FLIGHT-WIND RESTRICTIONS
 PROCEDURE, ATLAS/CENTAUR
 AC -10 THROUGH AC-15
 Addendum I
 (Backup Procedure)
 Report Number GDC-BTD66-063
 Addendum I
 29 April 1966

Contract Number NAS3-8701
Prepared by

J.A. Traband Engineering Assistant
Approval by Clullonler
Approval by \qquad
R.S. Wentink

Assistant Chief Engineer Design Analysis - LVP

GDC-BTD66-063
Addendum I
29 April 1966

The following persons and/or their engineering groups have been instrumental in preparing the information in this document. It is published with their concurrence; and any questions concerning it should be directed to them.

		Department	$\frac{\text { Extension }}{2449}$
R. L. Holt	Design Specialist	Dynamics 966-9	
A. F. Leondis	Design Specialist	Dynamics 966-9	682

Additional copies of this document may be obtained by contacting LVP Resources Control and Technical Reports, Department 954-4, Building 26, Kearny Mesa Plant, San Diego, California.

FOREWORD

This report has been prepared and published in compliance with the provisions of Contract NAS3-8701 which specify structural dynamic-loads and design-determination requirements as outlined in Item 148 of the Centaur Documentation Requirements Plan, Report Number 55-00207F, dated 15 July 1965 and revised 18 March 1966 (General Dynamics Convair).

This report presents a backup procedure for rapidly evaluating wind profiles shortly before launch if there is a breakdown in communciations between San Diego and Cape Kennedy.

SUMMARY

This Backup Flight-Wind Restriction Procedure will generally ensure booster-vehicle structural integrity as the vehicle flies through a wind that is determined by a wind sounding just prior to launch.

The procedure has a primary method presented in GDC-BTD66-063, dated 29 April 1966, a vehicle flight simulation that uses an IBM 7094 computer. The backup method presented herein does not rely on an IBM 7094 computer, but uses an IBM 1401 computer, or desk calculator, and gives slightly conservative results.

Bending moments at three vehicle stations are possibly critical. Therefore allowable values are compared with calculated values to determine a launch recommendation. Engine deflection is ignored in this procedure since bending moment loads are almost always more critical.

TABLE OF CONTENTS

Section
Number Page
I DISCUSSION 1-1
1.1 Introduction 1-1
1.2 Vehicle Bending Moments 1-1
1.2.1 Flight-Wind Components 1-1
1.2.2 Computation 1-2
1.2.3 Comparison with Allowables 1-11
1.3 Backup Procedure versus Primary Procedure. 1-12
1.3.1 Comparisons 1-12
1.3.2 Correction for Excessive Wind-Shear Rates 1-12
1.4 Configuration Applicability 1-12
1.4.1 AC-10 Configuration. 1-12
1.4.2 Future Configurations 1-13
II DIGITAL COMPUTER PROGRAM METHOD 2-1
III REFERENCES 3-1
APPENDIX A
FIGURES A-1 THROUGH A-7 A-1

LIST OF ILLUSTRATIONS

Figure
Number

1-1 Components of the Flight-Wind Vector 1-2
1-2 AC-10 Allowable Bending Moments for Simplified Backup Procedure . 1-11
2-1 Deck Setup for BURP, Revision A 2-1
2-2 Logic Flow for BURP Program, Revision A 2-3
$\begin{array}{ll}\text { A-1 Comparison of COMBO and Backup Methods, } 6 \text { June } 1959 \text { Wind, } \\ & \text { Stations } 217 \text { and } 413 \text {. A-2 }\end{array}$
$\begin{array}{ll}\text { A-2 Comparison of COMBO and Backup Methods, } 6 \text { June } 1959 \text { Wind, } \\ & \text { Station } 570 \text {. A-3 }\end{array}$
A-3 Comparison of COMBO and Backup Methods, 6 June 1960 Wind, Stations 217 and 413

