [a, b], if $p(a) \neq p(b)$ and conditions (3.6) and (3.7) hold, then a solution to the system y'' + py = 0, y(a) = 0 will vanish on the interval (a, b].

If the condition (3.7) is removed then the above corollary is the same as Theorem 2 in [1]. However, the following example shows that Leighton's Theorem 2 is false. (It should be remarked that the condition (3.7) automatically holds when p(a) < p(b), so that in this case Theorem 2 in [1] is true). Let p(x) = -2(x - 1) on the interval $\left[\frac{1}{2}, \frac{3}{4}\right]$. Then p is concave, positive and of class C' and condition (3.6) holds. If a solution to the system y'' + py = 0, $y\left(\frac{1}{2}\right) = 0$ has a zero on $\left(\frac{1}{2}, \frac{3}{4}\right]$, then Sturm's comparison theorem implies that $\sin\left(x - \frac{1}{2}\right)$ has a zero on $\left(\frac{1}{2}, \frac{3}{4}\right]$. Therefore no solution of the system y'' + py = 0, $y\left(\frac{1}{2}\right) = 0$ can vanish on $\left(\frac{1}{2}, \frac{3}{4}\right]$ contrary to the conclusion of Theorem 2 of [1].

The next theorem appeared as Theorem 3 in [1]. Leighton's proof was based on Theorem 2 of the same paper; however, Theorem 2 cannot be used as stated since the hypothesis requires that p(a) > 0 and p(b) > 0. One also needs the condition (3.7) of Theorem 3.2 which is necessary in case k is negative.

The theorem depends on the following lemma.

LEMMA 3.1. If p is positive, of class C' on [a, b] and if either

$$(3.8) b - a > - p(a) / p'(a) > 0 or$$

$$(3.9) b - a > p(b) / p'(b) > 0,$$

there exists a point c in (a, b) at which the tangent line to the curve passes through the point (b, 0) if (3.8) holds or through the point (a, 0) if (3.9) holds. The number c is a solution of the equation $p(c) = p^{\dagger}(c) (c - b)$ or of p(c) = $p^{\dagger}(c) (c - a)$ according as (3.8) or (3.9) holds.

PROOF. See [1, page 305].

THEOREM 3.3. If p is positive, convex, and of class C' on [a, b] and if the conditions

(3.10)
$$b - a > p(b) / p'(b) > 0$$
, $(b - a)^3 \ge 9 \pi^2 / 4p'(c)$

or if the conditions

(3.11) b = a > -p(a) / p'(a) > 0, $(b = a)^3 \ge -9 \pi^2 / 4 p'(c)$

hold, where c is the point guaranteed by Lemma 3.1, then a nonnull solution of the differential system

(3.12) $y^{\dagger} + p(x)y = 0$, y(a) = 0

vanishes again on (a, b] .

· ,

PROOF. If conditions (3.10) hold, the tangent line assured by Lemma 3.1 has the equation $t(x) = p^{\dagger}(c) (x - a)$. Let z(x) be a solution of the differential system $z^{"} + t(x)z = 0$, z(a) = 0. Since p is convex, if z(x) has another zero on (a, b], then by Sturm's Comparison Theorem a solution of system (3.12) must also have a zero on (a, b]. By hypothesis,

(3.13)
$$(b - a)^3 \ge 9 \pi^2 / 4 p'(c)$$
.

Multiplying (3.13) by $(p'(c))^3$, replacing p'(c) (b - a) with t(b) and using the fact that t(a) = 0 we obtain

$$p'(c)(t(b))^3 \ge p'(c)\left[\frac{3\pi}{2}p'(c) + (t(a))^{\frac{3}{2}}\right]^2$$

Therefore by Theorem 3.2, where p(x) of that theorem is now t(x) a solution to system (3.12) must have a zero on (a, b], since a solution to the system $z^{n} + t(x)z = 0$, z(a) = 0 does.

If conditions (3.11) hold, the slope of the tangent line guaranteed by Lemma 3.1 is negative. However, condition (3.6) clearly holds since t(b) = 0 in this case, and we need only show that

$$(t(a))^{\frac{3}{2}} + 3\pi p^{1}(c) / 2 \ge 0$$
, where $t(x)$

is the equation of the tangent line guaranteed by Lemma 3.1. By hypothesis,

$$(b - a)^3 \ge -9\pi^2 / 4 p'(c)$$
,

from which it follows that

$$(p'(c))^3 (a - b)^3 \ge 9\pi^2 (p'(c))^2/4$$

 $(t(a))^{\frac{3}{2}} \ge -3\pi p'(c)/2$

or

$$\left(t(a) \right)^{\frac{5}{2}} \geq -3\pi p'(c) / 2$$

since p'(c) < 0. Thus conclusion again follows from Theorem 3.2.

Finally, we give an alternate for Theorem 4 of [1].

THEOREM 3.4. Let p be continuous, $c \neq 0$, and d real numbers. Suppose that $cx + d \ge 0$ for all x on [a, b] and that z is a solution to the system

$$z^{ii} + (cx + d)z = 0$$
, $z(a) = 0$

with the property that

$$\int_{a}^{t} [p(\mathbf{x}) - (\mathbf{cx} + \mathbf{d})] z^{2}(\mathbf{x}) d\mathbf{x} \ge 0 \quad \underline{\text{for all } t} \quad \underline{\text{in } (a, b]}.$$

(3.14)
$$c(cb + d)^3 \ge c \left[\frac{3\pi c}{2} + (ca + d)\right]^2$$

and

 \underline{If}

(3.15)
$$3\pi c / 2 + (ca + d) \ge 0$$
,

then a solution to the system

(3.16)
$$y'' + py = 0$$
, $y(a) = 0$

PROOF. The proof is similar to that of Theorem 3.2.

COROLLARY. Let p be positive, convex and of class C' on [a, b] with $p(a) \neq p(b)$. Let y = cx + d be an equation of the line tangent to the curve y = p(x) parallel to the chord joining the endpoints of the arc y = p(x) ($a \le x \le b$). If $ca + d \ge 0$, $cb + d \ge 0$, and if b_0 is the smallest value larger than a for which (3.14) and (3.15) hold, then a nonnull solution of the system (3.16) will vanish on the interval (a, b].

If the requirement that condition (3.15) hold is removed from the hypothesis, then the above Corollary is the same as Theorem 4 of [1]. However, the conclusion is not then true if the function p is defined by p(x) = -(x - 3) on the interval [1, 2].

Bibliography

1. Leighton, Walter, "On the zeros of solutions of a second-order linear differential equation," Journal de Mathematiques, 144 (1965), pp. 297-310.

THE UNIVERSITY OF TENNESSEE

KNOXVILLE, TENNESSEE