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OPTIMIZATION OF DESIGN OF SPACE EXPERIMENTS
FROM THE STANDPOINT OF DATA PROCESSING

NASA Grant
NGR 05-003-143

The present phase of this project is concerned with the development
of techniques for processing the results of space experiments before their
transmission to the ground. Taking into account some engineering con-
straints, it is desired to obtain a low data rate while preserving the features
of the data of interest to the experimenters. The theoretical aspects stem
from the work of Shannon on the relation of the information rate to the

distortion in the transmission of analog messages by digital means.

The following engineering conditions also define and limit our

work:

(1) the availability of a small on-board digital computer for the

storage and the processing of data;

(2) the possibility of modifying the program of the computer by

instructions from the ground; and

(3) the limited knowledge of the statistics of the data.

CONSIDERATION OF DATA SOURCES

In the initial stage of the project, principal consideration was
given to the types of experiments being carried out now, and their
properties as data sources, In particular, attention was given to the
exact information sought by the experimenter and whether the information
rate involved was sufficiently high to warrant the use of source coding or
""data compression'' techniques., After spending approximately two months
considering these points, it was decided to focus attention for the balance
of the first year on some particle-counting data obtained by Mozer and
others1 during the flight of the French rocket, Dragon, This decision was

made for the following reasons:




(1) Particle-counting experiments comprise the majority of
present experiments; the basic properties of the data source
model for such experiments depend only to a minor extent on
the differing physical aspects of the experiment. Hence, any
conclusions based on the study of these data will have wide

applicability,

(2) The experimenter is considering a future experiment involving
20 counting channels, each sampled at a rate of 1,000 samples
per second; the resulting data rate is too high to go onboard
most satellites, hence source coding could contribute sub-

stantially to the success of this experiment.

The experiment already started by Moser and others1 has the
objective of determining the origin of charged particles inthe auroral
regions by observing the temporal behavior of the counting rates of
detectors with varying energy thresholds. The important feature of
the detector output that must be preserved accurately is the occurrence
of rather rapid fluctuations that take place in the mean counting rate.
These changes can be a fraction or several times the average counting

rate and can occur within 5 to 50 milliseconds.

VARIABLE RATE SAMPLING METHODS

Shannon's Rate Distortion Function2 gives the absolute minimum
telemetry rate necessary to transmit data from a certain type of source
with a given level of distortion. It is known2 that a gaussian process with
a given spectrum requires a larger rate than any other process with the
same spectrum; further, the rate-versus-distortion curve for a gaussian
process with a given spectrum can be evaluated easily. 3 Although there
is no reason to believe that the mean counting rates of the kinds of experi-
ments in question are gaussian processes, the above two points indicate
that the rate distortion curve for a gaussian process can be used as a
meaningful standard by which to evaluate a source encoding or ''data
compression'' method; for, by means of a suitable (perhaps quite
complex) encoding method, one can achieve a given distortion level with

the rate indicated by this curve. The work of Goblick and Holsinger3



shows that for a stationary process, optimal sourcc encoding methods
can achieve a saving of only about a factor of 2.5 in the data rate

over a simple low-pass filter, sample, and quantize system, provided
the sampling rate and quantization levels are chosen properly. The data
sources encountered in space experiments are highly non-stationary,
hence an ''adaptive' or variable sampling rate and quantization level
scheme could provide performance reasonably close to that of an
optimum encoding system . Since such a system could be implemented
reasonably easily with a modest amount of special-purpose equipment,

this approach seemed a logical one to investigate first.

This method was simulated on a computer using the data from
the Dragon rocket flight. ! Ideal low-pass filters with sinx/x impulse
responses were used to filter the raw data. The bandwidths of these
filters were picked so that the entire output of the filter could be
reconstructed using only every nth sample (thus affording a
"compression ratio' of n). Values ofn =2, 3, 6, and 12 were used in
the simulation. The reconstruction data indicated that although the

reconstruction might be satisfactory when gauged in terms of

mean-square error, the reconstruction was unacceptable because the

sing/x filter introduced a structure into the reconstructed data that

was not present in the original data. Since such an artificial structure
could lead an experimenter into drawing false conclusions from the re-
constructed data, this method of data processing was abandoned and a

more complicated method was investigated.

PRESENT DATA PROCESSING ALGORITHM

After abandoning variable-rate sampling methods, we expanded
the majority of our effort in developing an encoding algorithm suitable
for implementation on a small general-purpose computer. In des-
cribing the properties of the algorithm that was developed, it will be
expedient to consider several aspects of source encoding of random data

processes.