A-4
A-4 Comparison of COMBO and Backup Methods, 6 June 1960 Wind,
Station $570 . ~ A-5 ~$
$\begin{array}{ll}\text { A-5 Comparison of COMBO and Backup Methods, } 26 \text { May } 1961 \text { Wind, } \\ & \text { Stations } 217 \text { and } 413 \text {. A-6 }\end{array}$
$\begin{array}{ll}\text { A-6 } & \text { Comparison of COMBO and Backup Methods, } 26 \text { May } 1961 \text { Wind, } \\ & \text { Station } 570 \text {. A-7 }\end{array}$
A-7 AC-10 Wind-Shear Correction Factor for Backup (1401) Flight-Wind Restriction Procedure A-8

LIST OF TABLES

Table
Number Page
1-1 Influence Matrix ($\partial \mathrm{BM}_{\text {STA } 217} \times 10^{-6} / \partial V_{\mathrm{h}} / 10$) 1-4
1-2 Influence Matrix $\left(\partial B M_{\text {STA } 413} \times 10^{-6} / \partial V_{h} / 10\right)$ $1-5$
1-3 Influence Matrix $\left(\partial B M_{\text {STA }} 570 \times 10^{-6} / \partial V_{h} / 10\right)$ 1-6
1-4 Nominal No-Wind Trajectory Parameters (Bending Moment $\times 10^{-6}$). 1-7
1-5 Bending Moments Due to Gust (Absolute Value) (Bending Moment $\times 10^{-6}$) 1-8
1-6 Sample Calculation for ETR Wind 6 June 1959 1-9
1-7 Backup Procedure for 6 June 1959, Station 217 1-10
1-8 Percentage Difference at Maximum Bending (Primary Procedure) of the Backup Procedure versus Primary Procedure 1-12
2-1 Deck Description for BURP, Revision A 2-2

FLIGHT-WIND RESTRICTIONS PROCEDURE, ATLAS/CENTAUR AC-10 THROUGH AC-15 ADDENDUM I (Backup Procedure)

 SECTION 1

 SECTION 1
 DISCUSSION

1.1 INTRODUCTION

The AC-10 flight-wind restriction backup procedure has been devised to be used only in the event that the primary procedure (GDC-BTD66-063, dated 29 April 1966) cannot be used. The backup procedure allows bending moments to be calculated at three critical stations - 217, 413, and 570 - for an altitude range of 0 to 60,000 feet. This bending moment is then compared to a predetermined bending allowable from which the launch restriction can be determined. The assumptions for calculating the bending moments are the same as those used in the primary procedure.

The backup procedure employs a triangular impulse superposition process as suggested by Trembath in Reference 1-1. The method used in the calculations (as given in the following subsection) could be followed employing a desk calculator if necessary. Reference 1-2 provides information on the digital program and its use on the AC-4 vehicle.

1.2 VEHICLE BENDING MOMENTS

The actual wind profile will be evaluated in feet per second and degrees azimuth at the following altitudes:

0 feet	18,000 feet	33,000 feet	48,000 feet
3,000 feet	21,000 feet	36,000 feet	51,000 feet
6,000 feet	24,000 feet	39,000 feet	54,000 feet
9,000 feet	27,000 feet	42,000 feet	57,000 feet
12,000 feet	30,000 feet	45,000 feet	60,000 feet
15,000 feet			

1.2.1 FLIGHT-WIND COMPONENTS. Each of the wind vectors is then broken into the pitch and yaw planes. This is done as follows (see Figure 1-1 for components and definitions):

$$
\begin{aligned}
& \text { Example: } \\
& \mathrm{V}_{\mathrm{W}}=179.0 \mathrm{fps} \\
& \theta_{\mathrm{W}}=237^{\circ} \\
& \theta_{\mathrm{Z}}=111^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\text { Axialwind } & =V_{A}=-V_{W} \times \sin \left(\theta_{W}-\theta_{Z}-90^{\circ}\right) \\
& =-113.3 \text { feet/second (tailwind is negative) } \\
\text { Crosswind } & =V_{X}=V_{W} \times \cos \left(\theta_{W}-\theta_{Z}-90^{\circ}\right) \\
& =140.0 \text { feet/second (southwind is positive) }
\end{aligned}
$$

1.2.2 COMPUTATION. The following steps are to be followed in computing the total bending moment:
1.2.2.1 At each of the previous altitudes, divide the incremental velocity at that altitude by ten and form a column matrix for each plane, i.e. ;

Figure 1-1. Components of the Flight-Wind Vector
NOTE: The above convention agrees with COMBO as used in the primary flight-wind restriction procedure.

