CFSTI PRICE (S) \$

\qquad
by
Hard copy (HC) \qquad 1.00

Microfiche (MF)
 John S. Bradley and John T. Darner, III ${ }^{2}$

1. Introduction. Recently Leighton [1] obtained some interesting conditions for a solution to a differential system $y^{\prime \prime}+p y=0$, $y(a)=0$ to have a zero in an interval (abb]. The primary purpose of this paper is to present counterexamples to Theorems 2 and 4 of [1] and to show how the hypotheses of those theorems may be strengthened so that the conclusions are valid. We also present a different proof of a part of Theorem 3 of [1] since the proof there relies on Theorem 2. At the same time, we present modest generalizations of those and other theorems of [1]; in particular, the requirement that the coefficient function p be of class C' and convex, or concave in one theorem, is replaced by the conditions that p be continuous and satisfy a certain integral inequality.
2. A generalization and extention of Sturm's Comparison Theorem. The following generalization of Sturm's Comparison Theorem was proved in [1] for the case $r(x) \equiv 1$.
$1_{\text {This }}$ research was partially supported by NASA Grant NGR 43-001-029. Portions of this paper formed the basis of the second author's Masters Thesis at the University of Tennessee.
${ }^{2}$ Present address: Department of Mathematics, Wofford College, Spartanburg, S. C.

THEOREM 2.1 Suppose that p, q, r, are continuous on $[a, b]$, $r(x)>0$ on $[a, b]$, and that z is a nonnull solution of the system

$$
\begin{aligned}
& \left(r(x) z^{\prime}\right)^{\prime}+q(x) z=0 \quad z(a)=0=z(b) \cdot \text { If } \\
& \int_{a}^{b}(p(x)-q(x)) z^{2}(x) d x \geq 0,
\end{aligned}
$$

then a nonnull solution y of the system

$$
\begin{gathered}
\left(r(x) y^{\prime}\right)^{\prime}+p(x) y=0 \\
y(a)=0
\end{gathered}
$$

must have a zero on the interval (ac].

PROOF. First note that the limit of z / y exists at a, and that $\left(y z^{\prime}-z y^{\prime}\right) / y$ is not the zero function on $(a, b]$. To verify this last statement suppose that $\left(\left[y^{\prime}-y^{\prime}\right] / y\right)(x)=0$ for all x in $(a, b]$. This implies that $\left(\left[y z^{\prime}-z y^{\prime}\right] / y^{2}\right)(x)=0$ for all x in (a, b] and hence

$$
0=\int_{b}^{x}\left(y z^{\prime}-z y^{\prime}\right) / y^{2}=\int_{b}^{x}(z / y)^{\prime}=0 \text { for all } x \text { in }(a, b],
$$

which implies that $z(x)=0$ for all x in (a, b]. But this is contrary to the hypothesis.

Suppose that $y(x) \neq 0$ for all x in $(a, b]$. Then
(2.1) $\int_{a}^{b}(z / y)\left[y\left(r z^{\prime}\right)-z\left(r y^{\prime}\right)\right]^{\prime}=\int_{a}^{b}(p-q) z^{2} \geq 0$.

Integrating the left member of (2.1) by parts yields the inequality

$$
\left.(z / y)\left(y r z^{\prime}-z r y^{\prime}\right)\right|_{a} ^{b}-\int_{a}^{b}\left(y r z^{\prime}-z r y^{\prime}\right)\left(y z^{\prime}-z y^{\prime}\right) / y_{2} \geq 0
$$

which implies that $\int_{a}^{b} r\left[\left(y z^{\prime}-z y^{\prime}\right) / y\right]^{2} \leq 0$ which is impossible.

The next theorem and the lemma used to prove it are apparently sufficiently well-known that references to them in the literature are scarce; we include them here for completeness.

LEMMA 2.1. Let p be continuous on ($a, b], p_{1}$ continuous on $[a, b]$ and $p_{1}(x) \geq p(x)$ on $(a, b]$, let u be a solution to $y^{\prime \prime}+p y=0$ on $(a, b], \lim _{t \rightarrow a} u(t)=0=u(b)$, and suppose that there exists a deleted right neighborhood N of a such that $u^{\prime}(t)$ is positive for all t in N. If v is a solution to the system $y^{\prime \prime}+p_{1} y=0, \quad v(a)=0$, then there exists a c in (a, b] such that $\nabla(c)=0$.