Distortion Measures Applicable to Space Experiments

Before discussing specific data-processing schemes, an acceptable
tolerance in the reproduction of the data must be determined. This

tolerance will affect greatly the ultimate data rate required. We shall



start by recalling some of Shannon's results on coding with a fidelity
criterion, which will provide us with a reference system and suitable

terminology.

A
. A
Let s(t) be a stationary data process and s(t) denote the encoded

version of s(t). The error between the transmitted process and the

original process we then denote by

el{t) = s(t) - @(t)
We now consider a numerical measure of the distortion that occurs in the
transmission of the signal. Let f() denote some non-negative valued
function and let T denote some time duration, which, for the moment,
we leave arbitrary, The distortion involved in transmission is then
taken to be

T

D = E J‘o fle(t)] dt

1
T
in which E denotes expectation or an average over the ensemble of
possible message signals., The function f and the time interval T can
be chosen to express best the fidelity criterion of interest to the experi-

menter, Shannon has found a Rate-Distortion Function R(D), which gives

the minimum rate that is required to transmit with a distortion level of
value D. Unfortunately, this function is easy to evaluate only if s(t) is a
gaussian process, and for f(e) = e°, and in the limit as T approaches
infinity. This particular choice of distortion measure is not applicable
to the type of data generated by the counting process used by Moser, We
refer to Figure 1, which shows a stretch of typical data. The features
of interest to the experimenter are the occasional rises and falls in the
particular count. It is possible to smooth beyond recognition these

features of interest and still obtain a small value for the quantity:

. T
Hm Lo ro o2) at

T-wT 0
In fact, most coding schemes that one might envision, which would yield a
fixed value for this integral squared error, would yield a small error when

the message process s{t) was changing only gradually and yield large



errors during the infrequent sudden transitions — exactly those
periods of the data that are of the greatest interest to the experi-

menter.

One fidelity criterion that would be quite suitable for our appli-
cation would be to pick the function f as follows: lets denote a satisfactory

value for the instantaneous error; we then let f[e(t)] be unity if

sup e(t) > ¢

0<t<T

and let f{e(t)] be zero otherwise. In this case, D represents the probability
that the error never gets beyond an acceptable value anywhere in the

interval of duration T.

Although this definition of distortion adequately expresses the
experimenter's view of fidelity, it is virtually impossible to handle
mathematically. Instead, we shall keep the integral square error over
some finite time interval at a suitably low value., We define

e . L ot
€® =3 f e® (t)dt
0
and we note that we do not take an average of ¢? over an ensemble of

data signals,

It is important to observe that holding ¢® at a small value does
not guarantee that e(t) will be small for all values of time within the
interval T since the error will vary with time, This non-~stationary
character of the error makes ¢ ° unsuitable as a criterion for large
values of T since the error can be large during the rare events of
interest. We will handle this problem by keeping the time interval T
comparable to the duration of typical events, so that the error cannot
be large during a sudden rise (event) without appreciably increasing
the integral square error for the interval of duration T. For the data
shown in Figure 1, we use T = 100 ms, which corresponds to 100 data

points.
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When the data observed are noisy our objective is still a good
reproduction of the signal at any time, but the presence of noise may
make this unreasonable or impossible. Whenever the noise is large,
all one can hope for is to obtain the general trends of the signal. In
that case we shall keep the expected value of ¢?, E{eg} at a value small
compared with the amount of noise, Whenever the noise is small, the
noisy data can be filtered to give a good detailed reproduction of the
signal. In that case we shall treat the filtered data as if they were
noise-free data and require that ¢®*be kept less than some set value for
all possible message signals (except perhaps for a set of highly improbable
signals).. Note that even when the noise is large and we are using a mean
integral square error measure, we have to keep the representation in-

terval T small for the reason mentioned earlier.

The conclusion of our discussion provides the type of definition
of distortion that will be acceptable for experiments: the integral
square error over a small time interval (or its expected value, in the
case of noisy data) is maintained at some suitably small level, We did,
in fact, obtain agreement on this point from Moser. We consider now

the representation of signals of finite duration by digital means.