1.2.2.2 Premultiply each column of Paragraph 1.2.2.1 by the triangular matrix corresponding to the particular vehicle station in question (Tables 1-1 through 1-3). This results in columns $\left|\mathrm{BM}_{\alpha}\right|$ and $\left|\mathrm{BM}_{\beta}\right|$, which are the bending moments in pitch and yaw due only to the wind profile:

$$
\left[\frac{\partial \mathrm{BM}_{\mathrm{STA}}}{\partial \mathrm{~V}_{\mathrm{h}} / 10}\right] \cdot\left[\frac{\mathrm{V}_{\mathrm{A}_{\mathrm{h}}}}{10}\right]=\left[\mathrm{BM}_{\alpha}\right], \text { or }
$$

and

$$
\left[\frac{\partial \mathrm{BM}_{\mathrm{STA}}}{\partial \mathrm{~V}_{\mathrm{h}} / 10}\right]\left[\frac{\mathrm{V}_{\mathrm{X}_{\mathrm{h}}}}{10}\right]=\left[\mathrm{BM}_{\beta}\right]
$$

The sub ${ }_{h}$ refers to the altitude; and the same triangular matrix is used in each plane.

TABLE 1-1. INFLUENCE MATRIX ($\mathrm{\partial BM}_{\text {STA }} 217 \times 10^{-6} / \partial \mathrm{V}_{\mathrm{h}} / 10$)

 (All values are given in in. $-\mathrm{lb} \mathrm{sec} / \mathrm{ft}$.)

0000
0007- 0056
0004-0007-0077 0005-0012-0018-0095 0005-0011-0016-0031-0108 0004- 0009-0012-0019-0036-0118 0003- 0007-0009-0012-0020-0034-0125 0002-0005-0006-0008-0011-0017-0029-0124 0001-0002-0003-0003-0004-0005-0011-0027-0042 0001- 0002-0002-0003-0003-0004-0005-0010-0011-0055 0001-0001-0002-0002-0042-0003-0003-0006-0017-0047-0066 0001-0002-0002-0002-0003-0003-0003-0004-0006-0019-0016-0075 0001-0002-0002-0002-0002-0003-0003-0003-0005-0009-0029-0059-0083 0001-0002-0002-0002-0003-0003-0003-0003-0004-0006-0012-0037-0054-0146 0001-0001-0002-0002-0002-0002-0003-0003-0003-0004-0006-0011-0038-0050-0001-0001-0001-0001-0002-0002-0002-0002-0003-0003-0003-0005-0008-0037-0001-0001-0001-0001-0001-0001-0002-0002-0002-0003-0003-0003-0003-0007~ 0001- 0001-0001-0001-0001-0001-0001-0001-0002-0002-0002-0003-0003-0004-0001-0001-0001-0001-0001-0001-0001-0001-0002-0002-0002-0002-0002-0003-0004-0010-0027-0022-0085 0002-0003-0001-0001-0001-0001-0001-0001-0001-0001-0002-0002-0002-0003-0003-0005-0010-0022-0013-0070 0000 0001-0001-0001-0011-0001-0001-0001-0001-0001-0001-0001-0001-0001-0002-0003-0004-0008-0018-0011-0062
 (All values are given in in. -lb sec/ft)
0017- 0139 0016-0030-0217
0015-0037-0065-0267 0011-0026-0038-0067-0234 0010-0022-0028-0042-0074-0290 0009- 0020-0023-0030-0050-0077-0312
0008- 0018- 0021- 0025- 0034- 0052-0082-0001-0002-0003-0003-0004-0000-0015-0050-0188
0002-0005-0006-0006-00u7-0008-0012-0022-0028-0288 0002- 0005-0005-0006-0047-0007-0009-0014-0031-0037-0293 0002-0005-0006-0007-0007-0008- 0009-0011-0017-0066-0090-0312 0003- 4005- 0006- 0007- 0008- 0008- 0009- 0011- 0013- 0031- 0102- 0149-0393 0002- U005-0006-0006-0007-0007-0008-0009-0011-0016-0032-0098-0147-0375 0002-0004-0004-0005- 0006-0006-0006-0007-0008-0011-0015-0027-0094-0124-$002-0004-004-005$ 0000 0000 0001-0001-0001-0001-0001-0001- 0001- 0001- 0001- 0001-0001- 0001- 0031-0178 0001- v001- 0002- 0003-0003-0004-0004-0004-0006-0007-0007-0007-0008-0017-0093-0100-0289 0001-0002-0002-0003-0003-00n3-0004-0014-0005-0006-0006-0006-0007-0009-0022-0083-0079-0260 00U1- v001-0002-0002-00U3-0003- ט0n3-0003-0004-0005-0005-0005-0006-0007-0011-0026-0071-0058-0226 0001- 0003- 0004- 0005-00u5-0005-0005-0006- 0006- 0005-0006-0006-0007-0008- 0011-0016-0023-0069-0080-0267 0001- U001-0001- 0002-0002-0002- 0002-0002- 0003-0003-0003-0003-0003-0004-0004-0007-0011-0022-0047-0031-0166
0000
AC-10
TABLE 1-3. INFLUENCE MATRIX ($\partial \mathrm{BM}_{\text {STA }} 570 \times 10^{-6} / \partial \mathrm{V}_{\mathrm{h}} / 10$) (All values are given in in.-lb sec/ft.)