PROOF. Suppose v is not zero on ($a, b]$, and note that

$$
\begin{equation*}
\left(v u^{\prime}-u v^{\prime}\right)^{\prime}=v u^{\prime \prime}-u v^{\prime \prime}=u v\left(p_{1}-p\right) . \tag{2.2}
\end{equation*}
$$

Assume $v(x)>0$ for all x in $(a, b]$ and that $u(x)>0$ for all x in (a, b); hence, $u^{\prime}(b)<0$ and $v^{\prime}(a)>0$. Integrating (2.2) from t to b one has

$$
v(b) u^{\prime}(b)-v(t) u^{\prime}(t)+u(t) v^{\prime}(t)=
$$

(2.3)

$$
\int_{t}^{b}\left(p_{1}-p\right) u v \text { for } t \text { in }(a, b]
$$

For t sufficiently near a the left member of (2.3) is negative, which is impossible since the right member is non-negative. Hence v will vanish in (a, b].

THEOREM 2.2. Let p be continuous and decreasing on $\left(x_{1}, x_{4}\right]$, and let u be a solution to $y^{\prime \prime}+p(x) y=0$ with $\lim _{t \rightarrow x_{1}} u(t)=0=u\left(x_{2}\right)$. Suppose there exists a deleted right neighborhood N of x_{1} such that $u^{\prime}(t)$ is positive for all t in N. If V is a solution to $y^{n}+p(x) y=0$ with consecutive zeros at x_{3}, x_{4}, where $x_{1} \leq x_{3}$, then $x_{2}-x_{1} \leq x_{4}-x_{3}$.

PROOF. Let $t=x+x_{1}-x_{3}$. Define z by $z(x)=u(t)=$ $u\left(x+x_{1}-x_{3}\right)$, and g by $g(x)=p(t)=p\left(x+x_{1}-x_{3}\right) \geq p(x)$. For x in $\left(x_{3}, x_{4}\right], z$ is a solution to $z^{\prime \prime}+g(x) z=0$ with $\lim _{x \rightarrow x_{3}} z(x)=\lim _{t \rightarrow x_{1}} u(t)=0$, and v is a solution to $v^{\prime \prime}+p(x) v=0$ with $v\left(x_{3}\right)=0=v\left(x_{4}\right)$. Since the first zero of $z(x)$ after $x=x_{1}$ is $x=x_{2}-x_{1}+x_{3}$, it follows from Lemma 2.1 that $x_{2}-x_{1}+x_{3} \leq x_{4}$.
3. Distribution of zeros. Throughout this section $y=k x+m$ will be an equation of the line joining the points (a, $p(a)$) and ($b, p(b)$), where p is the coefficient function in the differential equation $y^{n}+$ py 0 . The proof of the following generalization of Theorem 1 of [1] is accomplished using basically the same techniques as used in [I], but our proof does not rely on the concept of principal solution as does the proof of Leighton's theorem.

THEOREM 3.1. If p is positive and continuous on [$a, b]$, and y
is a nonnull solution to the system

$$
\mathrm{y}^{\prime \prime}+\mathrm{py}=0, \mathrm{y}(\mathrm{a})=0=\mathrm{y}(\mathrm{~b})
$$

for which

$$
\int_{a}^{b}(k x+m-p(x)) y^{2}(x) d x \geq 0
$$

then

$$
k p(b) \geq k\left[(p(a))^{3 / 2}+3 a k / 2\right]^{2 / 3}
$$

where α is the first positive zero of the Bessel's function $\mathrm{J} / \mathrm{J}_{3}$ (α is approximately 2.9).

PROOF. The conclusion is obvious if $p(a)=p(b)$, hence we assume that $p(a) \neq p(b)$. A nonnull solution to the differential system $z^{\prime \prime}+(k x+m) z=0, z(a)=0$, must vanish again on (a, b] by Theorem 2.1. Following Leighton, we make the change of variable $t=k x+m$ from which it follows that z is a solution to $z^{\prime \prime}+(k x+m) z=0$ if, and only if, y defined by $y(t)=z(x)$ is a solution to $y^{\prime \prime}(t)+t / k^{2} y(t)=0$. Hence, any solution z to the equation $z^{\prime \prime}+(k x+m) z=0$ may be written as

$$
\begin{equation*}
z(x)=(k x+m)^{1 / 2}\left[c_{1} J_{1_{3}}\left(\frac{2}{3 k}(k x+m)^{3 / 2}\right)+c_{2} J_{-1}\left(\frac{2}{3 k}(k x+m)^{3 / 2}\right)\right] \tag{3.1}
\end{equation*}
$$

Suppose $a \geq 0$, let z be of the form (3.1) and suppose $z(a)=0$. Suppose the next larger zero of $z(x)$ occurs at b_{1}.