Efficient Discrete Description of Signals of Finite Duration

We would like to describe a signal of duration T by a small number
of binary digits, This binary description should allow the reconstruction
of the signal with an integral square error ¢°. We shall divide the process
of going from the signal to its digital description into two steps. First,
we shall describe the signal by a discrete set of numbers, then, the

binary representation of this discrete set of numbers will be considered.

We restrict our attention to the representation of the signal in
terms of an orthonormal set. That is to say we write:

s(t) = 2 s @ (t)
k=1 K K
in which{cpk(t% is a set of functions orthornormal over the interval T
T 0 k#j
fo P () @,(t) dt =
1 k=j




We do not use a weighting function in this definition of orthogonality,
because all instants of time in the interval are of equal interest,

The Sk that minimize the integral square error are given by

A large number of orthonormal sets (complete sets) would be suitable
to describe s(t) over the interval T. In accordance with our objectives
we would like the set that will require the least number of coefficients
8,0 on the average, for a given tolerance in the representation. Although
the set of orthonormal functions possessing this property is not known,
the set of functions that yield minimum mean integral square error for
any fixed number of coefficients is known. This latter set of functions is
known as the Karhunen—Loeve4 expansion of the process; determination
of this set of orthonormal functions requires only a knowledge of the
covariance function of the message process. Thus, this set of functions
constitutes a reasonable basis for expressing the message process on the
interval of duration T. Infrequently, the number of coefficients required

to keep the representation error within a suitable value will be large;

but, on the average, the number of coefficients will be kept small.

Once we have obtained a discrete set of coefficients {sk} that
describe the data, we have to represent these coefficients, within some

signal representation error ¢, by a small number of binary digits.

Digital Representation of Random Variables

Let us assume that we have N coefficients s, and that they allow
an error-free reconstruction of the signal s(t). If we describe each of
them in binary form with an error ¢ E , then the signal representation error

will be

(5"
1

m(\)
N
=01z

Now the problem is to choose the € such that an acceptable representa-
tion error is obtained while the average number of binary digits needed

in the description is minimized. This problem, related to Shannon's




rate distortion function mentioned before, has been considered specifically
by Posner5 at the Jet Propulsion Laboratory. This is a difficult problem, for
which no general solution is available. An optimum solution is to divide the
N-dimensional space of the coefficients into non-overlapping exhaustive cells,
each of which can be contained within a hypersphere of diameter ¢, and then to
determine which of these possible subdivisions has the sinallest entropy.

This subdivision would require, therefore, the least number of transmitted
binary digits on the average. A solution to the problem would undoubtedly

be of little practical interest because of the difficulty of implementing

a quantization scheme that depends on the joint values of N different

2
k

of each other (corresponding to rectangular cells), and for each €1 to

Let

coefficients. A simpler approach is to choose the errors &’ independently

determine the entropy of the corresponding random variable Sy
Hk(e k) be this entropy. We have then the formal minimization problem:

By suitable choice of the €1 minimize
N
"o f::l R
Under the constraint
N
1'<L=1€1i = e

This problem has been solved under the assumption that the sk‘s
have a gaussian distribution and that the variances okg are known. An
interesting feature of the solution is that the error g on each coefficient

is the same as long as

m
=

|

< 2

Q

k

Whenever the variance Gk2 becomes very small then the error ¢ Kk will
also decrease, but with high probability we shall quantize 1 at the value
zero, This result suggests that the approximate scheme used in our
encoding algorithm, described later, will be quite close to optimum

for most cases.
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Once we have obtained a digital description of the coefficients
S by quantization, an efficient binary form can be obtained by a Huffman
code. ~ We use the probability of occurrence of the coefficients in digital

form to determine the binary number assigned to each.,

Effect of Noisy Observations

The preceding discussion has, for the most part, been
predicated upon the assumption that the raw data signal on board the

satellite represents an uncorrupted observation of the quantity of direct

interest. In space experimentation, this is most often not the case,

In the situation at hand, one observes a Poisson counting process and
wishes to estimate the time-varying mean (ensemble average) counting
rate. The number of counts occurring in the past millisecond gives

an estimate of the mean counting rate, but this estimate contains
statistical fluctuations that may well be of the same order of magnitude

as the mean rate. In what follows, we will refer to c\orrupted observations
as noisy observations, even though the source of corruption is not

additive noise but of a more general cause, such as in the Poisson counting
process. The difference between what one wishes to observe and what one

actually observes, will be referred to as '"noise'’.