0000	AC-10																		
0024-	4193																		
0016	0053	022:																	
0018	0045	0082	0064																
0016	0037	005	0102	0104-															
0014	0031	0040	0004	0114	0295-														
0013	0028	0034	0046	0015	0134	0417-						,							
0012	0025	0031	0038	0022	0086	0160	0503-												
0010	0021	0025	0029	0036	0049	0089	0207	0533-											
0007	U016	0019	0022	0026	0031	0046	01113	0223	0547-										
0006	0013	0016	0019	0021	0023	0029	0052	0117	0245	0583-									
0004	0010	0013	0014	0016	0017	0020	0028	0048	0120	0270	0587-								
0004	0008	0010	0011	0012	0013	0014	0016	0021	0045	0160	0264	0596-							
0003	0004	0000	0010	0011	0011	0012	0013	0016	0023	0047	0142	0227	0568-						
0003	0006	0007	0008	0009	0009	0009	0.011	0013	0016	0022	0039	0138	0203	0499-					
0001	0003	0004	0005	0006	0006	0007	0008	0010	0011	0012	0014	0024	0120	0144	0465-				
0001	v003	0003	0004	0005	0005	0006	0006	0008	0009	0010	0011	0012	0023	0140	0159	0416-			
0001	0002	0003	0004	0004	0004	0005	0005	0007	0007	0008	0009	0009	0013	0030	0123	0120	0363-		
0001	0001	0002	0003	0003	0004	0004	0004	0006	0006	0007	0008	0008	0049	0015	0036	0102	0086	0313-	
0001	0001	0002	0002	0003	0003	0003	0003	0005	0005	O006	0006	0007	0007	0010	0017	0034	0081	0064	0265-
0001	0001	0001	0002	0003	0003	0003	0003	0004	0005	0005	0006	0006	0006	0008	0011	0017	0031	0063	0043 0227-

1.2.2.3 Add to $\left[\mathrm{BM}_{\alpha} \mid\right.$ the values from Table $1-4$, which are the bending moments due to vehicle response in a no-wind condition.
1.2.2.4 Take the square root of the sum of the squares of $\left(\mathrm{BM}_{\alpha}+\mathrm{BM}_{\text {NO WIND }}\right)$ and ($B M_{B}$) at each altitude to get the resultant bending moment:

$$
\left|\mathrm{BM}_{\mathrm{R}}\right|=+\sqrt{\left(\mathrm{BM}_{\alpha}+\mathrm{BM}_{\mathrm{NO} \text { WIND }}\right)^{2}+\left(\mathrm{BM}_{\beta}\right)^{2}}
$$

1.2.2.5 Add the bending moment due to gust, which is given in Table 1-5, to BM_{R} to get total bending moment:

$$
\left|\mathrm{BM}_{\mathrm{T}}\right|=\left|\mathrm{BM}_{\mathrm{R}}\right|+\left|\mathrm{BM}_{\mathrm{GUST}}\right|
$$

TABLE 1-4. NOMINAL NO-WIND TRAJECTORY PARAMETERS (BENDING MOMENT $\times 10^{-6}$)
(All values are given in in.-lb.)