Let a_{1} and a_{2} be given by

$$
\begin{equation*}
\alpha_{1}=\frac{2}{3 k}(k a+m)^{\frac{3}{2}}, \quad a_{2}=\frac{2}{3 k}\left(k b_{1}+m\right)^{\frac{3}{2}} \tag{3.2}
\end{equation*}
$$

Since α_{1} and α_{2} have the same sign and since the zeros of J_{1} and $J_{-\frac{1}{3}}$ are symmetric in the line $x=0$, the assumption that $a \geq 0$ and a_{1}, a_{2} are both positive does not sacrifice generality. It follows that α_{1} and α_{2} are consecutive zeros of a linear combination of $\frac{J_{1}}{3}$ and $J_{-\frac{1}{3}}$, since $k x+m \neq 0$ on
[a, b] . Recall that $\frac{J_{1}}{3}$ and $J_{-\frac{1}{3}}$ are independent solutions to

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime \prime}+\left(x^{2}-\frac{1}{9}\right) y=0 \tag{3.3}
\end{equation*}
$$

and that the transformation $y=u(x) / \sqrt{x}$ transforms (3.3) into

$$
\begin{equation*}
u^{n}+\left(1+\frac{5}{36 x^{2}}\right) u=0 \tag{3.4}
\end{equation*}
$$

For $x>0$ the general solution of (3.4) may be written as

$$
u(x)=x^{\frac{1}{2}}\left(c_{1} J_{\frac{1}{3}}(x)+c_{2}^{J}{ }_{-\frac{1}{3}}(x)\right)
$$

Since $u(x)=x^{\frac{1}{2}} J_{\frac{1}{3}}(x)$ is a solution of (3.4) satisfying $u(0)=0=u(\alpha), \alpha_{1}$ and α_{2} are consecutive zeros of a solution of (3.4) and $0<a_{1}$, it follows from Theorem 2.2 that
$\alpha \leq \alpha_{2}-a_{1} \cdot$ From (3.2) one finds that
(3.5) $\quad a=\frac{1}{k}\left(\frac{3 k}{2} \quad \alpha_{1}\right)^{\frac{2}{3}}-\frac{m}{k}, \quad b_{1}=\frac{1}{k}\left(\frac{3 k}{2} a_{2}\right)^{\frac{2}{3}}-\frac{m}{k}$.

Since $b_{1}-a \leq b-a$, it follows from (3.5) that

$$
b-a \geq\left(\frac{3}{2}\right)^{\frac{2}{3}} \cdot \frac{1}{k^{\frac{1}{3}}} \cdot\left(a_{2}^{\frac{2}{3}}-\alpha_{1}^{\frac{2}{3}}\right)
$$

or, since $a+\alpha_{1} \leq \alpha_{2}$ and since the assumption that α_{1} and α_{2} are positive implies $k>0$,

$$
b-a \geq\left(\frac{3}{2}\right)^{\frac{2}{3}} \frac{1}{k^{1 B}}\left[\left(\alpha_{1}+\alpha\right)^{\frac{2}{3}}-\alpha_{1}^{\frac{2}{3}}\right]
$$

After using a_{1} as given by (3.2) and observing that $\mathrm{ka}+\mathrm{m}=\mathrm{p}(\mathrm{a})$, a straight forward calculation yields

$$
k p(b) \geq k\left[(p(a))^{\frac{3}{2}}+\frac{3 a k}{2}\right] \frac{2}{3}
$$

The following theorem gives a sufficient condition which is related to the necessary conditions given in Theorem 3.1.

THEOREM 3.2. Let p be continuous on $[a, b]$, positive on (a, b), let $p(a) \geq 0, p(b) \geq 0$, and $p(c) \notin p(b)$. If z is a solution to the system $\mathrm{z}^{\prime \prime}+(k x+m) \mathbf{z}=0, \mathrm{z}(\mathrm{a})=0$ for which

$$
\int_{a}^{t}[p(x)-(k x+m)] z^{2}(x) d x \geq 0 \text { for all } t \text { in }(a, b], \text { if }
$$

$$
\begin{equation*}
\mathrm{kp}(\mathrm{~b}) \geq \mathrm{k}\left[(\mathrm{p}(\mathrm{a}))^{\frac{3}{2}}+\frac{3 \pi \mathrm{k}}{2}\right]^{\frac{2}{3}} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{\frac{3}{2}}(a)>\frac{-3 \pi k}{2}, \tag{3.7}
\end{equation*}
$$

then a solution to the system $y^{\prime \prime}+p y=0, y(a)=0$ will vanish again on (a, b].