The fact that one's observations represent a corrupted version of
the process one wishes to relay to the ground observer changes both the
theoretical and practical aspects of source encoding. The essence of
this change may be summarized by the statement that it is pointless to
use a high transmission rate to achieve a level of transmission distortion

considerably less than the distortion inherent in the corrupted observation.

The rationale that we have employed in our source-encoding
algorithm is as follows. Suppose we use the observable data on board
the satellite to form the best estimate possible of the signal we wish to
transmit to the ground. If the signal-to-noise ratio in this estimate is
large compared to unity, then with a very large probability, any
fluctuations in the estimate that are large compared to the rms noise
level represent actual changes in the information-bearing signal. These
fluctuations should thus be transmitted with some tolerable distortion

level to the ground-based experimenter. Since the experimenter does not
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wish to miss any significant event (even if it is one that occurs only
infrequently) it is logical to design an encoding method that, in the

high signal-to-noise ratio case, is capable of transmitting all fluctuation
shapess (except perhaps those that are extremely unlikely) with a fixed
(independent of the fluctuation shape) distortion level. Thus, in the high
signal-to-noise ratio situation, it is reasonable to form a good estimate
of the information-bearing signal, and then encode this estimate, using

a code that is capable of transmitting all fluctuation shapes in the

estimate within a fixed distortion level.

Let us now consider the low signal-to-noise ratio situation., In
this case, fluctuations in the estimate of the information-bearing signal
may very likely be due to the noise and not to the information-bearing
signal. It is then somewhat pointless to demand that we use a code that
is capable of transmitting all estimate fluctuations with a fixed
distortion level. It would seem more reasonable to require only that
the mean (ensemble average) distortion level be less than some
reasonable level (this level being based on the noise level)., We have
been able to show (see section on Information Theoretic Results, page 19,
for a slightly expanded discussion) that in the case of mean square error,
a processing method that first forms the minimum mean square error
estimate of the information-bearing signal and then optimally encodes this

estimate as if it were an uncorrupted message, performs just as well as

a code that operates on the observed signal with the objective of minimizing

the rate while constraining the mean square error between the information-

bearing signal and the transmitted (encoded) signal,

Thus in either the high or low signal-to-noise ratio situation, it
is reasonable (or optimal) toform first the best estimate of the information-
bearing signal from the observation, and then to encode the estimate as if
it were an uncorrupted message signal. In the high signal-to-noise-ratio -
case, this code is to be capable of transmitting all (or almost all) estimate
signal shapes with a fixed distortion level. In the low signal-to-noise ratio
case, the code need only be capable of keeping the mean transmission
distortion to some reasonable level. This is the basis for the processing

method to be described in the following subsection.
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Final Coding Algorithm

The preceding subsections have discussed properties of optimal
encoding or digitizing of a random process under a distortion or fidelity
criterion suitable for the counting process considered. Rather than
trying to construct an encoding algorithm that is statistically optimum, we
have designed an algorithm with properties that are based on certain
properties of optimum codes. One reason for this is that the problem
of constructing an optimum code is analytically untractable, at least at
present. Moreover, there are two practical reasons for not designing

an optimum code:

(1) Ease of implementation. An optimum code seeks to minimize

the transmission rate for a given fidelity criterion with no
regard for the complexity of the required equipment or
computation time. These factors are as important as
minimizing the rate in a practical code; hence, our encoding
algorithm incorporates those features that are computationally

manageable.

(2) Statistical stability. An optimum code is optimum only for

encoding a random process with the exact statistical properties
for which the code was designed; yet this code may do very
poorly when used on a process with different statistical
properties, In space experimentation, invariably one is
uncertain about the exact statistical properties of the data
source involved, hence our encoding algorithm incorporates
those properties of an optimum code that are reasonably
universal, while rejecting those properties that require detailed

statistical knowledge of the data source.

Our encoding algorithm is designed to yield a fixed but programmable fidelity
criterion, so that when the properties of the source change, a corresponding
change in the average bit rate occurs, It should also be pointed out that

our code was designed on the assumption that a short amount of raw data
would be transmitted unaltered over the telemetry link so that some of the
properties of the data source could be observed and used in designing the

encoding algorithm,
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With the above comments in mind, we now discuss the different
functions performed by our encoding algorithm. These different functions

are shown in a block diagram (Figure 2).