Altitude (feet)	Time (second)	Station 217	Station 413	Station 570
0	0	-0.002	-0.017	0.051
3,000	24.3	-0.043	-0.115	0.169
6,000	33.0	0.018	0.027	0.032
9,000	39.3	0.051	0.111	-0.134
12,000	44.5	0.098	0.218	0.272
15,000	48.9	0.135	0.297	-0.395
18,000	52.8	0.183	0.388	-0.493
21,000	56.3	0.223	0.524	-0.625
24,000	59.5	0.250	0.735	-0.867
27,000	62.5	0.263	0.818	-0.987
30,000	65.4	0.317	0.738	-0.861
33,000	68.1	0.218	0.562	-0.618
36,000	70.6	0.249	0.414	-0.423
39,000	73.1	0.165	0.227	-0.306
42,000	75.4	0.086	0.627	-0.228
45,000	77.6	-0.029	0.160	-0.251
48,000	79.7	-0.105	-0.300	0.509
51,000	81.9	-0.213	-0.464	0.723
54,000	83.9	-0.214	-0.605	0.909
57,000	85.8	-0.232	-0.668	1.007
60,000	87.7	-0.072	-0.218	0.369

TABLE 1-5. BENDING MOMENTS DUE TO GUST (ABSOLUTE VALUE) (BENDING MOMENT $\times 10^{-6}$)
(All values are given in in.-lb.)

Altitude (feet)	Time (second)	Station 217	Station 413	Station 570
0	0	0	0	0
3,000	24.3	0.156	0.362	0.478
6,000	33.0	0.214	0.453	0.600
9,000	39.3	0.241	0.547	0.765
12,000	44.5	0.315	0.722	0.880
15,000	48.9	0.491	0.796	1.296
18,000	52.8	0.615	1.008	1.233
21,000	56.3	0.620	1.034	1.317
24,000	59.5	0.591	1.137	1.667
27,000	62.5	0.677	1.375	1.717
30,000	65.4	0.594	1.326	1.739
33,000	68.1	0.735	1.300	1.753
36,000	70.6	0.455	1.236	1.591
39,000	73.1	0.471	1.246	1.527
42,000	75.4	0.453	1.164	1.568
45,000	77.6	0.460	1.232	1.408
48,000	79.7	0.353	1.045	1.063
51,000	81.9	0.327	0.875	1.330
54,000	83.9	0.378	1.121	1.257
57,000	85.8	0.381	1.077	1.240
60,000	87.7	0.444	1.187	1.290

Table 1-7 shows the results of calculations involving the influence coefficients of Table 1-1 and the wind components of Table 1-6.

Altitude (feet)	Time $(\mathbf{s e c})$	θ_{W} (deg)	$\boldsymbol{\theta}_{\mathrm{W}}-198$ (deg)	Sin $\left(\theta_{\mathrm{W}}-198\right)$	\mathbf{V}_{W} $(\mathrm{ft} / \mathrm{sec})$	Cos $\left(\theta_{\mathrm{W}}-198\right)$	$\frac{\mathbf{V}_{\mathrm{A}}}{10}$ $(\mathrm{ft} / \mathrm{sec})$	$\frac{\mathbf{V}_{\mathbf{X}}}{10}$ $(\mathrm{ft} / \mathbf{s e c})$
0	0	230	32	0.5299	3.2	0.8480	-0.1695	0.2713
3,000	24.3	222	24	0.4067	7.4	0.9135	-0.3009	0.6759
6,000	33.0	260	62	0.8829	15.9	0.4695	-1.4038	0.7465
9,000	39.3	250	52	0.7880	22.0	0.6157	-1.7336	1.3545
12,000	44.5	280	82	0.9903	33.9	0.1392	-3.3571	0.4719
15,000	48.9	280	82	0.9903	39.4	0.1392	-3.9017	0.5484
18,000	52.8	280	82	0.9903	36.1	0.1392	-3.5749	0.5025
21,000	56.3	270	72	0.9511	36.5	0.3090	-3.4715	1.1278
24,000	59.5	283	85	0.9962	47.8	0.0872	-4.7618	0.4168
27,000	62.5	290	92	0.9994	61.0	-0.0349	-6.0963	-0.2129
30,000	65.4	290	92	0.9994	79.3	-0.0349	-7.9252	-0.2767
33,000	68.1	290	92	0.9994	98.0	-0.0349	-9.7941	-0.3420
36,000	70.6	300	102	0.9782	100.0	-0.2079	-9.7820	-2.0790
39,000	73.1	303	105	0.9659	128.8	-0.2588	-12.4407	-3.3333
42,000	75.4	310	112	0.9272	151.1	-0.3746	-14.0099	-5.6602
45,000	77.6	301	103	0.9744	121.5	-0.2249	-11.8389	-2.7325
48,000	79.8	290	92	0.9994	97.7	-0.0349	-9.7641	-0.3409
51,000	81.9	297	99	0.9877	60.0	-0.1564	-5.9262	-0.9384
54,000	83.9	282	84	0.9945	37.0	0.1045	-3.6796	0.3866
57,000	85.8	310	112	0.9272	20.0	-0.3746	-1.8544	-0.7492
60,000	87.7	290	92	0.9994	14.5	-0.0349	-1.4491	-0.0506