PROOF. The conditions (3.6) and (3.7) imply that

$$
\frac{2}{3 k}(p(b))^{\frac{3}{2}}-\frac{2}{3 k}(p(a))^{\frac{3}{2}} \geq \pi,
$$

which may be written as

$$
\frac{2}{3 k}(k b+m)^{\frac{3}{2}}-\frac{2}{3 k}(k a+m)^{\frac{3}{2}} \geq \pi .
$$

Thus, since the distance between consecutive zeros of solutions of Bessel's equation of order $\frac{1}{3}$ is less than Π, the solution to the system $z^{\prime \prime}+(k x+m) z=0, \quad z(a)=0$ given by

$$
\begin{aligned}
& z(x)=(k x+m)^{\frac{1}{2}}\left[c_{1} J_{\frac{1}{3}}\left(\frac{2}{3 k}(k x+m)^{\frac{3}{2}}\right)+c_{2} J_{-\frac{1}{3}}\left(\frac{2}{3 k}(k x+m)^{\frac{3}{2}}\right)\right] \\
& z(a)=0
\end{aligned}
$$

will have a zero on (a, b] . Hence the conclusion follows from Theorem 2.1.

COROLLARY. If p is positive, concave and of class C^{\prime} on the interval $[a, b]$, if $p(a) \phi p(b)$ and conditions (3.6) and (3.7) hold, then a solution to the system $y^{\prime \prime}+p y=0, \quad j(a)=0$ will vanish on the interval $(a, b]$.

If the condition (3.7) is removed then the above corollary is the same as Theorem 2 in [1]. However, the following example shows that Leighton's Theorem 2 is false. (It should be remarked that the condition (3.7) automatically holds when $p(a)<p(b)$, so that in this case Theorem 2 in [I] is true). Let $p(x)=-2(x-1)$ on the interval $\left[\frac{1}{2}, \frac{3}{4}\right]$. Then p is concave, positive and of class C (and condition (3.6) holds. If a solution to the system $y^{\prime \prime}+p y=0, y\left(\frac{1}{2}\right)=0$ has a zero on $\left(\frac{1}{2}, \frac{3}{4}\right]$, then Sturm's comparison theorem implies that $\sin \left(x-\frac{1}{2}\right)$ has a zero on $\left(\frac{1}{2}, \frac{3}{4}\right]$. Therefore no solution of the system $y^{\prime \prime}+\mathrm{py}=0, \mathrm{y}\left(\frac{1}{2}\right)=0$ can vanish on $\left(\frac{1}{2}, \frac{3}{4}\right]$ contrary to the conclusion of Theorem 2 of [1].

The next theorem appeared as Theorem 3 in [1]. Leighton's proof was based on Theorem 2 of the same paper; however, Theorem 2 cannot be used as stated since the hypothesis requires that $p(a)>0$ and $p(b)>0$. One also needs the condition (3.7) of Theorem 3.2 which is necessāary in cẫe k is negative.

The theorem depends on the following lemma.

LEMMA 3.1. If p is positive, of class $C l^{\prime}$ on $[a, b]$ and if either

$$
\begin{equation*}
b-a>-p(a) / p^{\prime}(a)>0 \quad \text { or } \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{b}-\mathrm{a}>\mathrm{p}(\mathrm{~b}) / \mathrm{p}^{\prime}(\mathrm{b})>0, \tag{3.9}
\end{equation*}
$$

there exists a point c in (a, b) at which the tangent line to the curve passes through the point ($b, 0$) if (3.8) holds or through the point $(a, 0)$ if (3.9) holds. The number c is a solution of the oquation $p(c)=p^{\prime}(c)(c-b)$ or of $p(c)=$ $p^{\prime}(c)(c-a)$ according as (3.8) or (3.9) holds.

PROOF. See [1, page 305].

THEOREM 3.3. If p is positive, convex, and of class c^{\prime} on [a,b] and if the conditions
(3.10) $\quad b-a>p(b) / p^{\prime}(b)>0,(b-a)^{3} \geq 9 \pi^{2} / 4 p^{\prime}(c)$
or if the conditions

$$
\begin{equation*}
b-a>-p(a) / p^{\prime}(a)>0, \quad(b-a)^{3} \geq-9 \pi^{2} / 4 p^{\prime}(c) \tag{3.11}
\end{equation*}
$$

hold, where c is the point guaranteed by Lemma 3.1, then a nonnull solution of the differential system

$$
\begin{equation*}
y^{\prime \prime}+p(x) y \approx 0, \quad y(a)=0 \tag{3.12}
\end{equation*}
$$

Vanishes again on (a, b].