(1) The Filter. In view of the second point given above, the filter
is designed simply on the assumption that the noise has a flat spectrum
and the message-bearing signal a low-pass spectrum. No particular form
is assumed for the message spectrum, and the filter used is a simple
symmetric geometric filter with delay. The time constant is picked to
reduce the noise as much as possible without introducing what the experi-
menter regarded as undesirable lag or delay. This choice is based on
the section of raw data available for ground observation. Although to
date the filtering in our simulations has been done on a general purpose
digital computer, this procedure would be wasteful in practice because
the filtering could be carried out in real time by extremely simple,

special-purpose digital circuitry.

As stated in Effect of Noisy Observations, page 10, the filtered

signal is encoded as if it were a corruption-free message process. The
difference between the filtered process and the raw data is squared and
summed over a 100-point interval and this quantity is used as an estimate
of the noise power in the filter output for that input. If the signal-to-noise
ratio is greater than 4, then the objective of the encoding operation is
taken to be transmission of the filtered IOO;point interval with a sum
square transmission error that is always kept below a specified constant.
If the signal-to-noise ratio is less than 4, then the objective of the encoding
operation is taken to be transmission with a mean (ensemble average) sum
square error less than C times the estimated sum square noise power (C
was normally takent to be somewhat less than one).

(2) Fourier Expansion. To describe the sample functions that can

occur on a 100-point interval, we use the Karhunen- Loeve set of orthogonal

functions, These functions are the eigenfunctions of the process covariance,

An interval of 1300 points of filtered data is used
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to estimate the covariance function of the filtered data (this requires
direct transmission of 1300 raw or filtered data points at the start of
the experiment). The eigenfunctions of the 100 x 100 covariance matrix
corresponding to the 20 largest eigenvalues are then found. In the
encoding algorithm, these 20 orthogonal functions are stored in a
general-purpose computer., As a block of 100 filtered data points is
generated, it is also stored in the computer. The computer then finds
the Fourier coefficients for each of these orthogonal functions by taking
the inner (dot) product of the sample with each of the orthogonal functions.
Only as many coefficients are computed as are necessary to represent
the 100-point sample with the required accuracy. Note that the
Karhunen-Loeve expansion gives Fourier coefficients that are

uncorrelated random variables.

(3) Quantization. Once a 100-point sample has been expressed in

terms of a number of Fourier coefficients, the numerical values of

these coefficients must be quantized for telemetry transmission. It

was pointed out earlier that we are interested in either transmission
within a fixed tolerance with high probability, or in transmission with
some specified mean square error. In both cases a good approximation
to optimum encoding consists of quantization with the same quantization
error of all coefficients up to a certain number and no transmission of

the remaining coefficients., Thus, our algorithm quantizes all coefficients

to be transmitted at the same level,

The total error occurring from truncation (using less than all
100 Fourier coefficients) and from quantizing those coefficients used
must be kept less than the desired distortion level. As the number of
coefficients used is increased and the truncation error decreases, the
quantization error may increase with a resulting decrease of the number
of binary digits needed per coefficient. An approximate rule is used in the
algorithm  to )ick the number of coefficients transmitted for each 100-point
interval so that the total number of binary digits required is minimum,

The details of the procedure will not be described further here.

(4) Digital Encoding, Once a number of coefficients for a 100-point

block has been chosen and quantized to the number of binary digits
required for acceptable distortion, the binary M-tuple representing each

coefficient (M is the largest number of binary digits required for suitable
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quantization) can be encoded into a more efficient form by using a
Huffman code, 6 The function of this code is to represent the more
frequently occurring binary M-tuples by shorter binary words, so

that the average number of binary digits required is minimized,
Although this portion of the algorithm has not as yet been simulated on
the digital computer, it merely requires looking up the codeword for
any of the possible ZM binary M-tuples (in our work M=7 is sufficient),
and then generating this codeword. It appears that this function can

be performed easily and quickly on a general purpose machine.

(5) Buffer Storage. As the coded words that represent the quantized

coefficients are generated, they must be stored for transmission. This
storage is necessary because the encoded binary digits are generated at a
varying rate, while the telemetry channel transmits at a fixed rate. Simula-
tion will be done in the immediate future to determine the storage capacity

that is required by our encoding algorithm.