	$\dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{0} \dot{\circ} \dot{\circ} \dot{\circ}$
	응 品 íi íi íi ío óo ó ó
$>^{\times 1}$	
	 ị
告	
号 总 总	

1.2.3 COMPARISON WITH ALLOWABLES. The allowable bending moments at each station, for use only in this backup procedure, are specified in Figure 1-2. If the $\mid B M_{T}$ |'s exceed the allowable values, the 1401 program prints out the word DANGER. Note that the primary procedure uses both bending moment and axial load to obtain a higher launch availability than is possible with this abbreviated procedure.

Figure 1-2. AC-10 Allowable Bending Moments for Simplified Backup Procedure

1.3 BACKUP PROCEDURE VERSUS PRIMARY PROCEDURE

1.3.1 COMPARISONS. Table $1-8$ shows the percentage difference, at maximum bending (primary procedure), of the backup as compared with the primary procedure. In Appendix A, Figures A-1 through A-6 show comparisons of the bending moments from the backup procedure and the primary (COMBO) procedure. Three winds measured at Cape Kennedy, 6 June 1959, 6 June 1960, and 26 May 1961, were used for comparison.
TABLE 1-8. PERCENTAGE DIFFERENCE AT MAXIMUM BENDING (PRIMARY PROCEDURE) OF THE BACKUP PROCEDURE VERSUS PRIMARY PROCEDURE

Date	Station 217	Station 413	Station 570
6 June 1959	0%	0%	4% high
6 June 1960	3% high	2% high	6% high
26 May 1961	2% high	10% low	7% low.

1.3.2 CORRECTION FOR EXCESSIVE WIND-SHEAR RATES. Although the backup procedure was designed to give conservative results, inspection of the plots shows an inconsistency. This inconsistency is due to the fine-mesh flight simulation which the primary procedure maintains. Also, the primary program uses an elliptical interpolation for gust bending moment, while this simplified backup procedure uses an average value. Station 570 occasionally shows a relatively high bending moment because the average gust bending moment is used.

Significant wind shears frequently occur over a shorter altitude range than that of the 3,000 foot integration mesh of this backup procedure. This program has the effect of spreading the wind shear over the 3,000 foot interval and thus reducing the magnitude of the applied aerodynamic load.

Whenever the backup program is used because of the unavailability of the primary flight-wind restriction results, the wind-shear rate must be examined. If the windshear rate exceeds 6.7 fps per thousand feet, the 1401 bending moments are to be multiplied by the $f_{\text {W.s. }}$ factor from Figure A-7 in order to obtain reasonable values. The wind-shear rate should be taken from the AN-GMD-1 balloon data, which is interpolated at altitude intervals of approximately one hundred feet.