PROOF. If conditions (3.10) hold, the tangent line assured by Lemma 3.1 has the equation $t(x)=p^{\prime}(c)(x-a)$. Let $z(x)$ be a solution of the differential system $z^{\prime \prime}+t(x) z=0, \quad z(a)=0$. Since p is convex, if $z(x)$ has another zero on ($a, b]$, then by Sturm's Comparison Theorem a solution of system (3.12) must also have a zero on (a, b] . By hypothesis,

$$
\begin{equation*}
(b-a)^{3} \geq 9 \pi^{2} / 4 p^{\prime}(c) \tag{3.13}
\end{equation*}
$$

Multiplying (3.13) by $\left(p^{\prime}(c)\right)^{3}$, replacing $p^{\prime}(c)(b-a)$ with $t(b)$ and using the fact that $t(a)=0$ we obtain

$$
p^{\prime}(c)(t(b))^{3} \geq p^{\prime}(c)\left[\frac{3 \pi}{2} p^{\prime}(c)+(t(a))^{\frac{3}{2}}\right]^{2}
$$

Therefore by Theorem 3.2, where $p(x)$ of that theorem is now $t(x)$ a solution to system (3.12) must have a zero on ($a, b]$, since a solution to the system $z^{\prime \prime}+t(x) z=0, z(a)=0$ does.

If conditions (3.11) hold, the slope of the tangent line guaranteed by Lemma 3.1 is negative. However, condition (3.6) clearly holds since $t(b)=0$ in this case, and we need only show that

$$
(t(a))^{\frac{3}{2}}+3 \pi p^{\prime}(c) / 2 \geq 0, \text { where } t(x)
$$

is the equation of the tangent line guaranteed by Lemma 3.1. By hypothesis,

$$
(b-a)^{3} \geq-9 \pi^{2} / 4 p^{\prime}(c)
$$

from which it follows that

$$
\left(p^{\prime}(c)\right)^{3}(a-b)^{3} \geq 9 \pi^{2}\left(p^{\prime}(c)\right)^{2} / 4
$$

or

$$
(t(a))^{\frac{3}{2}} \geq-3 \pi p^{\prime}(c) / 2
$$

the

since $p^{\prime}(c)<0$. Thus $\Lambda^{\text {conclusion }}$ again follows from Theorem 3.2. Finally, we give an alternate for Theorem 4 of [1].

THEOREM 3.4. Let p be continuous, $c \neq 0$, and d real numbers. Suppose that $c x+d \geq 0$ for all x on $[a, b]$ and that z is a solution to the system

$$
z^{\prime \prime}+(c x+d) z=0, z(a)=0
$$

with the property that

$$
\int_{a}^{t}[p(x)-(c x+d)] z^{2}(x) d x \geq 0 \text { for all } t \text { in }(a, b]
$$

If
(3.14) $\quad c(c b+d)^{3} \geq c\left[\frac{3 \pi c}{2}+(c a+d)^{3 / 2}\right]^{2}$
and
3/2
(3.15) $3 \pi с / 2+(c a+d) \geq 0$,
then a solution to the system
(3.16) $y^{\prime \prime}+p y=0, y(a)=0$
will have a zero on ($a, b]$.

PROOF. The proof is similar to that of Theorem 3.2.
COROLLARY. Let p be positive, convex and of class C^{\prime} on [a,b] with $p(a) \neq p(b)$. Let $y=c x+d$ be an equation of the line tangent to the curve $y=p(x)$ parallel to the chord joining the endpoints of the arc $y=p(x)(a \leq x \leq b)$. If $c a+d \geq 0, c b+d \geq 0$, and if
b_{0} is the smallest value larger than a for which (3.14) and (3.15)
hold, then a nonnull solution of the system (3.16) will vanish on the
interval ($\mathrm{a}, \mathrm{b}_{\mathrm{o}}$].
If the requirement that condition (3.15) hold is removed from the hypothesis, then the above Corollary is the same as Theorem 4 of [1]. However, the conclusion is not then true if the function p is defined by $p(x)=-(x-3)$ on the interval $[1,2]$ 。

Bibliography

1. Leighton, Walter, "On the zeros of solutions of a second-order linear differential equation," Journal de Mathematiques, 44 (1965), pp. 297-310.