Preliminary Results

A first indication of the '""compression ratio'' that could be
achieved was obtained by reconstruction of an acceptable signal from
a truncated orthornormal expansion. We form an approximation s(t)

every 100 ms

s(t) =2 s, ©.(t)
j=1 9 J

The number of terms, K, is chosen so as to give an acceptable reproduction
of the 100 data points. Two examples of the data and their reproduction
are shown in Figures 3a and 3b, The number of coefficients needed for the
reconstruction varies from 2 to 17 with an average of about 9 for the
stretch of data used. The coefficients are efficiently quantized, and the
quantized coefficients encoded in a Huffman code employing a block
length of 7 binary digits. The final encoded version requires an average
of 52,5 binary digits for a 100-point interval, This should be compared with
with a rate of about 600 - 800 binary digits per 100-point interval that would
be required if the experimenter were to transmit the raw data. We have

not as yet compared the encoded rate against information theoretic bounds.
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INFORMATION THEORETIC RESULTS

In the process of considering how to encode Moser's counting-rate
data, we have come across two basic information-theoretic problems

concerning source encoding that have not been solved previously,

In all of Shannon's Workz’ 7 it has been assumed that the message
process to be encoded at the transmitter can be observed in an
uncorrupted form, In many applications and, in particular, when the
data source is a space experiment, this is not the case, It is desirable
to make applicable to this more difficult problem as much of the existing
theory of source encoding as is possible., We have been able to demon-
strate the following: suppose we wish to transmit a random vector s,
when we can observe a corrupted version of s, namely x. The vectors x
and s can represent time functions or finite dimensional vectors. Let us
assume that the distortion criterion is the mean square value of the square
of the norm of the difference between s and its encoded version is? Leté\
denote the best (mean square) estimate of S, based on observation of x.

It has been shown that the problem of finding a code (mapping between x

and s ) that minimizes the transmission rate for a fixed distortion,

E{” s -5 H }, can be reduced in all aspects to finding a mapping between

s and s, Wthh minimizes the transmission rate for a fixed value of
{” s -5 I } The only change that occurs in the case of a corrupted

observation is the additional distortion occurring in estimation; i.e.,

eflls -8l = flis-8ll2) + e{|[2-5112)

In all past work, the only distertion criterion that has received
detailed attention for random processes is the mean integral square error.
" In many cases, such as Moser's counting-rate process or a video process,
it is also crucial to preserve the slope of the signal accurately. We
have found a rigorous derivation for the rate distortion function when the
distortion measure is the mean integral square of an arbitrary linear

operation on the error.

These results are being written and will be submitted for publication
to a technical journal. Copies of the completed manuscript will be sent

to NASA as soon as they are available.
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FUTURE WORK

Short-Range Objectives

We plan to evaluate further the performance and the computing
requirements of the present algorithm,. It will be used on a long section
of Moser's available data to check further the acceptability of the

obtained reproduction.

Encoding the data for this entire long interval will also yield a
more exact estimate of the average rate required by the scheme and of
the '"data compression'' achieved. The average rate will be compared
to the rate-distortion function (the minimum possible transmission rate
for a given distortion level), calculated under the restrictive assumption
that the process is gaussian and that the Fourier coefficients can be
quantized independently of each other. To obtain a better estimate of
the computing requirements, the algorithm will be used on a digital
computer (IBM 1800, 8000 word storage, 16 bit word, 2 psec cycle
time), which is similar to what is currently being planned by NASA for
use as an on-board computer. We shall then time the various parts of
the algorithm in operation and assess the feasibility of implementing

the algorithm on a small general-purpose machine.

Long-Range Objectives

(1) The current approach transmits to the ground an acceptable
reproduction of the data output of the sensors. A further step would be on-
board abstraction from the data of the information that is of direct interest
to the experimenter, and transmission only of that information to the ground,
This step would transfer to the satellite part of the decision-making

process that is currently controlled by experimenters on the ground.

(2) The types of digital operations performed in the data-processing
scheme are quite limited, Most of the computations are inner products
of vectors. Further, the vectors are used in a specific order for which
a direct access memory is not important. Inner products are handled
clumsily by a general-purpose machine. It seems worthwhile to con-
sider what kind of machine organization would be efficient in handling

the types of computations that are involved in the encoding algorithm,
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(3) Several basic information-theoretic problems require investigation.
In particle-counting experiments, the information of interest is the rate
of a time-varying Poisson process. Further work should be done on the
estimation of this rate, the physical implementation of the estimation
scheme, and the performance that can be thus achieved.

For the distortion measures encountered in space experimentation,

a good lower bound to the rate-distortion function is of interest. Although
the proposed scheme should be close to optimum, definite knowledge about

the best scheme possible would be valuable.
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