1.4 CONFIGURATION APPLICABILITY

1.4.1 AC-10 CONFIGURATION. Though the general procedures of this report are not expected to change for the next 8 vehicles, the specific data displayed in the tables of Section 1.2 and the graphs of Appendix A are applicable to the AC-10 flight only. The nose fairing and insulation panels are to be jettisoned as before. This is the first
flight of the Surveyor spacecraft. The Surveyor is to be separated from the Centaur. In addition to the payload, several telemetry channels and associated measuring devices will be on board for $R \& D$ purposes.
1.4.2 FUTURE CONFIGURATIONS. Future configurations should not differ greatly from the AC- 10 configuration. Also the digital computer program method used in this procedure will be the same for future flights. Therefore this report is considered applicable for flights AC-10 through AC-15. (Vehicles AC-7 and AC-9 are included in this group configuration since they are scheduled to fly after AC-10.) Relatively minor changes in vehicle parameters, coefficients, gust response, zero-wind bending moment, etc., will be made, if necessary, for each vehicle without changing the report. Should a major configuration or program change occur, however, this report will be revised.

SECTION II

DIGITAL COMPUTER PROGRAM METHOD

The backup flight-wind procedure employs an IBM 1401 digital computer. The deck setup for the BURP program (Revision A), used in this procedure, is illustrated in Figure 2-1 and explained in Table 2-1. Figure 2-2 diagrams the logic flow.

Figure 2-1. Deck Setup for BURP, Revision A

TABLE 2-1. DECK DESCRIPTION FOR BURP, REVISION A

2. Wind Angle Correction Card (1 Card)			
$1-3$	Correction Angle	degrees	$\left(\mathrm{XXX}_{\wedge}\right)$

3. α Gust Deck (21 Cards)						
$1-4$	α Gust	in. - lbs	$\left(\mathrm{X}_{\wedge} \mathrm{XXX}\right)$			
$11-14$	Design Limit	in. -1bs	$\left(\mathrm{X}_{\wedge} \mathrm{XXX}\right)$			
$21-24$	α No Wind	in. -lbs	$\left(\mathrm{X}_{\wedge} \mathrm{XXX}\right)$			
$30-33$ (First Card)	Station Number					
Example:						
Col 1	Col 11	Col 21				
0682	1350	0420				

4. Matrix Deck (22 Cards)

One row per card with the 21st row being an exception. Card 21 contains 20 elements of Row 21 and Card 22 contains the last element of Row 21 (see Tables 1-1 through 1-3).
30-40 (First Card)

Title of Run
Field Width Equal 4
($\mathbf{X A X X X}_{\wedge}$)
Example:

Col 1	Col 5	Col 9	Col 13 (4th Card)
0005	0015	0022	0080

NOTES: 1. All data are right adjusted in designated fields. Zeros are used in place of blanks.
2. All negative numbers must have a minus sign over-punched in the low order position of the field.

Figure 2-2. Logic Flow for BURP Program, Revision A

SECTION III

REFERENCES

1-1. Control System Design Wind Criteria, N. W. Trembath. 30 June 1958 (Space Technology Laboratories).

1-2. Backup Wind Restriction Procedure; Computer Program 10105, R. James. 10 September 1963 (Computer Laboratory, General Dynamics/Convair).

1-3. Flight-Wind Restrictions Procedure, Atlas/Centaur AC-10 through AC-15, R. T. Mattson. Report Number GDC-BTD66-063, 29 April 1966 (General Dynamics Convair).

APPENDIX A

Figures A-1 through A-7.

TIME, (sec)

Figure A-1. Comparison of COMBO and Backup Methods, 6 June 1959 Wind, Stations 217 and 413

Figure A-2. Comparison of COMBO and Backup Methods, 6 June 1959 Wind, Station 570

Addendum I
29 April 1966

Figure A-3. Comparison of COMBO and Backup Methods, 6 June 1960 Wind, Stations 217 and 413

Figure A-4. Comparison of COMBO and Backup Methods, 6 June 1960 Wind, station 570

Addendum I

29 April 1966

Figure A-5. Comparison of COMBO and Backup Methods, 26 May 1961 Wind, Stations 217 and 413
BENDING MOMENT $\times 10^{-6}$, (in.-1b)

Figure A-6. Comparison of COMBO and Backup Methods, 26 May 1961 Wind, Station 570

GDC-BTD66-063

Addendum I

29 April 1966

Figure A-7. AC-10 Wind-Shear Correction Factor for Backup (1401) Flight-Wind Restriction Procedure

